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The flat closing problem for buildings

CORINA CIOBOTARU

Using the notion of a strongly regular hyperbolic automorphism of a locally finite
Euclidean building, we prove that any (not necessarily discrete) closed, cocompact
subgroup of the type-preserving automorphisms group of a locally finite general
nonspherical building contains a compact-by-Zd subgroup, where d is the dimension
of a maximal flat.

57S25, 51E24; 20E42, 20F55

1 Introduction

In 1972, Prasad and Raghunathan [7] proved the following result (see [7, Corollary 2.9,
Lemma 1.15]):

Let G be a semisimple real Lie group of rank r (which may admit compact factors).
Let � <G be a lattice. Then � contains an abelian subgroup of rank r .

To obtain this result, they use in the first place the existence in � of a so-called
R–hyperregular element (see Prasad and Raghunathan [7, Definition 1.1 and Theo-
rem 2.5]). Being also an R–regular element (see [7, Remark 1.2] and Steinberg [10]), an
R–hyperregular g 2G inherits the property that its G –centralizer CentG.g/ contains
a unique maximal R–split torus of G of dimension equal to the R–rank of G (see
[10] or [7]). Using this, the last step of Prasad and Raghunathan’s strategy is to show
that CentG.g/=Cent�.g/ is compact if g is an R–hyperregular element (see [7, proof
of Lemma 1.15]). This is obtained in the following way. If � is a uniform lattice then
one can use Selberg’s lemma (see [7, Lemma 1.10]). If not, then [7, Theorem 1.14]
gives the desired result.

The above result of Prasad and Raghunathan can be related, in the setting of CAT.0/
spaces, to the following question of Gromov [5, Section 6.B3 ] (also known as the flat
closing problem). From another point of view, the flat closing problem is a converse to
the flat torus theorem.

First, let us recall the following basic notions from the setting of CAT.0/ spaces.
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1.1 Definition Let X be a proper CAT.0/ space and G be a not necessarily discrete
locally compact group acting continuously and properly by isometries on X . By a
geometric flat F �X of dimension d (or a d –flat) we mean a closed convex subset
of X which is isometric to the Euclidean d –space, where d � 2. Moreover, we say
that a subset Y �X is periodic if StabG.Y / acts cocompactly on Y .

When 
 is a hyperbolic isometry of X we define

Min.
 / WD
˚
x 2X j distX .x; 
 .x//D j
 j

	
;

where j
 j WD infx2X distX .x; 
 .x// denotes the translation length of 
 .

1.2 Problem (The flat closing problem) Let X be a proper CAT.0/ space and �
be a discrete group acting continuously, properly and cocompactly by isometries on X .
Does the existence of a d –flat F �X imply that � contains a copy of Zd ?

Remark In the hypotheses of Problem 1.2, note that if F is a periodic d –flat then
indeed, by the Bieberbach theorem, Stab�.F / contains a copy of Zd and therefore �
contains a subgroup that is virtually Zd . Moreover, if we replace � with a not neces-
sarily discrete locally compact group G acting continuously, properly and cocompactly
by isometries on X and F is a periodic d –flat with respect to the G –action, then G

contains a compact-by-Zd subgroup.

To attack Gromov’s Problem 1.2, the natural strategy would be to construct periodic
flats or more generally periodic subspaces of the form Y D F � C � X , where F

is a d –flat and C is a compact set. This could be done by showing that � contains
a hyperbolic element 
 which is “regular” (see Definition 2.1) and then considering
Y WDMin.
 /D F �C , where F is a flat and C is a compact set. To conclude from
here that the flat closing problem has an affirmative answer it would be enough to show
that the centralizer of 
 in � , namely Cent�.
 / < Stab�.Y /, acts cocompactly on Y

and that StabCent�.
 /.F /� Stab�.F / has cocompact action on F . Thus, Stab�.F /
would contain a copy of Zd and the remark applies.

Notice that the above strategy is analogous to the one used in the Prasad–Raghunathan
result, where the R–split torus is replaced with a flat. Moreover, this strategy, including
the existence of “regular” elements, is successfully implemented for example in Caprace
and Zadnik [4], where it is proved that any discrete group acting properly and cocom-
pactly on a decomposable locally compact CAT.0/ space which admits in addition the
geodesic extension property (ie every geodesic segment is contained in a bi-infinite
geodesic line) contains virtually Zd , where d is the number of indecomposable de
Rham factors. Notice that in general the dimension of a maximal flat of a CAT.0/
space is bigger than the number of the indecomposable de Rham factors.
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In this article we propose to answer further Gromov’s Problem 1.2 in the case when G

is a not necessarily discrete locally compact group acting continuously, properly and
cocompactly by type-preserving automorphisms on a locally finite general nonspherical
building. We stress here that we cannot apply directly the result of Caprace and
Zadnik [4]. Firstly, because in the usual Davis realization, buildings are CAT.0/
spaces where in general the geodesic extension property is not fulfilled. Secondly, the
group G considered in this article is not necessarily discrete. Thirdly, we exploit two
other ingredients that are missing in the context of Caprace and Zadnik [4]: the case of
Euclidean buildings and the reduction to products in the nonaffine part. Still, the strategy
is the same and uses the existence of “strongly regular hyperbolic automorphisms”
(see Definition 2.2 below) acting on locally finite Euclidean buildings. We obtain the
following theorem:

1.3 Theorem (See Theorem 3.4) Let � be a locally finite building of nonspherical
type .W;S/, but with S being finite. Let G be a closed, not necessarily discrete,
type-preserving subgroup of Aut.�/, with cocompact action on �. Then G contains a
compact-by-Zd subgroup, where d is the dimension of a maximal flat of �.

2 Preliminaries

We start by recalling briefly some basic definitions and results from Caprace and
Ciobotaru [2] on strongly regular hyperbolic automorphisms acting on locally finite
Euclidean buildings, as they are used further in this paper. For some notation see also
Definition 1.1 from Section 1.

2.1 Definition Let X be a CAT.0/ space and 
 be a hyperbolic isometry of X . We
say that 
 is a regular hyperbolic isometry if Min.
 / is a bounded Hausdorff distance
from a maximal flat of X .

In the particular case of locally finite Euclidean buildings we have the following stronger
definition introduced in Caprace and Ciobotaru [2].

2.2 Definition Let � be a Euclidean building and 
 2 Aut.�/ be a type-preserving
automorphism. We say that 
 is a strongly regular hyperbolic automorphism if 
 is
a hyperbolic isometry and the two endpoints of one (and hence all) of its translation
axes lie in the interior of two opposite chambers of the spherical building at infinity. In
particular Min.
 / is an apartment of � and is uniquely determined.

In addition, if ` is a geodesic line of the Euclidean building �, we say that ` is strongly
regular if its endpoints lie in the interior of two opposite chambers of the spherical
building at infinity of �.
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2.3 Definition Let X be a CAT.0/ space. A geodesic line ` in X is said to have
rank one if it does not bound a flat half-plane. An isometry 
 2 Is.X / is said to have
rank one if it is hyperbolic and if some (and hence any) of its axes has rank one.

The next two results from Caprace and Ciobotaru [2] will be used in what follows.

2.4 Lemma (See [2, Lemma 2.6]) Let .W;S/ be a Euclidean Coxeter system. Then
W contains strongly regular hyperbolic elements.

2.5 Proposition (See [2, Proposition 2.9]) Let X be a proper CAT.0/ space,
G � Is.X / be any subgroup of isometries and �W R!X be a geodesic map. Assume
there is an increasing sequence ftngn�0 of positive real numbers tending to infinity such
that supn d.�.tn/; �.tnC1// <1 and that the set f�.tn/gn�0 falls into finitely many
G –orbits, each of which is moreover discrete.

Then there is an increasing sequence ff .n/gn of positive integers such that, for all
n > m > 0, there is a hyperbolic isometry hm;n 2 G which has a translation axis
containing the geodesic segment Œ�.tf .m//; �.tf .n//�.

In addition, if the geodesic line �.R/ is the translation axis of a rank-one element
of Is.X /, then for each fixed m> 0 there exists Nm > 0 such that for every n>Nm

the isometry hm;n is a rank-one element. Moreover, if X is a locally finite Euclidean
building and the geodesic line �.R/ is strongly regular, then hm;n is a strongly regular
hyperbolic automorphism.

Proof We give a proof only for the very last assertion of the proposition, this not
being part of [2, Proposition 2.9].

Let m be fixed. Suppose the contrary, namely for every k > 0 there exists nk � k such
that hm;nk

is not a rank-one element. This means that the translation axis of hm;nk

containing the geodesic segment Œ�.tf .m//; �.tf .nk//� is contained in the boundary of a
flat half-plane. Therefore, as k!1 we obtain that the geodesic ray Œ�.tf .m//; �.1//
is contained in the boundary of a flat half-plane as well. As the space X is proper
and the geodesic line �.R/ is the translation axis of a rank-one hyperbolic element,
we obtain a contradiction with the fact that the diameter of the projection on �.R/ of
every closed metric ball in X which is moreover disjoint from �.R/ must be bounded
above by a fixed constant. The conclusion follows.
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3 The proof of the main theorem

Before proceeding to the proof of Theorem 1.3, we recall some general facts about
buildings and we fix some notation. Let � be a locally finite general building
of type .W;S/, with S finite. Fix from now on a chamber c in Ch.�/. Let
W DW1 �W2 � � � � �Wk be the direct product decomposition of W in irreducible
Coxeter systems .Wi ;Si/. Thus SDS1tS2t� � �tSk is a disjoint union. Denote by �i

the Wi –residue in � containing the fixed chamber c. From Ronan [8, Theorem 3.10]
we have that �Š�1 � � � � ��k . For what follows, we use the notation

EuclD fi 2 f1; : : : ; kg j .Wi ;Si/ is Euclideang;

SphD fi 2 f1; : : : ; kg j .Wi ;Si/ is finiteg;

nSphD f1; : : : ; kg nSph;
nEsphD f1; : : : ; kg n .Eucl[Sph/:

Accordingly, we use the notation �A WD
Q

i2A�i and WA WD
Q

i2A Wi , where A
is one of the sets Eucl, Sph, nSph or nEsph. Moreover, for every i 2 f1; : : : ; kg

we denote by pri W �! �i the projection map on �i and by abuse of notation we
write pri.
 / to represent a type-preserving element 
 2Aut.�/ acting on the factor �i .

The first step towards the main theorem is given by the next proposition, which uses an
argument of Hruska and Kleiner [6, Lemma 3.1.2].

3.1 Proposition Let � be a locally finite building of nonspherical type .W;S/, but
with S being finite. Let G be a not necessarily discrete, type-preserving subgroup
of Aut.�/ acting cocompactly on � and let R be any residue in � containing the
chamber c. Then StabG.R/ acts cocompactly on R.

Proof Let us denote by .W 0;S 0/ the type of the residue R, where W 0 � W and
S 0 � S . Take K � � to be a compact fundamental domain corresponding to the
action of G and containing the chamber c. Let .gi/i2I be a subset of G such that
R�

S
i2I gi.K/. Because R is a residue containing c and G is type-preserving, for

every i 2I , g�1
i .R/ is a residue of the same type as R, containing the chamber g�1

i .c/
and intersecting K .

Notice that a compact set K of a (not necessarily locally finite) building always has a
finite number of chambers. Therefore, K intersects a finite number of .W 0;S 0/–type
residues of �. We conclude that there is a finite number of left cosets of the form
StabG.R/gi , with i 2 I . Denote by fg1; : : : ;gtg� fgigi2I the finite set of representa-
tives of these left cosets. We obtain that R is covered by

S
j2f1;:::;tg StabG.R/gj .K/.
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Because gj .K/ is compact, let K0 be a compact in � such that
St

jD1 gj .K/�K0 .
Thus StabG.R/K0 covers R and the conclusion follows.

The second step is to find a hyperbolic element in StabG.�nSph/. This is given by the
following proposition.

3.2 Proposition Let � be a locally finite building of nonspherical type .W;S/,
but with S being finite. Let G be a not necessarily discrete, type-preserving sub-
group of Aut.�/ acting cocompactly on �. Then there exists a hyperbolic element

 2 StabG.�nSph/ such that pri.
 / is a strongly regular hyperbolic element if i 2Eucl
and a rank-one isometry if i 2 nEsph.

Proof First, notice that G acts cocompactly on �nSph . Take i 2Eucl. By Lemma 2.4,
let li be a strongly regular geodesic line contained in some apartment of �i , constructed
using a strongly regular hyperbolic element 
i of Wi . The line li is thus contained in
a unique apartment of �i . Denote by fvi;j gj2Z a bi-infinite sequence of points in li

such that 
i.vi;j /D vi;jC1 , for every j 2 Z. For example, the points fvi;j gj2Z � li

can be taken to be special vertices of �i , of the same type.

For i 2 nEsph we have a similar construction. Following Caprace and Fujiwara [3,
Proposition 4.5], denote by ri a rank-one geodesic line given by a rank-one hyperbolic
element hi 2Wi . Denote by fti;j gj2Z a bi-infinite sequence of points of ri such that
hi.ti;j /D ti;jC1 , for every j 2 Z.

Because
Q

i2Eucl li �
Q

i2nEsph ri is a flat of �nSph , we consider in its interior the
infinite geodesic line determined by the sequence of points�

oj WD

Y
i2Eucl

vi;j �

Y
i2nEsph

ti;j

�
j2Z
��nSph :

Denote the resulting geodesic line by L and observe that, by defining

h WD
Y

i2Eucl


i �

Y
i2nEsph


i ;

we have that h 2WnSph and h.oj /D ojC1 , for every j 2 Z.

We are now ready to proceed in finding the desired hyperbolic element in G . Apply
Proposition 2.5 to our geodesic line L, to the sequence of points foj gj2N and to the
StabG.�nSph/–action on �nSph (which is cocompact). As we are working with a locally
finite building, all hypotheses of Proposition 2.5 are fulfilled. We obtain thus a sequence
ff .n/gn�0 and a sequence of hyperbolic elements f
m;ng0<m<n�StabG.�nSph/ such
that every 
m;n has a translation axis containing the geodesic segment Œof .m/; of .n/�.
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By this construction we obtain that pri.
m;n.of .m///D pri.of .n//, for every i 2 nSph
and every element 
m;n . Applying again Proposition 2.5, there exists a hyperbolic
element 
m;n such that pri.
m;n/ is a strongly regular hyperbolic element if i 2 Eucl
and a rank-one isometry if i 2 nEsph. The conclusion follows.

Before starting the proof of the main Theorem 3.4, let us mention that the power d of
the “compact-by-Zd subgroup” appearing in the conclusion of the theorem is maximal
with respect to the d –flats of the building �. The maximality is explained by the
following result.

3.3 Proposition (See Caprace [1, Proposition 3.1]) Let F be a maximal d –flat of a
locally finite general building �. Then there exists a residue R�� of type .WR;SR/

such that d D
P

i2EuclR niCjnEsphRj, where EuclR and nEsphR correspond to the
residue R.

Therefore, by Propositions 3.1 and 3.3, to answer Gromov’s flat closing problem in the
case of a locally finite general nonspherical building it is enough to prove the following
theorem.

3.4 Theorem Let � be a locally finite building of nonspherical type .W;S/, with
S being finite, and G a closed, not necessarily discrete, type-preserving subgroup of
Aut.�/ with cocompact action. Then G contains a compact-by-Zd subgroup, where
d WD

P
i2Eucl ni CjnEsphj.

Proof Let 
 2 StabG.�nSph/ be a hyperbolic element given by Proposition 3.2. We
have that Min.
 / D

Q
i2Eucl Rni �

Q
j2nEsph.R � Cj /, where ni is the Euclidean

dimension of the corresponding building �i and Cj is a compact, convex subset of
the corresponding building �j . Let F WD

Q
i2Eucl Rni �

Q
i2nEsph R �Min.
 /. By

Ruane [9, Theorem 3.2], whose proof works also for not necessarily discrete groups,
we have that CentG.
 / stabilizes and acts cocompactly on Min.
 /. As

Q
i2nEsph Ci

is compact, using the argument of Hruska and Kleiner [6, Lemma 3.1.2], recalled in
the proof of Proposition 3.1, and the fact that we are working with CAT.0/ cellular
complexes we obtain that StabCentG.
 /.F / acts cocompactly on F . In particular, we
obtain that the action of StabG.F / on F is properly discontinuous and cocompact.
Therefore, the group StabG.F /=FixG.F / is virtually isomorphic with Zd , where
d WD

P
i2Eucl ni C jnEsphj. Since G is closed, the group FixG.F / is compact.

Therefore, the group G contains a compact-by-Zd subgroup. This concludes the
proof of the theorem.
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