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The .n/–solvable filtration of link concordance
and Milnor’s invariants

CAROLYN OTTO

We establish several new results about both the .n/–solvable filtration of the set of
link concordance classes and the .n/–solvable filtration of the string link concordance
group, Cm . The set of .n/–solvable m–component string links is denoted by Fm

n .
We first establish a relationship between Milnor’s invariants and links, L , with certain
restrictions on the 4–manifold bounded by ML , the zero-framed surgery of S3 on L .
Using this relationship, we can relate .n/–solvability of a link (or string link) with
its Milnor’s x�–invariants. Specifically, we show that if a link is .n/–solvable, then
its Milnor’s invariants vanish for lengths up to 2nC2 � 1 . Previously, there were
no known results about the “other half” of the filtration, namely Fm

n:5
=Fm

nC1
. We

establish the effect of the Bing doubling operator on .n/–solvability and using this,
we show that Fm

n:5=F
m
nC1 is nontrivial for links (and string links) with sufficiently

many components. Moreover, we show that these quotients contain an infinite
cyclic subgroup. We also show that links and string links modulo .1/–solvability
is a nonabelian group. We show that we can relate other filtrations with Milnor’s
invariants. We show that if a link is n–positive, then its Milnor’s invariants will also
vanish for lengths up to 2nC2� 1 . Lastly, we prove that the grope filtration of the set
of link concordance classes is not the same as the .n/–solvable filtration.

57M25

1 Introduction

In order to study the structure of both the knot and (string) link concordance groups,
Cochran, Orr and Teichner defined the .n/–solvable filtration [10]. Much work has
been done in the quest of understanding the .n/–solvable filtration. In particular, many
have studied successive quotients of this filtration and some of their contributions can
be found in Cha [2], Cochran and Harvey [6], Cochran, Harvey and Leidy [9], and
Harvey [14].

For example, Harvey first showed that Fm
n =Fm

nC1
is a nontrivial group that contains an

infinitely generated subgroup [14]. She also showed that this subgroup is generated by
boundary links (links with components that bound disjoint Seifert surfaces). Cochran
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and Harvey generalized this result by showing that Fm
n =Fm

n:5
contains an infinitely

generated subgroup [6]. Again, this subgroup consists entirely of boundary links.

Up to this point, little has been known about the relationship of Milnor’s x�–invariants
and .n/–solvability. We first establish the following relationship, which is the main
theorem of this paper.

Theorem 3.1 Suppose L is a link whose zero-framed surgery, ML , bounds an ori-
entable and compact 4–manifold W such that:

(1) H1.ML/!H1.W IZ/ is an isomorphism induced by the inclusion map.

(2) H2.W IZ/ has a basis consisting of connected compact oriented surfaces fLig

with �1.Li/� �1.W /.n/ .

Then x�L.I/D 0 for jI j � 2nC2� 1, where x�L.I/ is the length-I Milnor’s invariant
of L defined in Section 2.

Using this theorem we obtain the following relationship.

Corollary 3.5 If L is an .n/–solvable link (or string link), then x�L.I/ D 0 for
jI j � 2nC2� 1.

In other words, if a link (or string link) is .n/–solvable, then all of its x�–invariants
will vanish for lengths less than or equal to 2nC2� 1. Moreover, this theorem is sharp
in the sense that we exhibit .n/–solvable links with x�.I/ 6D 0 for jI j D 2nC2 .

We can also obtain a relationship between Milnor’s invariants and other filtrations.
Specifically, we have the following result that relates Milnor’s invariants to n–positive,
n–negative and n–bipolar filtrations. The definitions of these filtrations can be found
in Cochran, Harvey and Horn [8].

Corollary 3.6 If L is an n–positive, n–negative or n–bipolar link, then x�L.I/D 0

for jI j � 2nC2� 1.

We study the effects of Bing doubling on .n/–solvability. We show that solvability is
not only preserved under this operator, but it increases the solvability by one.

Proposition 4.7 If L is an .n/–solvable link, then BD.L/ is .nC1/–solvable. More-
over, if L is an .n:5/–solvable link, then BD.L/ is ..nC 1/:5/–solvable.
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Until this point, nothing was known about the “other half” of the filtration, Fm
n:5
=Fm

nC1
.

Using the above results, we show that the “other half” of the .n/–solvable filtration is
nontrivial.

Theorem 5.1 The “other half” of the filtration Fm
n:5
=Fm

nC1
contains an infinite cyclic

subgroup for m� 3 � 2nC1 .

The examples used come from iterated Bing doubles of links with nonvanishing x�–
invariants. Thus, our examples are not concordant to boundary links, so the subgroups
that they will generate will be different than those previously detected. The result of
Theorem 5.1 is still unknown for knots.

Since the knot concordance group, C , is abelian, all successive quotients of the .n/–
solvable filtration are abelian. However, it is known that the m–component (string)
link concordance group, Cm , is nonabelian for m � 2; see Le Dimet [16]. We have
shown that certain successive quotients are not abelian.

Theorem 5.3 We have Fm
�0:5

=Fm
1

is nonabelian for m� 3.

Similar to the relationship between .n/–solvability and x�–invariants, we establish a
relationship between x�–invariants and a link in which all of its components bound
disjoint gropes of height n. This relationship says that if all components of a link bound
disjoint gropes of a certain height, then its x� invariants vanish for certain lengths. See
Section 6 for the definition of a grope.

Corollary 6.6 A link L with components that bound disjoint gropes of height n has
x�L.I/D 0 for jI j � 2n .

A result of Lin [17] states that k–cobordant links will have the same x�–invariants up
to length 2k . Using this result, the proof of this proposition relies on showing that L

is 2n�1 –cobordant to a slice link.

These two filtrations are related by the fact that Gm
nC2
� Fm

n for all n 2 N and
m� 1 [10]. A natural question is whether or not these filtrations are actually the same.
We show that these filtrations differ at each stage.

Corollary 6.8 We have that Fm
n =Gm

nC2
is nontrivial for m � 2nC2 . Moreover,

Z� Fm
n =Gm

nC2
.

It is still unknown whether the previous result holds for knots.
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2 Preliminaries

A knot is an embedding S1 ,! S3 . The set of knots modulo concordance forms a
group under the operation of connected sum, known as the knot concordance group C .
Two knots K and J are said to be concordant if K � f0g and J � f1g cobound a
smoothly embedded annulus in S3 � Œ0; 1�.

An m–component link is an embedding
`

m S1 ,! S3 . The connected sum operation
is not well defined for links. Therefore, in order to define a group structure on links, it
is necessary to study string links.

Definition 2.1 Let D be the unit disk, I the unit interval and fp1;p2; : : : ;pkg be k

points in the interior of D . A k–component (pure) string link is a smooth proper
embedding � W

`k
iD1 Ii!D � I such that

� jIi
.0/D fpig � f0g;

� jIi
.1/D fpig � f1g:

The image of Ii is called the i th string of the string link. An orientation on � is
induced by the orientation of I . Two string links � and � 0 are said to be equivalent if
there is an orientation preserving homeomorphism hW D2 � I !D2 � I such that h

fixes the boundary piecewise and h.�/D � 0 .

The operation on string links is the stacking operation seen in the braid group. If L1

and L2 are in Cm , then L1L2 is the string link obtained by stacking L1 on top of L2 .

The notion of concordance can be generalized for string links; see Figure 1.

Definition 2.2 Two m–component string links �1 and �2 are concordant if there
exists a smooth embedding H W

`
m.I �I/!B3�I that is transverse to the boundary

and such that H j`
m I�f0gD �1 , H j`

m I�f1gD �2 , and H j`
m @I�I D j0� idI , where

j0W
`

m @I ! S2 .

Under the operation of stacking, the concordance classes of m–component string links
form a group, denoted Cm , and is known as the string link concordance group. The
identity class of this group is the class of slice string links. The inverses are the string
links obtained by reflecting the string link about D�f1

2
g and reversing the orientation.

When mD 1, Cm is the knot concordance group. For m� 2, it has been shown that Cm

is not abelian [16].

If L is a string link, the closure of L, denoted yL, is the ordered, oriented link in S3

obtained by gluing @.D2�I/ to @.D2�I/ of the standard trivial string link using the
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Figure 1: String link concordance

(a) An example of a three com-
ponent string link

(b) The closure of a string link

Figure 2: A string link and its closure

identity map; see Figure 3(b). This gives a canonical way to obtain a link from a string
link. If two string links are concordant, then their closures are concordant as links.

Every link has a string link representative. In other words, given any link, L in S3 ,
there exists a string link � such that y� is isotopic to L; see Habegger and Lin [13].

In order to study the structure of Cm , Cochran, Orr and Teichner [10] defined the
.n/–solvable filtration, fFm

n g, by

f0g � � � � � Fm
nC1 � Fm

n:5 � Fm
n � � � � � Fm

0:5 � Fm
0 � Cm:

Definition 2.3 An m–component link L is .n/–solvable if the zero-framed surgery,
denoted ML , bounds a compact, smooth 4–manifold, W 4 , such that the following
conditions hold.

(i) We have H1.MLIZ/ Š Zm and H1.ML/! H1.W IZ/ is an isomorphism
induced by the inclusion map.

Algebraic & Geometric Topology, Volume 14 (2014)
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(ii) We have H2.W IZ/ has a basis consisting of connected, compact, oriented
surfaces, fLi ;Dig

r
iD1

, embedded in W with trivial normal bundles, where
the surfaces are pairwise disjoint except that, for each i , Li intersects Di

transversely once with positive sign.

(iii) For all i; �1.Li/ � �1.W /.n/ and �1.Di/ � �1.W /.n/ , where �1.W /.n/ is
the nth term of the derived series. The derived series of a group G , denoted G.n/ ,
is defined recursively by G.0/ WDG and G.i/ WD ŒG.i�1/;G.i�1/�.

The manifold W is called an .n/–solution for L and a string link is .n/–solvable if
its closure in S3 is an .n/–solvable link.

A link is .n:5/–solvable if, in addition to the above, �1.Li/� �1.W /.nC1/ for all i .
In this instance, W is called an .n:5/–solution for L.

We define the .n/–solvable filtration of the string link concordance group for m� 1 by
setting Fm

n to be the set of .n/–solvable string links for n2 1
2
N0 . It is known that Fm

n

is a normal subgroup of Cm for all m� 1 and n 2 1
2
N0 . For convenience, Fm

�0:5
will

denote the set of string links with all pairwise linking numbers equal to zero.

In the early 1950s, John Milnor defined a family of higher-order linking numbers known
as x�–invariants for oriented, ordered links in S3 [20; 21]. These numbers are not link
invariants in the typical sense since there is some indetermincy due to the choice of
meridians of a link; however, as invariants of string links they are well defined [13]. In
general, Milnor’s invariants determine how deep the longitudes of each component lie
in the lower central series of the link group. We will show in Corollary 3.5 that these
invariants give information about the solvable filtration. We will use this relationship
to prove Theorem 5.1.

Suppose L is an m–component link in S3 . Let G D �1.S
3�L/ be the fundamental

group of the complement of L in S3 . The lower central series of G , denoted Gi ,
is recursively defined by G1 WDG and Gi WD ŒGi�1;G�. It is worthy to note that the
derived series and the lower central series of a group G are related by G.n/ � G2n .
Since ŒGr ;Gs ��GrCs , it is a straightforward computation to achieve the relation.

Consider the nilpotent quotient group G=Gk . A presentation of this group, given by
Milnor [21], can be written

(1) G=Gk Š h˛1; ˛2; : : : ; ˛m j Œ˛1; l1�; Œ˛2; l2�; : : : ; Œ˛m; lm�;Fki;

where ˛1; : : : ; ˛m are a choice of m meridians for L, Fk is the k th term of the lower
central series of F D Fh˛1; : : : ; ˛mi, the free group on m generators and li is the i th

longitude of L written as a product of the ˛i .

Algebraic & Geometric Topology, Volume 14 (2014)
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Let ZŒŒX1; : : : ;Xm�� be the ring of power series in m noncommuting variables. The
Magnus embedding is a map EW ZF!ZŒŒX1; : : : ;Xm�� defined by sending ˛i 7!1CXi

and ˛�1
i 7! 1�XiCX 2

i �X 3
i C� � � for 1� i �m. Let I D i1i2 � � � ir�1ir be a string

of integers amongst f1; : : : ;mg with possible repeats and let XI DXi1
Xi2
� � �Xir

. We
let �I .l/ D �.ıi1

� � � ıir
.l//; see [21] for more details. If l 2 F , then the image of l

under the Magnus embedding has the form

E.l/D 1C
X
jI j�1

�I .l/XI :

For each j , let wj denote a word in F which represents the image of lj in G=Gk . Then,
for I D i1i2 � � � ir�1ir with r � k , the coefficient �I 0.wir

/, where I 0 D i1 � � � ir�1 is
denoted as �L.I/. Milnor’s invariant x�L.I/ is defined as the residue class of �L.I/

modulo the greatest common divisor of �L.J /, where J runs over all sequences
obtained by cyclically permuting proper subsequences of I . We refer to jI j as the
length of the Milnor’s invariant. It is useful to note that the first nonvanishing x�–
invariant, x�L.I/, will be �L.I/ since it is well defined.

For x�–invariants of length two, the calculation measures the linking between two
components, ie x�L.ij / is the linking number between the i th and j th components
of L. It is also known that x�–invariants are concordance invariants; see Casson [1].

The following is a classical and well-known result of Milnor [21].

Theorem 2.4 (Milnor) The longitudes of L lie in Gk�1 if and only if F=FkŠG=Gk .
In other words, x�L.I/D 0 for jI j � k � 1 if and only if F=Fk ŠG=Gk .

The following corollary allows us to detect whether certain Milnor’s invariants are zero
using the fundamental group of ML , the zero-framed surgery on L.

Corollary 2.5 We have F=FkC1 Š G=GkC1 if and only if F=Fk Š J=Jk , where
J D �1.ML/.

An outline of the proof is as follows. Let Li be the i th component of L. The
group G=GkC1 has presentation given by

G=GkC1 Š hx1; : : : ;xm j Œxi ; �i �;FkC1i;

where �i is the longitude of Li and xi is a meridian of Li . The inclusion of
S3 � L into ML induces an epimorphism on fundamental groups that has kernel
normally generated by �1; : : : ; �m . The fundamental group J D �1.ML/ is ob-
tained from G by setting the longitudes �i to zero. This gives the presentation
J=Jk Š hx1; : : : ;xm j �i ;Fki.
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Suppose that the map induced from inclusion from G=GkC1 to F=FkC1 is an isomor-
phism. Then Œxi ; �i � 2 FkC1 , and thus �i 2 Fk since xi is a generator of F . It is
apparent that J=Jk Š F=Fk .

Conversely, if J=Jk ŠF=Fk then the relations show �i 2Fk and thus Œxi ; �i �2FkC1 .
This gives that G=GkC1 Š F=FkC1 . It follows that x�L.I/ D 0 for jI j � k if and
only if F=Fk Š J=Jk .

3 Main theorem

Before now, little has been known about the relationship between Milnor’s invariants and
.n/–solvability. The following theorem demonstrates a relationship between Milnor’s
invariants and links, L, with certain restrictions on the 4–manifold bounded by ML .
This theorem will be used to find an obstruction that detects an infinite subgroup of
Fm

n:5
=Fm

nC1
as well as to show that Fm

�0:5
=Fm

1
is a nonabelian group.

Theorem 3.1 Suppose L is a link whose zero-framed surgery, ML , bounds an ori-
entable and compact 4–manifold W such that:

(1) H1.ML/!H1.W IZ/ is an isomorphism induced by the inclusion map.

(2) H2.W IZ/ has a basis consisting of connected compact oriented surfaces fLig

with �1.Li/� �1.W /.n/ .

Then x�L.I/D 0, where jI j � 2nC2� 1.

Proof As mentioned above in Theorem 2.4, x�L.I/=0 for all jI j � k for any m–
component link L in S3 if and only if F=FkC1ŠG=GkC1 , where FDFhx1; : : : ;xmi

and GD�1.S
3�L/. Using Corollary 2.5, this is equivalent to F=Fk being isomorphic

to J=Jk , where J D �1.ML/.

Consider the meridians about the link components of L. By connecting these meridians
by arcs in S3�L, we can view this as a wedge of circles. Let F be the fundamental
group of this wedge of circles, and consider the following sequence of maps on �1

induced by inclusion

F
�1
�!G

�2
�! J

�3
�!E D �1.W /:

The map �2 is the surjection induced by the inclusion of S3 �L into ML and has
kernel normally generated by the longitudes. The quotients of all of these groups by
the k th terms of their lower central series gives another sequence of maps

F=Fk

x�1
�!G=Gk

x�2
�! J=Jk

x�3
�!E=Ek :

Algebraic & Geometric Topology, Volume 14 (2014)
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Since �2 is surjective, the map x�2W G=Gk ! J=Jk is a surjection for all values of k .

Dwyer’s theorem [12] is of particular importance and is stated here for convenience.

Theorem 3.2 (Dwyer’s integral theorem) Let �W A! B be a homomorphism that
induces an isomorphism on H1.�IZ/. Then for any positive integer k , the following
are equivalent:

(i) � induces an isomorphism A=AkC1 Š B=BkC1 .

(ii) � induces an epimorphism H2.AIZ/=ˆk.A/!H2.BIZ/=ˆk.B/.

Here ˆk.A/D ker.H2.A/!H2.A=Ak// for k � 1.

Consider the map induced by �3 ı�2 ı�1 ,

(2) H2.F IZ/=ˆk.F /!H2.EIZ/=ˆk.E/;

where E D �1.W /. By Theorem 3.2, showing (2) is a surjection is equivalent to
showing � WD x�3 ı x�2 ı x�1W F=FkC1!E=EkC1 is an isomorphism.

Since F is the free group on m generators, H2.F IZ/ D 0. The map of (2) is a
surjection precisely when ˆk.E/DH2.E;Z/. We need to determine for which k we
have ˆk.E/DH2.E;Z/.

Consider the diagram

H2.Wk/
p� //

��

H2.W /

��
H2.Ek/

i� // H2.E/
�� // H2.E=E2k�1/;

where Wk is the covering space of W that corresponds with the k th term of the lower
central series of �1.W /. The vertical maps are surjections obtained from the exact
sequence induced by the Hurewicz map

(3) �2.X /!H2.X /!H2.�1.X //! 1:

The maps p� , i� and �� are the maps induced by the covering map p , inclusion and
projection respectively.

By assumption, there is a basis of H2.W / consisting of surfaces, denoted fLig. The
group H2.E/ is generated by the images of the Li since H2.W / ! H2.E/ is a
surjection.

Algebraic & Geometric Topology, Volume 14 (2014)
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We claim that the map i� is a surjection. This can be seen by viewing H2.Ek/ as the
second homology group for the covering space, K.Ek ; 1/ of the Eilenberg–Mac Lane
space K.E; 1/. Note that K.Ek ; 1/ is the covering space of K.E; 1/ corresponding
to the subgroup Ek of E . When k D 2n , �1.Li/ � Ek , hence the images of fLig

in H2.E/ will lift to H2.Ek/ and i�W H2.Ek/!H2.E/ is surjective.

Cochran and Harvey [7, Lemma 5.4] showed that the composition of the maps

H2.Ek/
i�
�!H2.E/

��
��!H2.E=E2k�1/

is the zero map for all k . Since i� is surjective, this implies that �� is the zero
map. Hence ˆ2k�1.E/ D H2.E/ and Dwyer’s theorem gives an isomorphism
H2.F /=ˆ2k�1.F /! H2.E/=ˆ2k�1.E/ induced by �3 ı �2 ı �1 for k D 2n . In
turn, this gives an isomorphism F=F2k Š E=E2k when k D 2n . Thus we have
that y� WD x�2 ı x�1W F=F2nC1 ! J=J2nC1 is a monomorphism. Since x�1 is a map
F=Fk ! F=hrelations;Fki and �2 is a surjection, by Milnor’s presentation (1), y�
is a surjection and thus an isomorphism. It is also of note that the map x�3 is an
isomorphism.

By Theorem 2.4 and Corollary 2.5, the x�–invariants of length less than or equal to 2nC1

vanish for .n/–solvable links.

This result can be improved slightly. Let gD .y�/�1 be a specified isomorphism. Let f
be the composite of the maps

J
�J
��! J=J2nC1

g
�! F=F2nC1 ;

where �J is the canonical quotient map. Consider the commutative diagram

E=E2nC1 J=J2nC1

x�3

Š
oo F=F2nC1

g�1

Š
oo

E

�E

OO

J

�J

OO

gı�JDf

88

oo

where � is the isomorphism between J=J2nC1 and E=E2nC1 established earlier in
the proof and �E is the canonical quotient map. Thus we have an extension of f to E ,
namely xf D g ı ��1 ı �E W E ! F=F2nC1 . This gives the following commutative
diagram:

�1.ML/

i�
��

f // F=F2nC1

�1.W /

xf

88
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The commutative diagram below on homology is achieved by the induced maps obtained
from the above maps:

H3.ML/

i�
��

f // H3.F=F2nC1/

H3.W /

xf

77

Since MLD @W , we have that i�W H3.ML/!H3.W / is the zero map. Also, the map
f W H3.ML/!H3.F=F2nC1/ is the zero map since the diagram commutes. Consider
the sequence of maps

H3.F=F2k�1/
hk�1
�! H3.F=F2k�2/

hk�2
�! � � �

h2
�!H3.F=FkC1/

h1
�!H3.F=Fk/;

where hi W H3.F=FkCi/!H3.F=FkCi�1/ and k D 2nC1 . The image of the funda-
mental class under the map H3.ML/!H3.F=Fm/ will be denoted by �m.ML; f /.

We will use the following two results of Cochran, Gerges and Orr [5]. These results
rely heavily on deep work of Igusa and Orr [15].

Lemma 3.3 (Cochran–Gerges–Orr) We have

�m.ML; f / 2 Image.��W H3.F=FmC1/!H3.F=Fm//

if and only if there is some isomorphism zf W J=JmC1! F=FmC1 extending f such
that ��.�mC1.ML; zf //D �m.ML; f /.

Corollary 3.4 (Cochran–Gerges–Orr) The map H3.F=F2m�1/! H3.F=Fm/ is
the zero map. Any element in the kernel of H3.F=FmCj /!H3.F=Fm/, j �m� 1,
lies in the image of H3.F=F2m�1/!H3.F=FmCj /.

Since �2nC1.ML; f / D[0] and [0] is always in the image of a homomorphism,
there is an extension of f to an isomorphism zf W J=JkC1 ! F=FkC1 satisfying
h1.�kC1.ML; zf //D �k.ML; f /D0 by Lemma 3.3 and �kC1.ML; zf / is in the kernel
of h1 . Then �kC1.ML; zf / lies in the image of H3.F=F2k�1/! H3.F=FkC1/ by
Corollary 3.4. In other words, it lies in the image of the map h2 ı h3 ı � � � ı hk�1

and in turn lies in the image of h2 . By Lemma 3.3, there is an extension of zf that
is an isomorphism between J=JkC2 and F=FkC2 . By continuing this process, an
isomorphism between J=J2k�1 and F=F2k�1 with k D 2nC1 is obtained. Thus we
have that the x�–invariants of lengths less than or equal to 2nC2� 1 of our link vanish.
This concludes the proof of Theorem 3.1.
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We end this section with several remarks involving the limitations and generalizations
of Theorem 3.1. We first notice that the proof of Theorem 3.1 did not rely on the
intersection form seen in the definition of .n/–solvability. As a consequence, we obtain
the following corollary.

Corollary 3.5 If L is an .n/–solvable link (or string link), then x�L.I/ D 0 for
jI j � 2nC2� 1.

The converse of Corollary 3.5 is false. Consider the Whitehead link DW in Figure 3.
The first nonvanishing x�–invariant occurs at length four. One of these invariants is
x�W .1122/D˙1, depending on orientation. The figure eight knot, 41 , may be obtained
as the result of band summing the two components of W . It is known that this knot is
not .0/–solvable since its Arf invariant is nonzero [10]. It is known that if a link is
.n/–solvable, then the result of bandsumming any two components is .n/–solvable; see
Cochran, Orr and Teichner [25] for a complete proof. This implies that the Whitehead
link is not .0/–solvable.

n

Figure 3: The Whitehead link and the n–twisted Whitehead link

We also remark that the result of Corollary 3.5 is sharp in the sense the length of
vanishing x�–invariants cannot be extended. Consider the n–twisted Whitehead link
in Figure 3. The number n represents the number of full twists. When n is even,
this link is band pass equivalent to the trivial link. We will see in Section 4 that this
implies the link is .0/–solvable. However, x�.1122/D�n and x�.1212/D 2n are the
first nonvanishing x�–invariants. There are examples of .n/–solvable links L with
x�L.I/D˙1 for some jI j D 2nC1 ; see Section 5 for examples using Bing doubling.

Recently, Cochran, Harvey and Horn defined several new filtrations of Cm [8], namely
the n–positive, n–negative, and n–bipolar filtrations. The proof of Theorem 3.1 also
can be applied to all these filtations as well.

Corollary 3.6 If L is an n–positive, n–negative or n–bipolar link, then x�L.I/D 0

for jI j � 2nC2� 1.
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4 Bing doubling and solvability

The goal of this section is to understand the effect that Bing doubling has on solvability.
Bing doubling is a doubling operator performed on knots and links. If K is a knot,
then the two-component link in Figure 4 is the Bing double of K , denoted BD.K/.
If L is an m–component link, BD.L/ denotes be the 2m–component link obtained
by Bing doubling every component of L.

K

Figure 4: The Bing double of a knot K , BD.K/

Bing doubling can also be viewed as multi-infection by a string link. Let LDL1[

L2[� � �[Lm in S3 be an m component link in S3 . Let LBD be the 2m–component
link pictured in Figure 5 that is isotopic to the 2m–component trivial link. Then there
is a handlebody H in S3�LBD which is the exterior of a trivial string link with m

components; see Figure 5 for an example. The �i are curves in S3�LBD and are the
canonical meridians of the trivial string link.

(a) The trivial link LBD (b) A handlebody in S3 �LBD

Figure 5

Take a string link J , such that yJ is isotopic to L. There are an infinite number of string
links that meet this criterion. Then S3D ..S3�H /[� ..D

2�I/�J / and BD.L/ is
the image of LBD in this new S3 . The map � maps li 7! 
i and �i 7! ��1

i , where
the li , 
i , �i and �i are depicted in Figure 6.

We will consider geometric moves that can be performed on knots and links and
determine their effects on solvability. The first move we consider is the band pass
move, illustrated in Figure 7.
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�1 �2 �n

l1 ln

(a) Exterior of the trivial string
link, the handlebody H

�1 �2 �n


1 
nJ

(b) Exterior of the string link J

Figure 6: The longitudes li ; 
i and meridians �i ; �i

 !

Figure 7: Band pass move

Remark 4.1 Lemmas 4.2 and 4.5 are results of Taylor Martin and complete proofs
can be found in Martin [18].

Lemma 4.2 (Martin) A band pass move preserves .0/–solvability.

Proposition 4.3 If L is any link of m components, then BD.L/ is .0/–solvable.

Proof Let L be an m–component link in S3 . The Bing double, BD.L/ is band pass
equivalent to the trivial link of 2m components, arising from the fact that any link
can be transformed into the trivial link by a finite number of crossing changes. Since
the trivial link is 0–solvable and band pass moves preserve 0–solvability, BD.L/ is
0–solvable.

We will also consider several other geometric moves, illustrated in Figures 8 and 9.

Lemma 4.4 The delta move can be realized as a half-clasp move. Moreover, the
double delta move can be realized by a double half-clasp move.
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 !  !

Figure 8: The delta move and the half-clasp move

 ! !

Figure 9: The double delta move and the double half-clasp move

Proof The images in Figure 10 illustrate how to use isotopy and a half-clasp move to
achieve the delta move. This result is easily adaptable for the double of the moves.

isotopy
�!

�!

half

clasp
�!

isotopy
�!

Figure 10: Sequence of isotopy and half-clasp moves to achieve the delta move

This completes the proof.

Martin established a relationship between .0:5/–solvability and the double half-clasp
move which is given in the following lemma.

Lemma 4.5 (Martin) The double half-clasp move preserves .0:5/–solvability.
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Proposition 4.6 If L 2 Fm
�0:5

, then BD.L/ is .0:5/–solvable.

Proof Suppose L has all pairwise linking numbers equal to zero. It was shown (see
Murakami and Nakanishi [22] and Matveev [19]) that two links are equivalent by delta
moves if and only if they have the same pairwise linking numbers. This result was
generalized for string links; see Naik and Stanford [23]. Recall that in our construction
of Bing doubling of a link, we chose a string link J such that yJ is isotopic to L.
Since yJ has all pairwise linking numbers equal to zero by assumption, J can be chosen
to have all pairwise linking numbers equal to zero as a string link.

In the construction of Bing doubling we can see that the handlebody H was replaced
with the exterior of J . As a result of this replacement, we have a new string link zJ .
Using double delta moves, we are able to get the trivial link (delta moves on J will be
double delta moves on zJ ). Since the double half-clasp move preserves .0:5/–solvability
by Lemma 4.5, the double delta move will also preserve .0:5/–solvability. Thus BD.L/
is .0:5/–solvable.

Proposition 4.7 If L is an .n/–solvable link, then BD.L/ is .nC1/–solvable. More-
over, if L is an .n:5/–solvable link, then BD.L/ is ..nC 1/:5/–solvable.

Proof Suppose L is an .n/–solvable link with m components. We will construct
an .n C 1/–solution for BD.L/ by first constructing a cobordism between ML

and MBD.L/ . Suppose that J is a string link such that yJ is isotopic to L. Then
ML D .D2 � I � J / [ .D2 � I � trivial string link/; see Cochran, Friedl and Te-
ichner [4, page 623] for more details. Consider ML � Œ0; 1� and MLBD � Œ0; 1�.
Recall that LBD was isotopic to the 2m–component trivial link. Let V be the han-
dlebody D2 � I –trivial string link. Glue ML � f1g to MLBD � f1g by identifying
V �ML�f1g with V �MLBD�f1g. Call the resulting space X ; see Figure 11. Then
@X DML tMLBD t�MBD.L/ .

To proceed, we need the following lemma.

Lemma 4.8 With X as above, the inclusion maps induce

(i) isomorphisms H1.MLBD/!H1.X / and H1.MBD.L//!H1.X /,

(ii) an isomorphism H2.X /ŠH2.MLBD/˚H2.ML/.
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MLBD � f0g

MLBD � f1g
V

ML � f1g

ML � f0g �

Figure 11: The space X

Proof Consider the following diagram of inclusion maps:

V
i1

yy

i2

$$
MLBD � Œ0; 1�

j2 %%

ML � Œ0; 1�

j1zz
X

Using Mayer–Vietoris, the maps above induce the following long exact sequence (in
reduced homology), where I� D .i1�; i2�/ and J� D j1�� j2� (the homology groups
are with Z coefficients):

� � �
@�
�!H2.V /

I�
�!H2.MLBD/˚H2.ML/

J�
�!H2.X /

@�
�!H1.V /

I�
�!H1.MLBD/˚H1.ML/

J�
�!H1.X /

@�
�! 0

The homology group H1.V / Š Zm is generated by the meridians, �i of the trivial
string link. Recall that the �i s were defined in the construction of Bing doubling. Now
i1�.�i/D 0 in S3�LBD �MLBD since �i � �i and �i is in a commutator subgroup.
Also, i2�.�i/ is of infinite order in H1.ML/ since �i is identified with a meridian
of L. Hence I� is a monomorphism. Thus the map @�W H2.X /!H1.V / is the zero
map. By the properties of a long exact sequence, H2.MLBD/˚H2.ML/ŠH2.X /.

For the other part of the lemma, consider the first isomorphism theorem. This gives

H1.X /Š
H1.MLBD/˚H1.ML/

Image.I�W H1.V /!H1.MLBD/˚H1.ML//
:
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The image of I� is precisely H1.ML/. Thus H1.X / Š H1.MLBD/ Š Z2m . Now
H1.MBD.L// is generated by the meridians of BD.L/ which are isotopic (in X ) to
the meridians of LBD . This means that H1.X /ŠH1.MBD.L// which is the desired
result.

We now continue with the proof of the proposition. Let S D B4�D be a slice disk
complement, where D � B4 is a collection of disjoint and smoothly embedded disks
with boundary LBD . Let W be an .n/–solution for L and let E be the space obtained
by attaching W and S to X along ML�f0g and MLBD�f0g respectively. Thus E is a
4–manifold with boundary MBD.L/ .

We claim that E is an .nC 1/–solution for BD.L/. We begin by showing E is an
.n/–solution. Let xE D X [W . Consider the following long exact sequence (with
Z–coefficients in reduced homology) obtained by Mayer–Vietoris:

� � �
@�
�!H2.ML/

I1
�!H2.X /˚H2.W /

I2
�!H2. xE/

@�
�!H1.ML/

I1
�!H1.X /˚H1.W /

I2
�!H1. xE/

@�
�! 0

We have that inclusion induces an isomorphism H1.ML/Š H1.W /. This together
with the facts that I2 on H1 is surjective and H1.ML/!H1.X / is the zero map, gives
that H1. xE/ŠH1.X /. From Lemma 4.8, the inclusion maps induce an isomorphism
H2.X /ŠH2.MLBD/˚H2.ML/. Thus, by the first isomorphism theorem, definition
of exact sequence and the fact that H2.ML/!H2.W / is the zero map, we obtain

H2. xE/Š
H2.X /˚H2.W /

ker.I2W H2.X /˚H2.W /!H2. xE//
ŠH2.MLBD/˚H2.W /:

Notice that E D xE [S . Consider the following long exact sequence on homology
given by Mayer–Vietoris:

� � �
@�
�!H2.MLBD/

�1
�!H2. xE/˚H2.S/

�2
�!H2.E/

@�
�!H1.MLBD/

�1
�!H1. xE/˚H1.S/

�2
�!H1.E/

@�
�! 0

Using these facts, H1.MLBD/ŠH1.X / induced by inclusion (Lemma 4.8), H2.S/D0,
and H1.X /ŠH1. xE/, we can again use the first isomorphism theorem to attain the
following:

H2.E/Š
H2. xE/

ker.�2/
ŠH2.W /

This shows that the second condition of .n/–solvability of Definition 2.3 is satisfied
for the 4–manifold E .
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For the third condition, the inclusion map i WW ,!E gives i�.�1.W /.n//��1.E/
.n/ .

Since no elements were added to the basis of H2.E/, it has the same basis as H2.W /.
Thus �1.Li/� �1.W /.n/ � �1.E/

.n/ and similarly for �1.Di/, where fLi ;Dig is a
basis for H2.W /.

To check the first condition of .n/–solvability, consider again the previous long exact
sequence. The first isomorphism theorem tells us that

H1.MLBD/

ker.�1W H1.MLBD/!H1. xE/˚H1.S//
Š Image.�1/:

Now, S is an .n/–solution for MLBD , and thus H1.MLBD/ Š H1.S/ induced by
inclusion. We also have that H1. xE/ Š H1.S/. Using the first isomorphism a final
time and the definition of the maps �1 and �2 , gives that H1.E/ŠH1. xE/.

By Lemma 4.8 and the above results, the first condition to being .n/–solvable is met
and E is an .n/–solution for BD.L/.

We claim further that E is actually an .nC 1/–solution. Showing �1.W /��1.E/
.1/

(or more precisely, i�.�1.W //��1.E/
.1/ ) is enough to imply �1.W /.n/��1.E/

.nC1/

and then Li and Di lift to �1.E/
.nC1/ .

Consider the following commutative diagram of maps where i� is induced by inclusion
and both p1� and p2� are canonical quotient maps:

�1.W /
i� //

p1�

��

h

))

�1.E/

p2�

��

H1.W /D �1.W /

�1.W /.1/
i�

// �1.E/

�1.E/.1/ DH1.E/

Showing that h� 0 is equivalent to showing that �1.W /� �1.E/
.1/ . Examining this

further shows that h� 0 if and only if i�W H1.W /!H1.E/ is the zero map, since
our diagram commutes. Consider the following commutative diagram:

H1.ML/
Š //

p

%%

H1.W /

i�
��

H1.E/

To show that i� � 0 is equivalent to showing that the map pW H1.ML/!H1.E/ is
the zero map. Consider Œ�i � 2 H1.ML/, where the �i s generate H1.ML/. Under
the map p , Œ�i �D Œ�i � 2H1.MLBD/�H1.E/ (�i � S3�LBD �MLBD ). But recall
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that Œ�i � lie in a commutator subgroup and thus Œ�i �D 0 in homology, and thus p is the
zero map. This shows that E is an .nC 1/–solution and the desired result is achieved.

The case when L is .n:5/–solvable is similar.

5 Applications to fFm
n g

In studying the .n/–solvable filtration, we often look at successive quotients of the
filtration. Recently, progress has been made towards understanding the structure of its
quotients; see [2; 6; 9; 14]. Harvey first showed that Fm

n =Fm
nC1

is a nontrivial group
that contains an infinitely generated subgroup [14]. She showed that this subgroup
is generated by boundary links (links with components that bound disjoint Seifert
surfaces). Cochran and Harvey improved this result by showing that Fm

n =Fm
n:5

contains
an infinitely generated subgroup [6]. Again, this subgroup consists entirely of boundary
links. Boundary links have vanishing x�–invariants at all lengths.

Using the relationship between Milnor’s x�–invariants and .n/–solvability, given in
Corollary 3.5, we are able to establish new results that are disjoint from previous work.
Until now, nothing has been known about the “other half” of the .n/–solvable filtration,
namely Fm

n:5
=Fm

nC1
.

Theorem 5.1 The “other half” of the filtration Fm
n:5
=Fm

nC1
contains an infinite cyclic

subgroup for m� 3 � 2nC1 .

Proof Let BRD the Borromean rings. It is clear that BR2F3
�0:5

. A direct calculation
from the definition of Milnor’s invariants will show that x�BR.123/D˙1 depending
on orientation. Using Corollary 3.5, BR is a nontrivial link in F3

�0:5
=F3

0
. When we

apply the Bing double operator on BR, denoted BD.BR/ (see Figure 13(a)), this new
link is in F6

0:5
by Proposition 4.7. However, the first nonvanishing x�–invariant is

x�BD.BR/.I/ D ˙1 for a certain I with jI j D 6; see [3, Chapter 8] for the specific
details. Hence BD.BR/ is not .1/–solvable by Corollary 3.5. Then BD.BR/ is
nontrivial in F6

0:5
=F6

1
since it has a nonvanishing x�–invariant.

We can perform the Bing doubling operation on this new link to form BD.BD.BR//,
or more simply, BD2.BR/; see Figure 13(b). Using Proposition 4.7, BD2.BR/ is
nontrivial in F12

1:5
. Looking at its x�–invariants, we will have that x�BD2.BR/.I/D˙1

for a certain I of length 12 and our link cannot be .2/–solvable, again by Corollary 3.5.
Therefore BD2.BR/ is nontrivial in F12

1:5
=F12

2
. We can continue this process to have

BDnC1.BR/ nontrivial in Fm
n:5
=Fm

nC1
for m� 3 � 2nC1 .
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We claim that BDnC1.BR/ will have infinite order in Fm
n:5
=Fm

nC1
. Orr showed the

first nonvanishing x�–invariant is additive [24]. Consider an arbitrary string link L

with the following properties instead of the specific link BDnC1.BR/ for the moment.
Suppose that x�L.I/ D 0 and that x�L.J / 6D 0 for jJ j D jI j C 1. Then x� �LL

.J / D

x� yL.J /C x� yL.J /D 2x� yL.J /. If we were to take the closure of the stack of n copies
of L, denoted bnL , we would obtain x� �nL

.J /D nx� yL .

This gives that L generates an infinite cyclic subgroup Z of the string link concordance
group. In our case, since BDnC1.BR/ has a nonzero x�–invariant of length 3 � 2nC1 ,
the same reasoning can be used to show that it generates an infinite cyclic subgroup
of Fm

n:5
=Fm

nC1
.

(a) BD.BR/ (b) BD.BD.BR//D BD2.BR/

Figure 12: Examples of iterated Bing doubles of the Borromean rings

The example exhibited in the above proof came from iterated Bing doubles of a link
with certain nonvanishing x�–invariants. These iterated Bing doubles will always have
a nonzero x�–invariant, see Cochran [3], and the above example is also not concordant
to a boundary link. Hence our results are not concordant to those previously known.

Since the knot concordance group C is abelian, all successive quotients of the .n/–
solvable filtration are abelian. It is known, however, that Cm is a nonabelian group
for m � 2 [16]. We briefly recall some facts known about certain quotient groups
of fFm

n g.

The quotient Fm
�0:5

=Fm
0

has been classified by Martin and is known to be abelian [18].

We also know that the quotient Cm=Fm
0

is a nonabelian group for m� 3.
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Example 5.2 Consider the pure braids in Figures 14(a) and 14(b). We build the com-
mutator ABA�1B�1 seen in Figure 14(c). The link 5ABA�1B�1 is isotopic to the
Borromean rings which are not 0–solvable. We conclude that Cm=Fm

0
is not abelian.

(a) A (b) B

(c) Pure braid ABA�1B�1

Figure 13: Example of a commutator of pure braids that is not 0–solvable

We continue on with our investigation of quotients of fFm
n g. Again using Corollary 3.5,

we will show that Fm
�0:5

=Fm
1

is a nonabelian group.

Theorem 5.3 We have Fm
�0:5

=Fm
1

is a nonabelian group for m� 3.

In order to prove this theorem, we need to demonstrate that there exists two string
links with pairwise linking numbers equal to zero such that when we construct the
commutator we get a string link that is not .1/–solvable.

Proof The Borromean rings, BR, can be written as a pure braid, specifically, BRD
�2�
�1
1
�2�
�1
1
�2�
�1
1

; see Figure 15(a). Consider the pure braid �1BR��1
1

, the Bor-
romean rings conjugated by �1 ; see Figure 15(b). We look at the commutator
LD .BR/.�1BR��1

1
/.BR/�1.�1BR��1

1
/�1 . Notice that L is also a pure braid.

For braids, the canonical meridians, mi , will freely generate the fundamental group
and any other meridian of Li (the i th string of L) in �1 will be a conjugate of mi .
This allows us to write li of yL as a product of the mi using an algorithmic procedure.

Using this idea, Davis designed a computer program to compute this invariants for
braids [11]. We found that x�L.313323/D�1. By Corollary 3.5, L is not .1/–solvable.
Therefore Fm

�0:5
=Fm

1
is a nonabelian group.
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(a) BR as a pure braid (b) �1BR��1
1

Figure 14: Borromean rings as a pure braid and a conjugate of them

6 The grope filtration and the .n/–solvable filtration

In addition to defining the .n/–solvable filtration, Cochran, Orr and Teichner [10] also
defined the grope filtration, fGm

n g of the (string) link concordance group,

f0g � � � � � Gm
nC1 � Gm

n:5 � Gm
n � � � � � Gm

0:5 � Gm
0 � Cm:

Definition 6.1 A grope is a special pair (2–complex, base circle) which has a height
n 2 1

2
N assigned to it. A grope of height 1 is precisely a compact, oriented surface †

with a single boundary component, which is the base circle; see Figure 15.

A grope of height nC 1 can be defined recursively by the following construction. Let
f˛i ; ˇi W i D 1; : : : ; 2gg, where g is the genus of † be a symplectic basis of curves for
H1.†/, where † is a height-one grope. The surface † is also known as the first stage
grope. Then a grope of height nC 1 is formed by attaching gropes of height n to each
˛i and ˇi along the base circles; see Figure 15. A grope of height 1:5 is a surface with
surfaces attached to ‘half’ of the basis curves. A grope of height nC 1:5 is obtained
by gluing gropes of height n to the ˛i and gropes of height nC 1 to the ˇi .

Figure 15: A height-1 and height-2 grope

Given a 4–manifold, W , with boundary S3 and a framed circle 
 � S3 , we say
that 
 bounds a grope in W if 
 extends to a smooth embedding of a grope with its
untwisting framing (parallel pushoffs of gropes can be taken in W ).
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We denote Gm
n to be the subset of Cm defined by the following. A string link L is

in Gm
n if the components of yL bound disjoint gropes of height n in D4 . It can be

shown that these subsets are actually normal subgroups of Cm . Harvey showed that
this filtration is nontrivial by looking at the filtration of boundary string links [6].

There is also a notion of grope concordance. To define this, the following definition is
needed.

Definition 6.2 An annular grope of height n is a grope of height n that has an extra
boundary component on its first stage.

The two boundary components of an annular grope are said to cobound an annular
grope. Two links, L0 and L1 , are height n grope concordant if their components
cobound disjoint height n annular gropes, Gi , in S3� Œ0; 1� such that Gi \ .S

3�fj g/

is equal to the i th component of Lj , where j D 0; 1.

Thus far, two filtrations of the string link concordance group Cm have been defined.
The .n/–solvable filtration is an algebraic approximation while the grope filtration is a
geometric approximation to a link being slice. It is a natural question to ask whether
these two filtrations are related. In order to answer this question, we need to analyze
the relationship between a link bounding disjoint gropes and the x�–invariants of links.

Definition 6.3 Let LDL1[L2[� � �[Lm and L0DL0
1
[L0

2
[� � �[L0m be ordered,

oriented links in S3 . We say that L is k–cobordant to L0 , where k 2ZC , if there are
disjoint, smoothly embedded compact, connected, oriented surfaces V1;V2; : : : ;Vm in
S3 � Œ0; 1� with @Vi D @0Vi [ @1Vi such that for all i D 1; : : : ;m, we have:

(i) Vi \ .S
3 � f0g/D @0Vi DLi and Vi \ .S

3 � f1g/D @1Vi DL0i .

(ii) There is a tubular neighborhood Vi �D2 of Vi in S3 � Œ0; 1� which extends
the “longitudinal” ones of @Vi DLi[L0i in S3�f0g and S3�f1g respectively
such that the image of the homomorphism

�1.Vi/! �1.Vi � @D
2/! �1.S

3
� Œ0; 1��V /DG

lies in the k th term of the lower central series of G , denoted Gk , and the image
of �1.@Vi/.

A link that is k–cobordant to a slice link is called null k–cobordant.

The concept of k–cobordism is related to the grope filtration as seen in the following
proposition.
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Proposition 6.4 If L 2 Gm
n , then it is 2n�1 –cobordant to a slice link.

Proof Suppose L 2 Gm
n . Then the components of L, say `i , bound disjoint gropes

of height n in D4 Š S3 � Œ0; 1�. Moreover, the `i extend to smooth embeddings of
gropes with their untwisting framing. Also, L is height n grope concordant to a slice
link L0 . Let Vi be the first stage grope bounded by `i and `0i (ie the annular grope in
the concordance). Let V D

`m
iD1 Vi .

Now consider the homomorphism

�1.Vi/! �1.Vi � @D
2/! �1.S

3
� Œ0; 1��V /DG

that is induced by pushing Vi off itself in the normal direction. Let f˛i ; ˇig be a
sympletic basis for H1.Vi=@Vi/; see Figure 16. The parallel pushoffs of gropes can be
taken in S3 � Œ0; 1� and thus are now in S3 � Œ0; 1�� V . By the construction of the
gropes, each of the ˛i and ˇi bound gropes of height n�1 in the exterior of V . Thus

Œ˛i �; Œˇi � 2G.n�1/
�G2n�1

by the fact that if a curve ` bounds a (map of a) grope of height n in a space X , then
Œ`� 2 �1.X /

.n/ . This concludes the proof.

ˇ1

ˇ2

˛1

˛2

`i

`0i

Vi

Figure 16: The first stage grope, Vi , with symplectic basis f˛i ; ˇigiD1;2

The following corollary of Lin [17] relates Milnor’s invariants with k–cobordant links.

Corollary 6.5 (Lin) If L and L0 are k–cobordant, then Milnor’s x�–invariants of L

and L0 with lengths less than or equal to 2k are the same. In particular, if L is null
k–cobordant, then x�L.I/D 0 for jI j � 2k .

Corollary 6.6 A link L with components that bound disjoint gropes of height n has
x�L.I/D 0 for jI j � 2n .
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Proof The proof of this is immediate from the previous two results.

Cochran, Orr and Teichner [10] showed that these two filtrations are related.

Theorem 6.7 (Cochran–Orr–Teichner) If a link L bounds a grope of height nC 2

in D4 , then L is .n/–solvable, ie Gm
nC2
� Fm

n for all m and n.

The natural question is whether or not the inclusion goes in the other direction. Recall
from Corollary 3.5 that an .n/–solvable string link has vanishing x�–invariants for
lengths less than or equal to 2nC2� 1, whereas in Corollary 6.6 a string link in Gm

nC2

has vanishing x�–invariants for lengths less than or equal to 2nC2 . This difference of
one gives motivation to try to find a nontrivial element in Fm

n =Gm
nC2

.

Corollary 6.8 We have that Fm
n =Gm

nC2
is nontrivial for m � 2nC2 . Moreover,

Z� Fm
n =Gm

nC2
in this case.

Proof Let H be the Hopf link. By Proposition 4.7, BD.H / 2 F0 , where BD.H / is
the Bing double H . The invariant x�H .12/D˙1 depending on orientation, as it is just
the linking number between the two components. Again, by work of Cochran given
in Chapter 8 of [3], x�BD.H /.I/ D ˙1 for some I of length 4. Using iterated Bing
doubling we achieve BDnC1.H / in Fn by Proposition 4.7, and x�BDnC1.H /.I/D˙1

for some I of length 2nC2 . BDnC1.H / is .n/–solvable, but since some x�BDnC1.H /

does not vanish for a length of 2nC2 it cannot bound a grope of height nC 2.

To show that there is an infinite cyclic subgroup contained within this quotient, we
look at string link representatives of H and BDnC1.H /. The proof of this result is
completely analogous to the proof of Theorem 5.1.
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