Volume 14, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The sutured Floer polytope and taut depth-one foliations

Irida Altman

Algebraic & Geometric Topology 14 (2014) 1881–1923
Abstract
[an error occurred while processing this directive]

For closed 3–manifolds, Heegaard Floer homology is related to the Thurston norm through results due to Ozsváth and Szabó, Ni, and Hedden. For example, given a closed 3–manifold Y , there is a bijection between vertices of the HF+(Y ) polytope carrying the group and the faces of the Thurston norm unit ball that correspond to fibrations of Y over the unit circle. Moreover, the Thurston norm unit ball of Y is dual to the polytope of HF¯̂(Y ).

We prove a similar bijection and duality result for a class of 3–manifolds with boundary called sutured manifolds. A sutured manifold is essentially a cobordism between two possibly disconnected surfaces with boundary R+ and R. We show that there is a bijection between vertices of the sutured Floer polytope carrying the group and equivalence classes of taut depth-one foliations that form the foliation cones of Cantwell and Conlon. Moreover, we show that a function defined by Juhász, which we call the geometric sutured function, is analogous to the Thurston norm in this context. In some cases, this function is an asymmetric norm and our duality result is that appropriate faces of this norm’s unit ball subtend the foliation cones.

An important step in our work is the following fact: a sutured manifold admits a fibration or a taut depth-one foliation whose sole compact leaves are exactly the connected components of R+ and R, if and only if, there is a surface decomposition of the sutured manifold resulting in a product manifold.

Keywords
sutured manifold, sutured Floer homology, foliation, $3$–manifold, Thurston norm, polytope
Mathematical Subject Classification 2010
Primary: 57M27
Secondary: 57R30, 57R58
References
Publication
Received: 9 May 2013
Revised: 21 November 2013
Accepted: 11 December 2013
Published: 28 August 2014
Authors
Irida Altman
Mathematics Institute
University of Warwick
Coventry CV4 7AL
UK