Volume 14, issue 2 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
A sign assignment in totally twisted Khovanov homology

Andrew Manion

Algebraic & Geometric Topology 14 (2014) 753–767
Abstract

We lift the characteristic-2 totally twisted Khovanov homology of Roberts and Jaeger to a theory with coefficients. The result is a complex computing reduced odd Khovanov homology for knots. This complex is equivalent to a spanning-tree complex whose differential is explicit modulo a sign ambiguity coming from the need to choose a sign assignment in the definition of odd Khovanov homology.

Keywords
odd Khovanov homology
Mathematical Subject Classification 2010
Primary: 57M25
Secondary: 57M27
References
Publication
Received: 9 June 2012
Revised: 16 September 2013
Accepted: 19 September 2013
Published: 30 January 2014
Authors
Andrew Manion
Department of Mathematics
Princeton University
Princeton, NJ 08544
USA