Volume 14, issue 2 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
High distance Heegaard splittings via Dehn twists

Michael Yoshizawa

Algebraic & Geometric Topology 14 (2014) 979–1004
Abstract

In 2001, J Hempel proved the existence of Heegaard splittings of arbitrarily high distance by using a high power of a pseudo-Anosov map as the gluing map between two handlebodies. We show that lower bounds on distance can also be obtained when using a high power of a suitably chosen Dehn twist. In certain cases, we can then determine the exact distance of the resulting splitting. These results can be seen as a natural extension of work by A  Casson and C  Gordon in 1987 regarding strongly irreducible Heegaard splittings.

Keywords
Heegaard splittings, Hempel distance
Mathematical Subject Classification 2010
Primary: 57M50
Secondary: 57M25
References
Publication
Received: 9 December 2012
Revised: 25 September 2013
Accepted: 26 September 2013
Published: 21 March 2014
Authors
Michael Yoshizawa
Department of Mathematics
University of California, Santa Barbara
South Hall, Room 6607
Santa Barbara, CA 93106-3080
USA
http://math.ucsb.edu/~myoshi