Volume 14, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 7, 3059–3532
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Modification rule of monodromies in an $R_2$–move

Kenta Hayano

Algebraic & Geometric Topology 14 (2014) 2181–2222
Bibliography
1 S Akbulut, Ç Karakurt, Every $4$–manifold is BLF, J. Gökova Geom. Topol. GGT 2 (2008) 83 MR2466002
2 D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043 MR2140998
3 R İ Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. 2008 (2008) MR2439543
4 R İ Baykur, Topology of broken Lefschetz fibrations and near-symplectic $4$–manifolds, Pacific J. Math. 240 (2009) 201 MR2485463
5 R I Baykur, S Kamada, Classification of broken Lefschetz fibrations with small fiber genera, arXiv:1010.5814
6 J S Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213 MR0243519
7 S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205 MR1802722
8 S K Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743 MR1958528
9 C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969) 19 MR0276999
10 C J Earle, A Schatz, Teichmüller theory for surfaces with boundary, J. Differential Geometry 4 (1970) 169 MR0277000
11 E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111 MR0141126
12 B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012) MR2850125
13 D T Gay, R C Kirby, Indefinite Morse $2$–functions: Broken fibrations and generalizations, arXiv:1102.0750
14 D T Gay, R C Kirby, Fiber-connected, indefinite Morse $2$–functions on connected $n$–manifolds, Proc. Natl. Acad. Sci. USA 108 (2011) 8122 MR2806648
15 R E Gompf, Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177 MR2108373
16 K Hayano, On genus-$1$ simplified broken Lefschetz fibrations, Algebr. Geom. Topol. 11 (2011) 1267 MR2801419
17 K Hayano, A note on sections of broken Lefschetz fibrations, Bull. Lond. Math. Soc. 44 (2012) 823 MR2967249
18 Y Lekili, Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277 MR2469519
19 T Perutz, Lagrangian matching invariants for fibred four-manifolds, I, Geom. Topol. 11 (2007) 759 MR2302502
20 T Perutz, Lagrangian matching invariants for fibred four-manifolds, II, Geom. Topol. 12 (2008) 1461 MR2421133
21 J D Williams, Uniqueness of surface diagrams of smooth $4$–manifolds, arXiv:1103.6263
22 J D Williams, The $h$–principle for broken Lefschetz fibrations, Geom. Topol. 14 (2010) 1015 MR2629899