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Two-generator free Kleinian groups
and hyperbolic displacements

İLKER S YÜCE

The log 3 theorem, proved by Culler and Shalen, states that every point in the hyper-
bolic 3–space H3 is moved a distance at least log 3 by one of the noncommuting
isometries � or � of H3 provided that � and � generate a torsion-free, discrete
group which is not cocompact and contains no parabolic. This theorem lies in the
foundations of many techniques that provide lower estimates for the volumes of
orientable, closed hyperbolic 3–manifolds whose fundamental groups have no 2–
generator subgroup of finite index and, as a consequence, gives insights into the
topological properties of these manifolds.

Under the hypotheses of the log 3 theorem, the main result of this paper shows
that every point in H3 is moved a distance at least log

p
5C 3

p
2 by one of the

isometries � , � or �� .

14E20, 54C40; 46E25, 20C20

1 Introduction

Let M be a closed orientable hyperbolic 3–manifold. Anderson, Canary, Culler and
Shalen proved in [3] that the volume of M is bounded below by 3:08 under the
assumptions that the first Betti number of M is at least 4 and �1.M / has no subgroup
isomorphic to the fundamental group of a genus-two surface. In [6], Culler and Shalen
showed that the volume of M is at least 0:92 provided that the first Betti number
of M is at least 3 and �1.M / has no two-generator subgroup of finite index. Later
Culler, Hersonsky and Shalen improved the previous volume estimate to 0:94 in [5].
These deep results are among a number of theorems stated by Culler and Shalen
alone [6; 8] and together with their collaborators Agol [2], Anderson and Canary [3]
and Hersonsky [5] that relate the topology of hyperbolic 3–manifolds to their geometry.

The common denominator in all of the volume estimates listed above is that they are
consequences of one of the fundamental results in the study of Kleinian groups, the
so-called log 3 theorem proved by Culler and Shalen [6] and generalized by Anderson,
Canary, Culler and Shalen [3]. This seminal result can be stated as follows:
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Log 3 theorem Let � and � be noncommuting isometries of H3 . Suppose that � and
� generate a torsion-free, topologically tame, discrete group which is not cocompact
and contains no parabolic. Let �1 and ˛1 denote the set of isometries f�; �g and the
real number 9, respectively. Then, for any z0 2H3 , we have

e.2 max2�1
fdist.z0; �z0/g/ � ˛1:

The log 3 theorem and its generalization imply that 1
2

log 5 and 1
2

log 3 are Margulis
numbers for hyperbolic 3–manifolds that satisfy the conditions in the cases where the
first Betti numbers are at least 4 or 3, respectively. The lower bounds for the volumes
of such manifolds computed in [3; 5; 6] follow. Although the bounds given in [3;
6] are superseded by the recent works of Gabai, Meyerhoff and Milley [9; 10] and
Milley [12] using a newer approach based on Mom technology, it is conceivable that an
improvement in the lower bound for the displacements under the isometries described
in the log 3 theorem will lead to improved Margulis numbers and lower bounds for the
volumes of the classes of hyperbolic 3–manifolds mentioned above through the ideas
introduced in [3; 5; 6]. Motivated by this, we prove the following in this paper:

Theorem 5.1 Let � and � be noncommuting isometries of H3 . Suppose that � and �
generate a torsion-free discrete group which is not cocompact and contains no parabolic.
Let �| denote the set of isometries f�; �; ��g and ˛| be the real number 5C 3

p
2.

Then, for any z0 2H3 , we have

e
.2 max2�|

fdist.z0; �z0/g/ � ˛|:

This is proved in Section 5.

An orientable hyperbolic 3–manifold may be regarded as the quotient of the hyperbolic
3–space H3 by a discrete group � of orientation-preserving isometries of H3 . If � is
a torsion-free Kleinian group and M DH3=� , then � is called topologically tame
if M is homeomorphic to the interior of a compact 3–manifold. Agol [1] and Calegari
and Gabai [4] proved that every finitely generated Kleinian group is topologically tame.
Therefore, we may drop the tameness hypothesis from Theorem 5.1.

The proof of Theorem 5.1 requires the ingredients introduced in [6] to prove the
log 3 theorem. We review these ingredients briefly in the following subsections of the
introduction. In particular, we summarize the proof of the log 3 theorem in Section 1.1
with an emphasis on the calculations required to obtain the number log 3. In Section 1.2,
we propose an alternative technique to perform these calculations which makes it
possible to extend Culler and Shalen’s arguments in [6] to determine a lower bound
for the displacements under any given set of isometries in � D h�; �i as long as the
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hypotheses of the log 3 theorem are satisfied. We describe this extension and summarize
its application to the set �| D f�; �; ��g � � to achieve the lower bound stated in
Theorem 5.1 in Section 1.3.

In the rest of this manuscript the boundary of the canonical compactification H3 of H3

will be denoted by S1 , which is homeomorphic to S2 . The notation ƒ� �z will
denote the limit set of �–orbit of z 2H3 on S1 . By dist(z;  � z ) we will mean the
hyperbolic displacement of z 2 H3 under the action of the isometry  W H3 ! H3 .
Any isometry  of H3 extends to a conformal automorphism x W H3 ! H3 . The
conformal automorphism of S1 obtained by restricting x will be denoted by 1 .

Acknowledgements The author would like to extend his sincerest thanks to the anony-
mous referee whose recommendations led to a much better exposition of the ideas in
this paper, shortened the proofs substantially and made this text much more readable as
a result. He is deeply grateful to Peter B Shalen for setting the course of this research
and for very helpful discussions. He is also grateful to Marc E Culler for his corrections
of an earlier version of this work.

1.1 A decomposition of � D h�; �i and the proof of the log 3 theorem

Let � and � be two noncommuting isometries of H3 . Suppose that � and � generate
a torsion-free discrete group which is not cocompact and contains no parabolic. Then
� D h�; �i is a free group of rank 2; see [6, Proposition 9.2]. This fact allows one
to decompose � as disjoint union of subsets of reduced words. In particular, the
decomposition

(1) � D f1g[
[
 2‰1

J 

is used in the proof of the log 3 theorem, which is carried out by considering two cases:

(I) When � is geometrically infinite; that is, ƒ� �z D S1 for every z 2H3 .

(II) When � is geometrically finite.

In (1) each J is defined as the set of all nontrivial reduced words in � that have the
initial letter  2‰1 D f�; �; ��1; ��1g.

In case (I), Culler and Shalen first prove that the Patterson density, a �–invariant
conformal density .�z/z2H3 constructed by Patterson [14] and extensively studied by
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Sullivan [15; 16], is the area density .Az/z2H3 , whose support is S1 ; see [6, Proposi-
tions 6.9 and 3.9]. Then, using the decomposition (1) together with its group-theoretical
properties

 J �1 D � �J (2)

for  2‰1 , they construct a decomposition of the area density .Az/z2H3 , which in
turn gives a decomposition of the area measure Az0

based at z0 2H3 into a finite sum
of four measures �� , �� , ���1 , ���1 so that each measure � �1 is transformed to the
complement of � for  2‰1 ; see [6, Proposition 4.2(ii) and Lemma 5.3(ii) and (iii)].
In other words, they obtain the following:

Theorem 1.1 Let � D h�; �i be a free, geometrically infinite Kleinian group without
parabolics. For any z0 2H3 , let Az0

be the area measure based at z0 . There is a family
of Borel measures f� g 2‰1 on S1 for ‰1 D f�; �; ��1; ��1g such that:

(1) Az0
.S1/D

X
 2‰1

� .S1/, where Az0
is normalized so that Az0

.S1/D 1.

(2)
Z

S1

.� ;z0
/2 d� �1 D 1�

Z
S1

d� for each  2‰1 .

Furthermore, if z0 is on the common perpendicular `.�; �/ of the isometries � and �,
then

(3)
Z

S1

d���1 D

Z
S1

d�� and
Z

S1

d���1 D

Z
S1

d�� .

Theorem 1.1 is not explicitly stated in [6]. But, as summarized above, it follows
from [6, Lemma 5.3] using the conclusions of [6, Propositions 4.2, 6.9 and 3.9].
The function � ;z0

in part (2) is the conformal expansion factor of  1 measured
in the round metric centered at z0 (see [6, Section 2.4] for details). The common
perpendicular `.�; �/ mentioned in Theorem 1.1 is the fixed locus of the involution
� 2 IsomC.H3/ that conjugates � to ��1 and � to ��1 when �1 and �1 have no
common fixed point on S1 ; see [6, Proposition 1.8].

Next, Culler and Shalen relate the masses of the measures �� , �� , ���1 and ���1

to the hyperbolic displacements dist.z0; � � z0/, dist.z0; � � z0/, dist.z0; �
�1 � z0/ and

dist.z0; �
�1 � z0/. In particular, they prove the statement below:

Lemma 1.2 [6, Lemma 5.5; 8, Lemma 2.1] Let a and b be numbers in Œ0; 1� which
are not both equal to 0 and are not both equal to 1. Let  be a loxodromic isometry
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of H3 and let z0 be a point in H3 . Suppose that � is a measure on S1 such that
� �Az0

, �.S1/� a and
R

S1
.�;z0

/2d� � b . Then we have a> 0, b < 1 and

dist.z0;  � z0/�
1

2
log b.1�a/

a.1�b/
:

Then, using Theorem 1.1 and Lemma 1.2, they calculate the lower bound log 3

when � is geometrically infinite as follows [6, Proposition 5.2]: By the geometric fact
max2f��1;��1gfdist.z0;  �z0/g�max2f��1;��1gfdist.z1;  �z1/g for any z02H3 and
the orthogonal projection z1 of z0 onto `.�; �/, we may assume, without loss of gener-
ality, that z02`.�; �/. Parts (1) and (3) of Theorem 1.1 imply 1D2��.S1/C2��.S1/,
which in turn shows either ��.S1/� 1

4
or ��.S1/� 1

4
. If ��.S1/� 1

4
, parts (2) and

(3) of Theorem 1.1 give thatZ
S1

.���1;z0
/2d�� D 1� �� �

3
4
:

Since �� �Az0
by Theorem 1.1(1), it is possible to apply Lemma 1.2 with the choices

a D 1
4

, b D 3
4

, � D �� and  D ��1 to conclude that dist.z0; �
�1 � z0/ � .log 9/=2.

If ��.S1/ � 1
4

, an analogous calculation with the choices a D 1
4

, b D 3
4

, � D ��
and  D ��1 shows that dist.z0; �

�1 � z0/ � .log 9/=2. Because dist.z0; � � z0/ D

dist.z0; �
�1 � z0/ and dist.z0; � � z0/D dist.z0; �

�1 � z0/, the log 3 theorem follows in
the case (I).

In the case (II), Culler and Shalen define the function

f 1
z0
.�; �/Dmax

˚
dist.z0; � � z0/; dist.z0; � � z0/

	
for a fixed z0 2H3 on the character variety XD IsomC.H3/� IsomC.H3/ of the free
group on two generators. It is easy to show that fz0

is proper and continuous on the clo-
sure of the set GF consisting of .�; �/ such that h�; �i is free on the generators � and �,
geometrically finite and without any parabolic. They prove that f 1

z0
has no minimum

in GF; see [6, Lemma 9.5]. Since GF is open in X (see Marden [11, Theorem 8.1]),
the function f 1

z0
achieves its minimum on the boundary GF�GF. Then they show

that the set of .�; �/ such that h�; �i is free, geometrically infinite and without any
parabolic is dense in GF�GF [6, Proposition 8.2]. Therefore, that every .�; �/ 2X so
that h�; �i is free and contains no parabolic is in GF (see [6, Proposition 9.3]) reduces
the geometrically finite case to geometrically infinite case, proving the log 3 theorem.

1.2 An alternative technique to calculate the number log 3

When � D h�; �i mentioned in the log 3 theorem is geometrically infinite, the cal-
culation of the lower bound log 3 in Section 1.1 follows from the application of
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Lemma 1.2 with the choices  D �1 , �D � , aD 1
4

and bD 3
4

for  2�1Df�; �g.
These choices of a and b are derived from the equalities ��.S1/D ���1.S1/ and
��.S1/D ���1.S1/ in Theorem 1.1(3) which requires the use of a point z0 on the
common perpendicular `.�; �/ of � and �. Such a geodesic perpendicular to the axes
of a collection of more than two isometries in � D h�; �i does not exist in general.

We calculate log 3 without referring to `.�; �/ as follows: If ���1.S1/D 0, we get
��.S1/D 1 by Theorem 1.1(2). Then we obtain ��.S1/D 0 and ���1.S1/D 0 by
Theorem 1.1(1). Part (2) of Theorem 1.1 applied to  D ��1 gives a contradiction.
Similar arguments for ��1 , �, ��1 show that 0 < � .S1/ < 1 for  2 ‰1 . In
particular, we derive that

0<

Z
S1

�2
 ;z0

d� �1 D 1�

Z
S1

d� < 1

for every  2‰1 by Theorem 1.1(2). Hence we can apply Lemma 1.2 with the choices

 D �; � D ���1 ; aD ���1.S1/; b D

Z
S1

.��;z0
/2 d���1 ;

 D �; � D ���1 ; aD ���1.S1/; b D

Z
S1

.��;z0
/2 d���1 ;

 D ��1; � D ��; aD ��.S1/; b D

Z
S1

.���1;z0
/2 d��;

 D ��1; � D �� ; aD ��.S1/; b D

Z
S1

.���1;z0
/2 d�� :

Then Lemma 1.2 produces the inequality

(3) e2 dist.z0; �z0/ �
.1�

R
S1

d��1/.1�
R

S1
d� /R

S1
d��1 �

R
S1

d�

for every  2‰1 . We consider the constants on the right-hand side of the inequalities
in (3) as the values of the functions

f 1
1 .x1;x2;x3;x4/D

1�x4

x4
�
1�x1

x1
; f 1

2 .x1;x2;x3;x4/D
1�x3

x3
�
1�x2

x2
;

f 1
3 .x1;x2;x3;x4/D

1�x2

x2
�
1�x3

x3
; f 1

4 .x1;x2;x3;x4/D
1�x1

x1
�
1�x4

x4

at
�R

S1
d�� ;

R
S1

d��;
R

S1
d���1 ;

R
S1

d���1

�
2R4 with

P
 2‰1

R
S1

d� D 1:

Although the total masses of the measures � for  2‰1 may change for a different
z0 2H3 , Theorem 1.1(1) still applies for the same decomposition in (1). Therefore,
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the calculation of the number log 3 in the proof of the log 3 theorem becomes a
consequence of the statement

inf
x2�3

˚
max

�
f 1

1 .x/; f
1

2 .x/; f
1

3 .x/; f
1

4 .x/
�	
D 9;

where �3 D f.x1;x2;x3;x4/ 2R4 W x1Cx2Cx3Cx4 D 1; xi > 0; 1� i � 4g (see
Lemma 2.1). The functions f 1

1
, f 1

2
, f 1

3
and f 1

4
will be referred to as displacement

functions for the decomposition of � in (1).

When combined with the arguments developed by Culler and Shalen in [6] to prove the
log 3 theorem, this calculation technique extends to a process to find a lower bound for
the maximum of the displacements under the isometries determined by a decomposition
of � D h�; �i. This extension is summarized in the next section.

1.3 Decompositions of � D h�; �i and hyperbolic displacements

For any nonelementary discrete subgroup � of the isometries of the hyperbolic n–
space Hn , there exists a �–invariant conformal density .�z/z2Hn for Hn , constructed
by Patterson [14], whose support is the limit set of � . In the case (I) of the proof of
the log 3 theorem, it is required to decompose the Patterson density for H3 , which is
the area density .Az/z2H3 , whose support is S1 (see [6, Propositions 3.9 and 6.9]),
corresponding to the decomposition of � D h�; �i in (1). To this purpose, Culler and
Shalen prove a more general statement (see [6, Proposition 4.2]) which establishes the
existence of a family of D–conformal densities .MV /V 2V , D 2 Œ0; n� 1�, for Hn

indexed by a countable collection V of subsets of an infinite, uniformly discrete
subset W of Hn with certain conditions, one of which is that MW can be decomposed
as a sum of finitely many D–conformal densities MVi

D .�Vi ;z/z2H3 provided that
W D

Sm
iD1 Vi 2 V for disjoint sets Vi 2 V for 1� i �m; see [6, Proposition 4.2(ii)].

In particular, [6, Proposition 4.2(ii)] is applied to the disjoint union

W 1
D fz0g[

[
 2‰1

f � z0W  2 J g �H3;

which leads to the decomposition of the area density .Az/z2H3 and, consequently, the
decomposition of the area measure Az0

based at z0 into a finite sum of Borel measures
as stated in Theorem 1.1(1).

The notion of D–conformal densities, D 2 Œ0; n � 1�, for Hn was introduced by
Sullivan [15; 16] as a generalization of �–invariant conformal densities for Hn [14].
Interested readers may refer to [6; 14; 15; 16] and Nicholls [13], for the basics of this
subject. In this paper, their use will be limited to the application of [6, Proposition 4.2]
to a carefully chosen infinite, uniformly discrete subset of H3 in Section 3 (see
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Lemma 3.3). Therefore, constructions and properties of conformal densities will be
assumed without explanation in the rest of this text. Unless stated otherwise, we shall
assume that � D h�; �i satisfies the hypotheses given in the log 3 theorem.

The organization of the rest of this paper is as follows. Let z0 be a fixed point in H3 .
In Section 2, we give the necessary calculations in detail to obtain the number log 3

for the log 3 theorem by using the approach outlined in Section 1.2. In particular, we
show that the infimum of the maximum of f 1

1
.x/, f 1

2
.x/, f 1

3
.x/ and f 1

4
.x/ over

the simplex �3 is ˛1 D 9. This follows from the facts

(a) inf
x2�3
fmax.f 1

1 .x/; f
1

2 .x//g D min
x2�3
fmax.f 1

1 .x/; f
1

2 .x//g,

(b) min
x2�3
fmax.f 1

1 .x/; f
1

2 .x//g D f
1

1 .x
�/ for a point x� 2�3 ��

3

proved in Lemma 2.1 in Section 2, where �3 D fx 2�
3 W f 1

1
.x/D f 1

2
.x/g.

When �3 is considered as a submanifold of R3 , the statement x� 2�3 is deduced from
the observation that f 1

1
and f 1

2
are smooth functions in an open neighborhood of �3

with no local minima. The coordinates of x� are calculated using the conclusion that x�

is a solution of a certain Lagrange multipliers problem and satisfies f 1
1
.x/D f 1

2
.x/.

The lower bound log 3 is obtained by evaluating f 1
1

at the point x� .

Let ‰|D f��; �2; ���1; �; ��1; ��1��1; ��2; ��1�g and ‰|
r D f�; �

�1g. In Section 3,
we introduce the decomposition

(4) �D| D f1g[‰|
r [

[
 2‰|

J 

of � which contains the isometries in �|D f�; �; ��g �‰
|[‰

|
r . We apply [6, Propo-

sition 4.2] to the infinite, uniformly discrete subset

(5) W |
D fz0g[ f � z0W  2‰

|
r g[

[
 2‰|

f � z0W  2 J g

of H3 to construct the decomposition of the area measure Az0
based at z0 corre-

sponding the decomposition �D| in Theorem 3.4, an analog of Theorem 1.1 for ‰| ,
in Section 3. Using Theorem 3.4 and Lemma 1.2, we determine the displacement
functions for the displacements under the isometries in ‰|[‰

|
r in Section 3. There

Algebraic & Geometric Topology, Volume 14 (2014)



Two-generator free Kleinian groups and hyperbolic displacements 3149

are 18 displacement functions ffig
8
iD1

, fgj g
6
jD1

and fhkg
4
kD1

for �D| with formulas

f1.x/D
1�x4�x5�x6

x4Cx5Cx6
�
1�x1

x1
; f2.x/D

1�x4�x5�x6�x7�x8

x4Cx5Cx6Cx7Cx8
�
1�x2

x2
;

f4.x/D
1�x1�x2�x3

x1Cx2Cx3
�
1�x4

x4
; f3.x/D

1�x1�x2�x3�x7�x8

x1Cx2Cx3Cx7Cx8
�
1�x3

x3
;

f7.x/D
1�x4�x5�x6

x4Cx5Cx6
�
1�x7

x7
; f5.x/D

1�x1�x2�x3�x7�x8

x1Cx2Cx3Cx7Cx8
�
1�x5

x5
;

f8.x/D
1�x1�x2�x3

x1Cx2Cx3
�
1�x8

x8
; f6.x/D

1�x4�x5�x6�x7�x8

x4Cx5Cx6Cx7Cx8
�
1�x6

x6
;

g1.x/D
x7

1�x7
�
1�x1

x1
; g2.x/D

x6

1�x6
�
1�x2

x2
;

g3.x/D
x5

1�x5
�
1�x3

x3
; g4.x/D

x8

1�x8
�
1�x4

x4
;

g5.x/D
x3

1�x3
�
1�x5

x5
; g6.x/D

x2

1�x2
�
1�x6

x6
;

h1.x/D
1�x6

x6
�
1�x8

x8
; h2.x/D

1�x2

x2
�
1�x8

x8
;

h3.x/D
1�x5

x5
�
1�x7

x7
; h4.x/D

1�x3

x3
�
1�x7

x7
;

for x 2�7
D

n
.x1;x2; : : : ;x8/ 2R8

W

8P
iD1

xi D 1; xi > 0; 1� i � 8
o

.

In this paper we will not be concerned with the functions fhkg
4
kD1

, because they provide
information about displacements under ��2 , ��1� , ���1 and �2 . Only the functions
ffig

8
iD1

and fgj g
6
jD1

are related to the displacements under � , � and ��. Furthermore,
it is possible to show that just the first eight ffig

8
iD1

are significant for finding a
lower bound for the maximum of the displacements dist.z0; � � z0/, dist.z0; � � z0/ and
dist.z0; �� � z0/.

We consider �7 as a submanifold of R8 . Let I| D f1; 2; 3; 4; 5; 6; 7; 8g. Each func-
tion fi for i 2 I| is smooth in an open neighborhood of �7 . Then the calculation of
the infimum of the maximum of the functions ffj gj2I | follows from the statements

(c) inf
x2�7
fmax.f1.x/; : : : ; f8.x//g D min

x2�7
fmax.f1.x/; : : : ; f8.x//g,

(d) min
x2�7
fmax.f1.x/; f2.x/; : : : ; f8.x//g D f1.x

�/ for x� 2�7 ��
7 ,

proved in Proposition 4.8 in Section 4.2, where �7Dfx2�
7 Wfj .x/Dfk.x/; j ; k2I|g.

Although the proof of the observation that x� 2 �7 also uses the fact that none of
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the functions ffj gj2I | has a local minimum in �7 , it is more involved. It requires a
case-by-case study of the values of the functions ffj gj2I | at the point x� .

In Section 4.1, we use the first-order partial derivatives of the functions ffj gj2I | to
show that there are certain direction vectors in the tangent space Tx��

7 so that moving
along these vectors reduces the number of possible cases for the values of the functions
ffj gj2I | at the point x� to only five main cases

(I) fj .x
�/ < ˛� for j 2 f4; 5; 6; 7; 8g and fj .x

�/D ˛� for j 2 f1; 2; 3g,

(II) fj .x
�/ < ˛� for j 2 f1; 2; 3; 4; 5; 6g and fj .x

�/D ˛� for j 2 f7; 8g,

(III) fj .x
�/D ˛� for j 2 f1; 2; 3; 4; 5; 6g and fj .x

�/ < ˛� for j 2 f7; 8g,

(IV) fj .x
�/D ˛� for j 2 f1; 2; 3; 7; 8g and fj .x

�/ < ˛� for j 2 f4; 5; 6g,

(V) fj .x
�/D ˛� for j 2 I| ,

where ˛� D minx2�7fmax.f1.x/; f2.x/; : : : ; f8.x//g. In each of the cases (I), (II),
(III) and (IV), we prove in Section 4.2 that there exists a piece of curve in �7 passing
through the point x� such that moving along this curve produces a point in �7 at
which a smaller minimum for the maximum of the functions ffj gj2I | is attained. This
leaves only the case x� 2�7 which suggests a method to find the coordinates of the
point x� . Then we evaluate one of the displacement functions in ffj gj2I | at x� to
calculate ˛� . In other words, we prove the following statement:

Theorem 4.14 Let F|W �7!R be the function defined by x 7!maxffi.x/ W i 2 I|g.
Then we have inf

x2�7
F|.x/D 5C 3

p
2.

This is given in Section 4.2, and provides the main estimate of Theorem 5.1 in the
geometrically infinite case.

In Section 5, we show that the proper and continuous function defined for a fixed point
z0 2H3 on the character variety X defined by the formula

f |
z0
.�; �/Dmax

˚
dist.z0; � � z0/; dist.z0; � � z0/; dist.z0; �� � z0/

	
has no local minimum in GF to reduce the geometrically finite case to the geometrically
infinite case, completing the proof of Theorem 5.1. Note that an analogous process
applies to a broader class of decompositions.

As summarized above, when � D h�; �i is geometrically infinite, the infimum of the
maximum of the displacement functions f1; : : : ; f8;g1; : : : ;g6 , determined by the
decomposition �D| of � , over �7 provides a lower bound for the displacements under
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the isometries � , � and �� in Theorem 5.1. Notice that, similar to the displacement
functions f 1

1
, f 1

2
, f 1

3
and f 1

4
given by the decomposition �D1 , the infimum of the

maximum of the displacement functions g1 , f2 , f3 , g4 , f5 , f6 , f7 and f8 over �7

provides a lower bound for the displacements under the isometries � and �. Although
we have

inf
x2�3
fmax.f 1

1 .x/; f
1

2 .x/; f
1

3 .x/; f
1

4 .x//g D inf
x2�7
fmax.g1.x/; f2.x/ : : : ; f8.x//g;

for �D1 and �D| by Lemma 2.1 (see Section 2) and the fact that g1.x/D
11
4

, f2.x/D9,
f3.x/ D 9, g4.x/ D

11
4

, f5.x/ D 9, f6.x/ D 9, f7.x/ D 9 and f8.x/ D 9 for the
point x D . 1

12
; 1

12
; 1

12
; 1

12
; 1

12
; 1

12
; 1

4
; 1

4
/ 2 �7 , it may be possible to obtain a larger

lower bound than log 3 introduced in the log 3 theorem by examining a carefully
chosen decomposition or a sequence of decompositions of � . If a larger lower bound
for the displacements under the isometries � and � can be achieved, all the results
involving the log 3 theorem in [2; 3; 8] and Culler and Shalen’s [7] can be improved
accordingly.

2 The log 3 theorem revisited

In this section, we calculate the number log 3 using the view point proposed in
Section 1.2 in case (I) of the proof of the log 3 theorem.

Let F1 be the set of functions ff 1
1
; f 1

2
; f 1

3
; f 1

4
g introduced in Section 1.2. Let us

define a continuous function G1W �3!R by G1.x/Dmaxff .x/ W f 2 F1g.

We aim to find infx2�3 G1.x/. To this purpose we shall consider �3 as a submanifold
of R4 . The tangent space Tx�

3 of �3 consists of the vectors in R4 whose entries
sum to 0 at any x 2�3 . Note that each displacement function f 1

i for i D 1; 2; 3; 4 is
smooth in an open neighborhood of �3 . Therefore the directional derivative of f 1

i in
the direction of any Ev 2 Tx�

3 is given by rf 1
i .x/ � Ev for any i D 1; 2; 3; 4.

We introduce the function � W .0; 1/ ! .0;1/ defined by �.x/ D 1=x � 1, where
� 0.x/D�1=x2 < 0 for every x 2 .0; 1/. We have the equality

inf
x2�3

G1.x/D inf
x2�3

˚
max

�
f 1

1 .x/; f
1

2 .x/
�	

because f 1
1
.x/D f 1

4
.x/ and f 1

2
.x/D f 1

3
.x/ for every x 2�3 . In other words, it is

enough to prove the following:

Lemma 2.1 If f 1
1
.x/D �.x4/�.x1/ and f 1

2
.x/D �.x3/�.x2/ are the displacement

functions defined in Section 1.2 for x 2�3 , then inf
x2�3
fmax.f 1

1
.x/; f 1

2
.x//g D 9.
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Proof Let F1W �3!R be the function defined by x 7!max.f 1
1
.x/; f 1

2
.x//. Since f 1

1

and f 1
2

are continuous on �3 , F1 is also continuous. The number infx2�3 F1.x/

exists and is greater than or equal to 1 because the inequalities f 1
1
.x/ > 1 and

f 1
2
.x/ > 1 hold for every x 2�3 . We aim to show that infx2�3 F1.x/D 9. First we

prove that infx2�3 F1.x/Dminx2�3 F1.x/:

Let �n D f.x1;x2;x3;x4/ 2�
3 W 1=n� xi � 1�1=.2n/ for i D 1; 2; 3; 4g for n� 2;

then F1 has an absolute minimum ˛n at a point xn in �n as �n is compact. The
sequence .˛n/

1
nD1

is decreasing because �n ��nC1 . In other words, the sequence
.F1.xn//

1
nD1

tends to an infimum of F1 . Assume that xn approaches to a point
x0 D .b1; b2; b3; b4/ 2 @�

3 as n approaches to infinity. Then we get bi D 0 for some
i D 1; 2; 3; 4. Suppose that b1 D 0. By the definition of f 1

1
, we must have b4 D 1.

Otherwise .F1.xn//
1
nD1

would approach to infinity instead of tending to an infimum.
Then we conclude that b3 D 0 and b2 D 0. But, the function .F1.xn//

1
nD1

tends to
infinity by the definition of f 1

2
in this case, a contradiction. Thus, we get b1 ¤ 0.

Similar contradictions arise under the assumption bi D 0 for any i 2 f2; 3; 4g implying
that bi ¤ 0 for every i 2 f2; 3; 4g. Therefore .xn/

1
nD1

cannot have a limit point on the
boundary of �3 .

We claim that there exists a positive integer n0 so that xnDxnC1 for every n�n0 . Let
us assume otherwise that we have a subsequence .xnj /

1
jD1

of the sequence .xn/
1
nD1

so
that xnj 2�njC1

��nj for every integer j >0. Since we have
S1

nD2�nD�
3 , there ex-

ists a subsequence of .xnj /
1
jD1

which has a limit point on @�3 , a contradiction. In other
words the absolute minimum of F1 is attained at a point x� D .x�

1
;x�

2
;x�

3
;x�

4
/ 2�3

so that F1.x�/D infx2�3 F1.x/.

Let �3 D fx 2 �
3 W f 1

1
.x/ D f 1

2
.x/g. We claim that x� 2 �3 . Assume other-

wise that f 1
1
.x�/ > f 1

2
.x�/. Then there exists a neighborhood U of x� such that

f 1
1
.x/ > f 1

2
.x/ for every x 2 U . In particular we get F1.x/ D f 1

1
.x/ on U .

Since F1.x�/ is the minimum value, the function f 1
1

must have a critical point
at x� . This is a contradiction. Because the derivative of f 1

1
in the direction of

Ev D h1;�1; 0; 0i 2 Tx�
3 is calculated as

rf 1
1 .x/ � Ev D�

1�x4

x2
1
x4

< 0;

the function f 1
1

decreases at any x 2 �3 in the direction of Ev . This argument also
applies, mutatis mutandis, to show that the assumption f 1

2
.x�/ > f 1

1
.x�/ leads to a

contradiction since the directional derivative rf 1
2
.x/ � Ev > 0 at any x 2�3 . Hence we

obtain that x� 2�3 .

Let f1.x/D �.x4/�.x1/ and f2.x/D �.x3/�.x2/ be the extensions of f 1
1

and f 1
2

to the open set C D .0; 1/ � .0; 1/ � .0; 1/ � .0; 1/. Let us consider the Lagrange
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multipliers problem of finding the minimum of f1 subject to the constraints G1.x/D 0

and G2.x/ D 0 for x D .x1;x2;x3;x4/ 2 C , where G1 and G2 are the functions
defined by

G1.x/D f1.x/�f2.x/ and G2.x/D x1Cx2Cx3Cx4� 1:

Since we have f1.x
�/Dminx2�3 F1.x/ and x� 2�3 , the point x� is a solution to

this problem. Therefore the gradient vector rf1.x
�/ is in the subspace of R4 spanned

by the vectors rG1.x
�/ and rG2.x

�/. Equivalently the matrix24 rf1.x
�/

rG1.x
�/

rG2.x
�/

35D
24 � 0.x�1 /�.x�4 / 0 0 �.x�

1
/� 0.x�

4
/

� 0.x�
1
/�.x�

4
/ �� 0.x�

2
/�.x�

3
/ ��.x�

2
/� 0.x�

3
/ �.x�

1
/� 0.x�

4
/

1 1 1 1

35
has rank less than 3. By applying the row reduction operations R2 7! .�1/R1CR2 ,
R1 7! .��.x�

1
/� 0.x�

4
//R3CR1 and R1 7! .�.x�

1
/� 0.x�

4
//=.�.x�

2
/� 0.x�

3
//R2CR1

simultaneously, we see that the matrix above is row equivalent to:264
.x�

1
�x�

4
/.1�x�

1
�x�

4
/

.x�
1

x�
4
/2

.x�
2
�x�

3
/.1�x�

2
�x�

3
/�.x�

1
/� 0.x�

4
/

.x�
2

x�
3
/2�.x�

2
/� 0.x�

3
/

0 0

0 �� 0.x�
2
/�.x�

3
/ ��.x�

2
/� 0.x�

3
/ 0

1 1 1 1

375
The reduced matrix above has rank less than 3 if and only if x�

1
D x�

4
and x�

2
D x�

3
.

Then it follows from the equation f1.x
�/ D f2.x

�/ that x�
1
D x�

2
. As a result we

find that x�i D
1
4

for every i 2 f1; 2; 3; 4g. Finally a simple evaluation shows that
inf

x2�3
F1.x/D 9.

It is worth emphasizing a few key points used in the proof of Lemma 2.1. The
functions f 1

1
and f 1

2
have no local minimum on �3 . This fact implies that x� 2�3 .

The proof of Lemma 2.1 shows that the main ingredients used to calculate the number
log 3 are:

(a) inf
x2�3

F1.x/D min
x2�3

F1.x/.

(b) There exists a point x� 2�3 ��
3 such that min

x2�3
F1.x/D f 1

1 .x
�/.

Lemma 2.1 also establishes that the point x� 2 �3 is unique. If we assume the
uniqueness of the point x� a priori together with (a), it is possible to suggest an
alternative way of finding the coordinates of the point x� : let T1;T2W R

4 ! R4

be the maps defined by .x1;x2;x3;x4/ 7! .x2;x1;x4;x3/ and .x1;x2;x3;x4/ 7!

.x4;x3;x2;x1/, respectively. We have Ti.x/2�
3 and f 1

i .T1.x//D f
1

i .x/ for every
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x2�3 . Let H1W �
3!R be the function so that H1.x/Dmaxf.f 1

i ıT1/.x/ W iD1; 2g.
We see that F1.x/DH1.x/ for every x2�3 . Since F1 takes its minimum value at the
point x� , the function H1 takes its minimum value at the point T �1

1
.x�/. Therefore

we obtain T �1
1
.x�/D x� which implies that x�

1
D x�

2
, and x�

3
D x�

4
.

Let H2W �
3!R be the function defined by H2.x/Dmaxf.f 1

i ıT2/.x/ W i D 1; 2g.
We repeat an analog of the argument above for H2 to derive that x�

1
Dx�

4
and x�

2
Dx�

3
.

As a result we find x�i D x�j for every i; j D 1; 2; 3; 4. In this calculation method, we
do not refer to the statement x� 2�3 given in (b).

3 Decomposition of �Dh�; �i for the isometries � , � and ��

Let � be a group which is free on a finite generating set „. Let „�1Df �1 W 2„g.
For m� 2, every element  of � can be written uniquely as a reduced word  1 � � � m ,
where each  i is an element of „[„�1 and  iC1 ¤  

�1
i for i D 1; : : : ;m� 1.

If k �m is a positive integer and  ¤ 1, we shall call  1 � � � k the initial word of
length k of  .

Let ‰� be a finite set of words in � . For each word  2 ‰� , let J denote the set
of nontrivial elements of � that have initial word  . Depending on the number of
elements in „ and lengths of words in ‰� there may be a set of words which are not
contained in any of J . Let us call this set the residue set of ‰� and denote it by ‰�r .

Definition 3.1 For a given pair D� D .‰�; ‰�r / of finite, disjoint sets of words ‰�

and ‰�r in � , if � D f1g [‰�r [
S

 2‰�
J , then �D� will be called a decomposition

of � .

Definition 3.2 A decomposition �D� with D�D .‰�; ‰�r / is symmetric if ‰� and ‰�r
are preserved by every bijection of „[„�1 .

We know that � D h�; �i described in the log 3 theorem is a free group on „D f�; �g
by [6, Proposition 9.2]. For D1D .‰1; ‰1

r D∅/, the decomposition �D1 corresponds
to the symmetric decomposition of � in (1).

We introduce another decomposition of � that contains the set �| D f�; �; ��g. Let
‰| D f��; �2; ���1; �; ��1; ��1��1; ��2; ��1�g. Then it is straightforward to see that

(6) � D f1g[‰|
r [

[
 2‰|

J ;
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where the residue set is ‰|
r D f�; �

�1g. Note that �D| for D| D .‰|; ‰
|
r / is not

symmetric. We shall use �D| in the proof of Theorem 5.1. In particular, we aim to
prove Theorem 3.4, an analog of Theorem 1.1, for ‰| .

We first state a more general result Lemma 3.3, an analog of [6, Lemma 5.3], for ‰| .
Although Lemma 3.3 follows directly from the same arguments used in the proof of [6,
Lemma 5.3], its proof is included for the sake of completeness. The main tool is [6,
Proposition 4.2]. In the following, J‰ denotes the disjoint union

S
 2‰

J for ‰ �‰| :

Lemma 3.3 Let � be a Kleinian group which is free on a generating set f�; �g. Let z0

be any point of H3 . Then there exists a number D 2 Œ0; 2�, a �–invariant D–conformal
density MD .�z/ for H3 and a family f� g 2‰| of Borel measures on S1 such that:

(1) �z0
.S1/D 1

(2) �z0
D
P
 2‰| � 

(3) (a)
R

S1
.��;z0

/D d���1 D 1�
R

S1
d��� �

R
S1

d��2 �
R

S1
d����1

(b)
R

S1
.���1;z0

/D d����1 D
R

S1
d���1��1 C

R
S1

d���1� C
R

S1
d���2

(c)
R

S1
.���1;z0

/D d��2 D
R

S1
d���C

R
S1

d��2 C
R

S1
d����1

(d)
R

S1
.���1;z0

/D d��� D
R

S1
d��

(4) (a)
R

S1
.���1;z0

/D d�� D 1�
R

S1
d���1� �

R
S1

d���2 �
R

S1
d���1��1

(b)
R

S1
.��;z0

/D d���2 D
R

S1
d���1��1 C

R
S1

d���1� C
R

S1
d���2

(c)
R

S1
.��;z0

/D d���1� D
R

S1
d���C

R
S1

d��2 C
R

S1
d����1

(d)
R

S1
.��;z0

/D d���1��1 D
R

S1
d���1

(5) (a)
R

S1
.���1��1;z0

/D d��� D 1�
R

S1
d���1� �

R
S1

d���2 �
R

S1
d���1��1

(b)
R

S1
.���1��1;z0

/D d����1 D
R

S1
d���2

(c)
R

S1
.���1��1;z0

/D d��2 D
R

S1
d���1�

(d)
R

S1
.���;z0

/D d���1��1 D 1�
R

S1
d��� �

R
S1

d��2 �
R

S1
d����1

(e)
R

S1
.���;z0

/D d���1� D
R

S1
d��2

(f)
R

S1
.���;z0

/D d���2 D
R

S1
d����1

(6) (a)
R

S1
.���1�;z0

/D d���1 D 1�
R

S1
d���1�

(b)
R

S1
.����1;z0

/D d�� D 1�
R

S1
d����1

(c)
R

S1
.��2;z0

/D d���1 D 1�
R

S1
d��2

(d)
R

S1
.���2;z0

/D d�� D
R

S1
d���2
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Proof Since � acts freely on H3 and it can be decomposed as in (6), the orbit
W D � � z0 is a disjoint union

(7) W |
D fz0g[V0[

[
 2‰|

V ;

where V0 D f � z0 W  2 ‰
|
r g and V D f � z0 W  2 J g. Note that V0 is the finite

set V� [V��1 D f� � z0g[ f�
�1 � z0g. Let V denote the finite collection of all sets of

the form
S
 2‰ V , V0[

S
 2‰ V , fz0g[

S
 2‰ V or fz0g[V0[

S
 2‰ V for

‰ �‰| . We apply [6, Proposition 4.2] to W and V .

Let D be a number in Œ0; 2� and .MV /V 2V be a family of conformal densities, for
which [6, Proposition 4.2(i)–(iv)] are satisfied. Let MV D .�V;z/z2H3 . We set
M DMW and � D �V ;z0

for each  2 ‰| . By [6, Proposition 4.2(iii)], M is
�–invariant. By [6, Proposition 4.2(i)] and the definition of a conformal density, we
have �z0

.S1/D�W ;z0
.S1/¤ 0. Therefore, we may assume that �z0

has total mass
1 after normalization, which gives Lemma 3.3(1).

By [6, Proposition 4.2(iv)], we have �fz0g;z0
D 0 and �V0;z0

D 0. Applying [6,
Proposition 4.2(ii)] to the disjoint union in (7), we obtain

�z0
D �fz0g;z0

C�V0;z0
C

X
 2‰|

�V ;z0
:

Hence, we get conclusion (2) of Lemma 3.3. In order to complete parts (3)–(6), we
need to determine all of the group-theoretical relations between the sets of words J 
for  2 ‰| . We know that ��1� 2 J��1 . Therefore, we have 1 2 ��1�J��1 . Let w
be a word in J��1 . Then we have w D ��1w1 for some w1 2 � . We compute that
��1�w D ��1w1 . The first letter of w1 cannot be � . But it can be either �, ��1

or ��1 . Assume that it is � and w1 ¤ �. Then we have w1 D �w2 for some word
w2 2 � . The first letter of w2 cannot be ��1 , but it can be either �, ��1 or � . Since
we get ��1�wDw2 , we derive that f1g[J�[J���1[J��[J�2[J��1 � ��1�J��1 :

If the first letter of w1 is ��1 , then we get w1D �
�1w2 for some w2 2� . We see that

��1�w D ��2w2 . This means that J��2 � ��1�J��1 . If the first letter of w1 is ��1 ,
then we get w1 D �

�1w2 for some w2 2 � which implies that ��1�w D ��1��1w2 .
Therefore, we find that J��1��1 � ��1�J��1 . In other words, ��1�J� contains every
word in � except the ones start with ��1� . Hence, ��1�J��1 D � �J��1� .

Similar computations show that ��1�J��1 D � � J���1 , �2J��1 D � � J�2 and
��2J� D � �J��2 .

It follows from the discussion above and definitions of the sets J for each  2‰|

that, for each row  , s. / and S. / of Table 1, the decomposition �D| of � D h�; �i
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 s. / S. /

(3) (a) � ��1 f��; �2; ���1g

(b) ��1 ���1 f��; �2; ���1; �; ��1g

(c) ��1 �2 f�; ��1; ��1��1; ��2; ��1�g

(d) ��1 �� f��; �2; ���1; ��1; ��1��1; ��2; ��1�g

(4) (a) ��1 � f��1��1; ��2; ��1�g

(b) � ��2 f��; �2; ���1; �; ��1g

(c) � ��1� f�; ��1; ��1��1; ��2; ��1�g

(d) � ��1��1 f��; �2; ���1; �; ��1��1; ��2; ��1�g

(5) (a) ��1��1 �� f��1��1; ��2; ��1�g

(b) ��1��1 �2 f��; �2; ���1; �; ��1; ��1��1; ��2g

(c) ��1��1 ���1 f��; �2; ���1; �; ��1; ��1��1; ��1�g

(d) �� ��1��1 f��; �2; ���1g

(e) �� ��1� f��; ���1; �; ��1; ��1��1; ��2; ��1�g

(f) �� ��2 f��; �2; �; ��1; ��1��1; ��2; ��1�g

(6) (a) ��1� ��1 f��1�g

(b) ���1 � f���1g

(c) �2 ��1 f�2g

(d) ��2 � f��2g

Table 1: Group-theoretical properties of the decomposition �D|

has the group-theoretical property

(8) Js. / D � �JS. /:

Let V‰ denote the union
S
2‰ V where ‰ is a subset of ‰| [ ‰

|
r . Using the

group-theoretical relations in (8), we derive the relations

(9) Vs. / DW �VS. /

between the orbits Vs. / and VS. / . Since W �VS. / D Vs. / 2 V , [6, Proposition
4.2(iii)] gives MVs./

D �1.MW �VS./
/: On the other hand, by [6, Proposition 4.2(ii)],

we get M DMW �VS./
CMVS./

. We combine the last two equalities to obtain
MVs./

D  �1.M�MVS./
/; which implies that

(10) d�Vs./; �z0
D d

�
 �1

�
�z0
�

X
 2S. /

� 

��
:
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Since MVs./
is a D–conformal density and d�Vs./; �z0

D�D
;z0

d�Vs./
(see [6, Propo-

sition 2.4]), we obtain the equalityZ
S1

.�;z0
/Dd�Vs./

D 1�
X

 2S. /

Z
S1

d� 

for every row of Table 1 by equating the total masses of both sides of (10), which
provides parts .3/–.6/ of the lemma.

The following is an analog of Theorem 1.1 for the set ‰| � � D h�; �i. Notice that
Theorem 3.4 has no analog of part (3) of Theorem 1.1.

Theorem 3.4 Let � D h�; �i be a free, geometrically infinite Kleinian group without
parabolics. For any z0 2H3 , let Az0

be the area measure based at z0 . There is a fam-
ily of Borel measures f� g 2‰| for ‰| D f��; �2; ���1; �; ��1; ��1��1; ��2; ��1�g

on S1 such that:

(1) Az0
D

X
 2‰|

� , where Az0
is normalized so that Az0

.S1/D 1.

(2)
Z

S1

.�;z0
/2d�s. / D 1�

X
 2S. /

Z
S1

d� for each row of Table 1.

Proof By the conclusions of [6, Propositions 6.9 and 3.9] and tameness [1; 4], we
have that every �–invariant D–conformal density M is a constant multiple of the
area density A, ie D D 2. By Lemma 3.3(1), we get MDA. Then (2) follows from
Lemma 3.3(3)–(6).

We shall use Theorem 3.4 together with Lemma 1.2 to produce the displacement
functions for the decomposition �D| . In the rest of this paper, we will use the bijection
pW ‰|! I| defined by

(11)
�� 7! 1; �2

7! 2; ���1
7! 3; � 7! 7;

��1��1
7! 4; ��2

7! 5; ��1� 7! 6; ��1
7! 8;

to enumerate the displacement functions and their variables. We have:

Proposition 3.5 Let � D h�; �i be a free Kleinian group. For any z0 2H3 and for
each  2 f�; �; ��1; ��1; ��; ��1��1g, the expression e2 dist.z0; �z0/ is bounded below
by fi.x/ or gj .x/ for at least one of fi or gj for i 2 I| D f1; 2; 3; 4; 5; 6; 7; 8g and
j 2 f1; 2; 3; 4; 5; 6g in the list
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f1.x/D
1�x4�x5�x6

x4Cx5Cx6
�
1�x1

x1
; f2.x/D

1�x4�x5�x6�x7�x8

x4Cx5Cx6Cx7Cx8
�
1�x2

x2
;

f4.x/D
1�x1�x2�x3

x1Cx2Cx3
�
1�x4

x4
; f3.x/D

1�x1�x2�x3�x7�x8

x1Cx2Cx3Cx7Cx8
�
1�x3

x3
;

f7.x/D
1�x4�x5�x6

x4Cx5Cx6
�
1�x7

x7
; f5.x/D

1�x1�x2�x3�x7�x8

x1Cx2Cx3Cx7Cx8
�
1�x5

x5
;

f8.x/D
1�x1�x2�x3

x1Cx2Cx3
�
1�x8

x8
; f6.x/D

1�x4�x5�x6�x7�x8

x4Cx5Cx6Cx7Cx8
�
1�x6

x6

(the functions above are produced from rows (3)(a)–(c), (4)(a)–(c), (5)(a) and (5)(d) of
Table 1) and

g1.x/D
x7

1�x7
�
1�x1

x1
; g2.x/D

x6

1�x6
�
1�x2

x2
;

g3.x/D
x5

1�x5
�
1�x3

x3
; g4.x/D

x8

1�x8
�
1�x4

x4
;

g5.x/D
x3

1�x3
�
1�x5

x5
; g6.x/D

x2

1�x2
�
1�x6

x6

(these come from rows (3)(d), (4)(d), (5)(b), (5)(c), (5)(e) and (5)(f) of Table 1) for
some

x D .x1; : : : ;x8/ 2�
7
D

�
x 2R8

C W

8X
iD1

xi D 1

�
:

Under the same hypothesis on � , for any z0 2H3 and for each  2f�2; ��2; ���1; ��g,
the expression e2 dist.z0; �z0/ is bounded below by hi.x/ for at least one of hi from the
list

h1.x/D
1�x6

x6
�
1�x8

x8
; h2.x/D

1�x2

x2
�
1�x8

x8
;

h3.x/D
1�x5

x5
�
1�x7

x7
; h4.x/D

1�x3

x3
�
1�x7

x7
;

for some i 2f1; 2; 3; 4g and x2�7 (the functions hi are produced from rows (6)(a)–(d)
of Table 1).

Proof By Lemma 3.3(1), we have 0 � � .S1/ � 1 for every  2 ‰| . We aim
to show that 0 < � .S1/ < 1 for any  2 ‰| . First assume to the contrary that
���1.S1/D0. Applying Theorem 3.4(2) to row (6)(a) of Table 1 gives ���1�.S1/D1.
By Theorem 3.4(1), we see that � .S1/ D 0 for every  2 ‰| � f��1�g. Us-
ing that ��.S1/ D 0 and applying Theorem 3.4(2) to row (6)(b) of Table 1 shows
that ����1.S1/D 1, a contradiction. A similar argument can be repeated for ��.S1/
by exchanging the roles of ��1 and � above. Therefore, we have ���1.S1/¤ 0 and
��.S1/¤ 0.
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Assume that � 0
.S1/D 0 for a given  0 2 f��; ��

�1; �2; ��1�; ��1��1; ��2g. Con-
sider the lists�

��1; ��;‰|
�f�g; ��1

�
;

�
��1; ���1; ‰|

�f��1�; ��1��1; ��2
g; �
�
;�

��1; �2; ‰|
�f�g; ��1

�
;

�
�; ��2; ‰|

�f��1�; ��1��1; ��2
g; ��1

�
;�

�; ��1��1; ‰|
�f��1

g; �
�
;

�
�; ��1�;‰|

�f���1; ��; �2
g; ��1

�
;

where each entry in a list is assigned for 0 ,  0 , S.0/,  1 , respectively. By applying
Theorem 3.4(2) to Table 1 with  0 D s.0/, we get

P
 2S.0/

� D 1. We have
 1 62 S.0/. Therefore, we obtain � 1

.S1/D 0 for some  1 2 f�
�1; �g, a contradic-

tion. As a result, we conclude that 0< � .S1/ < 1 for every  2‰| . Since we have
 D s. / for some  in Table 1 and S. /�‰| , we also conclude

0<

Z
S1

.�;z0
/2d�Vs./

D 1�
X

 2S. /

Z
S1

d� < 1

by Theorem 3.4(2). In other words, �s. / and
R

S1
�2
;z0

d�Vs./
satisfy the hypothesis

of Lemma 1.2 for every  in Table 1.

We apply Lemma 1.2 to every row of Table 1 with � D �s. / , a D �s. /.S1/ and
b D

R
S1

�2
;z0

d�Vs./
. Using Theorem 3.4(2), we calculate the lower bounds as

(12) e2 dist.z0; �z0/ �

�
1�

P
 2S. /mp. /

�
�
�
1�mp.s. //

��P
 2S. /mp. /

�
�mp.s. //

;

where
R

S1
d� Dmp.s. // for the bijection p in (11). Upon replacing each constant

mp.s. // appearing in (12) with the variable xp.s. // we obtain the functions listed in
the proposition.

Note that we have 18 lower bounds given in the expression (12) for the displace-
ments under the isometries in ‰|

r [‰
| because there are 18 group-theoretical re-

lations listed in (8). Since we are interested in the displacements under the isome-
tries in �| D f�; �; ��g, we will concentrate on the first 14 displacement functions
f1; f2 : : : ; f8;g1;g2; : : : ;g6 in Proposition 3.5 for the proofs of Lemmas 4.2, 4.3, 4.4,
4.5, 4.6, 4.7, 4.9, 4.11, 4.12, 4.13 and Theorems 4.14, 4.1 and 5.1.

4 Lower bound for maxfdist.z; �z/ W 2��g whenƒ� �zDS 2

Let F|D ff1; f2; : : : ; f8;g1;g2; : : : ;g6g. The constants on the right-hand side of the
inequalities in (12) can be considered as the values of the functions in F| at the point
m|D .m1;m2; : : : ;m8/2�

7D
˚
.x1;x2;x3;x4;x5;x6;x7;x8/2R8

C W
P8

iD1 xiD1
	

.
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When � D h�; �i is geometrically infinite, the lower bound given in Theorem 5.1 for
the displacements under the isometries in �| D f�; �; ��g follows from the calculation
of the infimum of the maximum of the functions in F| over the simplex �7 . Therefore,
in this section, we aim to prove the statement below:

Theorem 4.1 Let G|W �7!R be the function defined by x 7!maxff .x/ W f 2F|g.
Then inf

x2�7
G|.x/D 5C 3

p
2.

To this purpose, we shall show that it is enough to calculate the infimum of the
maximum of the first eight f1; f2; : : : ; f8 of the displacement functions in F| . Let
I| D f1; 2; 3; 4; 5; 6; 7; 8g. Then we first state the following:

Lemma 4.2 Let F|W �7! R be the function defined by x 7! maxffi.x/ W i 2 I|g.
Then ˛� D inf

x2�7
F|.x/ is attained in �7 and satisfies 9� ˛� � 5C 3

p
2.

Proof It is clear that infx2�7fmax.f7.x/; f8.x//g � infx2�7 F|.x/. We apply the
substitution X1 D x7 , X2 D x8 , X3 D x1Cx2Cx3 , X4 D x4Cx5Cx6 . Then we
see that f7.x/D �.X4/�.X1/ and f8.x/D �.X3/�.X2/, where

P4
iD1 Xi D 1 and

�.x/D 1=x� 1 for x 2 .0; 1/. By Lemma 2.1, we obtain that 9� ˛� .

Let �n D fx 2�
7 W 1=n � xi � 1� 1=.2n/ for i 2 I|g of �7 for every n � 2. Note

that �nC1 ��n . The function F| has an absolute minimum F|.xn/ at some point
xn 2�n . The sequence .F|.xn//

1
nD1

tends to an infimum because it is a decreasing
sequence which is bounded below by 9.

We claim that the sequence .xn/
1
nD1

cannot have a limit point on the boundary of �7 .
Assume on the contrary that xn! b 2 @�7 as n!1. If .b1; b2; : : : ; b8/ denotes the
coordinates of the point b , then bi D 0 for some i 2 I| . Let us assume that bi D 0

for some i 2 f1; 7g. Then using the function fi , we conclude that b4C b5C b6 D 1

because otherwise .fi.xn//
1
nD1

would tend to infinity. But it is supposed to be tending
to an infimum of F| . Therefore, we must have bj D 0 for every j 2 f2; 3; 8g. Then, we
get that b4Cb5Cb6Cb7Cb8D 1, b1Cb2Cb3Cb7Cb8D 1 and b1Cb2Cb3D 1,
because otherwise .fj .xn//

1
nD1

would tend to infinity when it is supposed to tend
to an infimum of F| . In any case, we obtain that b4C b5C b6C bi > 1 for some
i 2 f1; 2; 3; 7; 8g. This is a contradiction. Therefore, b1 ¤ 0 and b7 ¤ 0. Similar
arguments with suitably chosen displacement functions show that bi ¤ 0 for every
i 2 f2; 3; 4; 5; 6; 8g. Hence, the sequence .xn/

1
nD1 cannot have a limit point on the

boundary of �7 . Then there exists a positive integer n0 so that xn D xnC1 for every
n� n0 . Otherwise we would have a subsequence .xnj /

1
jD1

of the sequence .xn/
1
nD1

so that xnj 2�njC1
��nj for every integer j > 0. Since we have

S1
nD2�n D�

7 ,
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there exists a subsequence of .xnj /
1
jD1

which has a limit point on @�7 , a contradiction.
As a result, infx2�7 F|.x/ is attained at some point in �7 , ie ˛� Dminx2�7 F|.x/.

Let xi D .
p

2� 1/=2 for i D 1; 4; 7; 8 and xi D .3� 2
p

2/=4 for i D 2; 3; 5; 6. Then
xxD .xi/i2I | is a point in �7 such that fi.xx/D 5C3

p
2 for every i 2 I| . Therefore,

we get F|.xx/D 5C 3
p

2� ˛� .

In the rest of this section, we will consider �7 as a submanifold of R8 . The tangent
space Tx�

7 at any x 2�7 consists of vectors whose coordinates sum to 0. Note that
each displacement function fi for i 2 I| is smooth in an open neighborhood of �7 .
Therefore, the directional derivative of fi in the direction of any Ev 2 Tx�

7 is given by
rfi.x/ � Ev for any i 2 I| .

We shall use the identity
P8

iD1 xi D 1 to rewrite the formulas of the functions fi given
in Proposition 3.5 in various ways in the proofs of lemmas below to suit our purposes.
Although they do not take the same values on all of R8 , we will abuse notation and
call the rewritten functions by fi , which agree with the originals on �7 .

4.1 Relationships between the displacement functions f1; f2; : : : ; f8

By Lemma 4.2, we know that ˛� is attained by a displacement function fi for some
i 2 I| . In fact, it is possible to see that more than one function in ff1; : : : ; f8g attain
the value ˛� . In other words, we have:

Lemma 4.3 Let ˛� D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as
in Proposition 3.5. At any x� 2 �7 such that F|.x�/ D ˛� , there exist at least
two functions fi ; fj such that fi.x

�/ D fj .x
�/ for i ¤ j , where i; j 2 I| D

f1; 2; 3; 4; 5; 6; 7; 8g.

Proof Observe that for each function fi for i 2 I| there is a variable xj such that
the first-order partial derivative of fi with respect to xj at x is 0 for every x 2�7 .
But the first-order partial derivatives of fi with respect to xi are strictly negative at
every x 2�7 . These facts imply that rfi is not a scalar multiple of the perpendicular
h1; 1; : : : ; 1i to Tx�

7 for any i 2 I| . Therefore, none of the functions f1; f2; : : : ; f8

has a local extremum on �7 .

If fi.x
�/¤ fj .x

�/ for every i ¤ j , then the set ff1.x
�/; f2.x

�/; : : : ; f8.x
�/g has

a unique largest element. By renumbering the functions, we may assume that f1.x
�/

is the largest value, ie f1.x
�/D ˛� . By the continuity of F| , there exists a neighbor-

hood U of x� contained in �7 so that F|.x/D f1.x/ for every x 2 U . Since F|

has a minimum at x� , then f1 must have a local minimum at x� , a contradiction. The
lemma follows.
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Next, we will consider the cases in which fi and fj in Lemma 4.3 are in the sets
ff1; f2; f3g, ff4; f5; f6g and ff7; f8g, respectively:

Lemma 4.4 Let ˛�D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as in
Proposition 3.5. At any x� 2�7 such that F|.x�/D ˛� , we have either

(1) fl.x
�/D ˛� for all l 2 I1 D f1; 2; 3g or

(2) fl.z/ < ˛� for all l 2 I1 and fj .z/D fj .x
�/ for all j 2 I1 D f4; 5; 6; 7; 8g for

some z 2�7 such that F|.z/D F|.x�/.

Proof Assume that part (1) of the lemma does not hold at x� . If fi.x
�/ < ˛� for

every i 2 I1 , the point zD x� satisfies part (2). Then it is enough to consider the case
fi.x

�/ < fj .x
�/ � fk.x

�/ D ˛� , and fl.x
�/ � ˛� for l 2 I1 , where i; j ; k 2 I1

such that i ¤ j , j ¤ k , i ¤ k . Let us define the vectors Eu2
1

, Eu3
1

and Eu3
2

as

h�1; 1; 0; 0; 0; 0; 0; 0i; h�1; 0; 1; 0; 0; 0; 0; 0i and h0;�1; 1; 0; 0; 0; 0; 0i

in Tx��
7 , respectively. Also let Eu1

2
D�Eu2

1
, Eu1

3
D�Eu3

1
and Eu2

3
D�Eu3

2
.

Using the identity xk D 1�
P8

nD1;n¤k xn , we calculate the directional derivatives of
all of the functions f1; f2; : : : ; f8 in the direction of the vector Euj

i . Note that none of
the functions f4 , f5 ,. . . , f8 contains the variables x1 , x2 or x3 . For every x 2�7

and for every l 2 I1 we see that

rfi.x/ � Eu
j
i > 0; rfj .x/ � Eu

j
i < 0; rfk.x/ � Eu

j
i D 0; rfl.x/ � Eu

j
i D 0;

which implies that the values of fj and fk decrease along a line segment in the
direction of Ev D Euj

i C Eu
k
i . The values of fl are constant along this segment, and for a

short distance along Ev the values of fi is smaller than those of fj and fk . Therefore
there exists a point z on this line segment satisfying part (2) of the lemma.

Analogous results hold for the displacement functions in ff4; f5; f6g and ff7; f8g. In
particular, we have the following:

Lemma 4.5 Let ˛�D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as in
Proposition 3.5. At any x� 2�7 such that F|.x�/D ˛� , we have either

(1) fl.x
�/D ˛� for all l 2 I2 D f4; 5; 6g or

(2) fl.z/ < ˛� for all l 2 I2 and fj .z/D fj .x
�/ for all j 2 I2 D f1; 2; 3; 7; 8g for

some z 2�7 such that F|.z/D F|.x�/.
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Lemma 4.6 Let ˛�D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as in
Proposition 3.5. At any x� 2�7 such that F|.x�/D ˛� , we have either

(1) fl.x
�/D ˛� for all l 2 I3 D f7; 8g or

(2) fl.z/ < ˛� for all l 2 I3 and fj .z/D fj .x
�/ for all j 2 I3 D f1; 2; 3; 4; 5; 6g

for some z 2�7 such that F|.z/D F|.x�/.

The proof of Lemma 4.4 applies, mutatis mutandis, to prove Lemmas 4.5 and 4.6. In
particular, using each identity xk D 1�

P8
nD1;n¤k xi for k 2 I2[ I3 , we perturb in

the directions of the vectors Eu5
4
D h0; 0; 0;�1; 1; 0; 0; 0i, Eu6

4
D h0; 0; 0;�1; 0; 1; 0; 0i

and Eu6
5
D h0; 0; 0; 0;�1; 1; 0; 0i for Lemma 4.5, and perturb in the direction of the

vectors Eu8
7
D h0; 0; 0; 0; 0; 0;�1; 1i and Eu7

8
D h0; 0; 0; 0; 0; 0; 1;�1i for Lemma 4.6.

Lemmas 4.4, 4.5 and 4.6 imply the following:

Lemma 4.7 Let ˛�D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as in
Proposition 3.5. There exists a point x� 2�7 which satisfies one of the cases (I), (II),
(III), (IV) or (V), where

(I) fj .x
�/ <˛� for j 2 I1Df4; 5; 6; 7; 8g and fj .x

�/D˛� for j 2 I1Df1; 2; 3g,

(II) fj .x
�/ <˛� for j 2 I3Df1; 2; 3; 4; 5; 6g and fj .x

�/D˛� for j 2 I3Df7; 8g,

(III) fj .x
�/D˛� for j 2 I3Df1; 2; 3; 4; 5; 6g and fj .x

�/ <˛� for j 2 I3Df7; 8g,

(IV) fj .x
�/D˛� for j 2 I2Df1; 2; 3; 7; 8g and fj .x

�/ <˛� for j 2 I2Df4; 5; 6g,

(V) fj .x
�/D ˛� for j 2 I| D f1; 2; 3; 4; 5; 6; 7; 8g.

Proof Let x 2�7 be a point such that F|.x/D ˛� . First, assume that fi.x/ < ˛� for
some i 2 I1 . By Lemma 4.4, there exists a point z1 2 �

7 with fi.z1/ < ˛� for all
i 2 I1 and fj .z1/� ˛� for all j 2 I1 with F|.z1/D ˛� .

If fj .z1/<˛� for some j 2 I2 , there exists a point z2 2�
7 with fi.z1/Dfi.z2/<˛�

for all i 2 I1 , fj .z2/ < ˛� for all j 2 I2 , fk.z1/ D fk.z2/ for all k 2 I3 and
F|.z2/D ˛� by Lemma 4.5. We must have fk.z2/D ˛� for all k 2 I3 by Lemma 4.3.
Thus x� D z2 satisfies case (II). Assume that fj .z1/ D ˛� for all j 2 I2 . Let
T1W �

7!�7 be the transformation

(13)
x1 7! x4; x2 7! x5; x3 7! x6; x4 7! x1;

x5 7! x2; x6 7! x3; x7 7! x8; x8 7! x7:

If fk.z1/D ˛� for all k 2 I3 , then x� D T1.z1/ satisfies case (IV). Otherwise, there
exists a point z2 2�

7 such that fi.z2/Dfi.z1/ for i 2 I1 , fj .z2/Dfj .z1/ for j 2 I2

and fk.z2/ < ˛� for k 2 I3 by Lemma 4.6. Thus, x� D T1.z2/ satisfies case (I).
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Consider the case fi.x/ D ˛� for all i 2 I1 . If also fj .x/ D ˛� for all j 2 I2 ,
then either x� D x satisfies case (V) or there exists a point x� D z1 obtained by
Lemma 4.6 satisfying case (III). Therefore, assume fj .x/ < ˛� for some j 2 I2 . By
Lemma 4.5, there exists a point z1 2 �

7 with the property that fi.z1/ D ˛� for all
i 2 I1 , fj .z1/ < ˛� for all j 2 I2 and fk.z1/D fk.x/ for all k 2 I3 . Then either
x� D z1 satisfies case (IV), or there exists a point x� D z2 2�

7 satisfying case (I) by
Lemma 4.6.

4.2 Calculations of the infima

Let �7 D fy 2 �
7 W fj .y/ D fk.y/; j ; k 2 I|g � �7 . Note that xx 2 �7 (see

Lemma 4.2). We aim to prove the following proposition:

Proposition 4.8 The infimum ˛� D min
x2�7

F|.x/ 2 Œ9; 5C 3
p

2� is attained at some
point x� 2�7 .

To this purpose, we need to show that cases (I), (II), (III) and (IV) are not possible at a
point x 2�7 so that F|.x/D ˛� . We start with case (I).

Lemma 4.9 Let ˛�D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as in
Proposition 3.5. At any x� 2�7 satisfying fi.x

�/D fj .x
�/ for every i; j 2 f1; 2; 3g

and f2.x
�/ > f6.x

�/, there exists Ev 2 Tx��
7 such that each of f1 , f2 and f3

decreases in the direction of Ev .

Proof Using the identity x8 D 1�
P7

nD1 xn , we rewrite f1 , f2 and f3 as

f1.x/D �.†2.x//�.x1/; f2.x/D
�.x2/

�.†1.x//
; f3.x/D

�.x3/

�.†2.x//
;

where †1.x/D x1C x2C x3 and †2.x/D x4C x5C x6 for every x 2�7 . These
functions are each well-defined and smooth on an open neighborhood of �7 in R8 .
Because �.x/ decreases in x and †2 is constant in all variables but x4 , x5 and x6 ,
it is clear that

.1/
@f1

@x1

ˇ̌
x�
D�

�.†2.x
�//

.x�
1
/2

< 0;
@f1

@x2

ˇ̌
x�
D 0;

@f1

@x3

ˇ̌
x�
D 0;

.2/
@f3

@x3

ˇ̌
x�
D�

1

.x�
3
/2�.†2.x�//

< 0;
@f3

@x1

ˇ̌
x�
D 0;

@f3

@x2

.x�/D 0;

.3/
@f1

@xk

ˇ̌
x�
D 0;

@f2

@xk

ˇ̌
x�
D 0;

@f3

@xk

ˇ̌
x�
D 0;
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for every k 2 I3 . These facts imply that at any x� 2�7 such that the equation

(14)
@f2

@x2

ˇ̌̌
x�
D 0

does not hold, there exists some r 2 R such that each of f1 , f2 and f3 decreases
in the direction of the vector Evr D h1; r; 1; 0; 0; 0;�r � 2; 0i. Note that Evr 2 Tx��

7

since its coordinates sum to 0. Thus it only remains to consider the case in which the
equality in (14) holds.

A computation gives that

@f2

@x2

ˇ̌̌
x�
D
.x�

2
�†1.x

�//.1�x�
2
�†1.x

�//

.x�
2
/2.†1.x�//2

;

which vanishes if and only if †2.x
�/Cx�

2
D 1. Since †1.x

�/D x�
1
Cx�

2
Cx�

3
, we

conclude that equation in (14) holds if and only if x�
2
D .1� x�

1
� x�

3
/=2. By the

identity
P8

iD1 x�i D 1, this is in turn equivalent to

x�2 D x�4 Cx�5 Cx�6 Cx�7 Cx�8 :

Therefore, we find that x�
6
< x�

2
. Then the lemma follows, because by the definitions

of f2 and f6 , we obtain f2.x
�/D .�.x�

2
//2<�.x�

2
/�.x�

6
/Df6.x

�/; a contradiction.

Before we proceed to cases (II), (III) and (IV), we shall first prove the following
statement:

Lemma 4.10 For 1� k � n� 1, let f1 , f2; : : : ; fk be smooth functions on an open
neighborhood U of the .n � 1/�simplex �n�1 in Rn . If at some x 2 �n�1 the
collection frf1.x/;rf2.x/; : : : ;rfk.x/; h1; 1; : : : ; 1ig of vectors in Rn is linearly
independent, then there exists a vector Eu 2 Tx�

n�1 such that each fi for i D 1; : : : ; k

decreases in the direction of Eu at x .

Proof Let B D fEv1; : : : ; Evng be a collection of n linearly independent vectors in Rn .
We claim that there exists a vector Eu 2 Rn such that Eu � Ev < 0 for every Ev 2 B .
The assertion is clear for n D 1. For n > 1, assume that there exists a vector Eu0 2

SpanfEv1; : : : ; Evn�1g such that Eu0 � Ev < 0 for every v 2SDfEv1; : : : ; Evn�1g by induction.

There is a nonzero vector Ev0 2Rn orthogonal to each vector in S . If we have Ev0 � EvnD0,
then Evn is in the space Ev?

0
of vectors perpendicular to Ev0 . Since dim Ev?

0
D n� 1, the

set S spans Ev?
0

. The set B is linearly independent therefore, we get Evn � Ev0 ¤ 0. Let
EuD Eu0� cEv0 for c D .Eu0 � EvnC1/=Ev0 � Evn . Then we see that Eu � Ev < 0 for every Ev 2 B ,
which proves the claim.
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Let EwD .1; 1; : : : ; 1/2Rn . Complete the set frf1.x/;rf2.x/; : : : ;rfk.x/; Ewg to a
basis BD frf1.x/;rf2.x/; : : : ;rfk.x/; EukC1; : : : ; Eun�1; Ewg for Rn . If we declare
EviDproj Ew? rfi.x/ for iD1; : : : ; k and Evj Dproj Ew? Euj for j DkC1; : : : ; n�1, then
fEv1; : : : ; Evn�1; Ewg is linearly independent. This is because B is linearly independent.
Let S DfEv1; : : : ; Evn�1g. Since Ew? has dimension n�1 and S is linearly independent,
we have SpanS D Ew? . By the fact above, there exists a vector Eu 2 SpanS so that
Eu � Ev < 0 for every Ev 2 S . In particular, we get Eu � Evi D Eu �rfi.x/ < 0 for i D 1; : : : ; k .
Since Tx�

n�1 consists of vectors whose entries sum to 0, we have Ew? D Tx�
n�1 ,

which completes the proof.

Lemmas 4.11, 4.12 and 4.13 below show respectively that cases (II), (III) and (IV) are
not possible at a point at which F| takes it minimum value:

Lemma 4.11 Let ˛� D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as
in Proposition 3.5. At any x� 2�7 such that f7.x

�/D f8.x
�/ and f4.x

�/ < f8.x
�/,

there exists a vector Ev 2 Tx��
7 so that f7 and f8 decrease in the direction of Ev .

Proof We aim to apply Lemma 4.10. Therefore, we need to show that the set
frf7.x

�/;rf8.x
�/; Ewg is linearly independent, where Ew D h1; 1; 1; 1; 1; 1; 1; 1i. It

is enough to show that the matrix

(15)

24 rf7

rf8

Ew

35D
264 0 0 0 @f7

@x4

@f7

@x5

@f7

@x6

@f7

@x7
0

@f8

@x1

@f8

@x2

@f8

@x3
0 0 0 0 @f8

@x8

1 1 1 1 1 1 1 1

375
has full rank at any x� 2�7 which satisfies the hypotheses of the lemma. We have

.1/
@f7

@x4

ˇ̌
x�
D�

�.x�
7
/

.†2.x�//2
;

@f7

@x4

ˇ̌
x�
D
@f7

@x5

ˇ̌
x�
;

@f7

@x5

ˇ̌
x�
D
@f7

@x6

ˇ̌
x�
;

.2/
@f8

@x1

ˇ̌
x�
D�

�.x�
8
/

.†1.x�//2
;

@f8

@x1

ˇ̌
x�
D
@f8

@x2

ˇ̌
x�
;

@f8

@x2

ˇ̌
x�
D
@f8

@x3

ˇ̌
x�
;

.3/
@f7

@x7

ˇ̌
x�
D�

�.†2.x
�//

.x�
7
/2

¤ 0;
@f8

@x8

ˇ̌
x�
D�

�.†1.x
�//

.x�
8
/2

¤ 0:

Let AD .f7/4.x
�/, B D .f7/7.x

�/, C D .f8/1.x
�/ and D D .f8/8.x

�/. We apply
two row operations: first R2 7! �D �R3CR2 , then R1 7! .B=D/ �R2CR1 . Then
we obtain the row equivalent matrix:24 B

D
.C �D/ B

D
.C �D/ B

D
.C �D/ A�B A�B A�B 0 0

C �D C �D C �D �D �D �D �D 0

1 1 1 1 1 1 1 1

35
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The matrix above has full rank if and only if A�B ¤ 0 or C �D ¤ 0, where

A�B D
.†2.x

�/�x�
7
/.1�†2.x

�/�x�
7
/

.†2.x�//2.x
�
7
/2

;

C �D D
.†1.x

�/�x�
8
/.1�†1.x

�/�x�
8
/

.†1.x�//2.x
�
8
/2

:

Equivalently, it has full rank at x� 2�7 unless x�
7
D†2.x

�/ and x�
8
D†1.x

�/.

At any x�2�7 such that x�
7
Dx�

4
Cx�

5
Cx�

6
, x�

8
Dx�

1
Cx�

2
Cx�

3
and f7.x

�/Df8.x
�/,

we derive .�.x�
7
//2 D .�.x�

8
//2 , which implies that x�

7
D x�

8
. Using

P8
nD1 x�n D 1,

we find that

†1.x
�/D 1

4
; †2.x

�/D 1
4
; x�7 D

1
4

and x�8 D
1
4
:

Since we have †2.x
�/ D 1

4
, x�

5
> 0 and x�

6
> 0, we get x�

4
< 1

4
, which implies

that f4.x
�/D �.†1.x

�//�.x�
4
/ > f8.x

�/D �.†1.x
�//�.x�

8
/, a contradiction. As a

result, the matrix in (15) has full rank. By Lemma 4.10, the conclusion of the lemma
follows.

Lemma 4.12 Let ˛� D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as
in Proposition 3.5. For any x� 2�7 such that fi.x

�/Dfj .x
�/ for every i; j 2 I1[I2 ,

there exists a vector Ev 2 Tx��
7 such that fi decreases in the direction of Ev for each

i 2 I1[ I2 D f1; 2; 3; 4; 5; 6g.

Proof Using the identity x8D 1�
P7

nD1 xn we rewrite the formulas of f1; f2; : : : ; f6

as

f1.x/D �.†2.x//�.x1/; f2.x/D
�.x2/

�.†1.x//
; f3.x/D

�.x3/

�.†2.x//
;

f4.x/D �.†1.x//�.x4/; f5.x/D
�.x5/

�.†2.x//
; f6.x/D

�.x6/

�.†1.x//
:

All of these functions are smooth on an open neighborhood of �7 in R8 and do not
depend on x7 or x8 . Since f2.x

�/D f6.x
�/ and f3.x

�/D f5.x
�/, we get x�

2
D x�

6

and x�
3
Dx�

5
. Then using f1.x

�/Df4.x
�/, we obtain x�

1
Dx�

4
. As a consequence, in

particular, we find †1.x
�/D†2.x

�/. Using this fact together with f2.x
�/D f3.x

�/

yields x�
2
D x�

3
. Let †�

1
denote †1.x

�/.
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We aim to apply Lemma 4.10. To this purpose, we need to show that the matrix

(16)

26666666664

rf1

rf2

rf3

rf4

rf5

rf6

Ew

37777777775
D

2666666666666664

@f1

@x1
0 0 @f1

@x4

@f1

@x5

@f1

@x6
0 0

@f2

@x1

@f2

@x2

@f2

@x3
0 0 0 0 0

0 0 @f3

@x3

@f3

@x4

@f3

@x5

@f3

@x6
0 0

@f4

@x1

@f4

@x2

@f4

@x3

@f4

@x4
0 0 0 0

0 0 0 @f5

@x4

@f5

@x5

@f5

@x6
0 0

@f6

@x1

@f6

@x2

@f6

@x3
0 0 @f6

@x6
0 0

1 1 1 1 1 1 1 1

3777777777777775
has full rank at x� 2�7 . Using the equality f1.x

�/D f2.x
�/, the coordinates of x�

and the definitions of f1; f2; : : : ; f6 , we calculate that

(1) @f1

@x1

ˇ̌
x�
D�

�.†�
1
/

.x�
1
/2

, @f2

@x2

ˇ̌
x�
D

x�
2
.1�x�

2
/�†�

1
.1�†�

1
/

.1�†�
1
/2.x�

2
/2

, @f1

@x4

ˇ̌
x�
D�

�.x�
1
/

.†�
1
/2

,

(2) @f3

@x3

ˇ̌
x�
D�

1
�.†�

1
/.x�

2
/2

, @f2

@x1

ˇ̌
x�
D�

@f1

@x4

ˇ̌
x�

, @f4

@x4

ˇ̌
x�
D

@f1

@x1

ˇ̌
x�

,

(3) @f2

@x2

ˇ̌
x�
D
@f5

@x5

ˇ̌
x�

, @f3

@x3

ˇ̌
x�
D
@f6

@x6

ˇ̌
x�

, @f2

@x1

ˇ̌
x�
D
@f2

@x3

ˇ̌
x�

, @f5

@x4

ˇ̌
x�
D
@f5

@x6

ˇ̌
x�

,

(4) @f2

@x3

ˇ̌
x�
D
@f3

@xj

ˇ̌
x�

, @f5

@x6

ˇ̌
x�
D
@f6

@xi

ˇ̌
x�

, @f4

@xi

ˇ̌
x�
D
@f1

@xj

ˇ̌
x�

, @f5

@xj

ˇ̌
x�
D
@f6

@xi

ˇ̌
x�

,

for every i 2 I1 and j 2 I2 . Let AD �.x�
1
/, B D �.x�

2
/, C D �.†�

1
/, A0 D � 0.x�

1
/,

B0 D � 0.x�
2
/ and C 0 D � 0.†�

1
/. Note that A0 ¤ 0, B0 ¤ 0 and C ¤ 0.

We perform simultaneously the following elementary row operations R1 7!R1CR3 ,
R4 7! R4CR2 , R5 7! .�1/R3CR5 , R6 7! .�1/R2CR6 , R3 7! .AC C 0/=B0 �

R6 CR3 , R3 7! .AC C 0/=B0 �R5 CR3 , R3 7! .AC 0/=.A0C / �R4 CR3 , R2 7!

.AC 0/=.A0C / �R1CR2 in the matrix in (16) to obtain the matrix:266666666666666664

A0C 0 B0

C
0 0 0 0 0

0 B0

C
�AC 0 AC 0B0

A0C 2 �AC 0 0 0 0 0 0

0 AC 0B0

A0C 2 �AC 0 B0

C
�AC 0 0 0 0 0 0

0 B0

C
0 A0C 0 0 0 0

0 0 �
B0

C
0 B0

C
0 0 0

0 �
B0

C
0 0 0 B0

C
0 0

1 1 1 1 1 1 1 1

377777777777777775
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If we mark each partition of the matrix above by .i; j / reading the first entry from
top to bottom and the second entry from left to right for i D 1; 2; 3 and j D 1; 2; 3,
then the matrix in (16) has full rank if and only if the .2; 2/ partition has full rank. Its
determinant factors as

(17) B0

C

�
1�

AC 0

A0C

��
B0

C

�
1C

AC 0

A0C

�
� 2AC 0

�
;

where
B0

C

�
1�

AC 0

A0C

�
D

�†�
1

.1�†�
1
/.x�

2
/2

�
1�

x�
1
.1�x�

1
/

†�
1
.1�†�

1
/

�
¤ 0;

which follows from the fact that the function t 7! t.1� t/ is increasing on .0; 1
2
/ and

the inequality 0< x�
1
<†�

1
< 1

2
, an implication of the equality 2†�

1
Cx�

7
Cx�

8
D 1.

Let us assume that the determinant in (17) vanishes. Then we must have the expression

�†�
1

.1�†�
1
/.x�

2
/2

�
1C

x�
1
.1�x�

1
/

†�
1
.1�†�

1
/

�
C

2.1�x�
1
/

x�
1
.†�

1
/2
D 0:

Simplifying the left-hand summand, applying the identity f1.x
�/ D f2.x

�/ to the
right, and finding a common denominator yield

�†�
1
.1�†�

1
/�x�

1
.1�x�

1
/C2x�

2
.1�x�

2
/

.x�
2
/2.1�†�

1
/2

D 0:

We use the fact that †�
1
D x�

1
C 2x�

2
in the equality above. Then it simplifies to

.x�
2
/2C 2x�

1
x�

2
�x�

1
.1�x�

1
/D 0. The solutions to this quadratic are

x�2 D�x�1 ˙
q

x�
1
:

Since x�
2
> 0, we get

x�2 D�x�1 C
q

x�
1
:

Using this formula we find that x�
2
< x�

1
if and only if x�

1
> 1

4
.

Since �.x/D 1=x � 1 decreases in x and †�
1
< 1

2
, we get �.†�

1
/ > 1. The identity

f1.x
�/D f2.x

�/ implies that �.x�
2
/D .�.†�

1
//2�.x�

1
/ > �.x�

1
/, which in turn gives

that x�
2
< x�

1
. Then we derive that

†�1 D x�1 C 2x�2 D 2
q

x�
1
�x�1 >

3
4
;

a contradiction. Hence, the matrix in (16) has full rank. By Lemma 4.10, there is a
direction in which each fi decreases for i 2 I1[ I2 .
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Lemma 4.13 Let ˛� D infx2�7 maxff1.x/; : : : ; f8.x/g, where fi for i 2 I| are as
in Proposition 3.5. At any x� 2�7 satisfying F|.x�/D ˛� and fi.x

�/D fj .x
�/ >

fk.x
�/ for every i; j 2 I1[ I3 D f1; 2; 3; 7; 8g and k 2 I2 D f4; 5; 6g, there exists a

vector Ev 2 Tx��
7 such that fi decreases in the direction of Ev for each i 2 I1[ I3 .

Proof Define the function †1;3.x/D†1.x/C†3.x/ for x 2�7 . We use the identity
x4 D 1�

P8
nD1;n¤4 xn to rewrite fi as follows:

f1.x/D
�.x1/

�.†1;3.x//
; f2.x/D

�.x2/

�.†1.x//
; f3.x/D �.†1;3.x// � �.x3/;

f4.x/D
�.†1/

�.x5Cx6C†1;3.x//
; f5.x/D �.†1;3.x//�.x5/;

f6.x/D
�.x6/

�.†1.x//
; f7.x/D

�.x7/

�.†1;3.x//
; f8.x/D �.†1.x//�.x8/;

which are smooth on an open neighborhood of �7 in R8 . The functions f1 , f2 , f3 , f7

and f8 do not depend on x4 , x5 or x6 . We will show that the matrix

(18)

266666664

rf1

rf2

rf3

rf7

rf8

Ew

377777775
D

2666666666664

@f1

@x1

@f1

@x2

@f1

@x3
0 0 0 @f1

@x7

@f1

@x8

@f2

@x1

@f2

@x2

@f2

@x3
0 0 0 0 0

@f3

@x1

@f3

@x2

@f3

@x3
0 0 0 @f3

@x7

@f3

@x8

@f7

@x1

@f7

@x2

@f7

@x3
0 0 0 @f7

@x7

@f7

@x8

@f8

@x1

@f8

@x2

@f8

@x3
0 0 0 0 @f8

@x8

1 1 1 1 1 1 1 1

3777777777775
has full rank at x� 2 �7 . Using the coordinates of x� , the definitions of the func-
tions f1 , f2 , f3 , f7 , f8 and the equalities f1.x

�/ D f7.x
�/, f1.x

�/ D f3.x
�/,

f3.x
�/D f7.x

�/ and f2.x
�/D f8.x

�/, we find the following:

(1) @f1

@x1

ˇ̌
x�
D

x�
1
.1�x�

1
/�†1;3.x

�/.1�†1;3.x
�//

.1�†1;3.x�//2.x
�
1
/2

, @f1

@x2

ˇ̌
x�
D

�.x�
1
/

.1�†1;3.x�//2
,

(2) @f2

@x1

ˇ̌
x�
D

�.x�
2
/

.1�†1.x�//2
, @f2

@x2

ˇ̌
x�
D

x�
2
.1�x�

2
/�†1.x

�/.1�†1.x
�//

.1�†1.x�//2.x
�
2
/2

,

(3) @f3

@x1

ˇ̌
x�
D�

�.x�
3
/

.†1;3.x�//2
, @f3

@x3

ˇ̌
x�
D
�x�

3
.1�x�

3
/�†1;3.x

�/.1�†1;3.x
�//

.†1;3.x�//2.x
�
3
/2

,

(4) @f8

@x8

ˇ̌
x�
D�

�.†1.x
�//

.x�
8
/2

, @f8

@x1

ˇ̌
x�
D�

@f2

@x1

ˇ̌
x�

, @f3

@x1

ˇ̌
x�
D�

@f1

@x3

ˇ̌
x�

,

(5) @f3

@x7

ˇ̌
x�
D�

@f7

@x3

ˇ̌
x�

, @f2

@x1

ˇ̌
x�
D
@f2

@x3

ˇ̌
x�

, @f1

@x1

ˇ̌
x�
D
@f7

@x7

ˇ̌
x�

, @f8

@x1

ˇ̌
x�
D
@f8

@xi

ˇ̌
x�

,

(6) @f1

@x2

ˇ̌
x�
D

@f1

@xj

ˇ̌
x�

, @f3

@x1

ˇ̌
x�
D

@f3

@xk

ˇ̌
x�

, @f7

@x1

ˇ̌
x�
D

@f7

@xl

ˇ̌
x�

,
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for every i D 2; 3, j D 3; 7; 8, k D 2; 7; 8 and l D 2; 3; 8. Let A D .f1/1.x
�/,

BD .f1/2.x
�/, C D .f2/1.x

�/, DD .f2/2.x
�/, ED .f3/3.x

�/ and FD .f8/8.x
�/.

Note that B¤ 0, B�A¤ 0 and D�C ¤ 0. We also have ECB¤ 0, which follows
from the equality f1.x

�/D f3.x
�/.

We simultaneously apply the row operations: R1 7! �A �R6CR1 , R2 7!R5CR2 ,
R3 7! R4 CR3 , R4 7! �B �R6 CR4 , R5 7! C �R6 CR5 , R1 7! �R4 CR1 ,
R1 7! .1=.B �A//R1 , R2 7! .C �D/R1 CR2 , R2 7! .1=.C �D//R2 , R3 7!

�.E CB/R2 CR3 , R3 7! �.1=.E CB//R3 , R5 7! .C=B/R4 CR5 and R4 7!

B �R3CR4 to the matrix in (18) to obtain the matrix:

(19)

26666666666664

0 1 1 1 1 1 2 1

0 0 1 1 1 1 2 FCC�D
C�D

0 0 0 1 1 1 B�A
ECB

C 2 FCC�D
C�D

0 0 0 0 0 0 B
�

B�A
ECB

C 2
�
CA�B B

�
FCC�D

C�D

�
0 0 0 0 0 0 CA

B
F CC

1 1 1 1 1 1 1 1

37777777777775
The matrix above has full rank if and only if the .2; 2/ partition has nonzero determinant,
where

B
�

B�A

ECB
C 2

�
CA�B D

2x�
1
.1�x�

1
/�x�

3
.1�x�

3
/�†1;3.x

�/.1�†1;3.x
�//

.1�†1;3.x�//2.x
�
3
/2

;

F CC D
x�

8
.1�x�

8
/�†1.x

�/.1�†1.x
�//

.†1.x�//2.x
�
8
/2

;

C �D D
†1.x

�/

.x�
2
/2.1�†1.x�//2

;

calculated by using the facts f1.x
�/D f3.x

�/ and f2.x
�/D f8.x

�/. Assume that
the determinant of the .2; 2/ partition of the matrix in (19) vanishes. Then the equality

(20)
�
B �

B�A

ECB
CACB

�
.F CC /D CA

�
FCC�D

C�D

�
must hold at any point x� 2�7 satisfying the hypotheses of the lemma. Let †�

1
, †�

2

and †�
1;3

denote †1.x
�/, †2.x

�/ and †1;3.x
�/, respectively.

Since f1.x
�/D f7.x

�/, we get x�
1
D x�

7
. Using the inequalities f2.x

�/ > f6.x
�/,

f3.x
�/ > f5.x

�/ and f8.x
�/ > f4.x

�/, we derive that x�
2
< x�

6
, x�

3
< x�

5
and

x�
8
< x�

4
, which implies †1.x

�/ < 1
2

. Because otherwise we find x�
5
Cx�

6
Cx�

1
> 1

2

contradicting with the fact that x� 2�7 .
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Note that 2x�
8
C x�

2
C x�

3
< x�

2
C x�

3
C x�

4
C x�

8
< 1 and x�

1
C x�

7
C x�

2
C x�

3
D

2x�
1
Cx�

2
Cx�

3
< 1. So we have x�

1
;x�

8
2 .0; .1�x�

2
�x�

3
/=2/. From the inequalities

x�
2
< x�

6
, x�

3
< x�

5
and x�

8
< x�

4
, we obtain

f1.x
�/D

1�x�
4
�x�

5
�x�

6

x�
4
Cx�

5
Cx�

6

�
1�x�

1

x�
1

<
1�x�

8
�x�

2
�x�

3

x�
8
Cx�

2
Cx�

3

�
1�x�

1

x�
1

:

By the equality f1.x
�/ D f8.x

�/, we get that �.x�
8
C x�

2
C x�

3
/�.x�

1
/ > �.x�

1
C

x�
2
C x�

3
/�.x�

8
/. Since the function �.x/=�.x C x�

2
C x�

3
/ is decreasing over the

interval .0; .1 � x�
2
� x�

3
/=2/, we find x�

1
< x�

8
. By the facts †1.x

�/ < 1
2

and
.�.†1.x

�///2�.x�
8
/ D �.x�

2
/, which follows from the rearranging of the equality

f2.x
�/D f8.x

�/, we also find that x�
2
< x�

8
.

By using the equality f2.x
�/D f8.x

�/, we simplify the right-hand side of the equality
above to .x�

1
�†�

1;3
/.1�x�

1
�†�

1;3
/.x�

8
�x�

2
/.1�x�

8
�x�

2
/, which is nonzero because

x�
2
< x�

8
and 1�x�

1
�†�

1;3
> 0 by the inequality f1.x

�/ > f4.x
�/.

Similarly, by using the equality f1.x
�/D f3.x

�/, we reduce the left-hand side of (20)
to .x�

8
�†�

1
/.1�x�

8
�†�

1
/..x�

1
�x�

3
/.1�x�

1
�x�

3
/C.x�

1
�†�

1;3
/.1�x�

1
�†�

1;3
//. We

first distribute the factor .x�
8
�†�

1
/.1�x�

8
�†�

1
/ and move the second summand in

the resulting expression to the right-hand side of the equation in (20). On the right-hand
side of (20) the term .x�

1
�†�

1;3
/.1�x�

1
�†�

1;3
/ is a common factor. We factor this

term and, after simplifications, we obtain

(21) �.x�8 C†
�
1/.1�x�1 �†

�
1;3/.x

�
1 Cx�3 /.1�x�2 �†

�
1/ < 0:

On the left-hand side of (20), we have

(22) .x�8 �†
�
1/.1�x�8 �†

�
1/.x

�
1 �x�3 /.1�x�1 �x�3 /:

Since we assume that the expressions in (21) and (22) are equal, there are two cases to
consider:

†�1 < x�8 and x�1 < x�3 ;

†�1 > x�8 and x�1 > x�3 :

Assume we are in the first case. Note that †�
2
> 1

2
because x�1 < x�3 and f1.x

�/D

f3.x
�/. We claim that †�

1
< 1

4
< x�

8
. If 1

4
�†�

1
< x�

8
holds, then

P8
nD1 x�n > 1, a

contradiction.

If †�
1
< x�

8
�

1
4

, we see that �.x�
8
/ � 3. We get 3�.†�

1
/ � f8.x

�/ D ˛� , which
implies 3=.˛�C 3/ � †�

1
. By Lemma 4.2, we know that 9 � ˛� � 5C 3

p
2. As a

consequence, we derive .24� 9
p

2/=46�†�
1
< x�

8
. Since we have †�

2
> 1

2
, we find

that .71� 18
p

2/=46�†�
1
C†�

2
Cx�

8
, which in turn gives x�

7
� .�25C 18

p
2/=46.
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For a lower bound for †�
2

, we solve the inequality �.†�
2
/.49C36

p
2/ < f7.x

�/D ˛� .
Using this lower bound, we conclude that †�

1
C†�

2
D .873� 221

p
2/=483 > 1, a

contradiction. The claim follows.

Upon setting f8.x
�/D ˛� , substituting 1�

P7
nD1 x�n for x�

8
and collecting powers

of †�
1

in the resulting formula, we see that †�
1

is a root of the quadratic

q.x/D .˛�� 1/x2
C .1�˛�/.1�†

�
2 �x�7 /xC .†

�
2Cx�7 /:

By the formula for the addition of the roots, we find that x�
8

is the other root. Since
†�

1
¤ x�

8
, the discriminant of the quadratic above is strictly positive. By the inequality

†�
1
< 1

4
< x�

8
, we find q.1

4
/ < 0, which implies that †�

2
Cx�

7
< .21C 18

p
2/=92.

By substituting 1�
P8

nD1;n¤7 x�n for x�
7

in the equality f7.x
�/D ˛� and collecting

powers of †�
2

, we find that †�
2

is a root of the quadratic

Q.x/D .˛�� 1/x2
C .1�˛�/.1�†

�
1 �x�8 /xC .†

�
1Cx�8 /:

By the formula for the addition of the roots, we derive that x�
7

is the other root. We
obtain Q.1

2
/ < 0 because we have x�

1
D x�

7
< 1

2
<†�

2
. Then, we calculate that

†�1Cx�8 < .1C
p

2/=6

which, in turn, implies that
P8

nD1 x�n < 1; a contradiction. Hence the matrix in (19)
has full rank in the case (1).

If we are in the second case, consider

q˛.x/D .˛� 1/x2
C .1�˛/.1�†�2 �x�7 /xC .†

�
2Cx�7 /;

Q˛.x/D .˛� 1/x2
C .1�˛/.1�†�1 �x�8 /xC .†

�
1Cx�8 /

for ˛ 2 Œ9; 5C 3
p

2�. Note that q˛�.x/D q.x/ and Q˛�.x/DQ.x/. The solutions
of q˛.x/CQ˛.x/D 0 are

xC.˛/D
1

4
C

1

4

r
˛�9

˛�1
or x�.˛/D

1

4
�

1

4

r
˛�9

˛�1
:

Using x�
8
> x�

4
, x�

2
> x�

6
, x�

3
> x�

5
and x�

1
< x�

8
, we derive that x�

7
< †�

1
< †�

2
.

Then we obtain q˛�.†
�
1
/CQ˛�.†

�
1
/ D Q˛�.†

�
1
/ < 0, and q˛�.x

�
8
/CQ˛�.x

�
8
/ D

Q˛�.x
�
8
/ < 0, which implies that x�.˛�/ < x�

8
< †�

1
< xC.˛�/. We shall use the

previous inequality to produce lower and upper bounds for each of the factors in (21)
and (22).

Since x�.˛/ is decreasing over Œ9; 5C 3
p

2�, we have a1 D .
p

2� 1/=2 < x�
8

. By
the assumption x�

8
< †�

1
and the fact 9 � ˛� , we find x�

8
< b1 D

1
4

. Otherwise,
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we would compute that f8.x
�/ D ˛� < 9, a contradiction. Using the inequality

˛�D f8.x
�/ > �.†�

1
/�.b1/, we also get a2<†

�
1
< b2 , where a2D 3=.8C3

p
2/ and

b2D xC.5C3
p

2/D .2�
p

2/=2 as xC.˛/ is an increasing function on Œ9; 5C3
p

2�.

We find a lower and an upper bound for †�
2

as follows. From the assumption x�
1
> x�

3

and the equality f1.x
�/ D f3.x

�/, we have †�
2
< b3 D

1
2

. By the inequalities
f4.x

�/ < ˛� , f5.x
�/ < ˛� and f6.x

�/ < ˛� , we obtain

x�4 Cx�6 >
1�†�

1

.˛�� 1/†�
1
C 1
C

†�
1

˛�.1�†
�
1
/C†�

1

; x�5 >
†�

2

˛�.1�†
�
2
/C†�

2

:

The expression on the right-hand side of the first inequality above is decreasing both
in ˛� and †�

1
< 1

2
. So we find x�

4
Cx�

6
> 1

4
by using the bounds 5C3

p
2 and b2 for

˛� and †�
1

, respectively. Then we have †�
2
> x�

5
C

1
4

.

Since the expression on the right-hand side of the second inequality above is decreasing
in ˛� and increasing in †�

2
, by substituting the bounds 5C 3

p
2 and x�

5
C

1
4

and
rearranging, we get .4C 3

p
2/.x�

5
/2� .3

4
/.4C 3

p
2/x�

5
C

1
4
< 0. Thus x�

5
is greater

than the smaller root .3� 2
p

2/=4 of the left-hand side quadratic. Then it follows that
.2�
p

2/=2<†�
2

. Next we will consider the two cases

2�
p

2

2
<†�2 <

1

3
;

1

3
�†�2 <

1

2
:

Assume we are in the second case. By rearranging the equalities f1.x
�/ D ˛� ,

f2.x
�/D ˛� and f3.x

�/D ˛� , we derive

(23) x�1 D
1�†�

2

.˛�� 1/†�
2
C 1

; x�2 D
†�

1

˛�.1�†
�
1
/C†�

1

; x�3 D
†�

2

˛�.1�†
�
2
/C†�

2

:

The right-hand side of the expression for x�
2

is increasing in †�
1

and decreasing in ˛� .
Therefore we find x�

2
< b4 D .9

p
2� 10/=62 by substituting the relevant bounds 9

and b2 for ˛� and †�
1

, respectively. We also find x�
1
� b5 D

2
11

by plugging in 9

and 1
3
D a3 �†

�
2

because the expression on the right-hand side of the equality for x�
1

above is decreasing in both †�
2

and ˛� . Similarly, since the right-hand side of the
equality

(24) x�1 Cx�3 D
1�†�

2

.˛�� 1/†�
2
C 1
C

†�
2

˛�.1�†
�
2
/C†�

2

is decreasing in both ˛� and †�
2

, we get a4 D .2�
p

2/=3< x�
1
Cx�

3
by substituting

5C3
p

2 and b3D
1
2

for ˛� and †�
2

, respectively. The right-hand side of the expression

(25) x�1 �x�3 D
1�†�

2

.˛�� 1/†�
2
C 1
�

†�
2

˛�.1�†
�
2
/C†�

2
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is again decreasing in both ˛� and †�
2

. So we obtain x�
1
�x�

3
< b6D

27
209

by plugging
in 9 and a3 D

1
3

for ˛� and †�
2

, respectively. As a result we have the bounds

a1 > 0:20710; a2 > 0:24504; a3 � 0:33333; a4 > 0:19526; b1 D 0:25000;

b2 < 0:29290; b3 D 0:50000; b4 < 0:04400; b5 < 0:18182; b6 < 0:12919:

Then we compute that .a1C a2/a4.a3� b5/.1� b4� b2/ > 0:00886, which implies
that the expression in (21) is less than �0:00886. Similarly, we also calculate that
.b2� a1/b6.1� a1� a2/.1� a4/ < 0:00489, which shows that the expression in (22)
is greater than �0:00489. This is a contradiction. Hence, the determinant of the .2; 2/
partition of the matrix in (19) cannot be 0.

Assume that the inequality in the first case holds. In this case, we have †�
2
< b3 D

1
3

.
Using the equality in (24) we get .1027� 480

p
2/=1519D a4 < x�

1
Cx�

3
. Since we

have †�
1
D x�

1
Cx�

2
Cx�

3
> x�

2
C a4 , by rearranging the equality for x�

2
in (23), we

derive the inequality

.4C 3
p

2/.x�2 /
2
� .1� a4/.4C 3

p
2/x�2 C a4 < 0:

Thus x�
2

is greater than the smaller root of the left-hand quadratic in the previous
inequality. This implies that

2424C1698
p

2�
p

9776852C6468345
p

2

1519.4C3
p

2/
C

1027�480
p

2

1519
D a2 <†

�
1:

Substituting the bounds 9 for ˛� and a3D .2�
p

2/=2 for †�
2

in the expression for x�
1

in (23) we obtain x�
1
< b5 D 1=.9

p
2� 8/. Similarly, using the previous bounds for ˛�

and †�
2

in (25), we get x�
1
�x�

3
< b6 D .369� 81

p
2/=1519. As a result we have

a1 > 0:20710; a2 > 0:26716; a3 > 0:29289; a4 > 0:22921; b1 D 0:25000;

b2 < 0:29290; b3 D 0:33333; b4 < 0:04400; b5 < 0:21151; b6 < 0:16752:

Using these estimates we calculate .a1C a2/a4.a3� b5/.1� b4� b2/ > 0:00586 and
.b2� a1/b6.1� a1� a2/.1� a4/ < 0:00583, a contradiction. Hence, the determinant
of the (2,2) partition of the matrix in (19) cannot be 0 in this case as well. Finally by
Lemma 4.10, we obtain the conclusion of the lemma.

Proof of Proposition 4.8 It follows from Lemmas 4.7, 4.9, 4.11, 4.12 and 4.13.

We use Proposition 4.8 to calculate the infimum of G| over the simplex �7 . In
particular, we prove Theorem 4.1. First, we establish the following:
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Theorem 4.14 Let F|W �7!R be the function defined by x 7!maxffi.x/ W i 2 I|g,
where fi are defined as in Proposition 3.5. Then infx2�7 F|.x/D 5C 3

p
2.

Proof By Proposition 4.8, we know that x� 2�7 , ie fi.x
�/D ˛� for every i 2 I| .

Using the identities f4.x
�/ D f8.x

�/, f1.x
�/ D f7.x

�/, f2.x
�/ D f6.x

�/ and
f3.x

�/ D f5.x
�/, we get x�

4
D x�

8
, x�

1
D x�

7
, x�

6
D x�

2
and x�

3
D x�

5
. By the fact

f4.x
�/D f1.x

�/, we obtain

.x�1 �x�4 /.x
�
2 Cx�3 /.1�x�1 �x�2 �x�3 �x�4 /D 0;

or x�
1
D x�

4
. The last equality, in turn, gives that †�

1
D†�

2
.

By the equality f2.x
�/ D f3.x

�/, we see that x�
2
D x�

3
. Since

P8
nD1 x�n D 1, we

obtain x�
2
D

1
4
�x�

1
. Using the equality f1.x

�/D f2.x
�/, we find

x�2 � 3x�2 x�1 � .x
�
1 /

2x�2 � 4.x�2 /
2
C 4.x�2 /

2x�1 C 4.x�2 /
3
� .x�1 /

3
D 0;

which simplifies to 1� 4x�1 � 4.x�1 /
2 D 0. The solutions are x�1 D .�1˙

p
2/=2.

Since x�
1
> 0, we get x�

2
D .3�2

p
2/=4. In particular, we conclude that x�i D x�

1
for

every i 2 f4; 7; 8g and x�j D x�
2

for every for xj 2 f3; 5; 6g. Finally, we calculate that

inf
x2�7

F|.x/D �..2�
p

2/=2/�..
p

2� 1/=2/D 5C 3
p

2:

Proof of Theorem 4.1 By the definitions of G| and F| , we have G|.x/ � F|.x/

for every x 2 �7 . A direct computation shows that G|.x�/ D F|.x�/. Then the
conclusion of the theorem follows.

4.3 On the uniqueness of x� in Theorem 4.14

It is worth emphasizing the similarities between the statements (a) and (b) listed in
Section 2 and the two statements

(c) inf
x2�7

F|.x/D min
x2�7

F|.x/,

(d) there exists x� 2�7 ��
7 such that min

x2�7
F|.x/D fi.x

�/ for i 2 I|

used in the proof of Theorem 4.14 to calculate the number .1
2
/ log.5C3

p
2/. Although

it is straightforward to observe (b), it takes considerable calculations to prove (d).
Analogous to Lemma 2.1, Theorem 4.14 shows that the point x� is unique. Assuming
the uniqueness of the point x� a priori together with (c) suggests an alternative way
of finding the coordinates of the point x� 2�7 .
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3178 İlker S Yüce

Let T1 be the transformation defined in (13). Since fi.T1.x// D fj .x/ for every
x 2 �7 for every pair .i; j / 2 f.1; 4/; .4; 1/; .3; 5/; .5; 3/; .7; 8/; .8; 7/; .2; 6/; .6; 2/g,
we conclude that ffi W i 2 I|g D ffi ıT1 W i 2 I|g. Let us define H1W �

7!R, where
H1.x/Dmaxf.fi ıT1/.x/ W i 2 I|g. We see that F|.x/DH1.x/ for every x 2�7

and minx2�7 F|.x/ D minx2�7 H1.x/. Since F| takes its minimum value at the
point x� and ffi.x

�/ W i 2 I|g D f.fi ı T1/.x
�/ W i 2 I|g, the function H1 takes

its minimum value at the point T �1
1
.x�/. Then we obtain T �1

1
.x�/ D x� by the

uniqueness of x� . This means that x�
1
D x�

4
, x�

2
D x�

5
, x�

3
D x�

6
and x�

7
D x�

8
.

Let �3Dfx 2�7 W x1D x4; x2D x5; x3D x6; x7D x8g. Note that f1.x/D f4.x/,
f2.x/ D f5.x/, f3.x/ D f6.x/ and f7.x/ D f8.x/ for every x 2 �3 . Define the
continuous function F1W �

3! R such that x 7! max.g1.x/;g2.x/;g3.x/;g7.x//,
where gi D fi j�3 for i D 1; 2; 3; 7. Then we have minx2�7 F|.x/Dminx2�3 F1.x/.

Consider T2W �
7 ! �7 defined by x2 7! x3 , x3 7! x2 and xi 7! xi for every

i 2 I|�f2; 3g. The map T2 preserves �7 and �3 . Then we have gi.T2.x//D fj .x/

for every x 2 �3 for every pair .i; j / 2 f.1; 1/; .2; 3/; .3; 2/; .7; 7/g. An argument
similar to the one above for H2W �

7!R, H2.x/Dmaxf.fi ıT2/.x/ W i D 1; 2; 3; 7g

shows that T �1
2
.x�/D x� . This means that x�

2
D x�

3
.

Let �2 D fx 2 �3 W x2 D x3g. Note that g2.x/ D g3.x/ for every x 2 �2 . Define
the functions hi W �

2!R such that hi D gi j�2 for i D 1; 2; 7. Introduce the contin-
uous function F2W �

2 ! R, where x 7! max.h1.x/; h2.x/; h7.x//. Then we have
minx2�3 F1.x/ D minx2�2 F2.x/. Note that x� D .x�

1
;x�

2
;x�

2
;x�

1
;x�

2
;x�

2
;x�

7
;x�

7
/

with x�
1
C 2x�

2
Cx�

7
D

1
2

.

In the rest of the discussion, we will consider �2 as a submanifold of R8 . Then the
tangent space Tx�

2 at any x2�2 is a subspace of Tx�
7 generated by the vectors Eu1D

h1; 0; 0; 1; 0; 0;�1;�1i and Eu2 D h0; 1; 1; 0; 1; 1;�2;�2i. Note that h1.x/, h2.x/

and h7.x/ are smooth in an open neighborhood of �2 . Therefore, rhi.x/ � Ev is the
derivative of hi in the direction of Ev 2 Tx�

2 for each i 2 f1; 2; 7g.

Using the identity x7 D
1
2
�x1� 2x2 , we rewrite the formulas of h1.x/, h2.x/ and

h7.x/ as follows: h1.x/ D �.x1 C 2x2/�.x1/, h2.x/ D �.x2/=�.x1 C 2x2/ and
h7.x/D �.x1C 2x2/�.

1
2
�x1� 2x2/. Then we find the partial derivatives

@h1

@x1

D
2.x2

1
C 2x1x2�x1�x2C 2x2

2
/

x2
1
.x1C 2x2/2

;
@h1

@x2

D�
2.1�x1/

x1.x1C 2x2/2
;

@h2

@x1

D
1�x2

x2.1�x1� 2x2/2
;

@h2

@x2

D
4x1x2C 2x2

2
�x1Cx2

1

x2
2
.1�x1� 2x2/2

:
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It is clear that h1 and h2 have no critical points in �2 . On the other hand, every point
on the set LD fx 2�2 W �1C 4x1C 8x2 D 0g is a critical point for the function h7

because we have

@h7

@x1

D
�1C 4x1C 8x2

.x1C 2x2/2.�1C 2x1C 4x2/2
;

@h7

@x2

D
2.�1C 4x1C 8x2/

.x1C 2x2/2.�1C 2x1C 4x2/2
:

Let zhi D hi jL for i D 1; 2; 7. Then we get

zh1.x2/D 3 �
3C 8x2

1� 8x2

; zh2.x2/D
1

3
�
1�x2

x2

; zh7.x2/D 9;

for 0< x2 <
1
8

. Let I D .0; 1
8
/. Then zh1 and zh2 have no critical points in I . We see

zh1.x2/ > zh7.x2/ for every x2 2 I , because we have

lim
x2!0C

3 �
3C 8x2

1� 8x2

D 9C and lim
x2!

1
8

�
3 �

3C 8x2

1� 8x2

D1:

Therefore, it is enough to calculate the infimum of the maximum of zh1 and zh2 over I

to calculate the infimum of the maximum of h1 , h2 and h7 over L.

Since zh1 and zh2 have no critical points in I , the infimum of the maximum of zh1

and zh2 is attained at a point x�
2

such that

zh1.x
�
2 /D

zh2.x
�
2 /:

In other words, we need to solve 64.x�
2
/2C36x�

2
�1D0. We get x�

2
D .�9˙

p
97/=32.

Since x�
2

is positive,

inf
x22I
fmax.zh1.x2/; zh2.x2//g D .17C 2

p
97/=3:

Note that the point x�
2

at which the infimum of the maximum of zh1 and zh2 over L is
unique.

We claim that there exist i; j 2 f1; 2; 7g with i ¤ j such that hi.x
�/ D hj .x

�/.
Assume otherwise that hi.x

�/ ¤ hj .x
�/ for every i; j 2 f1; 2; 7g for i ¤ j . Then

we have either h1.x
�/ > hi.x

�/ for i D 2; 7 or h2.x
�/ > hi.x

�/ for i D 1; 7 or
h7.x

�/ > hi.x
�/ for i D 1; 2. Since h1 and h2 have no critical points in �2 , we

cannot have h1.x
�/ > hi.x

�/ for i D 2; 7 or h2.x
�/ > hi.x

�/ for i D 1; 7.

Assume h7.x
�/ > hi.x

�/ for i D 1; 2. Since h7 is continuous on �2 , there exists a
neighborhood V of x� in �2 so that h7.x/ > hi.x/ for every x 2 V for i D 1; 2.
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Hence, F2.x/ D h7.x/ for every x 2 V . Since h7.x
�/ D F2.x

�/, the function h7

has a local minimum at x� 2 V . This means x� 2 L so that x�
1
D .13�

p
97/=16,

x�
2
D .�9C

p
97/=32 and x�

7
D

1
4

. This is a contradiction, because we know by
Lemma 4.2 that F|.xx/D 5C 3

p
2< h2.x

�/. Hence, there exist i; j 2 f1; 2; 7g with
i ¤ j such that hi.x

�/D hj .x
�/. We need to consider the cases

(I) h1.x
�/D h7.x

�/ > h2.x
�/,

(II) h7.x
�/D h2.x

�/ > h1.x
�/,

(III) h1.x
�/D h2.x

�/ > h7.x
�/,

(IV) h1.x
�/D h2.x

�/D h7.x
�/.

Assume we are in case (I). Let Ev1 D Eu1C .�
1
2
/Eu2 . The first-order partial derivatives

of h1 , h2 and h7 show that rh1.x/ � Ev1 < 0, rh7.x/ � Ev1 D 0, rh2.x/ � Ev1 > 0 for
every x 2�2 . Therefore, h1 is decreasing, h2 is increasing and h7 is constant along a
line segment in the direction of Ev1 . This means that if we move along the line segment
starting at x� in the direction of the vector Ev1 for a sufficiently small amount, we
obtain a point y 2�2 such that hi.y/ < ˛� for i D 1; 2 and h7.y/D ˛� . This is a
contradiction. Therefore, we cannot have h1.x

�/D h7.x
�/ > h2.x

�/.

Assume we are in case (II). Let Ev2 D�Ev1 . The first-order partial derivatives of h1 , h2

and h7 show that rh1.x/ � Ev > 0, rh7.x/ � Ev D 0, rh2.x/ � Ev < 0 for every x 2�2 .
An argument similar to the above applies, mutatis mutandis, in this case to show that
we cannot have h2.x

�/D h7.x
�/ > h1.x

�/. We already know that (III) is not possible
at the point x� , because this case corresponds to case (III) in Lemma 4.12. As a result,
we have h2.x

�/D h7.x
�/ and h7.x

�/D h1.x
�/.

Using the equality h1.x
�/D h2.x

�/, we see that

�.x�1 /D �.
1
2
�x�1 � 2x�2 /;

which implies x�
1
D

1
4
�x�

2
. We use h2.x

�/Dh7.x
�/ to obtain 16.x�

2
/2�24x�

2
C1D0

or x�
2
D .3˙ 2

p
2/=4. Since x�

2
is positive, we find

x�2 D .3� 2
p

2/=4; x�1 D .
p

2� 1/=2 and x�1 D x�7 :

Finally, we calculate that minx2�2 F2.x/D 5C 3
p

2.

In the discussion above, we don’t refer to the statement x� 2 �7 given in (d). The
assumption that the point x� is unique reduces the necessary calculations to obtain ˛�
considerably. Notice the fact that �D| is not a symmetric decomposition of � . The
investigation of the likely conditions such as the convexity properties of the displacement
functions for the decompositions �D1 and �D| that might lead to a proof of the
uniqueness of the points x� will be left to future studies.
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5 Proof of the main theorem

In this final section, we present a detailed proof of the main result of this paper:

Theorem 5.1 Let � and � be noncommuting isometries of H3 . Suppose that � and �
generate a torsion-free discrete group which is not cocompact and contains no parabolic.
Let �| and ˛| denote the set of isometries f�; �; ��g and the real number 5C 3

p
2,

respectively. Then for any z0 2H3 we have

e
.2 max2�|

fdist.z0; �z0/g/ � ˛|:

Proof By [6, Proposition 9.2], the group h�; �i is a free group on the generators �
and �. Let z0 be a point in H3 . If �Dh�; �i is geometrically infinite, then Theorem 3.4
and Lemma 1.2 imply that

max
2�|

fdist.z0;  � z0/g �
1
2

log G|.m/� 1
2

log
�

inf
x2�7

G|.x/
�

for m D .mp. // 2‰| 2 �7 , where p and mp. / are the bijection and the total
measures defined in (11) and Section 3, respectively. The function G| is defined in
Theorem 4.1, which implies the conclusion of the theorem.

Assume that � D h�; �i is geometrically finite. Then .�; �/ is in GF, an open subset
of the character variety X D IsomC.H3/ � IsomC.H3/, consisting of .�; �/ such
that h�; �i is free, geometrically finite and without any parabolic. Let f |

z0
W X!R be

the function defined as

.�; �/ 7!max
˚
dist.z0; � � z0/; dist.z0; � � z0/; dist.z0; �� � z0/

	
:

It is straightforward to see that f |
z0

is a proper, continuous and nonnegative-valued
function on X. Therefore, it takes a minimum value at some point .�0; �0/ 2GF. We
claim that .�0; �0/ is in GF�GF.

Assume on the contrary that .�0; �0/ is in GF. Since �0 , �0 and �0�0 have infinite
orders in h�0; �0i, we have �0 � z ¤ z , �0 � z ¤ z and �0�0 � z ¤ z for every z 2H3 .
In particular, we get that �0 � z0 ¤ z0 , �0 � z0 ¤ z0 and �0�0 � z0 ¤ z0 . Therefore,
there exists hyperbolic geodesic segments joining z0 to �0 � z0 , z0 to �0 � z0 and z0 to
�0�0 � z0 . Note that we have the equalities

dist.z0; �0�0 � z0/D dist.��1
0 � z0; �0 � z0/ and dist.z0; � � z0/D dist.z0; �

�1
� z0/:

We consider the geodesic triangle �D�P2P0P1
, where P1 D �

�1
0
� z0 , P0 D z0 and

P2 D �0 � z0 . The value f |
z0
.�0; �0/ is the longest side length of �. There are two

cases to consider: � is acute or � is not acute.
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Assume the latter is the case. Let  be the unique longest edge of �. By the hyperbolic
law of sines,  is opposite to the nonacute angle. If P1 lies in  , let P .i/

1
be a

sequence of points in the interior of  so that P .i/
1
!P1 . Let P .i/

j DPj for j 2 f0; 2g

and i 2 N . Otherwise, let P .i/
2

be a sequence of points in the interior of  so that
P .i/

2
! P2 and define P .i/

j D Pj for j 2 f0; 1g and i 2N . Let �i be the geodesic
triangle contained in � with vertices P .i/

0
, P .i/

1
and P .i/

2
. By the construction, the

unique longest side i of �i is contained in  for all but finitely manyi . Let f�ig be
a sequence of isometries such that �i! � and ��1

i � z0 D P .i/
1

. Similarly, let f�ig be a
sequence of isometries such that �i! � and �i � z0 D P .i/

2
. Then .�i ; �i/ 2GF for all

but finitely many i and f |
z0
.�i ; �i/D l.i/ < f

|
z0
.�0; �0/, a contradiction.

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
0

1
1
1

0
0
1
1

0
0
1
1

0
0
0

1
1
1

P1

P
.i/
1

1

P0

P2�

P1

P
.i/

1

P0

P2�i

Assume � is acute. Then the perpendicular arc 1 from P1 to the geodesic contain-
ing P0 and P2 meets it in the interior of the edge of � opposite to P1 . Let P

.i/
1

be a
sequence of points in the interior of 1 so that P

.i/
1
! P1 . For each i , we see that

d.P
.i/
1
;P0/ < d.P1;P0/ by applying the hyperbolic law of cosines to the right triangle

containing P
.i/
1

, P0 and a subarc of 1 . Similarly, we have d.P
.i/
1
;P2/ < d.P1;P2/.

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

0
0
1
1

P1

P
.i/
1


.i/
2

P
.i/
2

P0

P2
�i

P1

P
.i/
1

P
.i/
2

P0

P2

The triangle �i with vertices P0 , P .i/
1

and P2 is itself acute because its angles at P0

and P2 are less than those of �, and its angle at P .i/
1

limits to the angle of � at P1 .
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Thus, the perpendicular arc  .i/
2

from P2 to the geodesic containing P0 and P .i/
1

meets this geodesic inside of �i . Let P .i/
2

be the point on  .i/
2

at distance 1= i from
P2 . We find that

d.P .i/
2 ;P0/ < d.P2;P0/ and d.P .i/

2 ;P .i/
1 / < d.P2;P

.i/
1 / < d.P2;P1/

by the hyperbolic law of cosines. In other words, by the two-step process described
above, we obtain a triangle with vertices at P0 , P .i/

1
and P .i/

2
so that all edge lengths

are less than those of �. Let f�ig and f�ig be the sequences such that ��1
i � z0 D P .i/

1

and �i � z0 D P .i/
2

. Then we have f |
z0
.�i ; �i/ < f

|
z0
.�0; �0/ for all but finitely many i ,

a contradiction. Hence, we conclude that .�0; �0/ 2GF.

Finally, since the set of .�; �/ such that h�; �i is free, geometrically infinite and without
any parabolic is dense in GF�GF (see [6, Proposition 8.2]) and every .�; �/ 2X with
h�; �i is free and without any parabolic is in GF (see [6, Proposition 9.3]), we reduce
the geometrically finite case to the geometrically infinite case proving the theorem.
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3184 İlker S Yüce

[11] A Marden, The geometry of finitely generated Kleinian groups, Ann. of Math. 99
(1974) 383–462 MR0349992

[12] P Milley, Minimum volume hyperbolic 3–manifolds, J. Topol. 2 (2009) 181–192
MR2499442

[13] P J Nicholls, The ergodic theory of discrete groups, London Math. Soc. Lecture Note
Series 143, Cambridge Univ. Press (1989) MR1041575

[14] S J Patterson, Lectures on measures on limit sets of Kleinian groups, from: “Funda-
mentals of hyperbolic geometry: Selected expositions”, (R D Canary, D Epstein, A
Marden, editors), London Math. Soc. Lecture Note Ser. 328, Cambridge Univ. Press
(2006) 291–335 MR2235713

[15] D Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst.
Hautes Études Sci. Publ. Math. (1979) 171–202 MR556586

[16] D Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic
motions, from: “Riemann surfaces and related topics: Proceedings of the 1978 Stony
Brook Conference”, (I Kra, B Maskit, editors), Ann. of Math. Stud. 97, Princeton Univ.
Press (1981) 465–496 MR624833

Basic Sciences Unit, TED University
Ziya Gökalp St., No. 48, Kolej 06420, Çankaya, Ankara, Turkey

ilkers.yuce@tedu.edu.tr

Received: 16 December 2009 Revised: 30 May 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2307/1971059
http://www.ams.org/mathscinet-getitem?mr=0349992
http://dx.doi.org/10.1112/jtopol/jtp006
http://www.ams.org/mathscinet-getitem?mr=2499442
http://dx.doi.org/10.1017/CBO9780511600678
http://www.ams.org/mathscinet-getitem?mr=1041575
http://www.ams.org/mathscinet-getitem?mr=2235713
http://www.numdam.org/item?id=PMIHES_1979__50__171_0
http://www.ams.org/mathscinet-getitem?mr=556586
http://www.ams.org/mathscinet-getitem?mr=624833
mailto:ilkers.yuce@tedu.edu.tr
http://msp.org
http://msp.org

	1. Introduction
	1.1. A decomposition of Gamma and the proof of the log 3 theorem
	1.2. An alternative technique to calculate the number log 3
	1.3. Decompositions of Gamma and hyperbolic displacements

	2. The log 3 theorem revisited
	3. Decomposition of Gamma for the isometries xi, eta and xi eta
	4. Lower bound for max dist
	4.1. Relationships between the displacement functions f_1,f_2,…,f_8
	4.2. Calculations of the infima
	4.3. On the uniqueness of x* in Theorem 4.14

	5. Proof of the main theorem
	References

