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Stein fillable contact 3–manifolds and
positive open books of genus one

PAOLO LISCA

A 2–dimensional open book .S; h/ determines a closed, oriented 3–manifold Y.S;h/
and a contact structure �.S;h/ on Y.S;h/ . The contact structure �.S;h/ is Stein fillable
if h is positive, ie h can be written as a product of right-handed Dehn twists. Work
of Wendl implies that when S has genus zero the converse holds, that is

(�) �.S;h/ Stein fillable H) h positive:

On the other hand, results by Wand [23] and by Baker, Etnyre and Van Horn–
Morris [3] imply the existence of counterexamples to .�/ with S of arbitrary genus
strictly greater than one. The main purpose of this paper is to prove .�/ under the
assumption that S is a one-holed torus and Y.S;h/ is a Heegaard Floer L–space.

57R17; 57R57

1 Introduction

A Stein surface can be defined as a triple .W;J; '/, where W is a smooth, noncom-
pact 4–manifold, J is an integrable complex structure on W (viewed as a bundle
automorphism J W TW ! TW ) and 'W W ! Œ0;C1/ is a smooth, proper function
such that, setting � WD �J�d' 2�1.W /, the exact 2–form !' WD d� 2�2.W / is
everywhere nondegenerate, hence an exact symplectic form on W . A basic example is
the triple

�
C2;J0;

P2
iD1 jzi j

2
�
, where J0 is the standard complex structure on C2 . If

c 2 .0;C1/ is a regular value of ' , the sublevel set Wc WD'
�1.Œ0; c�/ is usually called

a Stein 4–manifold with boundary. The restriction �c WD �jTWc
2�1.@Wc/ satisfies

�c ^ d�c > 0; in other words, the 2–plane distribution �@Wc
WD ker.�c/ � T @Wc

consisting of the complex lines tangent to @Wc is a positive contact structure on
the oriented 3–manifold @Wc . For more details on the basic notions in symplectic
and contact topology recalled in this introduction we refer the reader to the book of
Geiges [7] and the references therein.

A contact 3–manifold .Y; �/ is called Stein fillable if it is orientation-preserving
diffeomorphic to a pair .@Wc ; �@Wc

/ as above. In this situation we might simply say
that � is a Stein fillable contact structure. A typical source of Stein fillable contact
structures is given by positive open books, defined below.
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An abstract open book is a pair .†; h/, where † is an oriented surface with @†¤∅
and h is an element of the group DiffC.†; @†/ of orientation-preserving diffeomor-
phisms of † which restrict to the identity on the boundary. We will abusively confuse
a diffeomorphism such as h with its isotopy class modulo isotopies which fix @†
pointwise. To the open book .†; h/ one can associate a closed, oriented 3–manifold
Y.†;h/ by taking the natural filling of the mapping cylinder of h:

Y.†;h/ WD†� Œ0; 1�=.p; 1/� .h.p/; 0/[@ @†�D2

The link LW D @†�f0g � Y.†;h/ is fibered, with fibration � W Y.†;h/ nL! S1 given
by the obvious extension of the natural projection

†� Œ0; 1�=.p; 1/� .h.p/; 0/! S1
D Œ0; 1�=1� 0:

The pair .L; �/ is an open book decomposition of Y.†;h/ with binding L and pages
†� WD ��1.�/, � 2 S1 . The 3–manifold Y.†;h/ carries a contact form � such
that �jL > 0 and that d�j†� > 0 for each � 2 S1 , with the contact structure
�.†;h/ D ker�� TY.†;h/ uniquely determined up to diffeomorphisms by the conjugacy
class of h in DiffC.†; @†/. Moreover, the map .†; h/ 7! .Y.†;h/; �.†;h// is surjective
but not injective; see Giroux [8].

We say that h is positive if either hD id† or hDı
1
� � � ı
k

, where 
i�†, iD1; : : : ; k ,
is a simple closed curve and ı
i

2DiffC.†; @†/ is a right-handed Dehn twist along 
i .
We denote by DehnC.†; @†/ � DiffC.†; @†/ the monoid of positive, orientation-
preserving diffeomorphisms of the pair .†; @†/. When h2DehnC.†; @†/ we say that
the open book .†; h/ is positive. By Loi and Piergallini [15] and [8] (see also Akbulut
and Ozbagci [2; 1] and Plamenevskaya [22, Appendix A]) we have the well–known
fact that if h 2 DehnC.†; @†/ then �.†;h/ is Stein fillable, which leads naturally to
the following basic question:

(1-1) �.†;h/ is Stein fillable H) h 2 DehnC.†; @†/ ?

By Wand [24], it is known that the answer to (1-1) is ‘yes’ when † is a planar surface,
while in [23] and [3] are constructed examples with g.†/D 2 for which the answer
to (1-1) is ‘no’. Moreover, John Etnyre has observed (personal communication to the
author) that the examples of [23; 3] can be used to easily construct similar examples
for any genus g.†/� 3. We include a short sketch of his argument in Remark 5.3.

The purpose of this paper is to prove Theorem 1.1 below, which shows that the answer
to (1-1) is positive when g.†/D1, † has connected boundary and Y.†;h/ is a Heegaard
Floer L–space. Recall that a closed, oriented 3–manifold Y is a Heegaard Floer L–
space, or simply an L–space, if Y is a rational homology 3–sphere such that the rank
of the Heegaard Floer group cHF.Y IZ/ (defined in Ozsváth and Szabó [19]) equals
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the order of the finite group H1.Y IZ/. It is a well–known fact that the simplicity of
the Heegaard Floer groups of an L–space Y makes it possible, in certain situations,
to gather useful information about the Stein fillings of Y (cf Ozsváth and Szabó [18],
Baldwin [4] and Lecuona and Lisca [14]). We will exploit this fact to prove the
following.

Theorem 1.1 Let T be an oriented, one–holed torus, h 2 DiffC.T; @T /, and suppose
that Y.T;h/ is a Heegaard Floer L–space. Then,

�.T;h/ is Stein fillable H) h 2 DehnC.T; @T /:

The submonoid DehnC.T; @T /� DiffC.T; @T / and the basic question in (1-1) were
also considered in Honda, Kazez and Matić [11]. In their subsequent paper [12] the
authors gave a characterization of the elements h 2 DiffC.T; @T / such that �.T;h/ is a
tight contact structure. The proof of Theorem 1.1 provides an explicit characterization
of the elements h 2DehnC.T; @T / such that Y.T;h/ is a Heegaard Floer L–space (see
the statements of Proposition 2.1 and 2.3). This should be compared with the known
algorithm to establish the quasi–positivity of a closed 3–braid in Orevkov [17] (as
explained in Section 2, DiffC.T; @T / is isomorphic to the group of closed 3–braids).

The paper is organized as follows. In Section 2 we recall some previously known results
and we use them to show that Theorem 1.1 is implied by Theorem 2.3. In Section 3 we
prove the first half of Theorem 2.3, and in Sections 4 and 5 we prove the second half.

2 Previous results and a refinement of Theorem 1.1

Let x;y 2 DiffC.T; @T / be right-handed Dehn twists along two simple closed curves
in T intersecting transversely once. Then, DiffC.T; @T / is generated by x and y

subject to the relation xyx D yxy . We shall denote by expW DiffC.T; @T /! Z the
“exponent-sum” homomorphism defined on an element h by first writing h as a product
of powers of x;y and then taking exp.h/ to be the sum of the exponents of x and y

appearing in the product. This is a good definition because two such factorizations of h

are obtained from each other via finitely many applications of the homogeneous relation
xyx D yxy . It is possible to check that there is an isomorphism from the 3–strand
braid group B3 onto DiffC.T; @T / sending �1 to x and �2 to y , where �i 2 B3 ,
i D 1; 2, are the standard generators. Such isomorphisms can be realized geometrically
by viewing T as a two–fold branched cover over the 2–disk with three branch points:
elements of B3 , viewed as automorphisms of the triply–pointed disk, lift uniquely
to elements of DiffC.T; @T /. In our notation a product �1�2 2 B3 , when viewed as
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composition of automorphisms, should be interpreted as first applying �1 and then �2 .
For this reason, throughout the paper, when we write the composition of two elements
�; 2 DiffC.T; @T / as � we shall mean � followed by  . The classification of
3–braids due to Murasugi [16] implies that each element of DiffC.T; @T / is conjugate
to one of the following:

� .xy/3dx�my�1 , d 2 Z, m 2 f1; 2; 3g

� .xy/3dym , d 2 Z, m 2 Z

� .xy/3dxa1y�b1 � � �xany�bn , ai ; bi ; d 2 Z, ai ; bi ; n� 1

The following statement is proved by combining results from [18; 20; 22; 4].

Proposition 2.1 Let h 2 DiffC.T; @T /, suppose that Y.T;h/ is a Heegaard Floer L–
space and that .W;J / is a Stein filling of �.T;h/ . Then, c1.W;J /D 0, bC

2
.W /D 0,

b�
2
.W /D exp.h/� 2 and h is conjugate to one of the following:

(1) .xy/3dx�my�1 , d 2 f1; 2g, m 2 f1; 2; 3g

(2) .xy/3ym , m� �4

(3) .xy/3xa1y�b1 � � �xany�bn , ai ; bi 2N , n� 1,
nP

iD1

ai C 4�
nP

iD1

bi

Moreover, in the first two cases h 2 DehnC.T; @T /.

Proof By [18, Theorem 1.4] any symplectic filling W of an L–space satisfies
bC

2
.W /D 0. The fact that c1.W;J /D 0 follows from the results of [22], as shown

in the proof of [4, Theorem 7.1]. It is a well–known fact that Stein 4–manifolds
admit handle decompositions with only 0–, 1– and 2–handles. Since the assump-
tion that Y.T;h/ is an L–space implies b1.Y.T;h// D 0 and a handle decomposition
of W can be viewed dually as obtained from Y.T;h/ by attaching handles of index at
least 2, it follows that b1.W /D 0. Therefore, the Euler characteristic of W satisfies
�.W /D 1Cb�

2
.W /. Finally, combining [4, Proposition 5.1] and [4, Theorem 7.1] we

get exp.h/� 2D �.W /� 1, obtaining the first part of the statement. In [4] Baldwin
determined the elements h 2 DiffC.T; @T / such that the 3–manifold Y.T;h/ is an L–
space, as well as those such that the contact structure �.T;h/ has nonvanishing contact
invariant, a property which is always satisfied by Stein fillable contact structures; see
Ozsváth and Szabó [20]. The combination of Theorems 4.1 and 4.2 from [4] together
with the fact that 0� b�

2
.W /D exp.h/� 2 immediately yields the fact that h must be

conjugate to one of the elements in (1), (2) or (3) of the statement.

To verify the last part of the statement, in case (1) it clearly suffices to check that
.xy/3x�3y�1 is positive. Since a conjugate of either x or y is a right-handed Dehn
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twist, it is enough to express this element as a product of conjugates of x and y . Indeed,
using the relation xyx D yxy it is easy to verify that

.xy/3x�3y�1
D yx2yx�1y�1

D y.x.xyx�1//y�1
D yxy�1

� .yxy/.yx/�1

D yxy�1
�x:

For case (2), it suffices to check that .xy/3y�4 is positive. As before, using the relation
xyx D yxy we have

xyxyxyy�4
D xyyxyyy�4

D x �y2xy�2:

Remark 2.2 Not all the elements of case (3) in Proposition 2.1 are in DehnC.T; @T /.
For instance, the element .xy/3xy�1xy�5 satisfies the conditions of case (3) but it
is conjugate to the element considered in [11, Subsection 2.5] and shown there to be
nonpositive. Many more such examples exist, as follows from Theorem 2.3 below.

By Proposition 2.1, in order to establish Theorem 1.1 it suffices to prove its statement for
the elements h2DiffC.T; @T / conjugate to those of the form (3) in the proposition. In
fact, we will prove a refinement of the statement of Theorem 1.1, stated as Theorem 2.3
below, which gives a characterization of the positive elements.

Now we need to introduce some notation in order to state Theorem 2.3. Let N be
the set of (positive) natural numbers, N0 WD N [ f0g, and let k 2 N . We say that
yz 2NkC1

0
is a blowup of z D .n1; : : : ; nk/ 2Nk

0
if one of the following hold:

yz D

8<:
.1; n1C 1; n2; : : : ; nk�1; nk C 1/

.n1; : : : ; ni C 1; 1; niC1C 1; : : : ; nk/ for some 1� i < k

.n1C 1; n2; : : : ; nk�1; nk C 1; 1/

We will use the notation yz ! z to denote the fact that yz is a blowup of z , and the
notation

.s1; : : : ; sN /!
blowup
� � � ! .0; 0/

to indicate that the N –tuple .s1; : : : ; sN / can be obtained from .0; 0/ via a sequence
of successive blowups. For example, we have

.2; 3; 1; 2; 3; 1/!
blowup
� � � ! .0; 0/;

because there is the sequence of blowups

.2; 3; 1; 2; 3; 1/! .1; 3; 1; 2; 2/! .2; 1; 2; 1/! .1; 1; 1/! .0; 0/:
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Theorem 2.3 Let hD .xy/3xa1y�b1 � � �xany�bn 2DiffC.T; @T /, ai ; bi ; n� 1, and
N WD

Pn
iD1 bi � 1. If N D 1 then h 2 DehnC.T; @T /. If N � 2 the following are

equivalent:

(1) h 2 DehnC.T; @T /

(2)
�
Y.T;h/; �.T;h/

�
is Stein fillable.

(3) There is a sequence of blowups .s1; : : : ; sN /!
blowup
� � � ! .0; 0/ such that, setting

.c1; : : : ; cN / WD .a1C 2;

b1�1‚ …„ ƒ
2; : : : ; 2; a2C 2; : : : ; anC 2;

bn�1‚ …„ ƒ
2; : : : ; 2/;

we have
c1 � s1; c2 � s2; : : : ; cN � sN :

The proof of Theorem 2.3 will occupy the rest of the paper. More precisely, we already
know that .1/) .2/. In Section 3 we show that .3/) .1/, and in the remaining
sections we show that .2/) .3/.

3 Construction of positive diffeomorphisms

Given any N –tuple s D .s1; : : : ; sN / 2NN
0

, we may write s as

s D .a1C 2;

b1�1‚ …„ ƒ
2; : : : ; 2; : : : ; anC 2;

bn�1‚ …„ ƒ
2; : : : ; 2/

for some integers a1; : : : ; an � �2, b1; : : : ; bn; n� 1. We define

h.s/ WD .xy/3xa1y�b1 � � �xany�bn 2 DiffC.T; @T /:

It is easy to check that this is definition makes sense, ie h.s/ does not depend on the
choice of ai ’s and bi ’s. In this section we prove that .3/) .1/ in Theorem 2.3. We
start by proving this fact in the special case of N –tuples which are obtained from .0; 0/

via a sequence of successive blowups.

Lemma 3.1 Suppose that s 2NN
0

is obtained from .0; 0/ via a sequence of successive
blowups in the sense of Section 2. Then, h.s/D idT 2 DiffC.T; @T /.

Proof Note that

.0; 0/D .�2C 2;

0D1�1‚ …„ ƒ
2; : : : ; 2;�2C 2;

0D1�1‚ …„ ƒ
2; : : : ; 2/;
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hence

h..0; 0//D .xy/3x�2y�1x�2y�1

D .xy/3x�1.x�1y�1x�1/x�1y�1

D .xy/3.x�1y�1x�1/.y�1x�1y�1/

D .xy/3y�1x�1y�1x�1y�1x�1
D .xy/3.xy/�3

D idT :

Let S be the set of tuples obtained by blowing up .0; 0/. Clearly, in order to prove
the lemma it suffices to check that, if ys denotes a blowup of s 2 S [ f.0; 0/g, h.s/

and h.ys/ are conjugate in DiffC.T; @T / for every s 2 S . We may write

s D .a1C 2;

b1�1‚ …„ ƒ
2; : : : ; 2; : : : ; anC 2;

bn�1‚ …„ ƒ
2; : : : ; 2/

for some a1; : : : ; an � �2, b1; : : : ; bn � 1 and n 2N . Then,

h.s/D .xy/3xa1y�b1 � � �xany�bn ;

and depending on how the blowup is performed, there are several possibilities for ys .
These lead to the following possible cases for h.ys/:

h.ys/D

8<:
.xy/3x�1y�1xa1C1y�b1 � � �xany�bnC1xy�1

.xy/3xa1y�b1 � � �xaiC1y�1x�1y�1xy�biC1xaiC1 � � �xany�bn ; i¤1; n

.xy/3xa1C1y�b1 � � �xany�bnC1xy�1x�1y�1

It is straightfoward to check that in each case h.ys/ is conjugate to h.s/. In the first
case, for instance, we have

h.ys/D ıx�1y�1xa1C1y�b1 � � �xany�bnC1xy�1;

which is conjugate to

ıyx.y�1x�1y�1/xa1C1y�b1 � � �xany�bnDıyxx�1y�1x�1xa1C1y�b1 � � �xany�bn

Dh.s/:

We omit the easy verifications in the remaining cases.

In order to establish the implication .3/) .1/ of Theorem 2.3 for general N –tuples,
we first analyze what happens when a single entry of the N –tuple is increased by 1.

Lemma 3.2 Let sD .s1; : : : ; sN /2NN
0

and s0D .s1; : : : ; si�1; siC1; siC1; : : : ; sN /

for some i 2 f1; : : : ;N g. Then, there are �; 2 DiffC.T; @T / such that h.s/D � 

and h.s0/D �x .
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Proof Write .s1; : : : ; sN / D .a1C 2;

b1�1‚ …„ ƒ
2; : : : ; 2; : : : ; anC 2;

bn�1‚ …„ ƒ
2; : : : ; 2/ for some inte-

gers a1; : : : ; an��2, b1; : : : ; bn; n� 1, so that h.s/D .xy/3xa1y�b1 � � �xany�bn . If
si D ajC2 for some j , then h.s0/ is obtained from h.s/ by replacing xaj with xajC1 ,
and the statement holds. If si D 2, then it is easy to check that h.s0/ is obtained
from h.s/ by replacing y�bj , for some j , with y�axy�b where aC b D bj . Again,
the statement holds.

We are now ready to reach the goal of the section.

Proposition 3.3 Let .c1; : : : ; cN / be an N –tuple of integers and suppose that there is
a sequence of blowups

.s1; : : : ; sN /!
blowup
� � � ! .0; 0/

such that
c1 � s1; c2 � s2; : : : ; cN � sN :

Then, h.c1; : : : ; cN / 2 DehnC.T; @T /.

Proof By Lemma 3.1 we have h.s1; : : : ; sN / D idT . In view of the inequalities
c1 � s1; c2 � s2; : : : ; cN � sN , in order to prove the statement it clearly suffices to
show that, if s D .s1; : : : ; sN / 2NN

0
and s0 D .s1; : : : ; si�1; siC1; siC1; : : : ; sN / for

some i 2 f1; : : : ;N g,

(3-1) h.s/ 2 DehnC.T; @T / H) h.s0/ 2 DehnC.T; @T /:

By Lemma 3.2 there are �; 2 DiffC.T; @T / such that

h.s0/D �x D �  �1x D h.s/. �1x /:

By assumption h.s/2DehnC.T; @T /. Since each conjugate of x is in DehnC.T; @T /,
which is a monoid, we conclude that (3-1) holds.

4 A topological construction

The purpose of this section is to establish Proposition 4.4, which will be used in
Section 5 to prove .2/) .3/ in Theorem 2.3. We derive the proposition by applying
Donaldson’s celebrated theorem [5, Theorem 1] to certain suitably constructed smooth,
closed 4–manifolds.

Let h be an element of DiffC.T; @T / factorized as in the statement of Theorem 2.3:

hD .xy/3xa1y�b1 � � �xany�bn ; ai ; bi ; n� 1
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Define the string .c1; : : : ; cN /, where N D
Pn

iD1 bi , by setting

(4-1) .c1; : : : ; cN / WD .a1C 2;

b1�1‚ …„ ƒ
2; : : : ; 2; a2C 2; : : : ; anC 2;

bn�1‚ …„ ƒ
2; : : : ; 2/:

Note that if N D
Pn

iD1 bi D 1 then n D b1 D 1. In that case h is clearly positive,
therefore from now on we shall assume N � 2.

Consider the 3–manifold Y defined by performing integral Dehn surgeries on S3

according to the framed link L of Figure 1.

. . . .

c1 c2 cN�2 cN�1

cN

Figure 1: Surgery presentation for Y and handle decomposition of X

We are going to argue that Y carries an open book decomposition with page a one–
holed torus S and monodromy h when S is suitably identified with T . In other
words, Y D Y.T;h/ . Consider the picture on the left-hand side of Figure 2 for any
i 2 f2; : : : ;N g. The picture illustrates a one–holed torus S embedded in the comple-
ment of the framed link L.

Proposition 4.1 The surface S is the page of an open book decomposition on Y

which, under a suitable identification of S with T , has monodromy h.

Proof The following proof is an adaptation to the present situation of the arguments
given by Kirby and Melvin in [13, Appendix]. The surface S can be isotoped, in the
complement of L, to the one–holed torus S 0 illustrated in the picture on the right-hand
side of Figure 2. To see that, just think about the fact that the complement of the
Hopf link in S3 is a torus times an interval. Moreover, the isotopy takes the oriented
curves �; � � S in the left-hand picture to �0;��0 � S 0 , respectively, illustrated in
the right-hand picture. We could also enlarge slightly S to zS and S 0 to zS 0 so that
@ zS D @ zS 0 . We may identify S and S 0 with T so that the isotopy from S to S 0 induces
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an orientation-preserving diffeomorphism �W T ! T acting on H1.T IZ/, in terms of
a certain oriented basis, as the matrix M D

�
0 �1
1 0

�
2 SL.2IZ/. Since the generators

x;y 2 DiffC.T; @T / associated to the given oriented basis act, respectively, by
�

1 1
0 1

�
and

�
1 0
�1 1

�
, one can check � acts on H1.T IZ/ as the diffeomorphism x�1y�1x�1 .

ci�1

�

S

�

ci

�0

ci�1

�0

S 0

ci

Figure 2: The isotopy from S to S 0

Therefore, � must be equal to x�1y�1x�1 times a power of a Dehn twist along a
simple closed curve parallel to the boundary. In order to identify � more precisely, it
suffices to describe its action on a suitable properly embedded arc a. Figure 3 shows a
properly embedded arc a and its image a0 D �.a/. It is easy to check that, after the
identifications of S and S 0 with T , a0 is also the image of a via the diffeomorphism
x�1y�1x�1 . This clearly implies that � D x�1y�1x�1 .

ci�1

a

S

ci ci�1

a0

S 0

ci

Figure 3: The map � sends the properly embedded arc a to a0 .

The very same analysis applies to every clasp of L except the one between the 1st

and the N th components of L. In that case, a similar analysis shows that matrix
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associated to the last isotopy is �M DM�1 instead of M , and the diffeomorphism �

equals xyx .

Now we claim that, for each i D 1; : : : ;N , there is another isotopy sending the
surface S 0 , illustrated on the left-hand side of Figure 4 to the surface illustrated on the
right-hand side. We may view S 0 as a union S 0 DD0[A0 , where D0 is a two–holed
disk and A0 is an annulus. Similarly, S 00 DD00[A00 , as indicated in Figure 4. Notice
that D0 DD00 . The isotopy goes through the solid torus glued along a neighborhood
of the i th component of L. In fact, it fixes D0 , sends A0 to A00 and the properly
embedded arc a0 � S 0 to a00 � S 00 , which twists ci times around A. To see this, recall
that the presence of the framing coefficient “ci ” means that a neighborhood of the
i th component Li of L with a meridian–longitude basis m; ` of its boundary is first
cut out and then re–glued by sending m to cimC ` and ` to �m. Thus, the simple
closed curve .a0 \A0/[ .a00 \A00/ bounds a meridional disk in the glued–up solid
torus, while A0 and A00 can be identified with neighborhoods of parallel longitudinal
curves on its boundary. This means that A0 is isotopic to A00 via an isotopy which
carries the annulus across the glued–up solid torus, sending a0\A0 to a00\A00 , and
the claim is proved. As in the previous case, we may now identify S 0 and S 00 with T

so that the isotopy induces an automorphism �W T ! T . Since in this case � is the
identity on D0 and �.a0/D a00 , we conclude that � D xci .

�0

ci�1

A0
a0

D0

ci ciC1 ci�1 ci

a00

D00

A00

ciC1

�00

Figure 4: The isotopy from S 0 to S 00

By composing all the isotopies described so far, we see that Y admits an open book
decomposition with one–holed torus page, identified with T . The corresponding
monodromy is obtained by composing the diffeomorphisms induced by the various
isotopies. We do the calculation in terms of x and y , starting from the first compo-
nent L1 . Using the above analysis and following our conventions on the composition
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of diffeomorphisms (see the paragraph before Proposition 2.1) we obtain

xc1�xc2 � � ��xcN ��1
D xa1C2�.x2�/b1�1xa2C2

� � �xanC2�.x2�/bn�1��2

D xa1C1y�b1 � � �xany�bnC1x2yx;

which is conjugate to

xyx2yxxa1y�b1 � � �xany�bn D .xy/3xa1y�b1 � � �xany�bn D h:

By Proposition 4.1 we can view Figure 1 as a presentation of Y.T;h/ , including the
induced open book decomposition. On the other hand, we can also view the framed
link L as prescribing the attachment of N 4–dimensional 2–handles to the 4–ball B4 ,
resulting in a smooth oriented 4–manifold X with boundary orientation-preserving
diffeomorphic to Y.T;h/ . Moreover, note that L is a characteristic sublink of itself,
ie lk.L;Li/ D lk.Li ;Li/ mod 2 for each component Li � L. Recall from Gompf
and Stipsicz [9, Section 5.7] that there is a natural one–to–one correspondence between
Spin structures on Y.T;h/ and characteristic sublinks of L, given by assigning to a
Spin structure ‚ the sublink C of L consisting of all components Li such that ‚
does not extend across the 2–handle in X attached to Li . Moreover, by Etnyre and
Ozbagci [6, Lemma 6.1] the Euler class of �.T;h/ vanishes, therefore �.T;h/ is trivial
as a 2–plane bundle over Y.T;h/ . Homotopy classes of trivializations of �.T;h/ are
in 1–1 correspondence with homotopy classes of maps Y.T;h/! S1 . If Y.T;h/ is a
rational homology 3–sphere we have H 1.Y.T;h/IZ/ D 0, therefore �.T;h/ admits a
unique trivialization up to homotopy. Moreover, each trivalization of �.T;h/ canonically
determines a trivialization of TY.T;h/ , hence a Spin structure on Y.T;h/ . We denote
by ‚� the Spin structure on Y.T;h/ associated in this way to � . The following lemma
is an adaptation to the present situation of [13, Lemma A.6].

Lemma 4.2 The Spin structure ‚� corresponds to L viewed as a characteristic
sublink of itself.

Proof Let Li�1 �L be any component of L and � an oriented meridian of Li�1

sitting on a page S of the open book decomposition of Proposition 4.1, as illustrated
in the left-hand side of Figure 2. Since �.T;h/ is compatible with the open book
decomposition, up to homotopy we may assume that the trivialization of TY.T;h/
associated to a trivialization of �.T;h/ restricts to � as the tangent to � followed by
the normal to � in S and the normal to S . This framing of TY.T;h/j� has a natural
stabilization to a framing of TXj� , and as such it does not extend to the cocore of
the 2–handle attached to Li�1 , therefore Li�1 belongs to the characteristic sublink
corresponding to ‚� . Since the same argument holds for each component of L, the
statement is proved.
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For each component Li of L there is a 2–sphere Si smoothly embedded in X ,
obtained as the union of a 2–disc properly embedded in B4 with boundary Li , with
the core of the 2–handle attached along Li with framing ci . We fix an orientation
of L by orienting each component of L in anti–clockwise fashion in the diagram
of Figure 1. This orientation of L prescribes on orientation of each Si such that, if
vi 2H2.X IZ/ denotes the corresponding 2–homology class, the classes v1; : : : ; vN

form a basis of H2.X IZ/ and intersect as follows:

(4-2) vi � vj D

8<:
ci if i D j

�1 if fi; j g ¤ f1;N g and ji � j j D 1

1 if fi; j g D f1;N g
Using this, it is also easy to check that the homology class

(4-3) w WD

NX
iD1

vi 2H2.X IZ/

is characteristic, that is w �˛ � ˛ �˛ mod 2 for every ˛ 2H2.X IZ/. The following
lemma will be used in the proofs of Proposition 4.4 and Proposition 5.2.

Lemma 4.3 Let .ƒ; � / be an intersection lattice of rank N � 2. Suppose that
v1; : : : ; vN is a basis of ƒ satisfying (4-2) with c1; : : : ; cN � 2. Then, .ƒ; � / is
positive definite.

Proof Let

� D

NX
iD1

xivi 2ƒ; x1; : : : ;xN 2 Z:

Since c1 : : : ; cN � 2, we have

� � � D

� NX
iD1

xivi

�
�

� NX
iD1

xivi

� NX
iD1

x2
i ci � 2

N�1X
iD1

xi �xiC1C 2x1xN

� 2

NX
iD1

x2
i � 2

N�1X
iD1

xi �xiC1C 2x1xN

D .x1�x2/
2
C .x2�x3/

2
C � � �C .xN�1�xN /

2
C .xN Cx1/

2
� 0:

Moreover, � � � D 0 implies x1 D � � � D xN D�x1 , ie � D 0. This shows that .ƒ; � /
is positive definite.

Denote by DK the intersection lattice .ZK ;�I/, ie the standard diagonal negative
definite intersection lattice of rank K .
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Proposition 4.4 Let h be an element of DiffC.T; @T / such that Y.T;h/ is a Heegaard
Floer L–space, and suppose that h can be written as

hD .xy/3xa1y�b1 � � �xany�bn ; ai ; bi ; n� 1:

If �.T;h/ is Stein fillable, then there is an isometric embedding of intersection lattices

'W Q�X WD .H2.�X IZ/; � / ,!DK ;

where K D
Pn

iD1 ai C 4. Morever, ' sends the element w of (4-3) to a characteristic
element.

Proof Given a Stein filling .W;J / of .Y.T;h/; �.T;h// we can form the smooth, closed,
oriented 4–manifold M WDW [ .�X /. Proposition 2.1 and Lemma 4.3 imply that the
intersection lattice QM WD .H2.M IZ/; � / is negative definite, therefore by Donald-
son’s Theorem [5, Theorem 1] QM is isomorphic to the standard diagonal intersection
lattice of the same rank: QM Š DK , where K D b2.M /. Moreover, in view of
Proposition 2.1, we have b2.W /D exp.h/� 2D

Pn
iD1 ai �

Pn
iD1 bi C 4, therefore

b2.M /D b2.W /C b2.�X /D exp.h/� 2CN D 4C

nX
iD1

ai :

In particular, there is an isometric embedding Q�X ,!DK . This proves the first part
of the statement. Since the class w defined by (4-3) is characteristic, its reduction
modulo 2 is represented by a closed surface †w � X dual to the second Stiefel–
Whitney class w2.X /. Then, X nW admits a Spin structure s whose restriction
to @X D Y.T;h/ corresponds to L viewed as a characteristic sublink of itself, and
therefore equals ‚� according to Lemma 4.2. But †w can be chosen to be an oriented
surface representing an integral lift of w2.X / which is the first Chern class c1.sw/

of the unique extension of s to all of X as a Spinc structure sw . By construction,
the restriction of sw to @X is ‚� . Therefore, since the Spinc structure sJ on W

induced by the complex structure also restricts as ‚� to @W D @.�X /, there is a
Spinc structure sM D sJ [ sw on M whose first Chern class c1.sM / vanishes on W

by Proposition 2.1 and restricts to X as c1.sw/. This shows that '.w/ is the Poincaré
dual of c1.sM / and therefore is characteristic.

5 The proof of Theorems 2.3 and 1.1

In this section we first derive some crucial consequences from Proposition 4.4 and then
we use them to prove Theorems 2.3 and 1.1.
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Let v1; : : : ; vN be the basis of Q�X chosen as in the previous section and satisfying

(5-1) vi � vj D

8<:
�ci if i D j ,

1 if fi; j g ¤ f1;N g and ji � j j D 1,
�1 if fi; j g D f1;N g.

Let ' denote an isometric embedding as in Proposition 4.4, and denote by xw 2DK the
image of w D

PN
iD1 vi 2Q�X under ' . The element xw has the same square as w ,

that is

(5-2) xw � xw D w �w D

nX
iD1

.ai C 2/C 2

nX
iD1

.bi � 1/� 2

� nX
iD1

bi � 1

�
C 2

D 4C

nX
iD1

ai DK:

Since xw is characteristic, there is a basis e1; : : : ; eK 2DK such that ei � ei D�ıij for
every i; j and xw D

PK
iD1 ei . Let xv1; : : : ; xvN 2 DK be the images of, respectively,

v1; : : : ; vN under ' . We can define a K �N matrix M D .mij / by expressing each
vector xvj in terms of the ei ’s:

(5-3) xvj D

KX
iD1

mij ei ; j D 1; : : : ;N

Observe that, since xw D
PN

iD1 xvi , we have

(5-4) xw � xvi D

�
xvi � xvi if i 2 f1;N g;

xvi � xvi C 2 if i 62 f1;N g:

The following Lemma 5.1 shows how (5-4) constrain the coefficients mij appearing
in (5-3). Lemma 5.1 will be used in the proof of Proposition 5.2, which is equivalent
to the implication .2/) .3/ of Theorem 2.3.

Lemma 5.1 Let M D .mij / be the K �N matrix defined by (5-3).

(1) For each j 2 f2; : : : ;N � 1g there is a unique index �.j / 2 f1; : : : ;Kg such
that m�.j/j 2 f�1; 2g.

(2) For each .i; j / 2 f1; : : : ;Kg � f1;N g and for each .i; j / 2 f1; : : : ;Kg �

f2; : : : ;N � 1g with i ¤ �.j / we have mij 2 f0; 1g.

Proof Note that for every .i; j / 2 f1; : : : ;Kg � f1; : : : ;N g we have

mij .mij � 1/D

�
0 if mij 2 f0; 1g,
2 if mij 2 f�1; 2g,
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and mij .mij � 1/ > 2 if mij 62 f�1; 0; 1; 2g. Now, if j 2 f1;N g by (5-4)

NX
iD1

m2
ij D�xvj � xvj D�xw � xvj D�

� KX
i

ei

�
�

� KX
i

mij ei

�
D

KX
i

mij ;

therefore

(5-5)
KX

iD1

mij .mij � 1/D 0:

Equation (5-5) implies that mij 2 f0; 1g when .i; j / 2 f1; : : : ;Kg� f1;N g. Similarly,
when .i; j / 2 f1; : : : ;Kg � f2; : : : ;N � 1g from (5-4) we obtain

KX
iD1

mij .mij � 1/D 2;

which implies that there is a unique index �.j / such that m�.j/j 2 f�1; 2g, while for
i ¤ �.j / we must have mij 2 f0; 1g.

Proposition 5.2 Let .c1; : : : ; cN / be the N –tuple defined in (4-1), N � 2. Then,
there is a sequence of blowups

.s1; : : : ; sN /!
blowup
� � � ! .0; 0/

such that the inequalities c1 � s1; c2 � s2; : : : ; cN � sN are satisfied.

Proof If N D 2 there is nothing to prove. Hence, we may assume N � 3. Let
M D .mij / be the K �N matrix defined by (5-3). For each i D 1; : : : ;K we have

(5-6)
NX

jD1

mij D�ei �

NX
jD1

xvj D�ei � xw D�ei �

NX
kD1

ek D 1:

Note that, by Lemma 5.1 and (5-6), if a row of M contains more than one nonzero entry
then one of those entries equals �1. On the other hand, by Lemma 5.1 at most N � 2

entries of M are equal to �1. But since exp.h/D 2CK�N � 2, we have K �N ,
ie the matrix M has at least N rows. We conclude that a row R of M has a single
nonzero entry, which by (5-6) must be equal to 1. This amounts to saying that there is
a vector ei which appears in exactly one of the N Equations (5-3) with coefficient 1.
The idea is now to “erase” this vector ei and work with the remaining ej ’s. Deleting
the row R from M we obtain a new matrix M 0 D .m0ij / having K� 1 rows and N

columns. The m0ij ’s still satisfy (5-6). Moreover, we can use the m0ij ’s as in (5-3) to
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define elements xv0j 2DK�1 , j D 1; : : : ;N . Note that

xw0 WD

NX
jD1

xv0j

and the xv0j ’s intersect as in (5-4). Therefore the proof of Lemma 5.1 goes trough and,
since K � 1 � N � 1 > N � 2, we can reapply the argument just used to conclude
that a row of M 0 has a single nonzero entry equal to 1. Then we can delete that row
obtaining a new matrix, reapply the same argument and so on. If we keep going this
way, eventually we obtain a matrix M 00 with N � 2 rows and N columns, and the
elements xv00

1
; : : : ; xv00

N
2DN�2 defined by the columns of M 00 D .m00ij / will satisfy

(5-7) v00i � v
00
j D

�
�1 if fi; j g D f1;N g,

1 if fi; j g ¤ f1;N g and ji � j j D 1.

It will be clear by the end of the argument that what we have done so far is to decrease
the numbers c1; : : : ; cN given by �v1 � v1; : : : ;�vN � vN , obtaining the sequence
s1; : : : ; sN as �v00

1
� v00

1
; : : : ;�v00

N
� v00

N
. In view of Lemma 4.3 we must necessarily

have xv00j � xv
00
j D�1 for some j 2 f1; : : : ;N g. In particular m00ij D˙1 for some i and

m00sj D 0 for s ¤ i . This means that v00j D˙ei . Now the idea is to “erase” ei . If we
think about the v00

k
’s and the way they intersect each other, we see that erasing ei makes

v00j disappear, and changes v00
j�1

and v00
jC1

into v000
j�1

and v000
jC1

respectively, with

v000j˙1 � v
000
j˙1 D v

00
j˙1 � v

00
j˙1C 1 and jv000j�1 � v

000
jC1j D 1:

Setting sk WD �v
00
k
� v00

k
and s0

k
WD �v000

k
� v000

k
, we see that .s1; : : : ; sN / is a blowup of

.s0
1
; : : : ; s0

N�1
/. To argue more formally we can erase the i th row and the j th column

of M 00 and get a matrix whose columns define N � 1 elements of DN�3 which
intersect as in (5-7). Since we are assuming N � 3, we can keep going in the same
way until we have three elements in D1 intersecting each other in the usual way and
having all square �1. Reconstructing backwards the various steps it is easy to check
that xv00

1
; : : : ; xv00

N
2DN�2 have self–intersections .�s1; : : : ;�sN /, with

.s1; : : : ; sN /!
blowup
� � � ! .0; 0/;

and that ci � si for each i D 1; : : : ;N . This concludes the proof.

Proof of Theorems 2.3 and 1.1 If N D 1 then nD b1 D 1 and h is clearly positive,
therefore we may assume N � 2. As we recalled in Section 1, the fact that .1/) .2/

is well known. Moreover, by Proposition 3.3 we have the implication .3/) .1/ of
Theorem 2.3 and by Proposition 5.2 we have .2/) .3/. This concludes the proof of
Theorem 2.3, which together with Proposition 2.1 implies Theorem 1.1.
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Remark 5.3 As pointed out by John Etnyre (in a personal communication to the
author), the fact that there exist Stein fillable, nonpositive open books .†; h/ of any
genus g.†/� 2 can be proved as follows. Let .†1; f1/ be any positive open book with
†1 equal to a one–holed torus, and let .†2; f2/ be one of the Stein fillable, nonpositive
examples from [23] or [3] with g.†2/ D 2. Consider a boundary connected sum
.†D†1\†2; f1\f2/ (it doesn’t matter which component of @†2 is involved in the
sum). Then, �.†;f1\f2/ is the contact connected sum of �.†1;f1/ and �.†2;f2/ and
therefore .†; f1\f2/ is Stein fillable. Moreover, there is a properly embedded arc
a�† with endpoints on the same boundary component C of @†, such that an open
neighborhood N of a[C in † is a pair of pants whose complement is homeomorphic
to the disjoint union of †1 and †2 . By construction f1\f2 has a representative
which restricts to N as the identity. Suppose by contradiction that f1\f2 can be
written as a composition of right-handed Dehn twists ıC1

ı � � � ı ıCk
. It is easy to

check that if Ci \ a 6D ∅ for some i 2 f1; : : : ; kg, then the arc a is sent by f1\f2

“to the right” in the sense of [10]. On the other hand, by construction f1\f2.a/D a,
which is not to the right of a. This implies that Ci \ aD∅ for each i , and therefore
f1\f2 D P1\P2 , where Pi W †i!†i , i D 1; 2, is a positive diffeomorphism. But the
map .f1; f2/ 7! f1\f2 is a group homomorphism, thus applying a result of Paris and
Rolfsen [21, Corollary 4.2(iii)] one can easily show that it is injective. We conclude
that f2 is positive, contrary to the initial assumption. Repeating the same construction
sufficiently many times one can construct Stein fillable, nonpositive open books with
pages of any genus strictly bigger than one.
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