Volume 14, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
$L^{2}$–invariants of nonuniform lattices in semisimple Lie groups

Holger Kammeyer

Algebraic & Geometric Topology 14 (2014) 2475–2509
Bibliography
1 A Adem, Y Ruan, Twisted orbifold $K\!$–theory, Comm. Math. Phys. 237 (2003) 533 MR1993337
2 R C Alperin, An elementary account of Selberg's lemma, Enseign. Math. 33 (1987) 269 MR925989
3 A Borel, Introduction aux groupes arithmétiques, Publ. Inst. Math. Univ. Strasbourg 1341, Hermann (1969) 125 MR0244260
4 A Borel, The $L^2$–cohomology of negatively curved Riemannian symmetric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985) 95 MR802471
5 A Borel, Linear algebraic groups, Graduate Texts in Mathematics 126, Springer (1991) MR1102012
6 A Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962) 485 MR0147566
7 A Borel, L Ji, Compactifications of locally symmetric spaces, J. Differential Geom. 73 (2006) 263 MR2226955
8 A Borel, L Ji, Compactifications of symmetric and locally symmetric spaces, Birkhäuser (2006) MR2189882
9 A Borel, J P Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436 MR0387495
10 A Borel, N R Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies 94, Princeton Univ. Press (1980) MR554917
11 D Burghelea, L Friedlander, T Kappeler, P McDonald, Analytic and Reidemeister torsion for representations in finite type Hilbert modules, Geom. Funct. Anal. 6 (1996) 751 MR1415762
12 J Cheeger, M Gromov, Bounds on the von Neumann dimension of $L^2$–cohomology and the Gauss–Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985) 1 MR806699
13 J Cheeger, M Gromov, $L_2$–cohomology and group cohomology, Topology 25 (1986) 189 MR837621
14 T tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, de Gruyter (1987) MR889050
15 J Dodziuk, de Rham–Hodge theory for $L^{2}$–cohomology of infinite coverings, Topology 16 (1977) 157 MR0445560
16 A V Efremov, Cell decompositions and the Novikov–Shubin invariants, Uspekhi Mat. Nauk 46 (1991) 189 MR1134099
17 A Furman, Gromov's measure equivalence and rigidity of higher rank lattices, Ann. of Math. 150 (1999) 1059 MR1740986
18 D Gaboriau, Invariants $l^2$ de relations d'équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. (2002) 93 MR1953191
19 D Gaboriau, Examples of groups that are measure equivalent to the free group, Ergodic Theory Dynam. Systems 25 (2005) 1809 MR2183295
20 M Goresky, G Harder, R MacPherson, Weighted cohomology, Invent. Math. 116 (1994) 139 MR1253192
21 Y Guivarch, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973) 333 MR0369608
22 Harish-Chandra, Automorphic forms on semisimple Lie groups, Notes by J. G. M. Mars. Lecture Notes in Mathematics 62, Springer (1968) MR0232893
23 E Hess, T Schick, $L^2$–torsion of hyperbolic manifolds, Manuscripta Math. 97 (1998) 329 MR1654784
24 L Ji, Integral Novikov conjectures and arithmetic groups containing torsion elements, Comm. Anal. Geom. 15 (2007) 509 MR2379803
25 H Kammeyer, \(L^2\)–invariants of nonuniform lattices in semisimple Lie groups, PhD thesis, Universität Göttingen (2013)
26 H Kang, Cofinite classifying spaces for lattices in R–rank one semisimple Lie groups, PhD thesis, University of Michigan (2011)
27 J Lott, Heat kernels on covering spaces and topological invariants, J. Differential Geom. 35 (1992) 471 MR1158345
28 J Lott, W Lück, $L^2$–topological invariants of $3$–manifolds, Invent. Math. 120 (1995) 15 MR1323981
29 W Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and $L^2$–Betti numbers, I: Foundations, J. Reine Angew. Math. 495 (1998) 135 MR1603853
30 W Lück, $L^2$–invariants: Theory and applications to geometry and $K\!$–theory, Ergeb. Math. Grenzgeb. 44, Springer (2002) MR1926649
31 W Lück, H Reich, T Schick, Novikov–Shubin invariants for arbitrary group actions and their positivity, from: "Tel Aviv Topology Conference: Rothenberg Festschrift" (editors M Farber, W Lück, S Weinberger), Contemp. Math. 231, Amer. Math. Soc. (1999) 159 MR1707342
32 W Lück, R Sauer, C Wegner, $L^2$–torsion, the measure-theoretic determinant conjecture, and uniform measure equivalence, J. Topol. Anal. 2 (2010) 145 MR2652905
33 W Lück, T Schick, $L^2$–torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal. 9 (1999) 518 MR1708444
34 G A Margulis, Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than $1$, Invent. Math. 76 (1984) 93 MR739627
35 M Olbrich, $L^2$–invariants of locally symmetric spaces, Doc. Math. 7 (2002) 219 MR1938121
36 M Rumin, Differential geometry on C–C spaces and application to the Novikov–Shubin numbers of nilpotent Lie groups, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 985 MR1733906
37 M Rumin, Around heat decay on forms and relations of nilpotent Lie groups, Sémin. Théor. Spectr. Géom. 19, Univ. Grenoble I (2001) 123 MR1909080
38 T Schick, $L^2$–determinant class and approximation of $L^2$–Betti numbers, Trans. Amer. Math. Soc. 353 (2001) 3247 MR1828605
39 J Tits, Classification of algebraic semisimple groups, from: "Algebraic Groups and Discontinuous Subgroups", Amer. Math. Soc. (1966) 33 MR0224710
40 C T C Wall, Rational Euler characteristics, Proc. Cambridge Philos. Soc. 57 (1961) 182 MR0122853
41 C Wegner, $L^2$–invariants of finite aspherical CW–complexes with fundamental group containing a non-trivial elementary amenable normal subgroup, Schriftenreihe Math. Inst. Univ. Münster 3. Ser. 28, Univ. Münster (2000) 3 MR1851963
42 C Wegner, $L^2$–invariants of finite aspherical CW–complexes, Manuscripta Math. 128 (2009) 469 MR2487437
43 D Witte Morris, Introduction to arithmetic groups, (2012) arXiv:math/0106063v4