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Operations on open book foliations

TETSUYA ITO

KEIKO KAWAMURO

We study b–arc foliation changes and exchange moves of open book foliations which
generalize the corresponding operations in braid foliation theory. We also define a
bypass move as an analogue of Honda’s bypass attachment operation.

As applications, we study how open book foliations change under a stabilization of
the open book. We also generalize Birman–Menasco’s split/composite braid theorem:
we show that closed braid representatives of a split (resp. composite) link in a certain
open book can be converted to a split (resp. composite) closed braid by applying
exchange moves finitely many times.
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1 Introduction

This is a sequel of the papers [18; 19; 20] on open book foliations, in which techniques
to study the topology and contact structures of 3–manifolds are developed. The idea of
an open book foliation originally came from the works of Bennequin [1] and Birman
and Menasco [3; 4; 5; 6; 7; 8; 9; 10; 11].

In this paper we study three types of operations on open book foliations on surfaces
that are realized by isotopies of the surfaces: the b–arc foliation change (Section 3),
bypass move (Section 4) and exchange move (Section 5).

A b–arc foliation change and an exchange move are generalizations of Birman–
Menasco’s foliation change and exchange move in braid foliation theory. A bypass
move can be seen as an analogue of Honda’s bypass attachment in convex surface theory.

It is natural to expect our b–arc foliation change and exchange move on open book folia-
tions to be more complex than Birman and Menasco’s original moves on braid foliations.
In fact, we need additional assumptions to make these operations actually work.

Roughly speaking, a b–arc foliation change and a bypass move are associated to
isotopies interchanging the “heights” of a pair of adjacent saddle points of a surface.
A b–arc foliation change treats the case that two saddles have the same sign whereas a
bypass move treats the case with opposite signs.
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These isotopies are local in the sense that they take place in 3–balls. Hence both a b–arc
foliation change and a bypass move are local operations on open book foliations. Under
these operations, the total number of singularities of an open book foliation stays the
same. Moreover, if there are braids passing through the 3–balls, the isotopies preserve
the braid isotopy classes.

On the contrary, an isotopy realizing an exchange move may change the braid isotopy
class. (The braid index and the transverse link type of the braid are preserved.) Also
the number of singularities of an open book foliation decreases by an exchange move.

In the second half of the paper we discuss two applications:

We study the effect of (de)stabilizations of open books on open book foliations in
Section 6. We show that the open book foliation of a surface changes in two ways
after a stabilization of the open book. Next, we see that the resulting two open book
foliations are related to each other by bypass moves and exchange moves.

As applications of b–arc foliation changes and exchange moves, in Section 7 we
consider the split/composite closed braid theorems of Birman and Menasco [3] in the
setting of general open books and prove them under certain conditions.

2 Preliminaries

We assume that the readers are familiar with the basic definitions and properties of
open book foliations which can be found in [18; 19].

Let .S; �/ be an open book decomposition of a closed oriented 3–manifold M , where
S D Sg;r is a genus-g surface with r boundary components, and � 2 DiffC.S; @S/
is an orientation-preserving diffeomorphism of S that fixes the boundary pointwise.
The manifold M is often denoted by M.S;�/ . Let B denote the binding of the open
book and � W M nB! S1 the fibration whose fiber St WD �

�1.t/ is a page.

An oriented link L in M.S;�/ is called a closed braid with respect to the open
book .S; �/ if L is disjoint from the binding B and positively transverse to each
page St .

Let F �M.S;�/ be an embedded, oriented surface possibly with boundary. If F has
a boundary @F , we require that @F be a closed braid with respect to .S; �/. Up to
perturbation of F the singular foliation

Fob.F /D fF \St j t 2 Œ0; 1�g

satisfies the following conditions (see [19, Theorem 2.5]).

Algebraic & Geometric Topology, Volume 14 (2014)



Operations on open book foliations 2985

(F i) The binding B pierces the surface F transversely in finitely many points.
Moreover, p 2 B \F if and only if there exists a disc neighborhood Np �

Int.F / of p on which the foliation Fob.Np/ is radial with the node p ; see
Figure 1(1), (2). We call p an elliptic point.

(F ii) The leaves of Fob.F / along @F are transverse to @F .

(F iii) All but finitely many fibers St intersect F transversely. Each exceptional
fiber is tangent to F at a single point in Int.F /. In particular, Fob.F / has no
saddle–saddle connections.

(F iv) All the tangencies of F and fibers are of saddle type; see Figure 1(3), (4). We
call them hyperbolic points.

We say that an elliptic point p is positive (respectively negative) if the binding B is
positively (respectively negatively) transverse to F at p . The sign of the hyperbolic
point q is positive (respectively negative) if the positive normal direction of F at q

agrees (respectively disagrees) with the direction of t . We denote the sign of a singular
point v by sgn.v/. See Figure 1. We will describe an elliptic point by a hollowed
circle with its sign inside, a hyperbolic point by a dot with the sign nearby. We often
write a positive normal vector EnF to F , by dashed arrows.

Definition 2.1 We call each connected component of F \St a leaf . We say a leaf l

of Fob.F / is regular if l does not contain a tangency point and is singular otherwise.
The regular leaves are classified into the following three types.

a–arc: An arc where one endpoint lies on B and the other lies on @F .
b–arc: An arc whose endpoints both lie on B.

c–circle: A simple closed curve.

In order to study the topology and geometry of 3–manifolds M.S;�/ it is often important
to take the following homotopical properties of leaves into account.

Definition 2.2 [18] We say that a b–arc b � St is essential (respectively strongly
essential) if b is not boundary-parallel in St n .St \@F / (respectively St ). An elliptic
point v is called strongly essential if every b–arc that ends at v is strongly essential. An
open book foliation Fob.F / is called (strongly) essential if all the b–arcs are (strongly)
essential.

For a b–arc the conditions “boundary-parallel in St ” and “nonstrongly essential” are
equivalent. In this paper we prefer to use the former.

Essentiality is a natural condition in the sense that if F is incompressible then upon
application of an isotopy (possibly the identity) that fixes @F (if it exists) we may
assume F admits an essential open book foliation.
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(1) (2)

(3) (4)

B B

EnF EnF

EnF EnF

FF

t t

t t

F F

Figure 1: Signs of singularities and normal vectors EnF where (1) and (2) are
elliptic points and (3) and (4) are hyperbolic points.

Definition 2.3 We say a b–arc b in the page St is separating if b separates the
page St into two regions.

Clearly an inessential or boundary-parallel b–arc is separating. We will use this
separating condition in Proposition 3.2, Lemmas 7.7 and 7.6 below.


l1 l2

l1 l2

Figure 2: A describing arc (dashed) for a hyperbolic point

Definition 2.4 A hyperbolic point is regarded as a process of switching the configu-
ration of leaves. As t 2 Œ0; 1� increases, two regular leaves l1 and l2 approach along
an arc  (the dashed arc in Figure 2) connecting l1 and l2 . At a critical moment l1
and l2 form a hyperbolic point and the configuration changes. See the passage in
Figure 2. The embedding near the hyperbolic point is determined by the isotopy class
of the arc  . We call  a describing arc of the hyperbolic point and a dashed arc often
depicts a describing arc.
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Hyperbolic singularities in Fob.F / are classified into six types, according to the types
of nearby regular leaves: Type aa, ab , bb , ac , bc and cc as depicted in Figure 3.
Such a model neighborhood is called a region. We denote by sgn.R/ the sign of the
hyperbolic point contained in the region R.

aa–tile ab–tile bb–tile

ac –annulus bc –annulus cc –pants

Figure 3: Six types of regions

3 b–arc foliation change

In this section we generalize Birman–Menasco’s foliation changes of braid folia-
tions [7, page 123] to b–arc foliation changes of open book foliations (Theorem 3.1).

Here is the set up for a b–arc foliation change: Let .S; �/ be an open book decompo-
sition of a 3–manifold M and Fob.F / the open book foliation on F , where F is a
closed surface in the complement of a closed braid L or a Seifert surface of a closed
braid L.

We will use the underlined letter “a” to indicate the image of an arc a�St superimposed
on S by the projection St 3 .p; t/ 7! p 2 S . This allows us to compare leaves
in different pages. We assume that the region decomposition of F contains two
tiles R1; R2 satisfying the following conditions (i)–(iv). See Figure 4(a):

(i) Ri .i D 1; 2/ is either an ab–tile or a bb–tile.

(ii) sgn.R1/D sgn.R2/D " 2 fC1;�1g.

(iii) R1 and R2 are adjacent exactly at one b–arc b .

Algebraic & Geometric Topology, Volume 14 (2014)
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Let v (respectively A) be the negative (respectively positive) elliptic point at the end
of b , and l1; : : : ; l6 be boundary arcs of R1[R2 as depicted in Figure 4. Let B 2 @R1

and C 2 @R2 be positive elliptic points.
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Figure 4: b–arc foliation change

Suppose that lk � Stk
, where k D 1; : : : ; 6 and tk 2 Œ0; 1/, and the hyperbolic point

of Ri is sitting on the page S�i
. The open book foliation Fob.R1[R2/ imposes the

relations

�1 < t2;

maxft1; t3g< �1 < �2 <minft4; t6g;

t5 < �2:

In addition to the above conditions (i, ii, iii) we further require that

maxft1; t3; t5g< �1 < �2 <minft2; t4; t6g;

or

(iv) t1 D t3 D t5 < �1 < �2 < t2 D t4 D t6 .
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Let i denote the describing arc for the hyperbolic point in Ri (i D 1; 2). We may
assume that 1 joins l1 and l3 . See Figure 5.
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Figure 5: The superimposed graph in S : The bold (respectively thin) arrows
represent parts of the oriented binding (respectively leaves).

By sliding 2 along b , we can further assume that 2 joins l3 and l5 . Because
sgn.R1/D sgn.R2/D ", if we walk along l3 from B to v , regardless of the sign ",
we meet 1 first then 2 . Both 1; 2 lie on the same side of l3 . In general the arcs
l1; l3; l5; 1; 2 may intersect each other.

Theorem 3.1 (b–arc foliation change) Assume that R1;R2 satisfy the above condi-
tions (i)–(iv). Suppose that the graph l1[ l3[ l5[1[2 (see Figure 5) is a tree in S .
Then there is an ambient isotopy ˆ� W M !M supported on M nB such that:

(1) F 0 D ˆ1.F / admits an open book foliation Fob.F
0/; if Fob.F / is essential,

then so is Fob.F
0/.

(2) The region decomposition of Fob.F
0/ contains regions R0

1
;R0

2
(see (b) and (c)

in Figure 4) such that:

(a) Their type is either aa, ab , or bb–tile.
(b) sgn.R0

1
/D sgn.R0

2
/D " as in (ii).

(c) ˆ1.R1[R2/DR0
1
[R0

2
.

(d) R0
1
\R0

2
is exactly one leaf l of type a or b .

(e) The numbers of the hyperbolic points connected to v and A by a singular
leaf decrease both by one, though the total number of hyperbolic points
remains the same.

(3) ˆt preserves the region decomposition of F n .R1[R2/.

(4) If @F is nonempty ˆt .@F / is a closed braid with respect to .S; �/ for all
t 2 Œ0; 1�, ie LD @F and L0 D @F 0 are braid isotopic.
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Proof Let N DN.l1[ l3[ l5[ 1[ 2/�S be a regular neighborhood of the graph
G D l1[ l3[ l5[ 1[ 2 . Since G is a tree, N is planar and there is an embedding
� of N in D2 such that �.@S \N /� @D2 . See Figure 6.

1

2

l1

l3

l5

,!
�

Figure 6: An embedding �W N ,!D2 when "DC1 .

We may assume that the region R1 [R2 is embedded in N � Œt1; t2�, hence also
in D2� Œt1; t2�. The foliation on the surface .�� id/.R1[R2/�D2� Œt1; t2� induced
by the family of discs fD2 � ftg j t 2 Œt1; t2�g is the same as that on Fob.R1 [R2/.
Theorem 2.1 of Birman and Finkelstein [2] guarantees the existence of a desired
isotopy ˆt .

(a) (b) (c)t l6

l2

l4

l1

l5

l3

Figure 7: An isotopy ˆt of R1[R2 that realizes a b–arc foliation change.

Here we sketch the transition of ˆt .R1 [R2/ from t D t1 to t D t2 when "DC1.
Figure 7(a) depicts the interior of R1[R2 , where the two saddles lie on the different
pages S�1

and S�2
of the open book. We perturb the surface so that the saddles get

closer until amalgamated to a monkey saddle, or a valence 6 saddle; see Figure 7(b).
By further perturbation the singular point splits into two hyperbolic points as shown
in Figure 7(c). The isotopy replaces 1; 2 (the top row of Figure 8) with  0

1
;  0

2
(cf

the bottom row). This results in a change in the open book foliation of R1 [R2 as
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Figure 8: Replacing describing arcs where "DC1

depicted in Figure 4. For example, Figure 8 corresponds to the passage (a)!(c) in
Figure 4.

Finally it is easy to see the assertion (1). If Fob.F / is essential and Fob.F
0/ is

inessential then the leaf l DR0
1
\R0

2
must be inessential. This implies that at least one

of the leaves li must be inessential, which is a contradiction. (In the case of Figure 8,
at least one of l1 or l4 is inessential.)

In general, checking the assumption of Theorem 3.1 is not so simple, but there is one
sufficient condition which is easier to check:

Proposition 3.2 In addition to the conditions (i)–(iv), assume further that the com-
mon b–arc b of the tiles R1 and R2 is separating in the sense of Definition 2.3. Then
the graph l1[ l3[ l5[ 1[ 2 is a tree in S .

Proof Suppose that " D C1 (for the case " D �1 a parallel argument holds). Let
S n b DD tD0 , where D (respectively D0 ) is the connected region on the left (right)
side of b as we walk along b from the positive elliptic point A to the negative elliptic
point v . See Figure 9.

Note that v and A lie on the same boundary component of S because b is separating.
The vertex C (respectively B ) lies on @D (respectively @D0 ) but not necessarily
on the same boundary component on which v and A lie Since l1; 1 and l3 are
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Figure 9: The regions D and D0 when "DC1 . Vertices B and C may not
be on the same binding component (bold arrows) where A and v lie.

contained in the same page St1
, their images l1; l3; 1 form a tree in S , and the

tree l1[ l3[ 1 is disjoint from Int.D/. The tree 2[ l5 is contained in D . Hence
the graph .l1[ l3[ 1/[ .2[ l5/ is a tree in S .

The above argument implies the following:

Corollary 3.3 If b is boundary-parallel (so D or D0 is a disc region) then l3 or l4 is
boundary-parallel.

Remark The essential point in the above proof is that Int.2/ and l1[ l3 are disjoint,
so our problem is reduced to a problem in braid foliation theory, a theory for the trivial
open book .D2; id/. Suppose that 2 is parallel to 1 as in Figure 10.

1

2

l1

l3

l5

Figure 10: Nested saddles

The right sketch shows the saddles for 1 and 2 are nested. The saddle of 2 can
exist only after the saddle of 1 , so the trick of replacing the order of describing arcs
(cf Figure 8) does not work.
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The existence of nested saddles is a unique feature of open book foliations. In braid
foliation theory no b–arcs are strongly essential because the page S is a disc, so by
Proposition 3.2 if sgn.R1/ D sgn.R2/ the graph l1 [ l3 [ l5 [ 1 [ 2 is always a
tree in S and nested saddles do not exist.

Remark One might consider an a–arc foliation change under a similar setting where
two tiles of the same sign are adjacent along an a–arc, instead of a b–arc. However,
“a–arc foliation change” does not work in general. This is why we call our operation b–
arc foliation change, rather than simply calling it foliation change. We thank Bill
Menasco for pointing this out and informing us of the importance of the separating
condition on the b–arc b in Proposition 3.2.

4 Bypass move

In the setting of a b–arc foliation change the two adjacent tiles R1;R2 must have
the same sign. This raises a natural question: how about the case where two adjacent
regions have opposite signs?

Birman and Menasco observed in braid foliation theory that the opposite sign case
is more complicated than the same sign case: They found that the complement of
the hexagon region F n .R1[R2/ or a closed braid may prevent the desired height
exchange of the saddles (see [3, Figure 11b]). Thus validity of similar moves in open
book foliation theory should reflect global features of the surface F .

In this section we study when the “heights” of hyperbolic points of opposite signs
are exchangeable. A short answer to this question would be “when there exists a
bypass-rectangle”, which we define shortly. We start by defining dividing sets whose
idea comes from Giroux’s dividing sets for convex surfaces [15, Section 2]; see also
Honda [16, Section 3.1.3].

Definition 4.1 (Dividing set) Let F �M.S;�/ be a surface admitting an open book
foliation Fob.F / with no c–circles. (In [19] we prove that by finger moves we can
always get rid of c–circles.) Let � �F be a set of properly embedded arcs and circles
that decompose F into regions FC and F� such that:

� F n� D FC tF� .
� As sets (forgetting orientations), � D @FC n @F D @F� n @F .
� The leaves of Fob.F / along � are oriented out of the region FC and into F� .
� FC contains all the positive singularities of Fob.F /.
� F� contains all the negative singularities of Fob.F /.

We call � the dividing set of Fob.F /.

Algebraic & Geometric Topology, Volume 14 (2014)
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Given an open book foliation Fob.F / with no c–circles, the region F� can be identified,
up to isotopy, with a collar neighborhood of the graph G�� of Fob.F / (see [19] for
definition), hence � is uniquely determined up to isotopy.

Next we will define a bypass rectangle which is inspired by Honda’s bypass half–
disc [16, Section 3.4].

Definition 4.2 (Bypass rectangle) Let D �M.S;�/ be a rectangle such that:

(1) Fob.D/ contains a hyperbolic point of sign " (see Figure 11).

(2) The boundary @D consists of four piecewise smooth curves ı1; : : : ; ı4 such
that the oriented leaves are pointing out of (respectively into) D along ı1; ı3
(respectively ı2; ı4 ).

Denote the four corner points by p;p0; q; q0 . We call D a bypass rectangle of
sgn.D/D ".

ı1

ı3

ı4 ı2

"

p q

p0 q0

Figure 11: Bypass rectangle D (shaded) embedded in a degenerate aa–tile

Definition 4.3 (Type1, Type2 hexagon R) Let F �M.S;�/ be a surface admitting
an open book foliation. Suppose that F contains a hexagon region R consisting of
two bb–tiles of opposite signs meeting along a b–arc as in Figure 12(1). We name
the vertices (elliptic points) A;B;C;D;E;F counterclockwise. We may assume that
sgn.A/ D sgn.C / D sgn.E/ D C1 and sgn.B/ D sgn.D/ D sgn.F / D �1. We
require that the boundary b–arcs AB;CD;EF lie on the same page of the open book
and BC ;DE;FA lie on another same page.

Let p; q denote the two hyperbolic points of R. From now on we assume that

sgn.p/DC1; sgn.q/D�1:

(If sgn.p/D�1, sgn.q/DC1, similar statements hold.) With this sign assumption
there are two possible movie presentations realizing the open book foliation Fob.R/.
See Figure 13. We call them Type1 and Type2.
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(1) hexagon R A

B

C

D

E

F

p

q

retrograde

prograde

(2)
A

B

C

D

E

F

(3)

A

B

C

D

E

F

Figure 12: (1) Original hexagon R . (2) Hexagon after retrograde bypass
move. (3) Hexagon after prograde bypass move; dashed arcs are dividing
sets; shaded regions are negative and unshaded regions are positive.

Theorem 4.4 Suppose there exists a bypass rectangle D in M nF such that:

(1) The union of arcs ı1[ı2[ı4 � @D is glued to the thick gray arc in Figure 12(1)
that joins the dividing curves and contains p and q .

(2) p 2 @D is identified with p 2R.

(3) q 2 @D is identified with q 2R.

(4) p and q0 live on the same page of the open book (Figure 14(1)).

(5) p0 and q live on the same page of the open book (Figure 14(6)).

(6) sgn.D/D
�
C1 if R is of Type1;
�1 if R is of Type2:

Then by a local perturbation of F supported on a neighborhood of R[D , the open
book foliation changes in the following ways.

(i) If R is of Type1, Fob.R/ changes as in the passage .1/! .2/ of Figure 12 and
the dividing set also changes.

(ii) If R is of Type2, Fob.R/ changes as in the passage .1/! .3/ of Figure 12 but
the dividing set stays the same.
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B
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B
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C
D

E
F

AB

C
D

E
F

AB

C
D

E
F

Type1

Type2

p

q

q

p

Figure 13: Movie presentations of Type1 and Type2 hexagon R

Proof We study the Type1 case carefully. Similar arguments work for the Type2 case.
Figure 14 shows a movie presentation of a bypass rectangle D attached to a Type1
hexagon R along ı1; ı2; ı3 .

(1) (6)

F

q0

C

B

D A

E F

p0
p D p

q D q
F

.C/

ı4

F
(2) (5)

ı1

ı2
ı3

ı4

F

(3) F
ı1

ı2

ı3

ı4 (4)
ı1

ı2
ı3

ı4 F

ı1

ı2ı3

Figure 14: A movie presentation of a bypass rectangle D attached to a Type1
hexagon R
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B

C D A

E F
B

C D

E

A

F

before perturbation p D p , q D q after perturbation p0 D p , q0 D q

p

qp0

q0ı4 ı1

ı3 ı2
"DC1

p

q

p0

q0

"DC1

Figure 15: A Type1 hexagon R slid along the bypass rectangle D .

Locally D and R are embedded as in the left sketch of Figure 15.

The bypass plays a role of “stopper” that blocks other surfaces or braids (indicated by
F in Figure 14) from coming from the region between C and D , moving through p

and q , and then escaping into the region between A and F . Therefore we can slide
the hexagon R along the rectangle D . This perturbation slides the hyperbolic point p

along the arc ı4 from p to p0 . Similarly q is slid along ı2 from q to q0 . After the
perturbation the arc ı3 sits on the new R but ı1 no longer sits on the new R. See
Figure 16.

A
B

C D

E F

A
B

C D

E F

A
B

C D

E F

A
B

C D

E F

retrograde bypass move

ı1

ı2

ı3

ı4

ı1

ı2ı3

ı4

Figure 16: A bypass rectangle D (indicated by thick arcs) before/after a
retrograde bypass move applied on a Type1 hexagon: sgn.D/DC1 .

Definition 4.5 (Retrograde/prograde bypass moves) The above perturbation of a
Type1 hexagon region interchanges the “heights” of the hyperbolic points p , q . At
one moment p , q have the same height. That is, p and q lie on the same page of the
open book and are joined by a singular leaf of the open book foliation. The singular
leaf is oriented from q to p . Recall that sgn.p/DC1, sgn.q/D �1. Namely the

Algebraic & Geometric Topology, Volume 14 (2014)



2998 Tetsuya Ito and Keiko Kawamuro

AB

C D

EF

AB

C D

EF

AB

C D

EF

AB

C D

EF

prograde bypass move

ı1

ı2

ı4

ı3

ı2

ı1

ı3

ı4

Figure 17: A bypass rectangle D before/after a prograde bypass move applied
on a Type2 hexagon: sgn.D/D�1 .

singular leaf is oriented from a negative hyperbolic point to a positive hyperbolic point.
Such a singular leaf is called a retrograde saddle–saddle connection. Thus we call the
foliation change depicted in (1)!(2) of Figure 12 a retrograde bypass move.

On the other hand, for a corresponding perturbation of a Type2 hexagon, the saddle–
saddle connection is prograde, that is, the singular leaf is oriented from a positive
hyperbolic point to a negative hyperbolic point. Thus we call the change in foliation
depicted in (1)!(3) of Figure 12 a prograde bypass move.

We name the rectangle D a bypass because our retrograde bypass move and Honda’s
bypass attachment in convex surface theory yield exactly the same configuration change
in dividing sets (compare Honda’s [16, Figure 6] with our Figure 12).

Remark In his thesis [21, pages 123-124], LaFountain observes that the “nonstandard”
change of braid foliation of Birman–Menasco which does change the graph GCC is
accomplished through a bypass.

In [12], Dynnikov and Prasolov introduce a bypass for a rectangular diagram, a certain
diagrammatic expression of a (Legendrian) link in the standard contact S3 . Their
bypass can be turned into a Honda–bypass for the corresponding Legendrian link.

Although in [21; 12] techniques of braid foliations are extensively used we remark that
our bypass and their bypasses have differences. For example, we have two types of
bypass moves, prograde and retrograde.
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5 Exchange moves

In this section we study exchange moves of open book foliations and closed braids.

First we recall the exchange move in braid foliation theory, which is one of the most
fundamental operations on braid foliations and has numerous applications to the study
of knots and links in S3 and transverse links in the standard contact S3 [11].

An exchange move is a move of a closed braid in S3 D M.D2;id/ as depicted in
Figure 18. It is a composition of a positive stabilization, braid isotopy and a positive
destabilization. Suppose that braids L;L0 are related to each other by an exchange
move. The conjugacy classes of L and L0 are different in general but L and L0 have
clearly the same braid index and the same transverse link type [11].

exchange
move

L L0

A A

B B

Figure 18: Exchange move of a closed braid in S3

Let F be a Seifert surface of L or an incompressible closed surface in S3 nL. An
exchange move of L is related to an isotopy of the surface F . Consider a situation as
depicted in Figure 19(1).

We isotope L as in the passage (1)!(2). As a consequence inessential b–arcs appear
in the braid foliation. Next we push down the surface to remove the inessential b–arcs
(Figure 19(3)).

The exchange move simplifies the braid foliation of F . It removes two elliptic points of
opposite signs and two hyperbolic points of opposite signs in the (shaded) disc region
of F , as described in Sketch (4)!(5) of Figure 19 but it preserves the braid foliation
on the rest of the surface.

The next theorem generalizes Birman–Menasco’s exchange move.

Theorem 5.1 (Exchange moves in general open books) Let L be a closed braid
in M.S;�/ and F be a Seifert surface of L. Assume that there exists a nonstrongly
essential elliptic point v 2 Fob.F / where exactly two regions R1 and R2 meet and
satisfy the following:
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(1) (2) (3)

(4) (5)

L

F F 0

Fob.F / Fob.F
0/

Figure 19: Braid foliation before and after an exchange move of L

� sgn.R1/D�sgn.R2/.
� type.R1/D type.R2/D bb when sgn.v/DC1.
� type.R1/; type.R2/ 2 fab; bbg when sgn.v/D�1.

Then there exists an isotopy ˆt W M !M that takes F Dˆ0.F / to F 0 Dˆ1.F / and
LDˆ0.L/ to L0 Dˆ1.L/ with the following properties:

(1) There exist discs D � F and D0 � F 0 such that:

(a) Fob.F nD/ is topologically conjugate to Fob.F
0 nD0/.

(b) Fob.D/ has ˙ elliptic points and ˙ hyperbolic points as in Figure 20(1),
but Fob.D

0/ has no singularities as in Figure 20(3).

(2) L and L0 have the same braid index with respect to the open book .S; �/ (but
they may not be isotopic in the complement of the binding).

(3) L and L0 are transversely isotopic links in the contact structure �.S;�/ .

Definition 5.2 (Exchange moves) (i) We call the change Fob.F /! Fob.F
0/ (in

Theorem 5.1) an exchange move of the open book foliation.

(ii) We call the braid move L! L0 (in Theorem 5.1) the exchange move of L

subordinate to the exchange move Fob.F /! Fob.F
0/.

Remark With a slight modification a similar statement as in Theorem 5.1 holds
when F is a closed surface in M nL. In fact in Section 7 we study a case where F'S2

and Fob.F / admits exchange moves.

Remark Although in braid foliation theory Fob.F / is necessarily essential, here we
do not require essentiality of Fob.F /.
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(1) Fob.F / (3) Fob.F
0/

(2)

wD

D

w w

w

"

�"

R2

R1
v

D0

Figure 20: An exchange move of an open book foliation

Proof We may assume that sgn.v/D�1 and sgn.R1/D�sgn.R2/DC1. Similar
arguments hold for other cases. Here is an outline of the proof:

In Step 1, we define a surface F 00 embedded in M.S;�/ such that Fob.F
00/D Fob.F /

topologically conjugate. In Step 2, we find a continuous family of surfaces fFtg

embedded in M.S;�/ such that F0 D F and F1 D F 00 . In Step 3, we construct F 0

from F 00 and verify (1) and (2). In Step 4, we verify (3).

Step 1 For i D 1; 2, let hi denote the hyperbolic point in Ri and let Sti
be the

singular fiber that contains hi . For t ¤ t1; t2 , let bt � St be the b–arc of Fob.F / that
ends at v . Since v is nonstrongly essential, we may assume that 0< t1 < 0:5< t2 < 1

and bt is nonstrongly essential for t 2 .t1; t2/, thus bt and a binding component
cobound a disc �t in St .

Figure 21 shows a movie presentation of F in a neighborhood of R1[R2 , where � > 0

is a very small number, w;wD denote the positive elliptic points from which b0; b0:5

start, and each box may be empty or contain part of a–arcs, b–arcs, c–circles, and a
singular leaf. Triple parallel arcs represent some number (possibly zero) of arcs, and
the shaded regions indicate a neighborhood of X [ b0 , where

X WD
[

t1<t<t2

�t ŠD2
� .t1; t2/:

We define the surface F 00 by replacing the part of F depicted in Figure 21 by the
description in Figure 22, which is obtained by moving the boxes B1; : : : ;B6 and their
foot between v and wD to the negative side of w .

By construction, F and F 00 are homeomorphic and their open book foliations Fob.F /

and Fob.F
00/ are topologically conjugate. If Fob.F / is essential then Bi are nonempty,
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St1�� St1 S0:5

St2�� St2 S0

v

wD

w
.C/

.�/

A1

B1

D1

E1

A2

B2

D2

E2

A3

B3

C3

A4

B4

D4

E4

A5

B5

D5

E5

B6

D6

E6

b0

Figure 21: A movie presentation of F near X[b0 : Shaded regions represent
a neighborhood of X [ b0 .

St1�� St1 S0:5

St2�� St2 S0

v

wD

w
.C/

.�/

A1

B1

D1

E1 A2

B2

D2

E2 A3

B3

C3

A4

B4

D4

E4 A5

B5

D5

E5

B6

D6

E6

Figure 22: (Step 1) A movie presentation of F 00 near X [ b0

but in general all of Bi can be empty and in that case F 00 D F . In any case the braids
LD @F and @F 00 have the same braid index.

Step 2 By [3, Lemma 4; 6, Lemma 5] (see also [2, Theorem 2.2, Figure 2.19]), there
is an isotopy ˆ0t W M !M that takes F \X out of X and moves along b0 down
to the negative side of w ; see, for example, the items (1)–(6) in Figure 24. We have
ˆ0

1
.F /D F 00 .

Step 3 By the construction of F 00 the b–arcs bt of Fob.F
00/ for t 2 .t1; t2/ are

inessential (see Figure 22). Push F 00 along a disc �t for some t 2 .t1; t2/ as shown in
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Figure 23 to remove the inessential b–arcs and the elliptic points w and v . Call the
surface F 000 .

wD

v

�t

F 00 F 000

Figure 23: (Step 3) Push F 00 along �t

The surface F 000 does not admit an open book foliation as it has two local extrema; see
Figure 20(2). Flatten the two pairs of local extremum and saddle tangency and call
the resulting surface F 0 , whose open book foliation is depicted in Figure 20(3). This
concludes the statement (1).

If the boxes B1; : : : ;B6 are empty, the surface change F!F 0 is (the inverse of) what
is called a finger move in [19]. During the process

F 00
pushing
����! F 000

flatten
���! F 0

the boundary is fixed, so L0 D @F 0 and @F 00 have the same braid index. With the
observation at the end of Step 1, we verify the statement (2).

Step 4 It remains to show the statement (3), that is, LD @F and L0D @F 0 are indeed
transversely isotopic. So far we have three isotopies: ˆ0t , pushing along �t , and the
flattening. Denote the concatenation of the three by ˆt W M !M , hence ˆ0.F /D F

and ˆ1.F /DF 0 . Note that Lt Dˆt .L/ may not be in a braid position relative to the
open book for some t 2 .0; 1/.

To prove L and L0 are transversely isotopic, we relate them by a sequence of positive
(de)stabilizations and braid isotopy, all of which preserve transverse link types. We use
an idea of Birman and Menasco in [10, page 421]: First we positively stabilize the part
of L that goes through X along the b–arc bt1�" .

See Figure 24, where all the braid strands may be weighted and boxes contain braidings.
After braid isotopy, we positively destabilize it so that the resulting braid L0 does not
go through X . If L does not go through X then clearly LDL0 .
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(1) (2) (3)

(4) (5) (6)

stabilization

braid isotopy

braid isotopy

destabilizationbraid isotopy

bt1�"

X

X

v

w

wD

Figure 24: (Step 4) Realizing an exchange move as transverse isotopy

Our exchange move is related to Giroux’s elimination of a pair of elliptic and hyperbolic
points of the same sign and connected by a singular leaf in a characteristic foliation. In a
neighborhood of R1[R2 we may identify the open book foliation and the characteristic
foliation by the structural stability theorem in [19]. We see two elimination pairs in
the shaded region of Figure 20(1). Applying Giroux elimination twice, we get a
characteristic foliation topologically conjugate to Figure 20(3). Despite this fact, an
exchange move and a Giroux elimination are different in the following sense:

� A Giroux elimination can be achieved by a C 0 –small perturbation that is sup-
ported on a small neighborhood of the singular leaf joining the elimination pair,
whereas the exchange move requires global isotopy (ie not C 0 –small and not
supported on a small neighborhood of D ). Moreover the latter might change
the braid isotopy class of LD @F though it preserves the transverse link type.

� One can apply a Giroux elimination without the nonstrongly essential condition
on the elliptic point v , but for an exchange move this assumption is necessary.

� An exchange move on Fob.F / eliminates two pairs of elliptic and hyperbolic
points at the same time. It is, in general, impossible to eliminate only one of
the two pairs. But a Giroux elimination can apply to each pair separately. (In
braid/open book foliation theory an operation called destabilization of a closed
braid eliminates one pair.)
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6 Stabilization and open book foliations

In this section we study how the open book foliation Fob.F / of a surface F �M.S;�/

changes under a stabilization of the open book.

Let .S; �/ be an open book. Let ˛ � S be a properly embedded arc in S . Let S 0

denote the surface S with an annulus A plumbed along ˛ . Let

�0˙ WDD˙˛ ı
z� 2 DiffC.S 0; @S 0/

where D˛ is the positive Dehn twist along a core circle of the attached annulus A, and
z�W S 0! S 0 is an extension of �W S! S such that z� D � on S and z� D id on S 0 nS:

We call the new open book .S 0; �0
˙
/ a positive/negative stabilization of .S; �/ and

the arc ˛ a stabilization arc. It is known that (see Etnyre’s survey [13] for example)
M.S 0;�0/ and M.S;�/ are homeomorphic.

To compare and relate open book foliations with respect to the different open books
.S; �/ and .S 0; �/, we view the page St as a subsurface of S 0t as follows. Since S 0

is the surfaces S and A plumbed along ˛ there is a natural inclusion map

�W St ! S 0t

for each page. Cutting open the manifold M.S;�/ (respectively M.S 0;�0/ ) along (the
closure of) the page S0 (respectively S 0

0
) we get a product region S�Œ0; 1� (respectively

S 0 � Œ0; 1�). With the inclusion map � we may regard �.S � Œ0; 1�/¨ S 0 � Œ0; 1�.

In the following we construct a surface F 0 in M.S 0;�0/ homeomorphic to F by modi-
fying the slices �.St \F /� S 0t . We start with a trivial case. Let ˛t WD ˛� ftg � St .

Proposition 6.1 If F � M.S;�/ does not intersect ˛0 then there exists a surface
F 0 � M.S 0;�0/ such that F ' F 0 are homeomorphic and Fob.F / ' Fob.F

0/ are
topologically conjugate.

Proof We construct F 0 so that F 0 \S 0t D �.F \St / for every t 2 Œ0; 1/. Then F 0

does not intersect the arc �.˛0/� S 0
0

. Therefore

F 0\S 00DD˙1
˛ .F 0\S 00/DD˙1

˛ ı�ı�.F\S1/DD˙1
˛ ı
z�ı�.F\S1/D�

0.F 0\S 01/;

so we can identify the multicurves F 0\S 0
0

and F 0\S 0
1

by the monodromy �0 and
obtain a surface F 0 �M.S 0;�0/ . Then from the construction it is clear that F 'F 0 and
Fob.F /D Fob.F

0/.
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Next we consider the case where F intersects the stabilization arc ˛0 � S0 . Let
x̨t � St be a collar neighborhood of ˛t . Assume that F intersects x̨0 in m disjoint
arcs ˇi � f0g,

F \ x̨0 D .ˇ1[ � � � [ˇm/� f0g;

where:

� ˇi � S is an arc traversing the plumbed annulus A (see Figure 26).
� The geometric intersection number i.ˇi ; ˛/D 1.
� ˇi � f0g is a subarc of some b–arc bi of the open book foliation Fob.F /,

possibly bi D bj for some i ¤ j .

We construct surfaces F 0 and F 00 in the stabilized open book .S 0; �0/ that are homeo-
morphic to F .

.1/ D

bi

.2/ D0

ˇ0i � f0g

� 0i � f0g

D �i � f1g

ˇi � f"g

p0i q0i

.3/ D00

p00i q00i

Figure 25: (1) A bigon in D � F , (2) two adjacent bb–tiles forming a bigon
in D0 � F 0 , (3) two adjacent bb–tiles forming a bigon in D00 � F 00 ; the
hyperbolic points satisfy sgn.p0i/D�sgn.p00i /D�sgn.q0i/D sgn.q00i / for
i D 1; : : : ;m .

Proposition 6.2 Suppose that F � M.S;�/ intersects nontrivially the stabilization
arc ˛0 in m points. We further assume that bi¤bj for i¤ j , that is, every b–arc in S0

intersects ˛0 in at most one point. Then there exist surfaces F 0 and F 00 �M.S 0;�0/

such that

(6-1) F ' F 0 ' F 00

are homeomorphic, and

(6-2) Fob.F nD/' Fob.F
0
nD0/' Fob.F

00
nD00/
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are topologically conjugate, where:

� D � F is a disjoint union of m bigons foliated only by b–arcs; see Figure 25.

� D0 � F 0 is a disjoint union of m bigons each of which consists of two adjacent
bb–tiles of opposite signs.

� D00 � F 00 is exactly the same as D0 after exchanging the signs of the bb–tiles
for each bigon.

Remark If bi1
D bi2

D � � �D bik
for some 1� i1< � � �< ik �m that is, if some b–arc

in S0 intersects the stabilization arc ˛0 in more than one point, after some modification
of the descriptions of D;D0;D00 , the same results (6-1) and (6-2) still hold: For example,
jDjD jD0jD jD00j is no longer m but it becomes less than m. Also Sketches (2) and (3)
of Figure 25 become more complicated and each should contain 2.kC 1/ bb–tiles.

Proof We prove Proposition 6.2 only for the case �0 D �0C (positive stabilization)
since a parallel argument holds for the case �0 D �0� .

We may assume that there exists " > 0 such that Fob.F / has no hyperbolic points in
the family of pages fStg0�t�" and

F \ x̨t D .ˇ1[ � � � [ˇm/� ftg for 0� t � ":

We assume ˇ1; : : : ; ˇm are lined up from the left to the right as in Figure 26. Recall
that ˇi � f0g is a subarc of a b–arc bi � Fob.F /. The orientation of bi induces an
orientation of ˇi . Let �1; : : : ; �m be essential arcs of A lined up from the right to the
left as in the left sketch of Figure 26. We orient �i in the opposite direction to the
orientation of ˇi (ie if ˇi is oriented “upward” then �i is oriented “downward” and
vice versa.)

�m � � � �1

ˇ1 � � � ˇm

˛

A

� 0m � � � � 01

ˇ01 � � � ˇ
0
m

Figure 26: The arcs ˇi ; �i ; ˇ
0
i DD˛.ˇi/ and � 0i DD˛.�i/; the dashed line

represents the stabilization arc ˛ ; the shaded rectangle where the left and the
right edges are identified represents the plumbed annulus A .
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We construct F 0 and F 00 by defining intersections with the pages S 0t .

For "� t � 1 let

(6-3) F 0\S 0t D F 00\S 0t D �.F \St /[

m[
iD1

.�i � ftg/:

Viewing the arc �i � ftg as a b–arc of the open book foliation, the orientation of �i

determines signs of the elliptic points at @�i � @A.

For t D 0 let

F 0\S 00 D F 00\S 00 DD˛.�.F \S0//[

m[
iD1

.� 0i � f0g/D �
0.F 0\S 01/;

where � 0i WDD˛.�i/ as in Figure 26.

For 0� t � " we define F 0 and F 00 by movie presentations. Let ˇ0i WDD˛.ˇi/. We
make ˇ0i and � 0i come closer

� for F 0 starting from i D 1 to m along the describing arcs in Figure 27(1),
� for F 00 starting from i Dm to 1 along the describing arcs in Figure 27(2).

Call the resulting saddle points p0i 2 F 0 and p00i 2 F 00 respectively. Notice that we set
the orientation of �i so that the hyperbolic points p0i and p00i have opposite signs. We
further form hyperbolic points q0m; : : : ; q

0
1

for Fob.F
0/ and q00

1
; : : : ; q00m for Fob.F

00/

by using the describing arcs as depicted in Figures 27(3) and (4) respectively. On the
level t D " the condition (6-3) is satisfied. We have

sgn.p0i/D�sgn.p00i /D�sgn.q0i/D sgn.q00i /

and the bb–tiles of Fob.F
0/ (respectively Fob.F

00/) containing p0i and q0i (respec-
tively p00i and q00i ) are adjacent and form a bigon as depicted in Figure 25(2) (respectively
(3)).

We find pictorial similarity between the passage (2)!(1) in Figure 25 and the pas-
sage (1)!(3) in Figure 20. The former is the consequence of the destabilization
.S 0; �0/ ! .S; �/ and the latter is caused by an exchange move. Important differ-
ences are:

� For an exchange move the b–arc corresponding to � 0i � f0g must be boundary-
parallel, whereas for a destabilization � 0i � f0g is an essential arc.

� Under an exchange move the open book .S; �/ stays the same, but not under a
destabilization.
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(1) F 0\S 00

� 0m � � � �
0
1

ˇ0
1
� � � ˇ0m

(2) F 00\S 00

� 0m � � � �
0
1

ˇ01 � � � ˇ
0
m

(3) F 0\S 0
"=2

(4) F 00\S 0
"=2

�m � � � �1

ˇ1 � � � ˇm(5) F 0\S 0" D F 00\S 0"

Figure 27: .1/ ! .3/ ! .5/: Movie presentation of F 0 for 0 � t � ";
.2/! .4/! .5/: Movie presentation of F 00 for 0� t � "

We have constructed two different surfaces F 0 and F 00 homeomorphic to F in a
stabilized open book. They are related to each other in the following way:

Proposition 6.3 The two surfaces F 0;F 00 � M.S 0;�0/ constructed in the proof of
Proposition 6.2 are isotopic to each other. For example, they can be related to each
other by exchange moves and bypass moves (see Figure 28):

F 0 sketch.1/
exchange�1

�������! sketch.2/
bypass
����!

bypass
����! sketch.3/

exchange
�����! F 00 sketch.4/:

Proof For simplicity we assume mD1, ie the number of bigon regions jD0jD jD0jD1

and we call the bigons D0 and D00 , respectively, by abusing the notation. (If m > 1

each arc in Figure 28 is replaced by parallel m arcs and we apply similar constructions.)
There are many ways to relate D0 and D00 . In the following we present one of the
ways.

Denote the elliptic points of D0 by A;B;C;D as in Sketch (1) of Figure 28 such
that sgn.A/D sgn.C /D �sgn.B/D �sgn.D/DC1. We apply the inverse of an
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A

B

C

D

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

F

(1) D0

exchange
move inverse

(2) D1

bypass
moves

(3) D2

exchange
move

(4) D00

Figure 28: (1) bigon D0 � F 0 , (2) bigon D1 , (3) bigon D2 , (4) bigon D00 � F 00

exchange move to D0 to insert two adjacent bb–tiles between A and D as in Sketch (2),
where E and F denote new positive and negative elliptic points, respectively. We call
the resulting bigon of four bb–tiles D1 .

Next we apply a retrograde bypass move to the left half of D1 and then apply a prograde
bypass move to the right half of D1 . Detailed movie presentation and bypass rectangles
of the transition from D1 to D2 are depicted in Figure 29.

Finally we get rid of two bb–tiles of D2 that share the elliptic points D and E by an
exchange move and we obtain the bigon D00 .

7 Split closed braid theorem and composite closed braid
theorem

In this section we prove the split/composite braid theorem by using the b–arc foliation
change and exchange move.

Definition 7.1 Let L be a link in a closed oriented 3–manifold M . We say that L is
a split link if there exists a 2–sphere that separates components of L. We call such a
sphere a separating sphere for L.

Similarly, we say that L is a composite link if there exists a 2–sphere that intersects L

in exactly two points and decomposes L as a connected sum of two nontrivial links.
We call such a sphere a decomposing sphere for L.

The above notions of split/composite link are extended to those for closed braids relative
to open books. (For braid foliations they are defined in [3].)
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DEF
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C

DEF

A

B

C

DEF

A
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C

DEF

.10/

.20/ .200/

retrograde

bypass move

.30/

.40/ .400/

prograde

bypass move

.50/

Figure 29: (10! 20! 30! 40! 50 ) movie presentation of D1 ; (10! 200!

30! 400! 50 ) movie presentation of D2 ; thick arcs (red) represent bypasses.

Definition 7.2 Let L�M.S;�/ be a closed braid with respect to .S; �/. We say that L

is a split/composite closed braid if there exists a separating/decomposing sphere F

for L such that Fob.F / has exactly one positive elliptic point, one negative elliptic
point and no hyperbolic points, namely F intersects the binding in two points.

Clearly a split/composite closed braid with respect to .S; �/ is a split/composite
link in M.S;�/ , but the converse is not true in general. This is because a separat-
ing/decomposing sphere might be embedded in a complicated way relative to .S; �/.
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In fact, for the special case where M.D2;id/ ' S3 Birman and Menasco construct an
example of split link and its 4–braid representative that cannot be isotopic to a split
closed braid in the complement of the braid axis [3, page 116]. Also in [22] Morton
finds a 5–braid representative of a composite link that is not conjugate to a composite
5–braid.

However, if we are allowed to use exchange moves the converse holds: In [3] Birman
and Menasco prove that any closed braid representative of a split/composite link in S3

with the open book .D2; id/ can be modified to a split/composite braid by applying a
sequence of exchange moves. As a corollary, they prove the additivity of the minimum
braid index of knots and links in R3 .

We extend the above result of Birman and Menasco to closed braids in general open
books with additional assumptions. Let C � @S be a boundary component of S . We
denote by c.�;C / the fractional Dehn twist coefficient of � with respect to C , which
is defined by Honda, Kazez and Matić in [17] (cf Gabai and Oertel [14]).

Theorem 7.3 (Split/composite closed braid theorem) Let L be a closed braid rep-
resentative of a split/composite link in M.S;�/ . Let F be a separating/decomposing
sphere for L. Assume the following:

(1) Fob.F / is essential and all of whose b–arcs are separating.

(2) If a binding component C � @S intersects F then jc.�;C /j> 1.

Then there exists a sequence of exchange moves of closed braids

L!L1! � � � !Lm

such that Lm is a split/composite closed braid.

Remark Before proceeding to a proof, we give remarks on the assumptions and the
statement of Theorem 7.3.

(i) The braid Lm is split/composite and transversely isotopic to L. However, we
do not assert that a separating/decomposing sphere Fm for Lm is isotopic to F .

(ii) If .S; �/ has connected binding then by [18, Theorem 7.2] conditions (1), (2)
imply that the sphere F (hence Fm ) bounds a 3–ball in M .

(iii) In braid foliation theory condition (1) always holds but c.id; @D2/D 0. To treat
braid foliation case uniformly, it is often convenient to regard c.id; @D2/DC1.
This is also true for other results like [18, Corollaries 7.3, 7.4 and Theorem 8.3].
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Example 7.4 In general, without assuming conditions (1) or (2), there may ex-
ist a closed braid representative L of a split/composite link type whose separat-
ing/decomposing sphere does not admit a sequence of exchange moves that turns L

into a split/composite closed braid.

For example let � D idS (ie c.�;C /D 0) and F be a splitting sphere of L defined
by the movie presentation in Figure 30. The open book foliation Fob.F / consists of
two bb–tiles. Since all the b–arcs are strongly essential F does not admit exchange
moves.

?

?

?

?
˘

˘

˘

?

?

?

?

˘

˘ ˘

?

?

?

?˘

˘

˘

?

?

?

?

˘

˘ ˘

Figure 30: (Example 7.4) A movie presentation of the separating sphere F ,
where ? and ˘ represent distinct components of L separated by F .

We have three lemmas, where conditions (1) or (2) are not assumed. The first lemma is
proven in [18].

Lemma 7.5 [18, Lemma 5.1] Let .S; �/ be a general open book and F a closed,
incompressible surface in M.S;�/ . Let v be a strongly essential elliptic point of Fob.F /

that lies on a boundary component C � @S , and P (respectively N ) be the number
of the positive (respectively negative) hyperbolic points that are connected to v by a
singular leaf. Then �

�P � c.�;C /�N if sgn.v/D�1;

�N � c.�;C /� P if sgn.v/DC1:
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Lemma 7.6 Let v be an elliptic point in the open book foliation Fob.F /. Assume
that all the regions meeting at v are bb–tiles, and that all the b–arcs that end at v are
separating. Then there exist both positive and negative hyperbolic points connected
to v by a singular leaf.

Proof Let h1; : : : ; hn be the hyperbolic points that are connected to v by a singular
leaf. We assume that sgn.v/D �1 and sgn.hi/DC1 for all i D 1; : : : ; n (parallel
arguments hold for other cases) and deduce a contradiction.

Let w1; : : : ; wn be the positive elliptic points that are connected to v by a b–arc and
ordered clockwise; see Figure 31. Let bi be a b–arc in the page Sti

connecting wi

and v , so 0< t1 < t2 < � � �< tn < 1.

w1

b1

w2
b2

wn

bn

wn�1

bn�1

v

v

b1

w1
w2

S 01

S 02
b2

Figure 31: An illustration of Lemma 7.6

Since bi is separating the elliptic points v and wi lie on the same binding component,
ie v and w1; : : : ; wn lie on the same binding component. Let S 0i �Sti

be the subsurface
that lies on the left side of bi as we walk from wi to v . Since sgn.hi/ D C1 by a
standard argument (or the argument as in the proof of [18, Lemma 5.1]) the describing
arc of hi is contained in S 0i . Therefore wiC1 2 S 0i , hence S 0i © S 0

iC1
(see Figure 31).

In particular w1.D wnC1/ 2 S 0n . However, S 0
1

© S 0
2

© � � � © S 0n and w1 2 S 0
1
n S 0

2
.

This is a contradiction.

Lemma 7.7 Let F �M.S;�/ be a closed incompressible surface in the complement
of a closed braid L. We may assume that Fob.F / is essential by [18, Theorem 3.2].
Let R be a degenerate bc–annulus in Fob.F /; see Figure 32. Let C � St0

be the
c–circle boundary of R and C � @S be a binding component that intersects R. If all
the b–arcs in Fob.R/ are separating then C is essential in St0

and jc.�;C /j � 1.

Proof Assume to the contrary that C bounds a disc �t0
� St0

, ie every c–circle of
Fob.R/ also bounds a disc �t �St . Since F is incompressible in M�L, the disc �t0
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C C

Figure 32: Degenerate bc –annuli R

must be pierced by L at least once. Since each b–arc bt � St \R is separating, bt

cobounds a subsurface S 0t � St that is disjoint from �t . Hence R[�t0
bounds a

compact region M 0 �M which is the union of various S 0t and discs �t . Thus the
algebraic intersection number of L and R[�t0

must be zero.

On the other hand, since L is a closed braid all the intersections of L with �t0
are

positive. But L and R never intersect, thus the algebraic intersection number of L and
R[�t0

must be positive, which is a contradiction. This concludes that C is essential
in St0

.

Moreover, if C is essential, then all the b–arcs in R are strongly essential [18, Claim 6.8],
hence by Lemma 7.5 we have jc.�;C /j � 1.

Now we are ready to prove Theorem 7.3. Our proof is similar to Birman and Menasco’s
original one [3], but ours requires a more careful and different approach, especially
when we show nonexistence of c–circles (in Case II below). More importantly, we
need to be aware of the homotopical properties of b–arcs: essential, strongly essential
or separating, since these properties are assumptions for b–arc foliation change and
exchange move.

Proof of the split closed braid theorem Let F be a separating 2–sphere with the
essential open book foliation Fob.F /. Let e.F / be the number of elliptic points of
Fob.F /. We prove the theorem by induction on e.F /. We show that if L is not a
split closed braid (ie e.F / > 2) then after applying a b–arc foliation change and an
exchange move e.F / decreases. Eventually we obtain e.F /D 2, that is, L is a split
closed braid. We study the following two cases:

Case I: Fob.F / contains no c –circle leaves In this case, the region decomposition
of F consists of bb–tiles only and it induces a cell decomposition of F . Let V .i/

(i > 1) be the number of 0–cells (elliptic points) of valence i , E the number of
1–cells, and R the number of 2–cells (bb–tiles). By the definition of bb–tiles, the
valence of a 0–cell, v , is equal to the number of hyperbolic points that is connected
to v by a singular leaf. Notice that V .1/D 0 because existence of a 0–cell of valence 1
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implies existence of a degenerate bb–tile which never exists. Since each 1–cell is a
common boundary of distinct two 2–cells and each 2–cell has distinct four 1–cells on
its boundary we have

(7-1) 2E D 4R:

Since the end points of each 1–cell are distinct two 0–cells we have

(7-2)
X
i>1

iV .i/D 2E:

The Euler characteristic of F is

(7-3)
X
i>1

V .i/�ECRD �.F /D 2:

From (7-1), (7-2) and (7-3), we get

(7-4)
X
i>1

.4� i/V .i/D 8:

The equality (7-4) implies

(7-5) 2V .2/CV .3/D 8C
X
i�4

.i � 4/V .i/:

This shows that there exist vertices of valence less than or equal to 3.

Assume that v has valence 3. Let h1; h2; h3 be the hyperbolic points that are connected
to v by a singular leaf. We may assume that sgn.h1/ D sgn.h2/. Let Ri denote
the bb–tile that contains hi . By condition (1), the common b–arc of R1 and R2 is
separating, so by Proposition 3.2 and Theorem 3.1 we can apply a b–arc foliation
change to R1[R2 , which lowers the valence of v but preserves e.F / and no c–circles
are introduced.

Hence we may assume that there exists a vertex of valence equal to 2. Call it v . Let C

be the boundary component of S on which v lies. By condition (1) and Lemma 7.6
the two hyperbolic points around v have opposite signs. If v is strongly essential,
Lemma 7.5 implies jc.�;C /j � 1. This contradicts condition (2), so v is nonstrongly
essential. Hence by an exchange move on Fob.F / that involves an exchange move
on L we can remove v and get a new splitting sphere F 0 with e.F 0/D e.F /� 2. We
can repeat this procedure until we get F with e.F /D 2.

Case II: Fob.F / contains c –circle leaves In this case the region decomposition
of F contains bc–annuli (and possibly cc–pants). Let R be an innermost bc–annulus;
here by “innermost” we mean that the c–circle boundary of R bounds a disc D such
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that R�D � F and D nR contains no c–circles. Because F is a sphere such an R

necessarily exists and also a cc–pants cannot be innermost.

If R is degenerate (ie D DR) then by Lemma 7.7 we get a contradiction.

Suppose that R is nondegenerate. Then the region decomposition of Dı WD D nR

consists only of bb–tiles. We can verify that the formula (7-5) also holds for Fob.Dı/.
We apply a similar argument as in Case I to Dı repeatedly until all the 0–cells in Int.Dı/
disappear. Now the region R is a degenerate bc–annulus, which is a contradiction.

Therefore, under conditions (1), (2) of the theorem, Fob.F / actually does not contain
c–circles.

Proof of the composite closed braid theorem We prove the composite closed braid
theorem in the same way as the split closed braid theorem (SCBT). The main difference
between the two theorems is that a decomposing sphere F has intersections with L

but a splitting sphere does not.

By the same argument as in the embedded surface case [18, Theorem 3.2], using
Novikov–Roussarie–Thurston’s general position argument [23] we can put F so that it
admits an essential open book foliation.

If the region decomposition of F consists only of bb–tiles then the above equality (7-5)
holds. By the same argument as in Case I we may assume that V .2/ > 0. Except for
the case V .2/D 4 and V .i/D 0 for i D 3; 4; : : :, we can move the intersection points
L\F by following the guideline in Birman and Menasco [9, Lemma 1] outside the
region we attempt to apply an exchange move (the shaded region in Figure 20(1)). Then
we apply an exchange move. The number e.F / decreases by 2 and no new c–circles
are introduced. We repeat this procedure until F satisfies V .2/D 4 and V .i/D 0 for
i D 3; 4; : : : This case is depicted in [3, Figure 22] by Birman and Menasco. The only
difference is the two b–arcs joining p2;p3 and p1;p3 in that figure may be strongly
essential in our situation. By the argument in [3, page 136] our sphere F admits one
more exchange move and we obtain e.F /D 2.

We need to treat the case where Fob.F / contains c–circles. Let R� F be an inner-
most bc–annuli. As in the proof of the SCBT, after exchange moves and b–arc foliation
changes R becomes a degenerate bc–annulus. By the proof of Lemma 7.7, R must
have one nonempty intersection with L. We note that Fob.F / contains no cc–pants,
because otherwise F is capped off by (at least) three degenerate bc–annuli and all but
two are not pierced by L which contradicts Lemma 7.7.

Therefore up to isotopy we may consider that F consists of two degenerate bc–
annuli R1 and R2 , each of which is pierced by L (Figure 33(1)). We observe that all
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the b–arcs of Fob.F / are boundary-parallel, because otherwise by Lemma 7.5 condition
(2) will be violated. All the c–circles of Fob.F / bound discs in their pages, because
otherwise there must exist strongly essential b–arcs. Moreover each disc bounded
by a c–circle is pierced by L in one point. We replace F with the degenerate bc–
annulus R1 capped off by the disc. We perturb the disc to be foliated by concentric
circles and has a local extremal point (Figure 33(2)). Then flatten the extremal point
paired with the hyperbolic point in R1 , this will turn F into a desired decomposition
sphere (Figure 33(3)). During these operations the braid L is fixed.

(1)

(2)

(3)

L

F Fob.F /

 R1

 R2

R1

R2

Figure 33: Special case: A decomposing sphere consisting of two degenerate
bc –annuli
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