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The multiplicativity of fixed point invariants

KATE PONTO

MICHAEL SHULMAN

We prove two general factorization theorems for fixed-point invariants of fibrations:
one for the Lefschetz number and one for the Reidemeister trace. These theorems
imply the familiar multiplicativity results for the Lefschetz and Nielsen numbers of a
fibration. Moreover, the proofs of these theorems are essentially formal, taking place
in the abstract context of bicategorical traces. This makes generalizations to other
contexts straightforward.

55M20; 18D05, 55R05

1 Introduction

If pW E!B is a fiber bundle, in which the fibers and base are closed smooth manifolds
and B is connected, then it is well known that the Euler characteristics of E , B and
any fiber p�1.b/ are related by

(1) �.E/D �.B/ ��.p�1.b//:

If B is not connected, then the fibers over different components may have different
Euler characteristics, so this expression must be replaced by

(2) �.E/D
X

C2�0.B/

�.C / ��.FC /;

where FC denotes the fiber over some point in C . More generally, if f W E!E and
xf W B! B are endomorphisms making the square

(3)
E

f //

p

��

E

p

��
B

xf // B

commute and moreover the fibration p is orientable (meaning that �1.B/ acts trivially
on the homology of the fiber), then a similar result holds for the Lefschetz number (see

Published: 7 April 2014 DOI: 10.2140/agt.2014.14.1275

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55M20, 18D05, 55R05
http://dx.doi.org/10.2140/agt.2014.14.1275


1276 Kate Ponto and Michael Shulman

Heath, Morgan and Piccinini [10])

(4) L.f /DL. xf / �L.fb/

(with an evident generalization to the nonconnected case). Of course, b 2 B must be a
fixed point of xf in order for f to induce an endomorphism fbW p

�1.b/! p�1.b/ of
the fiber over b . (If xf has no fixed points, then neither does f , so L.f /DL. xf /D 0

and (4) still holds vacuously.) When f and xf are identity maps, this recovers (1).

Our goal in this paper is to generalize formula (4) to the case of nonorientable fibrations,
and also to the Reidemeister trace, a fixed-point invariant which refines the Lefschetz
number (see below). Note that the right side of (4) is not even well defined if the
fibration is not orientable, since the Lefschetz number of fb can vary with b , even
inside a single connected component of B .

Example 1.1 Consider the double cover pW S1 ! S1 , let xf be reflection in the
x–axis (with S1 considered as a subset of R2 ), and let f be some map lying over
it. Then xf has two fixed points 1 and �1, and over one of them fb is the identity
(with Lefschetz number 2), while over the other it is the transposition (with Lefschetz
number 0).

Since B is a closed smooth manifold, xf is homotopic to a map with a finite number of
isolated fixed points. The invariants considered here are invariants of homotopy classes
of maps, so we may assume that xf has only a finite number of fixed points. Then a
simple way to express our formula which generalizes (4) is

(5) L.f /D
X
xf .b/Db

indb. xf / �L.fb/:

That is, we sum over the fixed points of xf , adding up the Lefschetz numbers of the
fiberwise maps, with the indices of the xf –fixed points as coefficients. For instance,
in Example 1.1, the fixed points of xf each have index 1, so we compute L.f / D

1 � 0C 1 � 2D 2, which is correct.

Note that if f and xf are identity maps (or, more precisely, deformations of identity
maps that have isolated fixed points), then we can group the fixed points of xf according
to the component of B in which they lie. Since the Euler characteristic of the fiber
is constant over each component, and the sum of the indices of the fixed points of xf
in a given component is the Euler characteristic of that component, in this way we
recover (2). More generally, this grouping also applies whenever p is orientable.

For nonorientable p such a coarse grouping is not possible, as Example 1.1 shows,
but a somewhat finer grouping is. We say two fixed points b1 and b2 of xf are in the
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same fixed-point class if there is a path  from b1 to b2 which is homotopic to xf . /
relative to the endpoints. (This is a classical definition and can be expressed in many
equivalent ways; see, for example, Brown [3], Citterio [5] or Jiang [12].) In this case,
one can show that L.fb1

/DL.fb2
/.

Thus, we can rewrite (5) as

(6) L.f /D
X

fixed-point
classes C

indC . xf / �L.fC /;

where

(7) indC . xf /D
X
b2C

indb. xf /

denotes the sum of the indices of all fixed points in the class C , and L.fC / denotes
the common value of L.fb/ for any b 2 C .

One advantage of (6) is that unlike (5), it involves only homotopy-invariant quantities.
If f and xf are deformed through compatible homotopies, then while L.f / remains
constant, the fixed points of xf can move around and even appear and disappear.
However, the total index (7) of all fixed points in a given class remains constant, as
does the Lefschetz number L.fC / over any such class.

Of course, for this last statement to have any meaning, there must be a sense in which
the set of fixed-point classes remains constant as a map is deformed. This is not literally
true; xf might have two fixed points in the same class which cancel each other out
under a deformation, resulting in that fixed-point class disappearing. However, there is
a set of “potential” fixed-point classes which is homotopy invariant, defined as follows.

Let hh�1B xf ii be the set of pairs .b;  /, where b is a point of B and  is a path b 
xf .b/, modulo the equivalence relation which sets .b;  /� .b0;  0/ if there is a path
˛W b b0 such that ˛ � 0 is homotopic to  � xf .˛/. (We write � for path concatenation.)
Clearly if xf .b/ D b and cb is the constant path at b , then .b; cb/ is an element of
hh�1B xf ii. Moreover, we have .b; cb/� .b

0; cb0/ if and only if b and b0 are in the same
fixed-point class. Therefore, the set of fixed-point classes of xf injects into hh�1B xf ii,
and the latter set is homotopy invariant; see [5; 12].

If we make the obvious convention that indC . xf /D 0 when C is a potential fixed-point
class containing no fixed points, then we can write (6) as

L.f /D
X

C2hh�1B xf ii

indC . xf / �L.fC /:
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This leads us to another advantage of (6) over (5): formula (6) does not require us to
actually find the fixed points of xf . We only need to calculate the numbers indC . xf /

and L.fC / for each potential fixed-point class. We will return to the numbers indC . xf /

below; as for L.fC /, it turns out that we can calculate it without even knowing
whether C contains any fixed points. Specifically, suppose .b;  W b  xf .b// is a
representative of C . Since p is a fibration, by path lifting we can obtain a homotopy
equivalence h W p

�1. xf .b//
�
�! p�1.b/. Then L.fC / can be identified with the

Lefschetz number of the composite

p�1.b/
fb
�! p�1. xf .b//

h
��! p�1.b/:

Note that we use fb to denote the restriction of f to p�1.b/, whether or not b is a
fixed point of xf .

A final advantage of (6) over (5) is that it is more direct to prove. To explain why,
consider first the case of a trivial bundle pW B �F ! B , where f D xf � fb is also
a product. In this case, formula (4) follows from abstract nonsense. For Lefschetz
numbers can be identified with traces in an abstract category-theoretic sense (see
Section 2), and such traces are always multiplicative:

(8) tr.f ˝g/D tr.f / � tr.g/

In fact, the product tr.f / � tr.g/ in (8) is properly expressed as a composite tr.f /ı tr.g/
of endomorphisms of a “unit object.” In our topological case, this “unit object” is a
large-dimensional sphere, whose endomorphisms can be identified (up to homotopy)
with integers (their degrees), and composition corresponds to multiplication.

Now formula (6) can also be interpreted as a composite, in the following way. Let
Zhh�1B xf ii denote the free abelian group on hh�1B xf ii.

Definition 1.2 The refined fiberwise Lefschetz number of f is the homomorphism

yLB.f /W Zhh�1B xf ii ! Z;

which sends each basis element C 2 hh�1B xf ii to L.fC /.

On the other hand, we have an element

R. xf /D
X

C2hh�1B xf ii

indC . xf / �C; R. xf / 2 Zhh�1B xf ii;

which can of course be identified with the map Z! Zhh�1B xf ii sending 1 to R. xf /.
Formula (6) then becomes the following.

Algebraic & Geometric Topology, Volume 14 (2014)



The multiplicativity of fixed point invariants 1279

Theorem 1.3 The composite

(9) Z
R. xf /
���! Zhh�1B xf ii

yLB.f /
����! Z

is multiplication by L.f /.

We will derive this by a generalization of (8), using the notion of bicategorical trace
introduced by the authors [18; 21; 20]. Both yLB.f / and R. xf / can be identified with
traces in this sense, and the analogue of (8) then directly implies (6).

Now we may turn to the question of calculating the numbers indC . xf /, or equivalently,
calculating the element R. xf / 2 Zhh�1B xf ii. In fact, R. xf / is a well-known invariant
which refines the Lefschetz number L. xf /; it is called the Reidemeister trace of xf ;
see [3; 12] and Husseini [11].

Remark 1.4 Of course, L. xf / is the sum of all the coefficients in R. xf /, or equiva-
lently its image under the augmentation Zhh�1B xf ii!Z that sends each basis element
to 1. This augmentation can be identified with the refined fiberwise Lefschetz number
of the following map of fibrations:

B
xf //

idB

��

B

idB

��
B

xf

// B

Thus, the classical relationship between L. xf / and R. xf / is a special case of Theorem 1.3.

Classically, the interest of the Reidemeister trace is that, unlike the Lefschetz number,
it supports a converse to the Lefschetz fixed-point theorem (under certain additional
hypotheses). Theorem 1.3 shows that the Reidemeister trace also arises naturally when
we consider multiplicativity, even if we only care about Lefschetz numbers to begin with.

However, this means that in order to use Theorem 1.3 to calculate Lefschetz numbers,
we must have ways to calculate the Reidemeister trace. In particular, it would be nice
to have a formula similar to (6) for Reidemeister traces. Conveniently, we can derive
such a thing from the same abstract context that gives rise to (6). The formula is what
one would expect,

(10) R.f /D
X

C2hh�1B xf ii

indC . xf / � iC .R.fC //;
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where iC denotes the map

Zhh�1.p
�1.b//fb

ii ! Zhh�1Ef ii

(for some b 2 C ) induced by sending each fixed-point of fb to itself, regarded as a
fixed point of f . This map can also be calculated from a representative .b;  / of C

using a homotopy lifting, as we did for L.fC / above.

We can also express (10) as a composite, as follows.

Definition 1.5 The refined fiberwise Reidemeister trace of f , yRB.f /, is the homo-
morphism

(11) Zhh�1B xf ii
yRB.f /
����! Zhh�1Ef ii;

which sends each fixed-point class C to iC .R.fC //.

Theorem 1.6 The composite

(12) Z
R. xf /
���! Zhh�1B xf ii

yRB.f /
����! Zhh�1Ef ii

is R.f /W Z! Zhh�1Ef ii.

We will show that these invariants can also be expressed as bicategorical traces, and
so (10) also follows from the bicategorical version of (8).

In the literature, multiplicativity formulas such as (10) have more often been expressed
in terms of the Nielsen number N.f /, which is the number of nonzero coefficients in
the Reidemeister trace R.f /. All such formulas can be derived from (10). This is most
easily seen using the general formulation by Heath, Keppelmann and Wong [9, The-
orem 3.3]. (Other multiplicativity results, Brown [2], Brown and Fadell [4], Heath,
Morgan and Piccinini [10], Heath [8], Norton-Odenthal [15], Pak [16] and You [23],
are simplifications that follow from additional conditions imposed on the fibration.)

To explain the relationship of (10) to [9, Theorem 3.3], recall that for each fixed point b

of xf we have a map

ibW Zhh�1.p
�1.b//fb

ii ! Zhh�1Ef ii

induced by the inclusion p�1.b/ ,! E . Note that distinct fixed-point classes of fb

can coalesce as fixed-point classes of f , so the number of nonzero coefficients of
R.fb/ 2 Zhh�1.p

�1.b//fb
ii (that is, the Nielsen number of fb ) is not necessarily the

same as the number of nonzero coefficients of ib.R.fb//.
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However, it is true that for two fixed points b and b0 in different fixed point classes
of xf , the images ib.R.fb// and ib0.R.fb0// will be expressions in disjoint fixed-point
classes of f . This is because any path exhibiting two fixed points of f as being in the
same fixed-point class maps down to a similar such path for their images in B . This
means that in (10),

R.f /D
X

C2hh�1B xf ii

indC . xf / � iC .R.fC //;

the number of nonzero coefficients in R.f / (that is, the Nielsen number of f ) is equal
to the sum, over all fixed-point classes C of xf with nonzero index, of the number of
nonzero coefficients in ib.R.fb// (for any b 2 C ).

Thus, if we write c.b/ for the number of nonzero coefficients in ib.R.fb//, we have

N.f /D

kX
iD1

c.bi/;

where fb1; b2; : : : ; bkg is a choice of one fixed point from each fixed point class of xf
with nonzero index. This is precisely [9, Theorem 3.3].

Remark 1.7 The fixed-point invariants considered here admit several equivalent
definitions. In particular, the Lefschetz number is commonly defined as

L.f /D
X

.�1/i tr.Hi.f IQ//:

As the foregoing suggests, our methods apply directly rather to the fixed-point index,
which is defined topologically in terms of fixed points. But since these invariants are
well known to be equal, we will not bother to distinguish between them terminologically.
Thus, we will use the term “Lefschetz number” everywhere, although (as will be clear
from context) the definition we actually use will be topological. Similarly, we will use
“Reidemeister trace” to refer to any of the equivalent descriptions of that invariant.

Some remarks are also in order about the role of category-theoretic abstraction in this
paper. With very few exceptions, all of our results have completely formal proofs when
placed in the correct abstract context. That context is the theory of duality and trace in
bicategories and indexed monoidal categories, which is described in [18; 21; 20]. The
presence of that abstract context is especially valuable for purposes of generalizations
(such as to parametrized or equivariant theories). In fact, we were first led to our
multiplicativity formulas by way of the abstract situation.

However, in order to improve readability and minimize the necessary category-theoretic
background, in this paper we have provided explicit proofs for everything instead. The
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reader who is willing to learn about bicategorical traces from [18; 21; 20] will then
find it a useful exercise to supply abstract proofs of all the theorems in this paper. The
only ingredients for our results whose proofs are not formal are Theorems 4.5 and 5.5,
neither of which we prove in this paper anyway! The former is proven by May and
Sigurdsson [14] and the latter by the first author [17]. Both involve concrete topological
arguments, supplying the “glue” that connects the abstract context to familiar numerical
invariants.

In other words, the theorems we prove in this paper, when fully generalized, say that
any invariant defined in a certain abstract way satisfies certain formal multiplicativity
properties. Therefore, once a given numerical invariant, such as the Lefschetz number
or the Reidemeister trace, can be shown to have an abstract definition of this form
(which is where the concrete topological work comes in), the general multiplicativity
properties automatically apply to that invariant.

In Sections 2–5 of this paper we recall the definitions of duality and trace, specialized
to the relevant examples. We start in Section 2 with the classical notions of duality
and trace for topological spaces, and their relationship to Lefschetz numbers. Then
in Section 3, we recall some results about fibrations, and using these in Section 4 we
define duality for fibrations and give examples of dualizable objects. These definitions
are due to Costenoble and Waner [6], and [14], but we describe them more simply
and concretely, omitting the abstract context. We then define traces for fibrations in
Section 5 and give their connection to the Reidemeister trace. Finally, in the last two
sections we apply these ideas to prove the theorems claimed above: Theorem 1.3 in
Section 6 and Theorem 1.6 in Section 7.

Acknowledgement The second author was supported by a National Science Founda-
tion postdoctoral fellowship during the writing of this paper.

2 n–duality and Lefschetz numbers

As background and warm up, in this section we review the characterization of Lefschetz
numbers as categorical traces, and explain how it implies the multiplicativity theorem
for trivial bundles.

Let M be a based topological space. We say that M is n–dualizable if there exist a
based space M F and maps

�W Sn
�!M ^M F;

"W M F
^M �! Sn

such that the composites
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Sn
^M

�^id
���!M ^M F

^M
id^"
���!M ^Sn;(13)

M F
^Sn id^�

���!M F
^M ^M F "^id

���! Sn
^M F(14)

become homotopic to transposition maps after smashing with some Sm (in this case
one says they are stably homotopic to transpositions). We refer to � as the coevaluation
and " as the evaluation for the duality.

An unbased space M is n–dualizable if M with a disjoint basepoint, written MC ,
is n–dualizable. It is well known (see Atiyah [1] and Lewis, May, Steinberger and
McClure [13]) that every closed smooth manifold M is n–dualizable. We may take n

to be the dimension of a Euclidean space in which M embeds, and M F the Thom
space of the normal bundle of the embedding.

If M is an n–dualizable based space and f W M !M is a based endomorphism, we
define its trace tr.f / to be the composite map

(15) Sn �
�!M ^M F

f^id
���!M ^M F Š

�!M F
^M

"
�! Sn

and its Lefschetz number L.f / to be the degree of this trace. The Euler characteristic
of M , �.M /, is the Lefschetz number of the identity map of M . We apply all these
notions to unbased spaces and maps by adjoining disjoint basepoints. These definitions
are clearly homotopy invariant, and are known to agree with all other definitions of
Lefschetz number and Euler characteristic; see Dold and Puppe [7].

There are many reasons why this formulation of Lefschetz number and Euler charac-
teristic is useful, but for us the most important is that, as suggested in Section 1, it
makes it easy to prove the multiplicativity theorem for trivial bundles. Specifically,
if M and N are both n–dualizable based spaces, as above, then it is easy and formal
to prove that M ^ N is also n–dualizable; its dual is N F ^M F . Moreover, if
f W M!M and gW N!N are endomorphisms, we can prove by formal manipulation
that tr.g ^ f / � tr.g/ ı tr.f / as maps Sn ! Sn , hence L.g ^ f / D L.g/ �L.f /.
Of course, if M , N , f and g are unbased, then MC ^ NC Š .M � N /C and
fC ^gC Š .f �g/C , so we obtain the multiplicativity theorem for trivial bundles.

Remark 2.1 There is a strong analogy with the trace of a matrix. Specifically, a
finite-dimensional k–vector space V has a dual space V F D Hom.V;k/, with a
map "W V F˝ V ! k given by evaluation, and a map �W k! V ˝ V F defined to
take 1 2 k to

P
i vi ˝ v

�
i , where fvig is a basis of V and fv�i g the dual basis of V F .

The analogues of (13) and (14) are identities, and the analogue of (15) produces the
map k! k that is multiplication by the trace of f (in the classical sense).
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This analogy can be made precise in the following way. There is a general notion of
duality and trace in a symmetric monoidal category; see [7; 13] and the authors [19]. In
the category of vector spaces, this yields the usual algebraic duality and trace, while in
the stable homotopy category, it yields the notions of n–duality and trace defined above.
The proof of multiplicativity for trivial bundles also applies in this abstract context.
As mentioned in Section 1, our more general multiplicativity theorems likewise apply
in an abstract context of “bicategorical” duality and trace, which we will not make
explicit; see [18; 21; 20] for details.

3 Fibrations

Our method to deal with nontrivial bundles will involve a refinement of n–duality,
which is due originally to Costenoble and Waner [6] and was studied further by May
and Sigurdsson [14]. In order to give the definition, we need to recall some homotopy
theory of fibrations.

For us, fibration will always mean Hurewicz fibration. If p1W E1!B and p2W E2!B

are fibrations, a fiberwise map is a map f W E1!E2 such that p2f D p1 . Similarly,
a fiberwise homotopy is a map H W E1 � Œ0; 1�! E2 such that p2.H.e; t//D p1.e/

for all e 2E and t 2 Œ0; 1�. We denote fiberwise homotopy equivalences by '.

If, on the other hand, we have fibrations p1W E1 ! B1 and p2W E2 ! B2 over
(possibly) different base spaces, and xf W B1! B2 is a map, then by a (fiberwise) map
over xf we mean a map f W E1!E2 such that p2f D xf p1 . Thus, a “fiberwise map”
without qualification is always over the identity idB .

Two basic constructions on fibrations are pullback and pushforward along a continuous
map gW A! B . Firstly, given a fibration pW E! B , we have a pullback fibration
g�E ! A. For any other fibration E0 ! A, there is a natural bijection between
maps E0! E over g and fiberwise maps E0! g�E (over idA ). A point of g�E

is, strictly speaking, an ordered pair .a; e/ such that g.a/D g.q.e//, but we usually
abuse notation and denote it simply by e ; this causes no problem when we are speaking
about points in the fiber over a specified point a 2A.

Secondly, given a fibration qW E!A, the composite E
q
�!A

g
�!B is not in general

a fibration (though it is if g is also a fibration), but up to homotopy we can replace it
by one. We denote the result by g!E! B . Explicitly, a point of g!E over b 2 B is a
pair .; e/ where e 2E ,  is a path Œ0; 1�! B and  .0/D gq.e/ and  .1/D b .

The pushforward operation g! has the property that for any fibration E0! B , there
is a natural bijection, up to fiberwise homotopy, between maps E!E0 over g and
fiberwise maps g!E!E0 . Therefore, up to homotopy g! is left adjoint to g� .
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A particularly important construction built out of these operations is the following.
Given fibrations M ! A�B and N ! B �C , we can form the product fibration
M �N !A�B�B�C , pull back along the diagonal A�B�C !A�B�B�C ,
then compose with the projection A�B �C ! A�C (which is a fibration). This
yields a fibration M �B N !A�C whose total space is the pullback of M and N

over B . (We could have defined this more directly, but the description given above
generalizes better to the sectioned context, below.)

This operation is associative, and it has two-sided units up to homotopy defined as
follows. For any space B , let PB denote the space of paths  W Œ0; 1�! B , and define
the fibration PB! B �B by evaluation at the endpoints,  7! . .0/;  .1//. Then
for any fibrations M !A�B and N ! B �C we have

M �B PB 'M and PB �B N 'N:

Since we will be frequently using these and similar path spaces, we take the opportunity
to fix notation for paths. If b1 and b2 are points in B , we write ˇW b1 b2 to indicate
that ˇ is a path Œ0; 1�!B with ˇ.0/D b1 and ˇ.1/D b2 . If we also have  W b2 b3 ,
then ˇ � denotes the concatenated path b1 b3 . Finally, we write cb for the constant
path at b 2 B . (We also write c for a generic point of a space C , but this should not
cause any confusion, since the former usage always has a subscript and the latter never
does.)

Remark 3.1 Henceforth, when we write M �B N , it will always be assumed that M

is a fibration over A�B and N is a fibration over B �C , for some spaces A and C .
It might happen that A or C is equal to B (as for instance if M or N is PB ); in such
a case M �B N always denotes the pullback over the middle copies of B .

If we are given a fibration M !B , we may regard it either as a fibration M !B�?

or as a fibration M ! ?�B . When necessary for clarity, we denote the former by �M
and the latter by }M .

Next, given a map gW A!B of base spaces, write Bg for the pullback .id�g/�PB!

B �A, and gB for the similar pullback .g� id/�PB!A�B . Thus, the fiber of Bg

over .b; a/ is the space of paths from b to g.a/, and similarly for gB . Strictly speaking,
a point of Bg is a pair .ˇ; a/ such that ˇ.1/D g.a/, but we usually denote such a pair
abusively simply by ˇ . Similarly, a point of gB is a pair .a; ˇ/ with ˇ.0/ D g.a/,
which we usually denote by ˇ .

The fibrations Bg and gB are called base change objects, and have the following
important properties:
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� For any M ! C �B , we have M �B Bg ' .id�g/�M .

� For any M ! B �C , we have gB �B M ' .g� id/�M .

� For any M ! C �A, we have M �A gB ' .id�g/!M .

� For any M !A�C , we have Bg �A M ' .g� id/!M .

Proposition 3.2 Base change objects are pseudofunctorial. This means that given
A

g1
�!B

g2
�!C , we have fiberwise homotopy equivalences

.g1
B/�B .g2

C /' g2g1
C;

.Cg2
/�B .Bg1

/' Cg2g1

over A�C and C �A, respectively.

Proof We prove the first; the second is similar. A point of .g1
B/ �B .g2

C / over
.a; c/ is a pair .ˇ;  /, where ˇW g1.a/ b and  W g2.b/ c for some b 2 B . On
the other hand, a point of g2g1

C over .a; c/ is a path ıW g2.g1.a// c . From left to
right we send .ˇ;  / to g2.ˇ/ �  , while from right to left we send ı to .cg1.a/; ı/. It
is easy to verify that these are inverse equivalences.

Proposition 3.3 Suppose that

A
g1 //

g2

��
˛

B

g3

��
C

g4

// D

is a square which commutes up to a specified homotopy ˛W g4g2 � g3g1 . Then we
have a canonical map

.Cg2
/�A .g1

B/ �! .g4
D/�D .Dg3

/:

If the given square is a homotopy pullback, then this map is an equivalence.

Proof A point of .Cg2
/�A .g1

B/ over .c; b/ 2 C �B is a pair .; ˇ/ together with
an a 2 A such that  W c g2.a/ and ˇW g1.a/ b . On the other hand, a point of
.g4

D/�D .Dg3
/ over .c; b/ is a pair .ı; ı0/ where ıW g4.c/ d and ı0W d g3.b/

for some d 2D . We define the desired map by

(16) .; ˇ/ 7! .g4. / �˛.a/;g3.ˇ//:
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For the second statement, note that .Cg2
/ �A .g1

B/ is just the result of replacing
.g2;g1/W A! C �B by a fibration, and (16) is just the extension to this replacement
of the map

A! .g4
D/�D .Dg3

/;

a 7! .˛.a/; cg3.g1.a///

over C � B . Moreover, .g4
D/ �D .Dg3

/ is equivalent to the homotopy pullback
of g3 and g4 , so this map is an equivalence just when the given square is a homotopy
pullback.

The fibrational version of a based space is a sectioned fibration, ie a fibration pW E!B

equipped with a continuous section sW B!E (so that ps D idB ). We usually assume
that the section is a fiberwise closed cofibration, in which case we call p an ex-fibration
(see [14] for details). We say that a fiberwise map, or a map over g , between ex-
fibrations is an ex-map if it also commutes with the specified sections. Note that if
pW E!B is an ex-fibration, then each fiber p�1.b/ is a nondegenerately based space.

If E ! B is any fibration, then E t B ! B is an ex-fibration, called the result
of adjoining a disjoint section to E ; we denote it by ECB . Additionally, for any
ex-fibration E! B and any (nondegenerately) based space X , we have an induced
ex-fibration X ^B E ! B , whose fiber over b 2 B is the ordinary smash product
X ^p�1.b/.

Ex-fibrations can be pulled back along a continuous map gW A!B in a straightforward
way. They can also be pushed forwards, by composing and then pushing out along the
section (then replacing by a fibration, if necessary). We have g�.ECB/' .g

�E/CA

and g!.ECA/' .g!E/CB .

Two ex-fibrations pW M!A and qW N!B have an external smash product M x̂N!

A�B , whose fiber over .a; b/ is p�1.a/^ q�1.b/.

Finally, given ex-fibrations pW M !A�B and qW N !B �C , their smash pullback
is the result of pulling back M x̂N along A�B�C !A�B�B�C , then pushing
forward to A � C . This yields an ex-fibration M ˇB N ! A � C ; its fiber over
.a; c/ consists of all the smash products p�1.a; b/ ^ q�1.b; c/ for all b 2 B , with
their basepoints identified (and with a suitable quotient topology which relates these
products for different b ). We apply Remark 3.1 to smash pullbacks as well. Moreover,
we often omit the subscript on the symbol ˇ when there is no danger of confusion.

The smash pullback is associative, and has two-sided homotopy units given by .PB/CB ;
we denote these units by UB!B�B . If A, B and C are all the one-point space, then
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ex-fibrations are just (nondegenerately) based spaces, and the smash pullback is just the
smash product. Moreover, for unsectioned fibrations M !A�B and N ! B �C ,
we have

MC.A�B/ˇB NC.B�C / ' .M �B N /C.A�C /:

Thus, when speaking about maps between smash pullbacks of ex-fibrations with disjoint
sections, we will usually omit to mention the points in the section; they always just
“come along for the ride.”

From now on, we change notation in the following way: for any map gW A! B ,
we write Bg and gB for the ex-fibrations that we would formerly have denoted
.Bg/C.B�A/ and .gB/C.A�B/ . These ex-fibrations serve the same purpose for ex-
fibrations that the unsectioned base change objects did for unsectioned fibrations. That
is, we have the following:

� For any ex-fibration M ! C �B , we have M ˇB Bg ' .id�g/�M .

� For any ex-fibration M ! B �C , we have gBˇB M ' .g� id/�M .

� For any ex-fibration M ! C �A, we have M ˇA gB ' .id�g/!M .

� For any ex-fibration M !A�C , we have BgˇA M ' .g� id/!M .

Of course, the sectioned base change objects also satisfy Propositions 3.2 and 3.3, with
pullbacks replaced by smash pullbacks.

We write SM !M for the ex-fibration MCM 'M tM 'S0�M over M . Accord-
ing to Remark 3.1, we write cSM and zSM for SM regarded as a fibration over M �?

and ?�M , respectively. Moreover, if r W M!? is the unique map, then cSM and zSM

can be identified with the base change objects r? and ?r , respectively. We generally
prefer the less ugly notation cSM and zSM , but their identification with base change
objects is useful, as in the following.

Proposition 3.4 For any fibration pW E! B , we have

EC 'zSBˇ
bECB;(17)

EC ' zECBˇ
cSB:(18)

Proof By the identification of zSB as a base change object for r W B! ?, we have

zSB ˇ
bECB ' r!.ECB/'EC

and similarly in the other case.
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Finally, if M !A�A is an ex-fibration, we denote by hhM ii its shadow, which is a
based space defined by pulling back along the diagonal A!A�A, then quotienting
out the section (ie pushing forward along the unique map A! ?). For ex-fibrations
M !A�B and N ! B �A, we have a canonical equivalence

hhM ˇB N ii ' hhN ˇA M ii:

For a based space X and an ex-fibration M ! A �A, we have hhX ^A�A M ii '

X ^ hhM ii.

Importantly, the shadow of the unit ex-fibration UA is .ƒA/C , the free loop space
of A with a disjoint basepoint. Similarly, for an endomorphism gW A!A, the shadow
of the base change object Ag is .ƒgA/C , where ƒgA denotes the twisted free loop
space: its points are pairs consisting of a point a 2A and a path a g.a/. Likewise,
the shadow of gA is the space of paths g.a/ a (with a disjoint basepoint), which is
of course homeomorphic to .ƒgA/C Š hhAgii.

Note that �0.ƒ
gA/ is the set of “potential fixed-point classes” denoted hh�1Agii in

Section 1. (In particular, the 0th homology H0.ƒ
gA/ of the twisted free loop space,

which is the 0th reduced homology of hhAgii ' .ƒ
gA/C , is Zhh�1Agii.)

Remark 3.5 Along the same lines as Remark 2.1, we can consider the following
analogy:

spaces A, B  ! noncommutative rings R, S

ex-fibrations M !A�B  ! R–S–bimodules

smash pullback ˇB  ! tensor product ˝S

This analogy can also be made precise, using the notion of a (framed) bicategory with
a shadow. See [14; 18; 21; 20] and the second author [22]. The notions of duality and
trace in the next two sections also live naturally in this abstract context. This context is
helpful for perspective, but it is not necessary for the results in this paper.

4 Costenoble–Waner duality

Now let M ! A�B be an ex-fibration. We say that M is (right) n–dualizable if
there is an ex-fibration M F! B �A and fiberwise ex-maps

�W Sn
^A�A UA �!M ˇB M F;

"W M F
ˇA M �! Sn

^B�B UB

such that the composites
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Sn
^A�B M

�ˇid
���!M ˇB M F

ˇA M
idˇ"
���!M ^A�B Sn;

M F
^B�A Sn idˇ�

���!M F
ˇA M ˇB M F "ˇid

���! Sn
^B�A M F

become fiberwise homotopy equivalent to the transposition maps after smashing with
some Sm . We say that an unsectioned fibration M ! A � B is n–dualizable if
MC.A�B/ is so. Obviously, if A D B D ?, this reduces to the original notion of
n–duality.

We say that M ! B is fiberwise dualizable if �M is right n–dualizable, and that M

is Costenoble–Waner dualizable (or totally dualizable) if }M is right n–dualizable.

We now cite a few theorems about parametrized duality. Most of them are purely
formal, when placed in the correct abstract context (see the references).

Theorem 4.1 [14, 16.5.1] If M !A�B and N ! B �C are right n–dualizable
ex-fibrations, then so is M ˇB N !A�C .

Theorem 4.2 ([14, 17.3.1] and [22, 5.3]) For any gW A ! B , the base change
object gB is right n–dualizable with dual Bg .

The evaluation and coevaluation maps � and " for gB can be described explicitly as
follows. We take nD 0, so that Sn^UAŠUA and similarly for UB . The coevaluation

�W UA! gBˇBg

sends a path  W a a0 to the pair .g. /; cg.a0// (or to .cg.a/;g. //; up to homotopy
it makes no difference). The evaluation

"W Bgˇ gB! UB

just concatenates two paths. (Note that in both cases, both the domain and the codomain
have a disjoint section.)

For a2A, let a also denote the map aW ?!A picking out a2A. Thus, if pW M !A

is a fibration then a�M is an alternative notation for the fiber p�1.a/.

Theorem 4.3 An ex-fibration M ! A�B is right n–dualizable if and only if for
each a 2A, the ex-fibration .a; id/�M ! B is Costenoble–Waner dualizable.

Proof “Only if” follows from Theorems 4.1 and 4.2, since .a; id/�M ' aAˇA M .
We sketch a proof of “if” for the reader familiar with [14]. By [14, Chapter 17], the
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bicategory of parametrized spectra (in which we are implicitly working) is closed. Thus,
by [14, 16.4.12], M is dualizable if the map

�W M ˇ .M B UB/!M BM

from [14, (16.4.10)] is an isomorphism. Since the .a; id/� jointly detect isomorphisms,
it suffices for each .a; id/�.�/ to be an isomorphism. But .a; id/� ' .aAˇ� /, so
.a; id/�.�/ is the top morphism in the following commutative triangle:

aAˇM ˇ .M B UB/ //

))

aAˇ .M BM /

��
M B .aAˇM /

Now by [14, 16.4.13(i)], the right-hand map is an isomorphism since aA is dualizable,
and the diagonal map is an isomorphism if .a; id/�M is dualizable.

Corollary 4.4 [14, 15.1.1] A fibration M !A is fiberwise dualizable if and only if
each fiber Ma is n–dualizable in the classical sense.

The next theorem does require a significant amount of work, but fortunately it has
already been done for us by [14].

Theorem 4.5 [14, 18.5.2] If M is a closed smooth manifold, then any fibration
M ! B is Costenoble–Waner dualizable. In particular, this applies to the identity
fibration M !M .

Thus zSM is right n–dualizable if M is a closed smooth manifold (in contrast to cSM ,
which as we have seen is always dualizable, being a base change object).

Proposition 4.6 Let pW E! B be a fibration. If either

(i) E! B is fiberwise dualizable and SB is Costenoble–Waner dualizable, or

(ii) E! B is Costenoble–Waner dualizable,

then the space E is n–dualizable in the classical sense.

Proof Both conclusions follow from Theorem 4.1 and Proposition 3.4, using (17)
for (i) and (18) for (ii) (plus the fact that cSB is always dualizable).
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In particular, if SB is Costenoble–Waner dualizable, then we have B is n–dualizable.
Theorem 4.5, and its more general version stated in [14], imply that the converse is
usually true in practice.

For the multiplicativity of Reidemeister trace, we will need one final observation about
dualizability.

Proposition 4.7 If pW E! B is a fibration such that Sp�1.b/ is Costenoble–Waner
dualizable for each fiber p�1.b/, then the base change object Bp is dualizable.

Proof By Theorem 4.3, Bp is dualizable if and only if for every b 2 B , the fibration
.b; id/�Bp!E is Costenoble–Waner dualizable. However, by definition of Bp , this
is the homotopy fiber of p over b . Since p is a fibration, this is equivalent to the
actual fiber ibW p

�1.b/!E . Hence the fibration .b; id/�Bp!E can also be written
as .ib/!.Sp�1.b//, and so

S.b; id/�Bp ' .RSp�1.b/ /ˇp�1.b/ .ib
E/:

But ib
E is always dualizable, while RSp�1.b/ is dualizable by hypothesis, so the result

follows from Theorem 4.1.

Corollary 4.8 If pW E! B is a fibration such that SB is Costenoble–Waner dualiz-
able, as is Sp�1.b/ for each b 2 B , then SE is also Costenoble–Waner dualizable.

Proof Recall from Section 4 that zSB and zSE are the base change objects for the
unique maps rBW B!? and rE W E!?, respectively. Thus, by pseudofunctoriality of
base change objects, the equality rBpD rE determines an equivalence zSE '

zSBˇBp

over E . By Proposition 4.7, Bp is dualizable, and by assumption, so is zSB ; hence by
Theorem 4.1 so is zSE .

5 Parametrized trace

If M !A�B is n–dualizable and f W M !M is a fiberwise ex-map, we define its
trace tr.f / to be the following composite:

hhUA ^A�A Snii

�

��

hhSn ^B�B UBii

hhM ˇB M Fii
fˇid // hhM ˇB M Fii

' // hhM FˇA M ii

"

OO
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By the remarks in Section 3 on shadows of units and smash products, we can regard
tr.f / as a morphism

Sn
^ .ƒA/C! Sn

^ .ƒB/C;

ie as a “stable map” .ƒA/C ! .ƒB/C . In this paper, we will only care about the
induced map on (reduced) nth homology, which is equivalent to a map

H0.ƒA/!H0.ƒB/

on (unreduced) 0th homology.

Example 5.1 Let B be any space and let b 2 B , regarded as a map bW ? ! B .
Then bB is right n–dualizable by Theorem 4.2, and so its identity map has a trace

ZŠH0.ƒ?/!H0.ƒB/Š ZŒ�0.ƒB/�:

One can verify explicitly that this map picks out the component of the constant path
at b . In Section 6 we will generalize this example to detect nontrivial paths in B .

The following theorem, and its generalization in Theorem 5.4, is the foundation on
which our multiplicativity theorems rest. Both are proven in [21] using the abstract
context of bicategorical trace.

Theorem 5.2 [21, 7.5] Let M ! A �B and N ! B � C be n–dualizable, and
let f W M !M and gW N ! N be fiberwise ex-maps. Then the following triangle
commutes up to stable homotopy:

Sn ^ .ƒA/C
tr.fˇg/ //

tr.f / ((

Sn ^ .ƒC /C

Sn ^ .ƒB/C

tr.g/

66

The following corollary demonstrates how we can use this theorem to extract fiberwise
information (though our intended applications are more complicated).

Corollary 5.3 Suppose E! B is fiberwise dualizable and f W E!E is a fiberwise
ex-map. Then the map induced on homology by the trace of yf , a map

H0.ƒ.B//! Z;

sends a constant loop at b 2 B to the Lefschetz number of the induced map fb on the
fiber over b .
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Proof By Example 5.1, the ex-fibration bB! ?�B is dualizable, and the trace of
its identity map id

bB is a map Z!H0.ƒB/ which picks out the constant loop at b .
Thus, the image of the constant loop at b under tr. yf / is the image of 1 under the
composite

Z
tr.id

bB/

�����!H0.ƒB/
tr. yf /
���! Z:

But by Theorem 5.2, this is also the trace of the endomorphism idˇ yf of bBˇ bECB .
This is a classically n–dualizable based space, and when we identify it with the
fiber p�1.b/, the endomorphism idˇ yf is identified with fb .

For our applications, we require a more general “twisted” notion of trace. Thus, suppose
as before that M !A�B is n–dualizable, but suppose also that we have ex-fibrations
Q! A �A and P ! B � B , and a fiberwise ex-map f W QˇA M ! M ˇB P

(over A�B ). We define the trace of f to be the following composite:

hhQ^A�A Snii

�

��

hhSn ^B�B P ii

hhQˇA M ˇB M Fii
fˇid // hhM ˇB P ˇB M Fii

' // hhM FˇA M ˇB P ii

"

OO

Note that if Q D UA and P D UB , this reduces to the previous definition of trace.
Generalizing the corresponding observation in that case, we can regard the trace as a
morphism

Sn
^ hhQii ! Sn

^ hhP ii

and we are usually interested in the induced map on homology

H0.hhQii/!H0.hhP ii/:

The generalized version of Theorem 5.2 is the following.

Theorem 5.4 [21, 7.5] Let M ! A � B and N ! B � C be n–dualizable, let
Q! A�A, P ! B �B and R! C �C be ex-fibrations and let f W QˇA M !

M ˇB P and gW P ˇB N ! N ˇC R be fiberwise ex-maps. Then the following
triangle commutes up to stable homotopy:

Sn ^ hhQii
tr..idMˇg/ı.fˇidN // //

tr.f / &&

Sn ^ hhRii

Sn ^ hhP ii

tr.g/

88
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The most important application of twisted traces is when the twisting object(s) are
base change objects. Specifically, for any map gW B ! B we have an equivalence
SB ' g�SB , which we can regard as a fiberwise ex-map

{gWzSB !
zSB ˇB Bg:

If SB is Costenoble–Waner dualizable, then {g has a trace

Z!H0.ƒ
gB/Š Zhh�1Bgii:

We now identify this trace. Suppose B is a closed smooth manifold and gW B! B

a continuous map with isolated fixed points. Recall from Section 1 that two fixed
points b1 and b2 of g are said to be in the same fixed-point class if there is a path 
from b1 to b2 which is homotopic to g. / relative to the endpoints. The set of fixed-
point classes injects into the set �0.ƒ

gB/Š hh�1Bgii of equivalence classes of pairs
.b; b g.b//, and the Reidemeister trace of g is the formal sum

R.g/D
X

C2hh�1Bgii

indC .g/ �C; R.g/ 2 Zhh�1Bgii ŠH0.ƒ
gB/;

where the coefficient of each fixed-point class C is the sum of the indices of all the
fixed points in that class. We can now state the following.

Theorem 5.5 [17] Suppose SB is Costenoble–Waner dualizable and let gW B! B

be any continuous map. Then the trace of the induced map zSB !
zSB ˇB Bg induces

a map on homology
ZŠH0.ƒ?/!H0.ƒ

gB/

which picks out the Reidemeister trace R.g/.

Remark 5.6 There is a difference between the Lefschetz number and the Reidemeister
trace that is worth remarking on. Because most chain complexes that are used to compute
homology consist of free abelian groups, the Künneth theorem implies that homology
takes cartesian products to tensor products. This means that it preserves the abstract
construction of trace in Section 2, so that the Lefschetz number can be computed as a
trace at the level of homology, as mentioned in Remark 1.7.

By contrast, because the Reidemeister trace is a twisted trace, in its computation we
have to consider modules over a ring such as ZŒ�1.B/�, and the chain complexes used
to compute homology are not usually projective as ZŒ�1.B/�–modules. Thus, the
Künneth theorem fails, and so the Reidemeister trace cannot in general be computed
as a trace at the level of homology (though it can be computed at the level of cellular
chains).
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However, this difference is irrelevant for us, because we always construct traces at the
level of topology, only applying homology afterwards to extract the numerical invariant.

There is one other general fact about traces which we will need in the following sections.
Suppose that

A
g //

f1

��
˛

B

f2

��
A

g
// B

is a homotopy commutative square, with specified homotopy ˛W gf1 � f2g . Then gB

is right n–dualizable by Theorem 4.2, and by Proposition 3.3 we have an induced map

hW Af1
ˇ gB �! gBˇBf2

;

which therefore has a trace tr.h/W hhAf1
ii ! hhBf2

ii.

Theorem 5.7 The trace of this h is homotopic to the map

ƒf1AC!ƒf2BC;

which sends a path  W a f1.a/ in A to the path g. / �˛.a/.

Proof By definition, tr.h/ is the composite

hhAf1
ii
�
�! hhAf1

ˇ gBˇBgii
h
�! hhgBˇBf2

ˇBgii
'
�! hhBf2

ˇBgˇ gBii
"
�! hhBf2

ii:

By the remarks after Theorem 4.2, a path  W a f1.a/ in hhAf1
ii'ƒf1AC goes via �

to the triple .; cg.a/; cg.a//. By the description of h in the proof of Proposition 3.3,
this triple then goes to .g. / �˛.a/; cf2.g.a//; cg.a//. Since the remaining maps simply
compose up all the paths, we obtain g. / �˛.a/ as desired.

6 Lefschetz number

We can now prove Theorem 1.3 from the introduction. For all of this section, we make
the standing hypotheses that pW E ! B is a fibration such that SB is Costenoble–
Waner dualizable and each fiber p�1.b/ is classically n–dualizable. By the results
cited in Sections 2 and 4, it is sufficient for B and each p�1.b/ to be a closed smooth
manifold. Note that these hypotheses imply that E! B is fiberwise dualizable (by
Corollary 4.4) and that E is classically n–dualizable (by Proposition 4.6). We also
suppose, as in the introduction, that f W E!E is a fiberwise map over xf W B! B .
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We will actually show a topological result that is slightly stronger than Theorem 1.3.
In the previous section, we showed that there is a fiberwise ex-map

xhWzSB !
zSB ˇB B xf

whose trace tr.xh/W Sn! Sn ^ƒ
xfBC induces the Reidemeister trace R. xf / on ho-

mology. We will show there is a map h with a trace tr.h/W Sn ^ƒ
xfBC! Sn that

induces the refined fiberwise Lefschetz number yLB.f / on homology, and such that
the composite

Sn tr.xh/
���! Sn

^ƒ
xfBC

tr.h/
���! Sn

has degree L.f /. Theorem 1.3 then follows by the functoriality of homology.

In fact, by the adjunction between xf! and xf � , the ex-map f over xf can be regarded
as a fiberwise ex-map xf!ECB!ECB , hence as a map

hW B xf ˇ
bECB !

bECB :

A point of B xf ˇ bECB over b 2B is a pair .; e/ where  W b xf .p.e//D p.f .e//

is a path in B . The map h acts on such a point by transporting f .e/ along  .

Now since each fiber of pW E!B is classically n–dualizable, by Corollary 4.4 bECB

is n–dualizable. Thus, h has a trace, which is a map

tr.h/W Sn
^ƒ

xfBC! Sn:

We will show that tr.h/ induces yLB.f / on homology, and then apply Theorem 5.4 to
identify tr.h/ ı tr.xh/ with tr.f /.

We start with the main ingredient for this application of Theorem 5.4.

Lemma 6.1 The map f W EC!EC is (homotopic to) the composite

zSB ˇ
bECB

xhˇid
���! .zSB ˇB xf /ˇ

bECB Š
zSB ˇ .B xf ˇ

bECB /
idˇh
���!zSB ˇ

bECB :

Proof A point of zSB ˇ
bECB (other than the basepoint) is literally just a point of E ,

or more precisely a pair .b; e/ where p.e/ D b . By definition, xhˇ id takes .b; e/
to the triple . xf .b/; c xf .b/; e/. Then idˇ h acts on this triple by transporting f .e/
along c xf .b/ , the constant path, which up to homotopy does nothing. Hence, the end
result is . xf .b/; f .e// 2zSB ˇ

bECB , corresponding to f .e/ 2EC .
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It remains now to identify the map induced on homology by tr.h/ with the refined
fiberwise Lefschetz number. Let  2 ƒ xfB ; thus  is a path b xf .b/ in B . We
have an induced map

�W S
0
�! .ƒ

xfB/C ' hhB xf ii;

which picks out  , and we are interested in the composite

Sn Sn^�
�����! Sn

^ hhB xf ii
tr.h/
���! Sn:

It will suffice to show that for any  , this composite is the trace, in the sense of
Section 2, of the composite map

(19) p�1.b/
fb
�! p�1. xf .b//

h
��! p�1.b/:

As before, h denotes transport along  in the fibration p . We will prove this using
Theorem 5.4 again: we will exhibit a map ! whose trace is � , and such that (19)
can be identified with the composite .idˇ h/.! ˇ id/ appearing in Theorem 5.4.

For this, observe that  can be regarded as a homotopy witnessing the homotopy
commutativity of the following square:

(20)

?
b // B

xf
��

?
b

// B

Thus, by Proposition 3.3 we have an induced map

! W bB �! bBˇB xf ;

which sends ıW b b0 to the pair .; xf .ı//.

Lemma 6.2 The trace of ! is homotopic to Sn ^ � .

Proof This is just Theorem 5.7 applied to the square (20).

Lemma 6.3 Up to homotopy, the map p�1.b/
fb
�! p�1. xf .b//

h
�! p�1.b/ can be

identified with the composite

bBˇ yE
!ˇid
����! bBˇB xf ˇ

yE
idˇh
���! bBˇ yE:

Algebraic & Geometric Topology, Volume 14 (2014)



The multiplicativity of fixed point invariants 1299

Proof Suppose given ıW b  b0 , and e 2 p�1.b0/, so that .ı; e/ 2 bB ˇ yE . As
defined above, ! ˇ id sends .ı; e/ to

.; xf .ı/; e/ 2 bBˇB xf ˇ
yE:

Then idˇ h acts on this by transporting f .e/ along the path xf .ı/.

We now have to identify bBˇ yE with p�1.b/ on both sides. The fiberwise homotopy
equivalence p�1.b/! bBˇ yE sends a point e to .cp.e/; e/, while its inverse acts on
a pair .ˇ; e/ by transporting e along ˇ . Since transporting along xf .cp.e//D c xf .p.e//
is (homotopic to) the identity, we see that the image of e 2 p�1.b/ is the result of
transporting f .e/ along  , which is precisely the desired composite

p�1.b/
fb
�! p�1. xf .b//

h
��! p�1.b/:

Proposition 6.4 The map induced on homology by tr.h/W Sn ^ hhB xf ii ! Sn is the
refined fiberwise Lefschetz number yLB.f /.

Proof Recall that by definition, yLB.f /W Zhh�1B xf ii!Z sends each path  W b xf .b/
to the Lefschetz number of the composite

p�1.b/
fb
�! p�1. xf .b//

h
��! p�1.b/:

Thus, it will suffice to show that for every such  , the action of tr.h/ on the corre-
sponding copy of Sn has degree equal to this Lefschetz number, ie is homotopic to
the trace of h ı fb . But the inclusion of that copy of Sn is just Sn ^ � , which by
Lemma 6.2 is the trace of ! . Thus, by Theorem 5.4, the composite

Sn Sn^�
�����! Sn

^ hhB xf ii
tr.h/
���! Sn

is homotopic to the trace of

bBˇ yE
!ˇid
����! bBˇB xf ˇ

yE
idˇh
���! bBˇ yE:

But by Lemma 6.3, this is the trace of h ıfb , as desired.

We can now put everything together to prove Theorem 1.3.

Theorem 6.5 Let pW E!B be a fibration such that SB is Costenoble–Waner dual-
izable, and each fiber p�1.b/ is n–dualizable in the classical sense (such as if they are
closed smooth manifolds). Then the composite

Z
R. xf /
���! Zhh�1B xf ii

yLB.f /
����! Z

is multiplication by L.f /.
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Proof We identify Z with Hn.S
n/ and Zhh�1B xf ii with Hn.S

n ^ ƒ
xfBC/. By

Proposition 6.4, we can then identify yLB.f / with Hn.tr.h//, and by Theorem 5.5 we
can identify R. xf / with Hn.tr.xh//. Thus, by the functoriality of homology, it suffices
to prove that the composite

Sn tr.xh/
���! Sn

^ƒ
xfBC

tr.h/
���! Sn

is homotopic to tr.f /. But this follows from Theorem 5.4 and Lemma 6.1.

7 Reidemeister trace

We now move on to Theorem 1.6 from the introduction. For this we must strengthen our
standing assumptions from the previous section to include that Sp�1.b/ , as well as SB ,
is Costenoble–Waner dualizable for each b 2 B . By Proposition 4.6, this implies our
previous assumption that p�1.b/ is classically n–dualizable, but by Theorem 4.5 it
still suffices to assume that B and each fiber are closed smooth manifolds. Note that
by Corollary 4.8, our stronger hypotheses imply that SE is also Costenoble–Waner
dualizable.

As in the last section, we prove a topological result slightly stronger than Theorem 1.6,
and in outline the proof is quite similar. Consider f W E!E simply as an endomor-
phism of the space E (not as a map of fibrations). Since SE is Costenoble–Waner
dualizable, by Theorem 5.5 we have a fiberwise map

zf WzSE !
zSE ˇEf

over ?�E , whose trace induces R.f / on homology.

Recall the map
xhWzSB !

zSB ˇB B xf ;

whose trace tr.xh/W Sn! Sn ^ƒ
xfBC induces the Reidemeister trace R. xf / on ho-

mology. We will now define a map having a trace of the form

Sn
^ƒ

xfBC! Sn
^ƒfEC;

which induces the refined fiberwise Reidemeister trace yRB.f / on homology. We will
then apply Theorem 5.4, as before.

Now, by pseudofunctoriality of base change objects (Proposition 3.2), the equality
xf p D pf determines a fiberwise equivalence

hW B xf ˇBp
'
�! BpˇEf
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over B � E . This will play the role of the h from the previous section. A point
of B xf ˇ Bp over .b; e/ is a pair .˛; ˇ/, where ˛W b  xf .b0/ and ˇW b0  p.e/

for some b0 2 B . Similarly, a point of Bp ˇEf over .b; e/ is a pair .; ı/, where
 W b  p.e0/ and ıW e0  f .e/ for some e0 2 E . The map h sends .˛; ˇ/ to
.˛ � xf .ˇ/; cf .e//; its homotopy inverse sends .; ı/ to . �p.ı/; cp.e//.

We also have an equivalence

(21) zSE '
zSB ˇBp

determined by the equality rBpD rE , as in the proof of Corollary 4.8. In one direction,
this equivalence sends e to .p.e/; cp.e//. In the other direction it sends a pair .b; ˇ/,
where ˇW b p.e/, to the point e .

We begin with the analogue of Lemma 6.1, whose proof is also analogous.

Lemma 7.1 Modulo the equivalence (21), the fiberwise map zf WzSE !
zSE ˇEf is

(homotopic to) the composite

(22) zSB ˇBp

xhˇid
���!zSB ˇB xf ˇBp

idˇh
���!zSB ˇBpˇEf :

Proof By definition, zf sends a point e to the pair .f .e/; cf .e//. Now according to the
above description of (21), we should inspect the action of (22) on the pair .p.e/; cp.e//.
By the definition of xh, in zSB ˇB xf ˇBp we end up with the triple

. xf .p.e//; c xf .p.e//; cp.e//:

But by the definition of h, this gets mapped to

.p.f .e//; cp.f .e//; cf .e//

in zSB ˇBp ˇEf . The inverse of (21) then forgets the path cp.f .e// , yielding the
pair .f .e/; cf .e// as desired.

By Proposition 4.7, Bp is n–dualizable. Therefore, h has a trace

tr.h/W hhB xf ii ! hhEf ii;

which, on homology, induces a map

Zhh�1B xf ii ! Zhh�1Ef ii:

We want to identify this with the refined fiberwise Reidemeister trace yRB.f /. As in
the previous section, we do this pointwise for all  2ƒ xfB , by composing with the
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same map ! defined there. We can reuse Lemma 6.2 exactly, but we need a refined
version of Lemma 6.3.

Note first that since p is a fibration, the square

p�1.b/
ib //

r

��

E

p

��
�

b

// B

is a homotopy pullback. Therefore, by Proposition 3.3 we have an equivalence

RSp�1.b/ ˇ ib
E
'
�! bBˇBp:

A point of RSp�1.b/ˇib
E over e 2E is a pair .e0; ı/, where e0 2p�1.b/ and ıW e0 e

is a path in E ; this equivalence sends such a point to the pair .cb;p.ı//.

Let kb denote the composite map

p�1.b/
fb
�! p�1. xf .b//

h
��! p�1.b/;

which induces a map

zkbW
RSp�1.b/ !

RSp�1.b/ ˇ .p
�1.b//kb

over ?�p�1.b/. By definition, zkb sends each e 2 p�1.b/ to the pair .kb.e/; ckb.e//.
Since Sp�1.b/ is Costenoble–Waner dualizable, zkb has a trace, which by Theorem 5.5
calculates the Reidemeister trace of kb .

Now the path-lifting operation which defines h actually gives us a homotopy � in
the lower square below (the upper square commutes by definition):

(23)

p�1.b/

fb

��

ib //

kb

""

E

f

��
p�1. xf .b//

i xf .b/ //

h
��

�

E

idE

p�1.b/
ib

// E

Thus, by Proposition 3.3 we have a map

`W .p�1.b//kb
ˇ ib

E �! ib
EˇEf :
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Lemma 7.2 The following diagram commutes up to homotopy:

RSp�1.b/ˇ ib
E

zkbˇid //

'

��

RSp�1.b/ˇ .p
�1.b//kb

ˇ ib
E

idˇ` // RSp�1.b/ˇ ib
EˇEf

'

��
bBˇBp

!ˇid
//
bBˇB xf ˇBp

idˇh

//
bBˇBpˇEf

Proof As remarked above, a point of RSp�1.b/ˇib
E over e2E is a pair .e0; ı/ where

e0 2p�1.b/ and ıW e0 e . The upper-right composite sends this to .kb.e
0/; ckb.e0/; ı/,

then to .kb.e
0/; �.e0/; f .ı// and then to .cb;p.�.e

0//; f .ı// D .cb; ; f .ı//. The
left-bottom composite sends .e0; ı/ to .cb;p.ı//, then to .; c xf .b0/;p.ı//, then to
.; xf .p.ı//; cf .e//. But we can deform .cb; ;f .ı// along  to obtain .; c xf .b/;f .ı//,
and then along f .ı/ to obtain .;p.f .ı//; cf .e//D .; xf .p.ı//; cf .e// as desired.

Now since ib
E is n–dualizable by Theorem 4.2, ` has a trace

tr.`/W hh.p�1.b//kb
ii �! hhEf ii:

Lemma 7.3 On homology the trace of ` induces the map

H0.ƒ
kb .p�1.b///Š Zhh�1.p

�1.b//kb
ii �! Zhh�1Ef ii ŠH0.ƒ

fE/

from the introduction, obtained by regarding a path in p�1.b/ as a path in E .

Proof This is just Theorem 5.7 applied to the square (23).

Proposition 7.4 The map induced on homology by tr.h/W Sn^hhB xf ii ! Sn^hhEf ii

is the refined fiberwise Reidemeister trace yRB.f /.

Proof Recall that by definition, yRB.f /W Zhh�1B xf ii ! Zhh�1Ef ii sends each path
 W b xf .b/ to the image under ib of the Reidemeister trace of the composite

p�1.b/
fb
�! p�1. xf .b//

h
��! p�1.b/

(which we have called kb ). Thus, it will suffice to show that for every such  , the
map induced by tr.h/ on homology sends the corresponding generator to this element
.ib/�.R.kb//. Equivalently, we want to know that the composite

Sn id^�
����! Sn

^ hhB xf ii
tr.h/
���! Sn

^ hhEf ii
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picks out .ib/�.R.kb// in homology. But by Lemma 6.2, id^ � is the trace of ! ,
so by Theorem 5.4, the above composite is homotopic to the trace of

bBˇBp

!ˇid
����! bBˇB xf ˇBp

bBˇh
����! bBˇBpˇEf :

But by Lemma 7.2, this is homotopic to the trace of

RSp�1.b/ ˇ ib
E
zkbˇid
����! RSp�1.b/ ˇ .p

�1.b//kb
ˇ ib

E
idˇ`
���! RSp�1.b/ ˇ ib

EˇEf

and by Theorem 5.4 again, this is homotopic to the composite

Sn tr.zkb/
���! hh.p�1.b//kb

ii
tr.`/
���! hhEf ii:

But by Theorem 5.5, tr.zkb/ picks out R.kb/ in homology, while Lemma 7.3 tells
us that tr.`/ acts by .ib/� on homology. Thus, we obtain exactly .ib/�.R.kb//, as
desired.

Finally, we can put everything together to prove Theorem 1.6.

Theorem 7.5 Let pW E ! B be a fibration such that SB is Costenoble–Waner du-
alizable, as is Sp�1.b/ for each b 2 B (such as if B and all fibers are closed smooth
manifolds). Then the composite

Z
R. xf /
���! Zhh�1B xf ii

yRB.f /
����! Zhh�1Ef ii

sends 1 to R.f /.

Proof We identify Z with Hn.S
n/, Zhh�1B xf ii with Hn.S

n^ƒ
xfBC/ and Zhh�1Ef ii

with Hn.S
n ^ ƒfEC/. By Proposition 7.4, we can then identify yRB.f / with

Hn.tr.h//, and by Theorem 5.5 we can identify R. xf / with Hn.tr.xh//. Thus, by
the functoriality of homology, it suffices to prove that the composite

Sn tr.xh/
���! Sn

^ƒ
xfBC

tr.h/
���! Sn

^ƒfEC

is homotopic to tr. zf /. But this follows from Theorem 5.4 and Lemma 6.1.

8 Conclusions and future work

As mentioned previously, while we have proven most theorems explicitly to improve
the readability of this paper, most of them can be formulated and proven in the purely
abstract context of [20; 21; 22]. The only real topological input comes from Theorem 4.5,
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which tells us what sort of objects the general theory of duality can be applied to, and
Theorem 5.5, which identifies the general notion of trace with a more familiar numerical
invariant. Thus, analogous multiplicativity formulas will hold in any context where we
can obtain theorems analogous to these two. This includes, for instance, parametrized
and equivariant homotopy theories.

Even discounting this potential for generalizations, however, we feel that the abstract
point of view on multiplicativity presented here is likely to be valuable more widely.
As we saw in the introduction, it unifies the classical formula for the Lefschetz number
of an orientable fibration with the various results in the literature on Nielsen numbers.
It also shows that orientability, far from being an essential ingredient, is just a condition
which allows the general formula to be expressed in a simpler form. (This is also of
interest when considering generalizations to other contexts, where the relevant notion
of “orientability” may be less obvious, but the abstract framework works just fine.)
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