Volume 14, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Modification rule of monodromies in an $R_2$–move

Kenta Hayano

Algebraic & Geometric Topology 14 (2014) 2181–2222
Bibliography
1 S Akbulut, Ç Karakurt, Every $4$–manifold is BLF, J. Gökova Geom. Topol. GGT 2 (2008) 83 MR2466002
2 D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043 MR2140998
3 R İ Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. 2008 (2008) MR2439543
4 R İ Baykur, Topology of broken Lefschetz fibrations and near-symplectic $4$–manifolds, Pacific J. Math. 240 (2009) 201 MR2485463
5 R I Baykur, S Kamada, Classification of broken Lefschetz fibrations with small fiber genera, arXiv:1010.5814
6 J S Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213 MR0243519
7 S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205 MR1802722
8 S K Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743 MR1958528
9 C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969) 19 MR0276999
10 C J Earle, A Schatz, Teichmüller theory for surfaces with boundary, J. Differential Geometry 4 (1970) 169 MR0277000
11 E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111 MR0141126
12 B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012) MR2850125
13 D T Gay, R C Kirby, Indefinite Morse $2$–functions: Broken fibrations and generalizations, arXiv:1102.0750
14 D T Gay, R C Kirby, Fiber-connected, indefinite Morse $2$–functions on connected $n$–manifolds, Proc. Natl. Acad. Sci. USA 108 (2011) 8122 MR2806648
15 R E Gompf, Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177 MR2108373
16 K Hayano, On genus-$1$ simplified broken Lefschetz fibrations, Algebr. Geom. Topol. 11 (2011) 1267 MR2801419
17 K Hayano, A note on sections of broken Lefschetz fibrations, Bull. Lond. Math. Soc. 44 (2012) 823 MR2967249
18 Y Lekili, Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277 MR2469519
19 T Perutz, Lagrangian matching invariants for fibred four-manifolds, I, Geom. Topol. 11 (2007) 759 MR2302502
20 T Perutz, Lagrangian matching invariants for fibred four-manifolds, II, Geom. Topol. 12 (2008) 1461 MR2421133
21 J D Williams, Uniqueness of surface diagrams of smooth $4$–manifolds, arXiv:1103.6263
22 J D Williams, The $h$–principle for broken Lefschetz fibrations, Geom. Topol. 14 (2010) 1015 MR2629899