Processing math: 100%

Volume 14, issue 3 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Fast Nielsen–Thurston classification of braids

Matthieu Calvez

Algebraic & Geometric Topology 14 (2014) 1745–1758
Bibliography
1 D Benardete, M Gutiérrez, Z Nitecki, A combinatorial approach to reducibility of mapping classes, from: "Mapping class groups and moduli spaces of Riemann surfaces" (editors C F Bödigheimer, R M Hain), Contemp. Math. 150, Amer. Math. Soc. (1993) 1 MR1234257
2 D Bernardete, Z Nitecki, M Gutiérrez, Braids and the Nielsen–Thurston classification, J. Knot Theory Ramifications 4 (1995) 549 MR1361083
3 M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109 MR1308491
4 J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton Univ. Press (1974) MR0375281
5 J S Birman, V Gebhardt, J González-Meneses, Conjugacy in Garside groups, I: Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (2007) 221 MR2314045
6 J S Birman, V Gebhardt, J González-Meneses, Conjugacy in Garside groups, III: Periodic braids, J. Algebra 316 (2007) 746 MR2358613
7 J S Birman, V Gebhardt, J González-Meneses, Conjugacy in Garside groups, II: Structure of the ultra summit set, Groups Geom. Dyn. 2 (2008) 13 MR2367207
8 J S Birman, K H Ko, S J Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322 MR1654165
9 J S Birman, K H Ko, S J Lee, The infimum, supremum, and geodesic length of a braid conjugacy class, Adv. Math. 164 (2001) 41 MR1870512
10 M Calvez, Dual Garside structure and reducibility of braids, J. Algebra 356 (2012) 355 MR2891137
11 M Calvez, B Wiest, A fast solution to the conjugacy problem in the 4–strand braid group, arXiv:1204.6507
12 M Calvez, B Wiest, Fast algorithmic Nielsen–Thurston classification of four-strand braids, J. Knot Theory Ramifications 21 (2012) 1250043, 25 MR2902274
13 A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge Univ. Press (1988) MR964685
14 R Charney, Geodesic automation and growth functions for Artin groups of finite type, Math. Ann. 301 (1995) 307 MR1314589
15 P Dehornoy, Groupes de Garside, Ann. Sci. École Norm. Sup. 35 (2002) 267 MR1914933
16 P Dehornoy, F Digne, E Godelle, D Krammer, J Michel, Foundations of Garside theory, in progress
17 P Dehornoy, L Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. 79 (1999) 569 MR1710165
18 E A El-Rifai, H R Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. 45 (1994) 479 MR1315459
19 D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett (1992) MR1161694
20 B Farb, D Margalit, A primer on mapping class groups, Princeton Math. Series 49, Princeton Univ. Press (2012) MR2850125
21 A Fathi, F Laudenbach, V Poenaru, Editors, Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284 MR568308
22 F A Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969) 235 MR0248801
23 V Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292 (2005) 282 MR2166805
24 V Gebhardt, J González-Meneses, The cyclic sliding operation in Garside groups, Math. Z. 265 (2010) 85 MR2606950
25 V Gebhardt, J González-Meneses, Solving the conjugacy problem in Garside groups by cyclic sliding, J. Symbolic Comput. 45 (2010) 629 MR2639308
26 J González-Meneses, On reduction curves and Garside properties of braids, from: "Topology of algebraic varieties and singularities" (editors J I Cogolludo-Agustín, E Hironaka), Contemp. Math. 538, Amer. Math. Soc. (2011) 227 MR2777822
27 J González-Meneses, B Wiest, Reducible braids and Garside theory, Algebr. Geom. Topol. 11 (2011) 2971 MR2869449
28 E K Lee, S J Lee, A Garside-theoretic approach to the reducibility problem in braid groups, J. Algebra 320 (2008) 783 MR2422316
29 H A Masur, Y N Minsky, Geometry of the complex of curves, II: Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 MR1791145
30 M Prasolov, Small braids with large ultra summit set, Mat. Zametki 89 (2011) 577 MR2856748
31 J Tao, Linearly bounded conjugator property for mapping class groups, Geom. Funct. Anal. 23 (2013) 415 MR3037904