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Local topological properties of
asymptotic cones of groups

GREGORY R CONNER

CURTIS KENT

We define a local analogue to Gromov’s loop division property which we use to give
a sufficient condition for an asymptotic cone of a complete geodesic metric space
to have uncountable fundamental group. When considering groups our condition
allows us to relate the local connectedness properties of the asymptotic cone with
combinatorial properties of the group. This is used to understand the asymptotic
cones of many groups actively being studied in the literature.

20F65; 20F69

Gromov [14, Section 5.F] was first to notice a connection between the homotopic
properties of asymptotic cones of a finitely generated group and algorithmic properties
of the group; if all asymptotic cones of a finitely generated group are simply connected,
then the group is finitely presented, its Dehn function is bounded by a polynomial
which implies that its word problem is in NP, and its isodiametric function is linear.
A version of that result for higher homotopy groups was proved by Riley [25]. The
converse statement does not hold; there are finitely presented groups with nonsimply
connected asymptotic cones and polynomial Dehn functions (see Bridson [1] and Sapir,
Birget and Rips [26]) and even with polynomial Dehn functions and linear isodiametric
functions (see Olshanskii and Sapir [21]). A partial converse statement was proved
by Papasoglu [23]: a group with quadratic Dehn function has all asymptotic cones
simply connected. For groups with subquadratic Dehn functions (ie hyperbolic groups)
the statement was previously proved by Gromov [13]: all asymptotic cones in that
case are R–trees. An example of Thomas and Velickovic [28] shows that for a finitely
generated group one asymptotic cone can be a tree, and hence simply connected, while
another asymptotic cone may have nontrivial fundamental group. In Section 3, we
show how to modify Thomas and Velickovic’s example to obtain a finitely generated
group with one asymptotic cone which is an R–tree and one asymptotic cone which is
not locally simply connected. This gives another example of a group with asymptotic
cones which are not locally bilipschitz. In Olshanskii, Osin and Sapir [20] a group
is constructed with not locally bilipschitz asymptotic cones. Even more, it gives an
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example of a finitely generated group with asymptotic cones which are not locally
homotopy equivalent.

If a group is finitely presented and one of its asymptotic cone is an R–tree, then the
group is hyperbolic, so all of its asymptotic cones are simply connected (this essentially
follows from Gromov’s version of the Cartan–Hadamard theorem for hyperbolic groups,
see the appendix of [20]). Nevertheless in [22] a finitely presented group which is a
multiple HNN extension of a free group having both simply connected and nonsimply
connected asymptotic cones was constructed.

In [14] Gromov defined the notion of a loop division property and used it to outline
a proof that a metric space has the loop division property if and only if all of its
asymptotic cones are simply connected. Papasoglu presented a proof of the only if
direction in [23] and Drut,u gave a proof of the if direction in [7]. A version of the
loop division property which guarantees that a particular asymptotic cone is simply
connected was used by Olshanskii and Sapir in [22]. In the current article we will
define an analogue to Gromov’s loop division property which we use to understand the
local topological structure of asymptotic cones.

In Section 2 we recall some of the definitions and consequences of Gromov’s loop
division property as studied by Papasoglu and define a local version which we call
�–coarsely loop divisible which depends on an ultrafilter, ! , and a scaling sequence, d .
We prove that a space is �–coarsely loop divisible with respect to .!; d/ if and only
if all sufficiently short loops in Con!.X; e; d/ can be partitioned into strictly shorter
loops where e is an observation sequence. We say that a space is uniformly �–coarsely
divisible if the number of pieces required to partition small loops in Con!.X; e; d/ is
uniformly bounded independently of the chosen loop. In general an asymptotic cone of
a metric space will depend on the choice of scaling sequence, observation sequence and
ultrafilter and hence it is natural to define a loop division property which also depends
on these choices. For homogeneous spaces, the isometry type of an asymptotic cone
does not depend on the choice of base point: when considering homogeneous space
we will frequently either drop the base point from our notation or not specify which
observation sequence is chosen.

Theorem A (Propositions 2.9, 2.14, 2.10) Suppose G is a finitely generated group, !
is an ultrafilter on Z and d is an !–divergent sequence.

(1) If G is uniformly �–coarsely loop divisible, then Con!.G; d/ is uniformly lo-
cally simply connected and G has an asymptotic cone which is simply connected.

(2) If Con!.G; d/ is semilocally simply connected, then G is �–coarsely loop
divisible.
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Papasoglu (see Proposition 2.7) showed that if one requires G to be uniformly �–
coarsely loop divisible with respect to .!; d/ for every � > 0, then one obtains that
Con!.G; d/ is actually simply connected. It is not clear if uniformly coarsely divisible
is actually a necessary condition. Hence the following questions are open.

For the remainder of this section G will denote a finitely presented group.

Question 1 If Con!.G; d/ is locally simply connected is G uniformly �–coarsely
loop divisible for some �?

Question 2 If Con!.G; d/ is simply connected is G uniformly �–coarsely loop
divisible for every �?

Remark 2.11 describes examples of metric spaces which are not asymptotic cones
where the answer to both of these question is no. There are no known examples of
finitely generated groups which are coarsely loop divisible but not uniformly coarsely
loop divisible which leaves the following question open.

Question 3 Are the conditions uniformly coarsely loop divisible and coarsely loop
divisible equivalent for finitely generated groups?

A positive answer to Question 3 would imply a positive answer to Question 1 and
show that for finitely generated groups the properties locally simply connected and
semilocally simply connected are equivalent.

The property of coarse loop divisibility also allows us to understand general algebraic
properties of the fundamental group of an asymptotic cone.

Theorem B (Theorems 2.15, 2.17, Proposition 2.20) If a finitely generated group G

is not �–coarsely divisible with respect to .!; d/ for any � > 0 then the fundamental
group of Con!.G; d/ is uncountable, not free and not simple.

The analogous result holds for hold for all complete homogenous geodesic metric
spaces. In Section 2.1 we give a necessary condition to guarantee every asymptotic
cone of a given complete homogenous geodesic metric space will satisfy the hypothesis
of Theorem B. It turns out that many important groups in the literature satisfy this
condition which gives the following corollary.

Corollary C (Corollary 3.2) Let G be a group from the following list. Then for
every ultrafilter ! and scaling sequence d ; Con!.G; d/ is not semilocally simply
connected and has an uncountable fundamental group which is not free and not simple.
In addition, any decomposition of the fundamental group of Con!.G; d/ as a free
product has a factor which is not free and uncountable.
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(1) SL3.Z/

(2) Baumslag–Solitar groups: BSpqDha; t j t
�1aptDaqi for p; q¤0 and jpj¤jqj

(3) The 3–manifold Sol3 : R3 endowed with the Riemannian metric ds2De2zdx2C

e�2zdy2C dz2

(4) Baumslag–Gertsen group: ha; t j .t�1a�1t/a.t�1at/D a2i

(5) Out.Fn/ and Aut.Fn/ for n� 3

(6) ha; s; t j Œa; at �D Œs; t �D 1; aat D asi

(7) h�1; �2; a; k j a
�i D a; k�i D ka; i D 1; 2i

The group .6/ is of interest since it is metabelian and not polycyclic. It is sometimes
referred to as the Baumslag group. The group .7/ was constructed by Olshanskii and
Sapir and has cubic Dehn function and linear isodiametric function.

1.1 Definitions

Let G D hSi be a group and u; v be two words in the alphabet S . We write u� v

when u and v coincide letter by letter and uDG v if u and v are equal in G . We will
denote the Cayley graph of G with respect to the generating set S by �.G;S/. We
will use Lab to represent the function from the set of edge paths in a labeled oriented
CW complex to the set of words in the alphabet obtained by reading the label of a path.

Isoperimetric functions Suppose that hS jRi is a finite presentation for a group G .
Let Area.�/ denote the number of R–cells in a van Kampen diagram �. If w is a
word in S [S�1 , then Area.w/DminfArea.�/ j Lab .@�/� wg. If 
 is a loop in
�.G;S/, then Area.
 /D Area.Lab .
 //.

An isoperimetric function for the presentation hS jRi of G is a nondecreasing function
ıW N! Œ0;1/ such that ı.j@�j/� Area.Lab .@�// for all van Kampen diagrams �
over hS jRi. A minimal isoperimetric function of a group is called a Dehn function
for G .

Two nondecreasing functions f;gW N ! Œ0;1/ are equivalent, if there exists con-
stants B;C > 0 such that f .n/�Bg.BnCB/CBnCB �Cf .C nCC /CC nCC .
Up to this equivalence, the Dehn function of a finitely presented group is independent
of the finite presentation.

Definition 1.1 (Asymptotic cones) Let ! be an ultrafilter on N and cn be a se-
quence of positive real numbers. The sequence cn is bounded !–almost surely or
!–bounded, if there exists a number M such that !.fn j cn < M g/ D 1. If cn is
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!–bounded, then there exists a unique number, which we will denote by lim! cn , such
that !.fn j jcn� lim! cnj< �g/D 1 for every � > 0.

If cn is not !–bounded then !.fn j cn > M g/ D 1 for every M , in which case we
will say that cn diverges !–almost surely or is !–divergent and let lim! cn D1.

Let .X; dist/ be a metric space. Let ! be an ultrafilter on N . Fix an !–divergent
sequence of numbers d D .dn/ called a scaling sequence and a sequence of points
e D .en/ in X called an observation sequence.

Given two sequences xD.xn/;yD.yn/ in X , define dist.x;y/D lim! dist.xn;yn/=dn .
We can then define an equivalence relation � on the set of sequence in X by x � y if
and only if dist.x;y/D 0.

The asymptotic cone of X with respect to e , d and ! is

Con!.X; e; d/D fx D .xn/ j dist.x; e/ <1g=� :

Con!.X; e; d/ is a complete metric space. If X is geodesic then Con!.X; e; d/ is
also geodesic.

If Xn is a sequence of subspaces of X we will use lim! Xn to denote the subspace of
Con!.X; e; d/ consisting of sequences with representatives in

Q
Xn .

The following observation is well known.

Lemma 1.2 Let ! be an ultrafilter on N , d D .dn/ be an !–divergent sequence
of numbers and e D .en/ an observation sequence. Suppose that f
ng is a sequence
of paths parameterized by arc length in a geodesic metric space .X; dist/ such that
j
nj D O.dn/ and dist.en; im.
n// � Ldn , for some L. Then 
 .t/ D .
n.t// is a
continuous map into Con!.X; e; d/.

The following converse holds and is proved by the second author in [18].

Lemma 1.3 Suppose that 
 is a path in Con!.X; e; d/ where X is a geodesic metric
space. Then there exist paths 
n in X such that 
 .t/D .
n.t//.

Lemma 1.3 does not imply that all geodesics are limits of geodesics since no metric
conditions are placed on the limiting functions. In the current article the nomenclature
“ball” or “metric” ball will refer to an open ball. We will use j� j to denote the arc
length of a path. In this setting j � j maps the set of paths into the extended real line,
is finite for rectifiable paths and C1 for nonrectifiable paths. We will assume that
rectifiable paths are parameterized proportional to arc length.

The following definitions of locally connectivity properties are standard; see Hatcher [15,
Chapter 1].
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Definition 1.4 A locally path connected space X is called locally simply connected
if for every pair .U;x/ where U is a neighborhood of x 2 X , there exists V , a
neighborhood of x contained in U , such that the inclusion induced homomorphism
from �1.V;x/ to �1.U;x/ is trivial; ie every loop in V bounds a disc in U . A locally
path connected metric space X is uniformly simply connected if for every � > 0 there
exists a ı > 0 such that every loop with diameter at most ı bounds a disc with diameter
at most � .

A locally path connected space X is called semilocally simply connected if every point
x 2 X has a neighborhood U such that the inclusion induced homomorphism from
�1.U;x/ to �1.X;x/ is trivial, ie every loop in U bounds a disc in the whole space.

Remark A space that is locally simply connected is semilocally simply connected.
The converse is false, since the cone on any space that is not locally simply connected
is semilocally simply connected but still not locally simply connected; see [15, Sec-
tion 1.3].

The following definition of a partition is due to Papasoglu [23].

Partitions of the unit disc in the plane Let D be the unit disk in R2 . A partition P

of D is a finite collection of closed discs D1; : : : ;Dk in the plane with pairwise disjoint
interiors such that DD

S
i Di . Since there are only finitely many discs, the union of the

boundaries of the discs forms a connected graph. A point p on @D1[� � �[@Dk is called
a vertex of the partition if for every open set U containing p , U \ .@D1[ � � � [ @Dk/

is not homeomorphic to an interval. An edge of a partition is a pair of vertices which
are joined by a path in @D1 [ � � � [ @Dk that intersects the set of vertices only at its
endpoints. We will say that such vertices are adjacent. A piece of a partition is a
maximal set of vertices of the partition contained in a single disc of the partition. A
partition is then a cellular decomposition of the unit disc where each vertex has degree
at least 3; so we will use the standard notation, P .i/ , to denote the i th skeleton of a
partition for i D 0; 1; 2.

Geodesic n–gons in a metric space X An n–gon in X is a map from the set of
vertices of the standard regular n–gon in the plane into X , ie an ordered set of n points
in X . If X is a geodesic metric space, we can extend an n–gon to edges by mapping
the edge between adjacent vertices of the standard regular n–gon in the plane to a
geodesics segment joining the corresponding vertices of the n–gon in X . We will say
that such an extension is a geodesic n–gon in X .

Partitions of loops in a geodesic metric space X Let 
 W @D! X be a continuous
map. A partition of 
 is a map … from the set of vertices of a partition P of D to X
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such that …j@D\P .0/ D 
 j@D\P .0/ . The vertices/edges/pieces of … are the images of
vertices/edges/pieces of P . We will write ….@Di/ for the pieces of …, where Di are
the 2–cells of P .

Remark 1.5 Suppose that …W P .0/ ! X is a partition of a loop 
 in a geodesic
metric space. We can extend … to P .1/ by mapping each edge contained in @D to the
corresponding subpath of 
 and every edge not contained in @D to a geodesic segment
joining its end points. The length of a piece is the arc length of the loop ….@Di/. We
will write j….@Di/j for the length of the piece ….@Di/. We define the mesh of … by

mesh.…/D max
1�i�k

fj….@Di/jg:

When X is a Cayley graph of a group, we will also assume that the partition takes
vertices of P to vertices in the Cayley graph. A partition … is called a ı–partition, if
mesh…< ı . A loop of length k in a geodesic metric space is partitionable if it has a
k
2

–partition.

Let P .
; ı/ be the minimal number of pieces in a ı–partition of 
 if a ı–partition
exist and C1 otherwise.

2 Coarse loop division property

Definition 2.1 Let X be a geodesic metric space.

Define # i W N!N [f1g by # i.n/D supfP .˛; j˛j=2i/ j ˛ is a loop in X such that
n� 1< j˛j � ng. We will call # D #1 the divisibility function of X .

Suppose ! is an ultrafilter on N , .dn/ an !–divergent sequence of positive real
numbers and � a positive real number. We will say that X is �–coarsely loop divisible
if for every ı 2 .0; �/ there exists an A�N with !.A/D 1 such that the divisibility
function # restricted to

S
n2AŒıdn; �dn� is bounded by a constant K DK.ı; �/.

We will say that X is uniformly �–coarsely loop divisible if the constant K DK.ı; �/

can be chosen independent of ı .

We will say that a group G is (uniformly) �–coarsely loop divisible if the Cayley graph
�.G;S/ is (uniformly) �–coarsely divisible.

The property of being �–coarsely loop divisible depends on .!; d/. When there is
a chance of confusion, we will say that X is �–coarsely loop divisible with respect
to .!; d/.
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If X is �–coarsely loop divisible for every � and the bound K.ı; �/ can be chosen
independent of both ı and � , then Con!.X; e; d/ has Olshanskii–Sapir’s property
LDC.K/ as defined in [21].

We will see (Proposition 2.21) that for finitely generated groups this definition is
independent of the generating set in the sense that if S;S 0 are two finite generating sets
for G , then �.G;S/ is �–coarsely loop divisible if and only if �.G;S 0/ is �0–coarsely
loop divisible for some �0 > 0.

Remark 2.2 Suppose that # is bounded on Œn=2l ; n� by K . Let ˛ be a loop of
length n and fix a partition of ˛ into at most #.n/ pieces with mesh less than n

2
. As in

Remark 1.5, the partition can be extended to the 1–skeleton of the partition such that
each loop has length less than n

2
. We can then partition each piece with length at least n

4

into at most K pieces of length less than n
4

. This builds an n
4

–partition of ˛ with at
most K2 pieces. Hence #2.n/�K2 . Iterating this process, we obtain # l.n/�Kl .

Lemma 2.3 Fix l 2 N . If X is �–coarsely loop divisible, then for every ı 2 .0; �/
there exists an A � N with !.A/ D 1 such that # l restricted to

S
n2AŒıdn; �dn� is

bounded by a constant K DK.ı; �; l/.

Thus the coarse loop division property does not depend on which function # l is used
in its definition.

Proof Suppose X is �–coarsely loop divisible. Fix ı such that 0 < ı < � . Choose
a K and an !–large A such that # restricted to

S
n2AŒ.ı=2

l/dn; �dn� is bounded
by K . By Remark 2.2, # l restricted to

S
n2AŒıdn; �dn� is bounded by Kl .

Definition 2.4 Let .
n/ be a sequence of loops in a metric space X and d D .dn/ an
!–divergent sequence of real numbers. Then .
n/ is not .m; d; �; ı/–partitionable if
ıdn � j
nj � �dn and P .
n; j
nj=2/ >m !–almost surely. When d and � are fixed,
we will say that .
n/ is not .ı;m/–partitionable. Additionally, given a sequence of
loops which is not .ı;m/–partitionable, we will say that a fixed member 
n of the
sequence is not .ı;m/–partitionable if ıdn � j
nj � �dn and P .
n; j
nj=2/ >m.

Remark 2.5 Let 
 W @D!X be parameterized by arc length. Suppose that we have
8 diam.
 /< j
 j. Let P be the cellular decomposition of the unit disc D such that P .1/

is @D[A where A is a maximal square inscribed in D . Then …W P .0/!X defined
by ….t/D 
 .t/ is a partition of 
 with five pieces (four 2–gons and one 4–gon) and
mesh .…/�maxf j
 j

4
C diam.
 /; 4 diam.
 /g< j
 j

2
.

Thus, if .
n/ is not .m; d; �; ı/–partitionable for some m� 5, then j
nj � 8 diam.
n/.
Hence if .
n/ is not .ı;m/–partitionable, then j
nj �O.diam.
n// where the big O

constant is independent of .
n/.
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The following two propositions were proved by Papasoglu in [23, pages 792–793]. The
formulations are slightly different here but the proofs are the same. The proofs are also
outlined in [21].

Proposition 2.6 Let X be a metric space and .
n/ a sequence of loops in X such that
j
nj DO.dn/ and dist.en; im.
n//�Ldn , for some L. If each 
n has a ın –partition
with at most k pieces, then the loop 
 .t/D .
n.t// in Con!.X; e; d/ has a ı–partition
with at most k pieces where ı D lim!.ın=dn/.

Proposition 2.7 Let X be a complete geodesic metric space. If X is uniformly �–
coarsely loop divisible for every �>0 with respect to the pair .!;d/, then Con!.X;e;d/
is simply connected for any observation sequence e .

To prove Proposition 2.7, Papasoglu uses Proposition 2.6 to show that every loop in
Con!.X; e; d/ is partitionable and the number of pieces is independent of the loop. He
then iterates the process of taking partitions and extending them to the 1–skeleton as
in Remark 1.5. A consequence of this procedure is that the diameter of the constructed
disc is proportional to the length of the loop (the proportionality constant can be chosen
to be the bound on the number of pieces in the partitions).

Lemma 2.8 Suppose that X is a complete geodesic metric space which is uniformly
�–coarsely loop divisible with respect to the pair .!; d/. Then there exists a constant K

such that, for any observation sequence e , every loop in Con!.X; e; d/ with diameter
less than �

8
bounds a disc with diameter less than K� .

Proof Since X is uniformly �–coarsely loop divisible every loop in Con!.X; e; d/
with length less than � is partitionable with a uniform bound on the number of pieces
required. Suppose that a loop in Con!.X; e; d/ has length at least � and diameter
less than �

8
. Then it has a partition with 5 pieces by Remark 2.5. Thus every loop in

Con!.X; e; d/ with diameter less than �
8

is partitionable and we can apply the proof
of Proposition 2.7.

Lemma 2.8 can be restated in the following way.

Proposition 2.9 Let X be a complete geodesic metric space. If X is uniformly �–
coarsely loop divisible, then Con!.X; e; d/ is uniformly locally simply connected for
any observation sequence e .

Proposition 2.10 Let X be a complete geodesic metric space. If X is uniformly
�–coarsely loop divisible, then X has an asymptotic cone which is simply connected.
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Proof Suppose that X is uniformly �–coarsely loop divisible for some .!; d/

and �>0. We can consider an ultralimit of the metric spaces XkDCon!.X; e; .dn=k//.
By Drut,u and Sapir [8, Corollary 3.24], lim! Xk is again an asymptotic cone of X .
Thus we can choose .�; .pn// and .xn/ such that Con�.X; .xn/; .pn// and lim! Xk

are isometric.

The identity map id from Con!.X; e; d/ to Xk rescales distances by a fixed constant
which implies that P .
; j
 j=2/ D P .id.
 /; id.j
 j/=2/ for every 
 2 Con!.X; e; d/.
Since X is uniformly �–coarsely loop divisible, there is a �0 such that P .
; j
 j=2/<�0

for every loop 
 contained in a ball of radius �
4

in Con!.X; e; d/. Hence every loop 

contained in a ball of radius k�

4
in Xk has the property that P .
; j
 j=2/ < �0 . Thus for

any loop ˛ in lim! Xk ; P .˛; j˛j=2/ < �0 . Hence lim! Xk is uniformly �–coarsely
loop divisible for every � > 0 with respect to the pair .�; .pn// and Proposition 2.7
implies that Con�.X; .xn/; .pn// is simply connected.

Lemma 2.8 shows that a necessary condition for a group to be uniformly �–coarsely
loop divisible for every � > 0 is that all loops in Con!.X; e; d/ bound discs with
diameters proportional to their length.

Remark 2.11 Let X be a topological space. The topological cone of X written yX is
the quotient space of X � Œ0; 1� obtained by identifying all points .x; 1/ for x 2X . X

canonically embeds in yX by x 7! .x; 0/ and we will generally identify X with X�f0g.
The Hawaiian earring is the one-point compactification of a sequence of disjoint arcs
and can be realized in the plane as the union of circles centered at .0; 1

n
/ with radius 1

n
.

We will use E to denote this subspace of the plane and an to denote the circle centered
at .0; 1

n
/ with radius 1

n
. The Hawaiian earring group is �1.E ; .0; 0// D H . Let

En D
S

i�n ai and Hn D �1.En; .0; 0//�H . Notice that En is homeomorphic to E

which implies that Hn is isomorphic to H .

The space yE is not uniformly �–coarsely loop divisible but is simply connected and
not locally simply connected. Suppose that instead of coning from a single point, we
were to cone each circle individually. Then as long as we required that the sequence of
cone points converged to the wedge point of E but at a rate slower than the radii of the
loops, this space would be locally simply connected but not be uniformly �–coarsely
loop divisible for any � . These two examples show that for general metric spaces
being uniformly �–coarsely loop divisible is not a necessary condition for a space to
be simply connected or locally simply connected.

Erschler and Osin [11] and Drut,u and Sapir [8] proved that many metric spaces �1 –
embed into the asymptotic cones of finitely generated groups. In both papers, the spaces
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that were �1 –embedded into the asymptotic cones of finitely generated groups were
uniformly locally simply connected.

A positive answer to either Question 1 or 2 would imply that the results of Erschler–Osin
and Drut,u–Sapir cannot be extended to spaces which are semilocally simply connected
but not locally simply connected.

We will now prove some implications of the coarse loop division property.

The following lemma is an immediate consequence of Proposition 2.6 and Lemma 1.3.

Lemma 2.12 Suppose that X is a complete geodesic metric space which is �–
coarsely loop divisible. Then, for any choice of observation sequence e , every loop in
Con!.X; e; d/ with length less than � is partitionable.

Lemma 2.13 Suppose that X is a complete homogeneous geodesic metric space.
If every loop in Con!.X; e; d/ with length less than � is partitionable, then X is
�0–coarsely loop divisible with respect to the pair .!; d/ for every �0 < � .

Proof Suppose that X is not �0–coarsely loop divisible with respect to the pair .!; d/
for some �0 with 0<�0<� . Then there exists a ı > 0 such that for every !–large A, #
restricted to

S
n2AŒıdn; �

0dn� is unbounded.

Let 
n be a loop based at en such that ıdn � j
nj � �
0dn and satisfies at least one of

the two following properties.

(a) P
�

n;
j
nj

2

�
> n

(b) P
�

n;
j
nj

2

�
� P

�
˛; j˛j

2

�
for all ˛ such that ıdn � j˛j � �

0dn

Let mnDP .
n; j
nj=2/. Since # restricted to
S

n2AŒıdn; �dn� is unbounded for every
!–large A, lim! mn DC1. Thus for every m, .
n/ is not .ı;m/–partitionable.

The path 
 .t/D .
n.t// is a well-defined loop in Con!.X; e; d/ with positive diameter
and arc length at most �0 < � . By assumption, there is a j
 j

2
–partition of 
 with L

pieces. However, this induces a j
nj=2–partition of 
n with L pieces !–almost surely.
Hence P .
n; j
nj=2/�L !–almost surely, which contradicts our choice of mn .

Proposition 2.14 Suppose that X is a complete homogenous geodesic metric space.
If Con!.X; e; d/ is semilocally simply connected then X is �–coarsely loop divisible
for some � > 0.

It is not known whether the converse holds. The converse is Question 2 with the uniform
hypothesis removed.
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Proof of Proposition 2.14 Suppose every loop in Con!.X; e; d/ contained in a ball
of radius � is nullhomotopic in Con!.X; e; d/. Then for every 
 of length at most � ,
there exists a continuous map of a disc into Con!.X; e; d/ which extends 
 and is
necessarily uniformly continuous. For sufficiently small � , a �–partition of the disc
gives us a finite j
 j=2–partition for 
 . Then the result follows from Lemma 2.13

Theorem 2.15 Let X be a complete homogenous geodesic metric space. If X is not
�–coarsely loop divisible with respect to .!; d/ for every � > 0, then Con!.X; e; d/
has uncountable fundamental group.

The proof will require the following result of Cannon and Conner.

Theorem 2.16 [4] Let X be a topological space, 'W �1.X;x0/!L be a homomor-
phism to a group L, U1 � U2 � � � � be a countable local basis for X at x0 and Gi be
the image of the natural map from �1.Ui ;x0/ into �1.X;x0/. If L is countable, then
the sequence '.G1/� '.G2/� � � � is eventually constant.

Proof of Theorem 2.15 Let X be a complete homogenous geodesic metric space.
Suppose that X is not �–coarsely loop divisible for any � and Con!.X; e; d/DX! has
countable fundamental group. Let i� be the identity map on �1.X

! ; e/. Theorem 2.16
implies that i�.Gn/ is eventually constant, where Gn is the image of the natural map
from �1.B1=n.e/; e/ into �1.X

! ; e/.

Fix N such that this sequence is constant for m � N , and let � D 1=N . Therefore
every loop in B1=N .zx/ can be homotoped into B1=m.e/ for any m�N . In general,
this will not imply that the ball is simply connected. However, it does imply that every
loop 
 of length less than � has a partition with finitely many pieces and mesh at
most j
 j

2
. Then Lemma 2.13 implies that X is �–coarsely loop divisible which is a

contradiction.

Theorem 2.17 Let X be a complete homogenous geodesic metric space. Fix a
ultrafilter ! and scaling sequence d . If, for every � > 0, X is not �–coarsely loop
divisible with respect to the pair .!; d/, then the fundamental group of Con!.X; e; d/
is not free. Evenmore, if �1.Con!.X; e; d// D �j Gj for some free product of
groups Gj , then there exists a j such that Gj is uncountable and not free.

We will use the following two results in the proof of Theorem 2.17.

Theorem 2.18 Suppose that 'W H! F is a surjective homomorphism where F is a
free group. Then F has finite rank.
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If we consider homomorphisms from the natural inverse limit containing H to free
groups, then this is a theorem of Higman [16]. When we consider homomorphism
from H , this is a consequence of Theorem 2.16 and a proof can be found in Sum-
mers [27].

Theorem 2.19 (Eda [9]) Suppose that 'W H!�j Gj is a homomorphism. Then
there exists an n such that '.Hn/ is contained in a subgroup which is conjugate to Gj

for some j .

Proof of Theorem 2.17 Since X is not �–coarsely loop divisible with respect to
.!; d/ for every � , we may find a null sequence of loops ˛n in Con!.X; e; d/ such
that ˛n has no finite .j˛nj=2/–partition. Since Con!.X; e; d/ is transitive by isometries,
we may choose ˛n such that ˛i.0/D j̨ .0/De for all i; j . By passing to a subsequence,
we may assume that j˛nj < j˛n�1j=2. This implies that the ball of radius j˛nj does
not contain a loop which is homotopic to ˛i for i < n. Since ˛n forms a null sequence
of loops and ˛i.0/D j̨ .0/ for all i; j , there exists a continuous map f from E to
Con!.X; e; d/ such that f .an/D ˛n .

Suppose that �1.Con!.X; e; d/; .xn// was free. Then f�.H/ would be free and
Theorem 2.18 would then imply that it has finite rank. Hence f�.H/ is countable and
Theorem 2.16 implies that f�.�1.En; .0; 0/// as a sequence in n is eventually constant
which contradicts our choice of ˛n .

Thus for every n, f�.Hn/ is uncountable and not free. The last claim of the theorem
follows from Theorem 2.19.

Proposition 2.20 Let X be a complete homogenous geodesic metric space. If X

is not �–coarsely loop divisible with respect to .!; d/ for every � > 0, then the
fundamental group of Con!.X; e; d/ is not simple.

Proof Let X! D Con!.X; e; d/ and ˛i be a null sequence of loops in X! con-
structed as in the proof of Theorem 2.17. Let An be the union of the images of ˛i

for i > n. Let Yn be the topological cone of An in X! , ie the subset of yX! con-
sisting of Con!.X; e; d/� f0g and the canonically embedded yAn . The inclusion map
�nW Con!.X; e; d/! Yi defined by x 7! .x; 0/ induces a map �n� on fundamental
groups with nontrivial kernel. Hence, it is enough to show that the induced map on
fundamental groups is nontrivial.

Claim For i � n, �n.˛i/ is homotopically essential in Yn .
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Proof of claim Suppose that hW D! Yn is a nullhomotopy of �n.˛i/ for some i � n

where D is the unit disk in the plane. Let z be the cone point. Notice that An

separates Yn . Hence the boundary of each component of h�1. yAn/ is contained in
h�1.An/. By possibly modifying h, we may assume that each component of h�1. yAn/

which is not contained in h�1.An/ intersects the cone point z . (Suppose B is a
component of h�1. yAn/ such that h.B/\fzg D∅. Then we can push h down along
cone lines to insure that h.B/�An .)

Since each component of h�1. yAn/ which is not contained in h�1.An/ intersects
h�1.An/ and h�1.z/ (two disjoint closed sets), there are only finitely many components
of h�1. yAn/ which are not contained in h�1.An/.

Let C be the component of h�1.X!/ containing the unit circle in the plane. Then C

is a planar annulus of finite genus. (The genus is equal to the number of components of
h�1. yAn/ which are not contained in h�1.An/.) Since each boundary component of C

except the unit circle maps into An , the diameter of its image is at most j˛nC1j< j˛nj=2.
This implies that hW C !X! can be used to find a finite partition of ˛i with mesh at
most j˛nj=2. Hence, ˛i is partitionable which contradicts our choice of ˛i .

The property of being �–coarsely loop divisible is a quasi-isometry invariant in the
following sense.

Proposition 2.21 If X and Y are two quasi-isometric homogenous geodesic metric
spaces, then X is �–coarsely loop divisible if and only if Y is �0–coarsely loop divisible
for some �0 > 0.

Proof If X and Y are quasi-isometric, then their cones are bilipschitz. If X is
�–coarsely loop divisible for some � > 0, then Proposition 2.6 implies that every loop
of length less than � in Con!.X; e; d/ is partitionable.

Let f W Con!.X; e; d/ ! Con!.Y; e0; d/ be a bilipschitz map with bilipschitz con-
stant C . By iterating partitions as in Remark 2.2, we can see that every loop of length
less than � in Con!.X; e; d/ has a partition with finitely many pieces and mesh at
most j
 j

2C
. Let 
 be a loop in Con!.Y; e0; d/ with length less than �

C
. Then f �1 ı 


has length at most � and hence has a partition with mesh at most j
 j
2C

. Then composing
the partition with f gives us a partition of 
 with finitely many pieces and mesh at
most j
 j

2
. Lemma 2.13 implies that Y is �0–coarsely loop divisible for every �0< �

C
.

2.1 Absolutely nondivisible sequences

Definition 2.22 A sequence of loops .˛n/ is absolutely nondivisible if there ex-
ists an M such that the sequences P .˛n; j˛nj=M / and j˛nj both tend to C1 and
fj˛nC1j=j˛njg is bounded.
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Remark 2.23 Suppose that j˛nj is unbounded and fj˛nC1j=j˛njg is bounded. To
simplify our notation, we will let j˛nj D an and B be a bound on fanC1=ang.

Let n0D 1. Then we can define fnig, inductively, by niC1Dminfn2N j an> ani
C1

and n> nig. If niC1 6D ni C 1, then ak � ani
C 1 for all ni � k < niC1 .

Thus
aniC1

ani

D
aniC1

a.niC1/�1

�
a.niC1/�1

ani

� B
ani
C 1

ani

� B max
n
2;

2

an0

o
:

Therefore fani
gi is a subsequence which is absolutely nondivisible.

Thus, it is possible to loosen this definition slightly and only require that j˛nj be
unbounded.

Lemma 2.24 Fix ! an ultrafilter on N , d an !–divergent sequence and A an infinite
subset of the natural numbers. Suppose that AD fb1 < b2 < b3 < � � � g has the property
that the set of ratios fbkC1=bkg is bounded by L. Then for any � > 0, there exists a
sequence .an/ in A such that lim! an=dn 2

�
�
L
; �
�
.

We allow an to have repeated terms; hence, an is not necessarily a subsequence of bn .
However an is not eventually constant, since lim! dn DC1.

Proof Let L be an upper bound on the set fbnC1=bng. For all n such that b1=dn � � ,
choose .in/ such that bin

=dn � � < binC1=dn . Let an D bin
.

Then �dn < binC1 which implies that �=L< bin
=dn D an=dn � � . For all n such that

b1=dn > � , let an D b1 . Then lim! an=dn 2
�
�
L
; �
�
.

Lemma 2.25 Let X be a complete geodesic metric space. If there exists a sequence
of absolutely nondivisible loops in X , then for every pair .!; d/ and � > 0, X is not
�–coarsely loop divisible.

Proof Fix � > 0, ! an ultrafilter and d an !–divergent sequence of real numbers.

Let .
n/ be a sequence of loops in X which is absolutely nondivisible. By passing to a
subsequence as in Remark 2.23, we may assume that the lengths of 
n are nondecreasing.
Let AD fj
njg and L be an upper bound on fj
nC1j=j
njg.

Let .an/�A be a sequence constructed as in Lemma 2.24 where we replace � by �
2

.
Consider the sequence of loops 
kn

where 
kn
has length an . Since lim! an=dn 2�

�
2L
; �

2

�
, we have j
kn

j 2 Œdn�=L; dn�� !–almost surely. However, P .
kn
; j
kn

j=M /

tends to C1. Hence, # restricted to
S

n2AŒ�=Ldn; �dn� is unbounded for all !–
large A. Hence Lemma 2.3 implies that X is not �–coarsely loop divisible. Since �
was arbitrary, X is not �–coarsely loop divisible with respect to .!; d/ for any � > 0.
Since .!; d/ were also arbitrary, this completes the proof.
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Lemma 2.25 and Theorem 2.15 immediately imply the following corollary.

Corollary 2.26 Let X be a complete homogenous geodesic metric space. If there
exists a sequence of loops in X which is absolutely nondivisible, then every asymptotic
cone of X has uncountable fundamental group and is not semilocally simply connected
at any point.

2.2 Simply connected cones

When Papasoglu proved Proposition 2.7, he used the uniform bound on the number
of pieces in a partition to construct discs. Being coarsely loop divisible implies that
loops in the cone are partitionable but does not give a bound on the number of pieces
which is independent of the loop. Thus Papasoglu’s method is insufficient to build
discs when a space is only coarsely loop divisible and not uniformly coarsely loop
divisible. Here we will show that requiring a linear isodiametric function on partitions
along with coarsely loop divisible is sufficient to build discs.

When considering subsets of N , we will write Œa; b� for the set fn 2 Z j a � n � bg.
For A � N , we will let Ac D NnA. For d 2 RC and A � N , let Md .A/ D

fx 2N j Œx
d
;xd �\A 6D∅g.

Proposition 2.27 Suppose that for every .�; .pn// there exists an � > 0 such that X

is �–coarsely loop divisible with respect to the pair .�; .pn//. Then there exists a pair
.!; d/ such that X is �–coarsely loop divisible for every � > 0 with respect to .!; d/.

Before we can prove Proposition 2.27, we will need a necessary condition for X to be
�–coarsely loop divisible for every pair .!; d/.

Lemma 2.28 Let Ak D #
�1.Œ1; k�/, A0

k
D #�1.fkg/ and Bk D #

�1.Œk C 1;1//.
If X is �–coarsely loop divisible for every pair .!; d/, then for every s 2 N there
exists b D b.s/ such that

(i) if ci
k
D sup

˚y
x
j i < x and Œx;y��Ak

	
, then ck D lim

i!1
ci

k
and ck !1,

(ii) if bk D sup
˚y

x
j Œx;y��Ms.Bk/

	
, then bk < b for all sufficiently large k ,

(iii) if c0
k
D
˚y

x
j Œx;y��Ms.A

0
k
/
	

, then c0
k
< ˛ for all k .

Proof For fixed k , ci
k

is a decreasing sequence in i . Hence, ck exists as an extended
real number (ci

k
might be infinite for all i ). The sequence ck is increasing since the

sets Ak are nested.
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Proof of (i) Suppose that there existed L such that ck <L for all k . We may choose
an increasing sequence kn such that ci

n < 2L for all i > kn . Thus for every interval
Œx;y� such that kn < x and x

y
� 2L, Œx;y� 6�An , ie Œx;y�\Bn 6D∅.

Fix an ultrafilter ! and let dn D .kn/
2 . Suppose X is �–coarsely loop divisible for

some � > 0. Then
S

n2AŒ�dn=.2L/; �dn��At for some t and !–large A. However,
for all sufficiently large n, kn < �dn=.2L/ which implies that Œ�dn=.2L/; �dn� \

Bn ¤ ∅ for all sufficiently large n. This contradicts our choice of t such thatS
n2AŒ�dn=.2L/; �dn��At .

Proof of (ii) Fix s 2N . Suppose that .ii/ does not hold. Then there exists Œxn;yn��

Ms.Bn/ such that yn=xn > n. Fix an ultrafilter ! and let dn D .xnyn/
1=2 , the

geometric center of the interval Œxn;yn�. Then for every n0�n, Mp
n.dn/� Œxn;yn��

Ms.Bn0/. (The first inclusion follows by our choice of dn and the second holds since
Ms.Bn/�Ms.Bn0/ for n0 � n.)

Suppose X is �–coarsely loop divisible with respect to .!; d/ for some � 2 .0; 1/.
For any 0 < ı < � ,

S
n>mŒıdn; �dn��Ms.Bm/ for every m > 1=ı2 . If ı < �

2s
and

Œıdn; �dn��Ms.Bm/, then Œıdn; �dn�\Bm 6D∅. Since this hold for every sufficiently
large m, we can derive a contradiction as in (i).

The proof of (iii) is the same as proof of (ii).

Proof of Proposition 2.27 We will use the notation from Lemma 2.28. The lemma is
trivial if some ck D1. Thus we will assume that for every k , ck <1.

Let k 0
1
D 1 and s1D ck0

1
=3. We may choose k1 > k 0

1
and b1 such that sup

˚
b
a
j Œa; b��

Ms1
.Bk/

	
< b1 for all k � k1 .

Suppose that we have inductively define si , k 0i , ki and bi for all i < n.

Choose k 0n 2N such that
ck0n

> b3
n�1 � c

2
k0

n�1

and let sn D ck0n
=3. Again, we may choose kn > k 0n and bn such that sup

˚
b
a
j Œa; b��

Msn
.Bk/

	
< bn for all k � kn .

Choose Œa1;1; b1;1� a maximal interval in Ak1
containing a point of .Ms1

.Bk1
//c .

Suppose that for all i < n, we have chosen Œai;i ; bi;i �.

Let Œan;n; bn;n� be a maximal interval in Akn
containing a point of .Msn

.Bkn
//c such

that bn�1;n�1 < an;n .

Claim Suppose that x 2 .Msi
.Bki

//c . Then Œx=si ;xsi � � Aki
. Additionally,

there exist x0 2 .Msi�1
.Bki�1

//c \ Œx=si ;xsi � such that Msi�1
.Œx0=si�1;x

0si�1�/�

Œx=si ;xsi �.
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Proof of claim Let x 2 .Msi
.Bki

//c . Then Msi
.x/\Bki

D∅ which implies that
Œx=si ;xsi � in Aki

.

Let aD x=si and bD xsi . Then x
a
; b

x
D si D ck0

i
=3. This implies that b

a
> .ck0

i
=3/2 >

.b9
i�1
� c4

k0
i�1

=9/.

Let t D maxfbi�1; ck0
i�1
g. Since b=.t4a/ > bi�1 , the interval Œat2; b2=t2� contains

a point x0 2 .Msi�1
.Bki�1

//c . Then the inequality t � ck0
i�1

> si�1 , along with the
inclusion Mt .Œx

0=t;x0t �/� Œa; b� imply that Msi�1
.Œx0=si�1;x

0si�1�/� Œa; b�. This
completes the proof of the claim.

Fix n. The claim shows that we can find a nested sequence of intervals Œa1;n; b1;n��

Œa2;n; b2;n� � � � � � Œan;n; bn;n� such that Œa1;n; b1;n� � Aki
and Msi�1

.Œai;n; bi;n�/ �

ŒaiC1;n; biC1;n�.

Let dn D .a1;nb1;n/
1=2 . Then

S
n>i Œdn=si ; sidn��Akn

. Therefore X is �–coarsely
loop divisible with respect to the pair .!; d/ for all � > 0, since si diverges.

This gives us the following analogue to Proposition 2.7. Rather than require a bound
on the number of pieces in a partition, we only require a linear bound on the diameter
of partitions and �–coarsely loop divisible for all � > 0.

Proposition 2.29 Suppose that for some fixed pair .!; d/, a complete geodesic metric
space X is �–coarsely loop divisible for all � > 0. If there exists an l;L;N and
an increasing function f W N ! N such that every loop 
 in X with j
 j � L has a
partition … of 
 with the property that

(i) … has at most f ı# l.j
 j/ pieces,

(ii) … is a j
 j
2

–partition of 
 ,

(iii) diam.…/�N j
 j,

then Con!.X; e; d/ is simply connected for any choice of observation sequence e .

Proof Suppose that for some fixed pair .!; d/ and all � > 0, X is �–coarsely loop
divisible. Fix l;L;N and f W R!R as in statement of the lemma.

We will break the proof into two parts. First we will show that every geodesic n–
gon ˛ in Con!.X; e; d/ which is a limit of geodesic n–gons from X bounds a disc of
diameter at most 2N j˛j. We will then show that this is enough to imply that all loops
are nullhomotopic.
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Step 1 Let ˛ be a geodesic n–gon in Con!.X; e; d/ such that ˛.t/ D .˛n.t//

where ˛n is a geodesic n–gon in X . By hypothesis; for each n such that j˛nj > L,
there exists a partition …n of ˛n which satisfy conditions (i)–(iii) of the proposition.

By Lemma 2.3, there exists an integer K and an !–large set A with the property that
.# l/�1.

S
n2AŒj˛jdn=2; 2j˛jdn�/ is bounded by K . We will assume that for all n 2A,

j˛nj 2
S

n2AŒj˛jdn=2; 2j˛jdn�. Thus …n has at most f .K/ pieces !–almost surely.

Then Proposition 2.6 implies that the partitions …n induce a partition … of ˛ which sat-
isfies conditions (i) and (ii) of the proposition. In Papasoglu’s proof of Proposition 2.6, …
is just the !–limit of the partitions …n ; thus, condition (iii) is also satisfied for ….

Fix 
 a geodesic n–gon in Con!.X; e; d/ such that 
 .t/D .
n.t// for 
n a geodesic
n–gon in X .

We have shown that there exists a partition …1W P
.0/
1
! Con!.X; e; d/ of 
 into

pieces of length j
 j=2 with the diameter of the partition no greater than N j
 j.

Proceeding by induction, suppose that we have defined …k W P
.0/

k
! Con!.X; e; d/ a

partition of 
 into pieces of length j
 j=2k for k < i such that for all 1< k � i � 1

� …k extends …k�1 ,

� for x 2 im…k dist.x; im…k�1/�N j
 j=2k .

The partition …i�1 extends to a map �…i�1 on the .1/–skeleton of Pi�1 as in
Remark 1.5. Then we can partition each of the subloops into pieces of length less
than j
 j=2i with the desired diameters. We can then use these partitions to extend …i�1

to …i satisfying the two induction hypothesis.

For all i > j , if x 2 im…i , then dist.x; im…j / �
Pi

sDj N j
 j=2s . Hence, …i con-
verges to a continuous function from the unit disc into Con!.X; e; d/ which extends 
 .
Therefore 
 bounds a disc of diameter 2N j
 j. This completes Step 1.

Step 2 Let Qn be the convex hull of the regular 2n –gon inscribed in S1 , the unit
circle in the plane with the standard Euclidean metric. Then Qn has a natural cell
decomposition with 2n vertices and 2n edges and one 2–cell. Furthermore, we may
assume that the 0–skeleton of Qn form a nested sequence of subsets of S1 . Let
A2

1
D Q2 which has diameter 2. For n > 2, Qnn.interior.Qn�1// is a set of 2n

triangles with vertices on S1 each of which share a unique edge with Qn�1 and have
diameter less than �=2n�1 . Let fAn

i g
2n

iD1
be this set of triangles. Then AD

S
i;n An

i

covers the interior of the unit disc and a dense subset of its boundary.

Fix a loop 
 W S1! Con!.X; e; d/.
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We may choose a geodesic 4–gon 
 2
1
W @A

.1/
2
!Con!.X; e; d/ such that 
 2

1
jQ2\S1 D


 jQ2\S1 and 
 2
1

is the limit of geodesic 4–gons from X . We can inductively define
geodesic 3–gons f
 n

i W @A
n
i ! Con!.X; e; d/g:

(i) 
 n
i j@A

n
i
\Qn�1

D 
 n�1
j j@An

i
\Qn�1

for some j

(ii) 
 n
i j@An

i
\S1 D 
 j@An

i
\S1

Using Step 1, we can define maps fhn
i W A

n
i ! Con!.X; e; d/g such that hn

i is a
nullhomotopy of 
 n

i and diam.hn
i / no greater than 2N ın

i , where ın
i is the sum of the

distances between the image of adjacent vertices of An
i .

This defines a function hW A! Con!.X; e; d/ by h.a/ D hn
i .a/ for some i and n.

This is well defined by condition (i) above. Since 
 is continuous on a compact set; for
ever � > 0, there exists a K such that 2N ın

i < � for all n>K . Thus h is continuous
on A. By condition (ii) above, hjA\S1 D 
 jA\S1 which implies that h extends to a
nullhomotopy of 
 .

Corollary 2.30 Let G be a group and S a finite generating set for G . Suppose that
there exists an l;L;N and an increasing function f W N!N such that every loop 

in �.G;S/ with j
 j �L has a partition … of with the property that

(i) … has at most f ı# l.j
 j/ pieces,

(ii) … is a j
 j
2

–partition of 
 ,

(iii) diam.…/�N j
 j.

Then at least one of the following occurs.

(A) G has an asymptotic cone which is not semilocally simply connected and has an
uncountable fundamental group.

(B) Every asymptotic cone of G is locally simply connected and G has an asymptotic
cone which is simply connected.

Proof If for some ultrafilter and scaling sequence G is not �–coarsely divisible for
every � > 0, then G has an asymptotic cone which is not semilocally simply connected
and has uncountable fundamental group.

Otherwise, for every pair .!; d/; G is �–coarsely divisible with respect to .!; d/ for
some � > 0. The proof of Proposition 2.29 implies that every asymptotic cone of G is
locally simply connected. Proposition 2.27 implies that there exists a pair .!; d/ such
that G is �–coarsely divisible for every � > 0 with respect to .!; d/. Proposition 2.10
implies that Con!.G; d/ is simply connected.
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3 Examples

Lemma 3.1 Suppose that G is a group with a finite presentation hS jRi which has an
exponential isoperimetric function. If there exists a sequence of loops 
n in �.G;S/
such that j
nj grows at most linearly and Area.
n/ has an exponential lower bound,
then there exists a sequence of absolutely nondivisible loops in �.G;S/.

The hypothesis that the group has a sequence of loops whose areas grow exponential but
whose lengths grow linearly is stronger than just having an exponential Dehn function.
However, in most known cases this is what is exhibited when showing a group has
exponential Dehn function.

Proof Let 
n be a sequence of loops in �.G;S/ such that j
nj � Ln and Abn �

Area.
n/D ı.j
nj/�DcLn where ı is the Dehn function for the presentation hS jRi
and A; b; c;D;L are positive constants. Fix M such that cL=M � b .

Suppose that for some subsequence ni , 
ni
has a j
ni

j=M –partition with at most K

pieces where K is independent of i . Then

Abni � Area.
ni
/D ı.j
ni

j/�Kı

�
j
ni
j

M

�
�KDcLni=M :

This implies that bni=.cLni=M /D .b=.cL=M //ni is bounded independent of i which
contradicts our choice of M .

Thus P .
n; j
nj=M / diverges and the lemma follows from Remark 2.23.

Corollary 3.2 Let G be a group from the following list. Then for every ultrafilter !
and scaling sequence d , Con!.G; d/ is not semilocally simply connected and has an
uncountable fundamental group which is not free and not simple. In addition, any
decomposition of the fundamental group of Con!.G; d/ as a free product has a factor
which is not free and uncountable.

(1) SL3.Z/

(2) Baumslag–Solitar groups: BSpqDha; t j t
�1aptDaqi for p; q¤0 and jpj¤jqj

(3) The 3–manifold Sol3 : R3 endowed with the Riemannian metric ds2De2zdx2C

e�2zdy2C dz2

(4) Any extension of Rn by R via a matrix with all real eigenvalues of norm strictly
greater than 1 and at least two eigenvalues with different sign

(5) Baumslag–Gertsen group: ha; t j .t�1a�1t/a.t�1at/D a2i
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(6) Out.Fn/ and Aut.Fn/ for n� 3

(7) G.7/ D ha; s; t j Œa; a
t �D Œs; t �D 1; aat D asi

(8) G.8/ D h�1; �2; a; k j a
�i D a; k�i D ka; i D 1; 2i

Recall that the group G.7/ is of interest since it is metabelian and not polycyclic. It is
sometimes referred to as the Baumslag group. G.8/ was constructed by Olshanskii and
Sapir and has cubic Dehn function and linear isodiametric function.

Proof Epstein and Thurston in [10] showed the existence of a sequence of loops
in SL3.R/ and BSpq for jpj ¤ jqj satisfying the conditions of Lemma 3.1.

The result for Baumslag–Solitar groups and Sol3 was already known and is due to
Burillo [3]. Cornulier showed the existence of a sequence of absolutely nondivisible
loops for groups of the type (4) in [6].

Kassabov and Riley in [17] showed that the loops in the Cayley graph of G.7/ with
label Œa; atn

� have the desired properties.

For Out.Fn/ and Aut.Fn/ Bridson and Vogtmann exhibit the necessary sequence
in [2].

That leaves only (5) and (8). Since G.5/D ha; t j .t
�1a�1t/a.t�1at/D a2i has a Dehn

function which is greater than any tower of exponentials, we cannot apply Lemma 3.1.
Gersten in [12] showed the existence of a sequence of loops 
k such that 
k has
length 3 � 2kC1 and area at least

22
2���

2
�
k times

:

Platonov in [24] showed that

ı.n/D 22
2���

2
�
log2.n/ times

is an isoperimetric function for G.5/ .

Suppose that for some subsequence ni , P .
ni
; j
ni
j=6/�K . Then for all ni

22
2���

2
�
ni times

� Area.
ni
/�K22

2���
2
�

log2.32ni =6/ times
DK22

2���
2
�
.ni�1/ times

which is a contradiction. Hence 
k is an absolutely nondivisible sequence of loops
and the result follows from Corollary 2.26.

Olshanskii and Sapir in [21] constructed a sequence of loops 
n in the Cayley complex
of G.8/ D h�1; �2; a; k j a�i D a; k�i D ka; i D 1; 2i such that 
n has length 6n.
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Additionally, they showed that 
n cannot bound a disc decomposed into at most l

subdiscs of perimeter n where l �
p

n and hence is an absolutely nondivisible sequence
of loops.

Remark 3.3 Suppose that X is a one-dimensional metric space and Y is the support
of any finite set of paths in X . Then Y is a compact one-dimensional metric space and
thus its fundamental group is locally free, residually free and residually finite by Cannon
and Conner [5, Theorem 5.11]. Since X is one-dimensional, the homomorphism from
the fundamental group of Y to the fundamental group of X induced by set inclusion
is injective; see [5, Theorem 3.7]. Thus �1.X;x0/ is locally free.

Burillo in [3] shows that all asymptotic cones of solvable BSp;q with jpj¤ jqj and Sol3
have topological dimension 1. As well, any extension of Rn by R via a matrix with all
real eigenvalues of norm strictly greater than 1 and at least two eigenvalues with different
sign will have one-dimensional asymptotic cones; see [6]. Thus the fundamental groups
of their cones are locally free.

To prove Corollary 3.2, we analysed mappings of Hawaiian earrings into asymptotic
cones and showed that the induced homomorphism’s image had the desired properties.
However, this method doesn’t give us much information concerning the structure of the
rest of the fundamental group. When an asymptotic cones of a group is one-dimensional,
one can apply standard techniques for one-dimensional space, as in Remark 3.3, to
better understand the structure of the fundamental. Requiring a dimension constraint
on the asymptotic cone is a strong condition and does not apply to many well studied
groups.

3.1 An example of a group with locally simply connected cones which is
not simply connected

In [19], Olshanskii showed that there exists a group with the following properties.

Theorem 3.4 There is a finitely generated group G whose Dehn function f .n/ satis-
fies the following properties:

(1) There are sequences of positive numbers di ! 1 and �i ! 1 such that
f .n/� cn2 for arbitrary integer n 2 Œdi=�i ; di�i � and some constant c .

(2) There is a positive constant c0 and an increasing sequence of numbers ni!1

such that f .ni/=n
2
i !1 but for every i , and for every integer n with n< c0ni ,

we have f .n/� c0n2
i .
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Olshanskii constructed G as a multiple HNN extension of a free group using S –
machines.

Corollary 3.5 (A) There exists an ! such that Con!.G; .ni// has a nontrivial
fundamental group.

(B) Con!.G; .ni// is locally simply connected for all ! .

(C) Con!.G; .di// has trivial fundamental group for all ! .

Proof Olshanskii and Sapir in [22] showed that the second condition implies the
existence of a b < 1 such that f .ni/=f .bni/ ! 1. This was used to show that
divisibility function restricted to

S
i Œbni ; ni � is unbounded. Then (A) follows.

The first condition implies that G is uniformly �–coarsely loop divisible for every
� > 0 with respect to the pair .!; .di// for any ultrafilter ! . Therefore Con!.G; .di//

has trivial fundamental group.

The second condition implies (by the same argument that was used to show G is
uniformly �–coarsely loop divisible for every � > 0 with respect to the pair .!; .di//)
that there exists an � > 0 such that G is uniformly �–coarsely loop divisible for the
pair .!; .ni//. Hence, Con!.G; .ni// is locally simply connected.

Question 4 Can this group have an asymptotic cone which is not locally simply
connected?

Or for finitely presented groups in general we can ask the following:

Question 5 Is there a finitely presented group which has a locally simply connected
asymptotic cone and an asymptotic cone which is not locally simply connected?

Question 5 is false if we consider the larger class of finitely generated groups. Thomas
and Velicovick consider a group GI D ha; b j .a

nbn/7D 1I n 2 Ii which they show for
an appropriate choice of I has a simply connected and nonsimply connected asymptotic
cone; see [28].

Proposition 3.6 Let I0 D f2
2n

g. Let I0;k D I0\ Œ2
2k

;1/ and I D
S1

kD1 2k � I0;k .
Then GI D ha; b j .a

nbn/7 D 1I n 2 Ii has a cone which is locally simply connected
and a cone which is not semilocally simply connected.
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Proof Let 
n be the loop based at the identity with label .anbn/7 for n 2 I . Then
Thomas and Velicovick show using small cancellation that P .
n; j
nj=2/D1; see [28,
Lemma 1.1].

If we let dn D 82n�1

, then the argument of Thomas and Velicovick shows that
Con!.G; d/ is an R–tree for any ! .

Let �nD 2n22n

D 22nCn . Let 
n;k be the loop with label .a22nCk

b22nCk

/7 for k � n.
Then j
n;k j=�nD14=2n�k . Hence .
n;n�i/ is a loop of length 14=2i in Con!.G; .�n//

which has no finite partition. Hence Con!.G; .�n// is not semilocally simply connected
and has uncountable fundamental group for any ! .
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M V Sapir, Z Šuniḱ, editors), Contemp. Math. 394, Amer. Math. Soc. (2006) 203–208
MR2216717

[22] A Y Olshanskii, M V Sapir, A finitely presented group with two non-homeomorphic
asymptotic cones, Internat. J. Algebra Comput. 17 (2007) 421–426 MR2310154

[23] P Papasoglu, On the asymptotic cone of groups satisfying a quadratic isoperimetric
inequality, J. Differential Geom. 44 (1996) 789–806 MR1438192

[24] A N Platonov, An isoparametric function of the Baumslag–Gersten group, Vestnik
Moskov. Univ. Ser. I Mat. Mekh. (2004) 12–17, 70 MR2127449 In Russian; translated
in Moscow Univ. Math. Bull. 59 (2004) 12–17

[25] T R Riley, Higher connectedness of asymptotic cones, Topology 42 (2003) 1289–1352
MR1981358

Algebraic & Geometric Topology, Volume 14 (2014)

http://www.ams.org/mathscinet-getitem?mr=1161694
http://dx.doi.org/10.1016/j.top.2005.02.003
http://www.ams.org/mathscinet-getitem?mr=2136537
http://dx.doi.org/10.1007/978-1-4613-9730-4_9
http://www.ams.org/mathscinet-getitem?mr=1230635
http://dx.doi.org/10.1007/978-1-4613-9586-7_3
http://www.ams.org/mathscinet-getitem?mr=919829
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1867354
http://dx.doi.org/10.1112/jlms/s1-27.1.73
http://www.ams.org/mathscinet-getitem?mr=0045730
http://arxiv.org/abs/1008.1966
http://arxiv.org/abs/1008.1966
http://dx.doi.org/10.1142/S0218196707003688
http://www.ams.org/mathscinet-getitem?mr=2310153
http://dx.doi.org/10.2140/gt.2009.13.2051
http://www.ams.org/mathscinet-getitem?mr=2507115
http://dx.doi.org/10.1090/conm/394/07445
http://www.ams.org/mathscinet-getitem?mr=2216717
http://dx.doi.org/10.1142/S021819670700369X
http://dx.doi.org/10.1142/S021819670700369X
http://www.ams.org/mathscinet-getitem?mr=2310154
http://projecteuclid.org/euclid.jdg/1214459409
http://projecteuclid.org/euclid.jdg/1214459409
http://www.ams.org/mathscinet-getitem?mr=1438192
http://www.ams.org/mathscinet-getitem?mr=2127449
http://dx.doi.org/10.1016/S0040-9383(03)00002-8
http://www.ams.org/mathscinet-getitem?mr=1981358


Local topological properties of asymptotic cones of groups 1439

[26] M V Sapir, J-C Birget, E Rips, Isoperimetric and isodiametric functions of groups,
Ann. of Math. 156 (2002) 345–466 MR1933723

[27] E Summers, There is no surjective map from the Hawaiian earring group to the double
Hawaiian earring group, master’s thesis, Brigham Young University (2002)

[28] S Thomas, B Velickovic, Asymptotic cones of finitely generated groups, Bull. London
Math. Soc. 32 (2000) 203–208 MR1734187

Department of Mathematics, Brigham Young University
275 TMCB, Provo, UT 84602, USA

Mathematics Department, University of Toronto
40 St. George Street, Room 6290, Toronto ON M5S 2E4, Canada

conner@math.byu.edu, curt.kent@utoronto.ca

www.math.byu.edu/~conner/, http://www.math.toronto.edu/cms/kent-curt/

Received: 16 October 2012 Revised: 1 August 2013

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2307/3597195
http://www.ams.org/mathscinet-getitem?mr=1933723
http://dx.doi.org/10.1112/S0024609399006621
http://www.ams.org/mathscinet-getitem?mr=1734187
mailto:conner@math.byu.edu
mailto:curt.kent@utoronto.ca
http://www.math.toronto.edu/cms/kent-curt/
http://msp.org
http://msp.org



	1.1. Definitions
	2. Coarse loop division property
	2.1. Absolutely nondivisible sequences
	2.2. Simply connected cones

	3. Examples
	3.1. An example of a group with locally simply connected cones which is not simply connected

	References

