Volume 14, issue 3 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
 
Other MSP Journals
Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property

Christopher Allday, Matthias Franz and Volker Puppe

Algebraic & Geometric Topology 14 (2014) 1339–1375
Bibliography
1 A Adem, J Leida, Y Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics 171, Cambridge Univ. Press (2007) MR2359514
2 C Allday, Localization theorem and symplectic torus actions, from: "Transformation groups: Symplectic torus actions and toric manifolds" (editor G Mukherjee), Hindustan Book Agency (2005) 1 MR2214284
3 C Allday, M Franz, V Puppe, Equivariant cohomology, syzygies and orbit structure, to appear in Trans. Amer. Math. Soc. (2013) arXiv:1111.0957
4 C Allday, V Puppe, Cohomological methods in transformation groups, Cambridge Studies in Advanced Mathematics 32, Cambridge Univ. Press (1993) MR1236839
5 M F Atiyah, Elliptic operators and compact groups, Lecture Notes in Mathematics 401, Springer (1974) MR0482866
6 A Borel, Seminar on transformation groups, Annals of Mathematics Studies 46, Princeton Univ. Press (1960) MR0116341
7 G E Bredon, Orientation in generalized manifolds and applications to the theory of transformation groups, Michigan Math. J. 7 (1960) 35 MR0116342
8 G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press (1972) MR0413144
9 G E Bredon, The free part of a torus action and related numerical equalities, Duke Math. J. 41 (1974) 843 MR0362376
10 G E Bredon, Topology and geometry, Graduate Texts in Mathematics 139, Springer (1993) MR1224675
11 G E Bredon, Sheaf theory, Graduate Texts in Mathematics 170, Springer (1997) MR1481706
12 P E Conner, Retraction properties of the orbit space of a compact topological transformation group, Duke Math. J. 27 (1960) 341 MR0163987
13 A Dold, Lectures on algebraic topology, Grundl. Math. Wissen. 200, Springer (1980) MR606196
14 J Duflot, Smooth toral actions, Topology 22 (1983) 253 MR710100
15 D Eisenbud, The geometry of syzygies: A second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics 229, Springer (2005) MR2103875
16 M Franz, A geometric criterion for syzygies in equivariant cohomology arXiv:1205.4462
17 M Franz, V Puppe, Exact cohomology sequences with integral coefficients for torus actions, Transform. Groups 12 (2007) 65 MR2308029
18 J M Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics 218, Springer (2012) MR1930091
19 L G Lewis Jr., J P May, M Steinberger, J E McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer (1986) MR866482
20 J P May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics 91, Amer. Math. Soc. (1996) MR1413302
21 I Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. USA 42 (1956) 359 MR0079769
22 K Wirthmüller, Equivariant homology and duality, Manuscripta Math. 11 (1974) 373 MR0343260