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Small knot complements, exceptional surgeries
and hidden symmetries

NEIL R HOFFMAN

This paper provides two obstructions to small knot complements in S3 admitting
hidden symmetries. The first obstruction is being cyclically commensurable with
another knot complement. This result provides a partial answer to a conjecture of
Boileau, Boyer, Cebanu and Walsh. We also provide a second obstruction to admitting
hidden symmetries in the case where a small knot complement covers a manifold
admitting some symmetry and at least two exceptional surgeries.

57M12, 57M25; 57M10

1 Introduction

Two finite-volume, orientable, hyperbolic 3–orbifolds are commensurable if they share
a common finite-sheeted cover. Using Mostow–Prasad rigidity (see Mostow [16] and
Prasad [19]), we may restate this definition in terms of Kleinian groups with finite
covolume. Namely, �1 and �2 are commensurable if there exists g 2 PSL.2;C/
such that �1 and g�2g�1 share a common finite-index subgroup. Commensurability
defines an equivalence relation both on the set of hyperbolic 3–orbifolds and on their
associated Kleinian groups. One way to distinguish these equivalence classes, called
commensurability classes, is to identify elements that are rare in a given commensura-
bility class. Conjecturally, there are at most three hyperbolic knot complements in a
given commensurability class (see Reid and Walsh [22, Conjecture 5.2]). Both here
and throughout the paper, we will use the term knot complement to refer to a space
homeomorphic to S3�K , where K is a smoothly embedded knot in S3 .

In [5], Boileau, Boyer, Cebanu and Walsh show the conjecture holds if the knot
complements do not admit hidden symmetries, ie the knot complements do not cover
an orbifold with a rigid cusp (see Section 2). Furthermore, two commensurable knot
complements either admit hidden symmetries or are cyclically commensurable, ie
they both cyclically cover the same orbifold (see [5, Theorem 1.4]). For a small knot
complement, ie the knot complement does not contain a closed, embedded, essential
surface, Theorem 1.1 below shows these are mutually exclusive, which is a partial
solution to [5, Conjecture 4.14].
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Theorem 1.1 Let S3�K be a small hyperbolic knot complement. If S3�K admits
hidden symmetries, it is not cyclically commensurable with another knot complement.

We now provide an outline of the proof of Theorem 1.1. First, we ignore the figure-8
knot complement as it is the only knot complement in its commensurability class (see
Reid [21]). The key idea of the proof is to examine a covering pW QT !Q, where both
QT and Q are orbifolds covered by S3�K , QT has a torus cusp and QT admits (at
least) two finite cyclic fillings, and Q is a rigid cusped orbifold. As noted above, the
existence of such a QT is established in [5], Q is established by assumption, and the
covering is established by Margulis [11]. Furthermore, by [5], QT both is covered by (at
least) two knot complements and is the complement of a knot in the orbifold equivalent
of a lens space. Also by [5], the singular set of such an orbifold is either empty or com-
prised of a single circle. In Section 2.3, we establish a tool for understanding the basic
structure of the singular set of Q, which we refer to as the cusp-killing homomorphism.
The power of this tool can be seen in Lemma 4.3, which summarizes the combinatorial
arguments of Section 4 regarding the singular sets of QT and Q and provides a lower
bound on deg.p/. However, since S3�K is small, we may use Bass [4] to assume
that �1.S

3 �K/ admits integral traces (see Section 2). Next, using Lemmas 3.1
and 3.2, we exhibit a specific representation of �1.S

3�K/ where the image of the
representation includes an upper triangular meridian having a unit in the off-diagonal
entry. By Maclachlan and Reid [10, Lemma 5.2.4], the smallness of S3�K implies the
existence of an integral representation of �orb

1
.Q/ into PSL.2;C/. Hence meridians of

this form are rare. By analysis of the covering restricted to the cusp, we can establish
an upper bound on deg.p/, since QT is covered by more than one knot complement
and therefore �orb

1
.QT / must contain two distinct upper triangular meridians. Finally,

the upper and lower bounds do not agree and this contradiction establishes the theorem.

Lemmas 3.1 and 3.2 are also key tools for showing that a small knot complement
covering an orbifold with a rigid cusp cannot cover a manifold that admits exceptional
surgeries and some symmetry. Typically, obstructions to covering rigid cusped orbifolds
arise from the computation of arithmetic invariants, eg the invariant trace field (see
Section 2). The following theorem provides an obstruction to covering a rigid cusped
orbifold by exploiting information of a more topological and geometric nature.

Theorem 1.2 Let M be a manifold covered by a small hyperbolic knot complement
S3�K that is not the figure-8 knot complement.

(1) If M admits two exceptional surgeries, then M does not cover an orbifold with
a S2.2; 4; 4/ or S2.3; 3; 3/ cusp.

(2) If M admits two exceptional surgeries and a nontrivial symmetry, then M does
not cover an orbifold with a S2.2; 3; 6/ cusp.
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As noted above, the common thread in the proofs of Theorems 1.1 and 1.2 is the use of
Lemmas 3.1 and 3.2. In the proof of Theorem 1.2, we also appeal to the six theorem of
Agol [2] and Lackenby [9]. To incorporate these two ideas, we say that pW M !Q,
where M is a manifold as in Theorem 1.2 and Q is a rigid cusped orbifold. Instead
of establishing an upper bound on deg.p/, Lemmas 3.1 and 3.2 together with the six
theorem combine to show that M has two short curves in its cusp. These short curves
place an upper bound on the cusp volume of M (see Section 5.1). The arguments in
Section 5 also extend the combinational investigation of the singular set of Q used
for the proof of Theorem 1.1. Together with the symmetry assumption, this more
refined analysis establishes a lower bound on deg.p/, which in turn yields an upper
bound on the cusp volume of Q. The upper bound depends on the cusp type of Q

(see Lemma 5.5). In fact, if Q has an S2.2; 4; 4/, S2.3; 3; 3/ or S2.2; 3; 6/ cusp,
then the bounds for the cusp volume of Q are 3=24,

p
3=4 and

p
3=8 respectively

(assuming we use the symmetry of M in the S2.2; 3; 6/ case). Such bounds line
up almost perfectly with Adams’ classification of orbifolds with small cusp volume,
which is restated for the sake of completeness as Theorem 2.1 (also see Adams [1]).
Therefore, the remainder of the proof comes down to observing properties about these
orbifolds. Some of this work is already a part of the literature as summarized in
Proposition 2.2 (see [1] and Neumann and Reid [18] for further background) and
Neumann and Reid [17, Section 9]. The final cases are addressed in Lemmas 5.2
and 5.4.

This paper is organized as follows. In Section 2, we provide the necessary background
including a description of many of the smallest volume cusped orbifolds. We then
establish two lemmas that together characterize the representations of the fundamental
groups of small knot complements in PSL.2;C/ in Section 3. In Section 4, we exhibit
some combinatorial properties of a rigid cusped orbifold covered by a knot complement
and the singular set of such an orbifold, followed by a proof of Theorem 1.1. And
in the following section, we obstruct certain orbifolds from being covered by knot
complements followed by a proof of Theorem 1.2. In Section 6, we provide some final
remarks along with a theorem that makes our results from [7] more explicit.
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2 Background

We begin by establishing some notation. First, we consider all groups as subgroups
of PSL.2;C/ with finite covolume unless explicitly stated otherwise. Therefore,
we consider all manifolds and orbifolds to be both hyperbolic and orientable unless
explicitly stated otherwise. We denote �QD�

orb
1
.Q/. Hence we may say QDH3=�Q .

In the case of knot complements, we say that �K D �1.S
3�K/. Furthermore, it will

prove convenient to discuss the subgroup that fixes 1. We call such a subgroup the
peripheral subgroup of �Q (or �K ) and denote it by PQ (or PK ).

A distinct advantage of considering groups as discrete subgroups of PSL.2;C/ is that
they carry a significant amount of number theoretic information. In order to fully
utilize this data, we observe the following standard notation. First, we denote the set
of algebraic integers in C by A. If L is a number field, we will use OL to denote
the ring of integers in L and ˛OL to denote the principal ideal generated by ˛ 2OL .
If I is a nonprincipal ideal in OL , we will denote it by h˛; ˇi, where I is generated
by the OL linear combinations of ˛ and ˇ .

For a group � , g 2 � is a two element coset of the form��
a b

c d

�
;

�
�a �b

�c �d

��
:

Later, we will abuse notation and just refer to an element by one of the above matrices.
We say the trace of g or tr.g/D aCd . Although this definition is only well-defined up
to sign, it will be sufficient for our purposes. For example, if for all g 2 � , tr.g/ 2A,
we say � has integral traces. Otherwise, � has nonintegral traces. In addition, if �
has integral traces, then � admits a representation into PSL.2;A/, a fact exploited in
Lemma 3.1.

Next, we define the invariant trace field of � or k� to be Q.ftr.g2/ j g 2 �g/. In [20],
Reid showed that this is an invariant of the commensurability class of � . We also a
define the trace field of � to be Q.ftr.g/ j g 2 �g/.

A cusped 3–orbifold Q DH3=� (or � ) is arithmetic if � is commensurable with
PSL.2;Od /, where Od is the ring of integers in Q.

p
�d/ and d is a positive square-

free integer. Otherwise, Q (or � ) is nonarithmetic.

2.1 Rigid cusps

The cusps of an orientable 3–orbifold are one of five types (see Walsh [25, Section 3]
for background). The nonrigid Euclidean 2–orbifolds are the torus and S2.2; 2; 2; 2/.
The rigid orbifolds are S2.2; 4; 4/, S2.2; 3; 6/ and S2.3; 3; 3/.
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It is worth mentioning that the definition of hidden symmetries in the introduction is
slightly atypical. However, the argument below shows it equivalent to the standard
definition. First, we denote by Comm.�/ the (orientable) commensurator of � in
PSL.2;C/, or

Comm.�/D
�

g 2 PSL.2;C/
ˇ̌̌̌
Œg�g�1

W g�g�1
\�� <1

Œ� W g�g�1
\�� <1

�
:

Traditionally, a group � admits hidden symmetries if ŒComm.�/ WN.�/� > 1, where
N.�/ is the normalizer of � in PSL.2;C/. Also, we say Q admits hidden symmetries
if �Q admits hidden symmetries. In the case where � is nonarithmetic, Comm.�/ is
discrete in PSL.2;C/ and we can define H3=Comm.�/ as the (orientable) commen-
surator quotient (see [11]). By construction, for nonarithmetic � , H3=Comm.�/ is
covered by all orbifolds in its commensurability class and therefore it is the smallest
volume orbifold in the commensurability class of H3=� . Also, for a nonarithmetic
knot complement, having hidden symmetries is equivalent to H3=Comm.�K / having
a rigid cusp by [17, Proposition 9.1]. The only arithmetic knot complement is the figure-
8 knot complement (see [21]) and the figure-8 knot complement covers a rigid cusped
orbifold while admitting hidden symmetries. Thus the definition is also equivalent for
this case.

In arguments that follow, we will need to exploit facts about many of the smallest
volume cusped orbifolds, all of which have rigid cusps. This accounting of small volume
orbifolds heavily relies on Meyerhoff’s result that the densest horoball packing has a
cusp density of

p
3=.2v0/, where cusp density is defined to be cusp volume divided by

total volume and v0 � 1:0149416 is the volume of the regular ideal tetrahedron (see
Meyerhoff [13]).

The following theorem summarizes Meyerhoff’s result and Adams’ classification of
small cusp-volume hyperbolic orbifolds (see [1, Theorem 3.2, Corollary 4.1, Theo-
rem 5.2]).

Theorem 2.1 (Adams, 1991) Let Q be a 1–cusped hyperbolic 3–orbifold.

(1) A maximal S2.2; 3; 6/ cusp in Q has volume either
p

3=24,
p

3=12, 1=8,
.
p

3.3C
p

5//=48,
p

21=24 or at least
p

3=8.

(2) A maximal S2.3; 3; 3/ cusp in Q has volume either
p

3=12,
p

3=6, 1=4,
.
p

3.3C
p

5//=24,
p

21=12 or at least
p

3=4.

(3) A maximal S2.2; 4; 4/ cusp in Q has volume either 1=8,
p

2=8, or at least 1=4.
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Adams points out that for each cusp volume explicitly listed in (1), there is a unique
orbifold Q with a S2.2; 3; 6/ cusp. Moreover, each of these orbifolds has a unique
double cover with a S2.3; 3; 3/ cusp corresponding to an orbifold with cusp volume
explicitly listed in (2).

Neumann and Reid provided detailed descriptions of many of the orbifolds correspond-
ing to the cusp volumes in these theorems (see [18]). A number of the orbifolds they
describe are arithmetic. Adams also notes the volumes of many of these manifolds in
[1]. Adopting the standard notation that v1 � :91596244 is the volume of the ideal
tetrahedron in H3 with dihedral angles of �=2, �=4 and �=4, we can summarize the
necessary information from these two papers in the following proposition.

Proposition 2.2 (Adams 1991, Neumann and Reid 1991) Let Q be a 1–cusped
hyperbolic 3–orbifold.

(1) If Q has a maximal S2.2; 3; 6/ cusp of volume either
p

3=24,
p

3=12 or 1=8, it
is arithmetic. Moreover, these orbifolds have volumes v0=12, v0=6 and 5v0=24,
respectively, and no other orbifold with this cusp type is of lower volume.

(2) If Q has a maximal S2.3; 3; 3/ cusp of volume either
p

3=12,
p

3=6 or 1=4, it
is arithmetic. Moreover, these orbifolds have volumes v0=6, v0=3 and 5v0=12,
respectively, and no other orbifold with this cusp type is of lower volume.

(3) If Q has a maximal S2.2; 4; 4/ cusp of volume either 1=8 or
p

2=8, it is
arithmetic. Moreover, these orbifolds have volumes v1=6 and v1=4, respectively,
and no other orbifold with this cusp type is of lower volume.

Moreover, the only orbifold with a S2.2; 3; 6/ cusp and cusp volume
p

3.3C
p

5/=48

is the tetrahedral orbifold H3=�.5; 2; 2I 2; 3; 6/ with volume approximately 0:343003

(see [17, Section 9] and [10, page 144] for background). As noted by Adams,
this orbifold has a unique 2–fold cover with a S2.3; 3; 3/ cusp and cusp volume
p

3.3C
p

5/=24. This orbifold is H3=�.5; 2; 2I 3; 3; 3/ (see [1]).

We delay discussion of orbifolds of other relevant cusp volumes until Section 5.

2.2 The isotropy graph and finite subgroups of SO.3; R/

This subsection draws upon Thurston’s definition of a (geometric) 3–orbifold. For
further background, we refer the reader to Thurston [24, Chapter 13] and [25].

We define the base space of an orbifold Q to be the underlying topological space. For
convenience, we use jQj to denote the base space of an orbifold Q. In dimensions
2 and 3, jR2=h
 j
 nij D R2 and jR3=Gj D R3 , where G is a finite subgroup of
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SO.3;R/. Hence the base space of a 2–orbifold is a surface and the base space of a
3–orbifold is a 3–manifold. Also, if all neighborhoods of x 2Q map to R2=h
 j
 ni

or R3=G , we call x a cone point of Q.

An elliptic 2–orbifold is an orientable 2–orbifold that can be covered by S2 . The
complete list of orientable 2–orbifolds covered by S2 is S2 , S2.n; n/, S2.2; 2; n/,
S2.2; 3; 3/, S2.2; 3; 4/ and S2.2; 3; 5/.

Taking the cone over each of these orbifolds produces all of the possibilities for R3=G

(see Figure 1). In particular, G is either trivial, finite cyclic, Dn (a dihedral group of
order 2n), A4 , S4 or A5 . Finally, if x 2H3=� the isotropy group of x is G � �

such g 2G if and only if g.x/D x . The set of all points fixed by some element in a
fundamental domain for Q is a trivalent graph, which we will refer to as the isotropy
graph. We note that this graph need not be connected. However, we may consider an
orbifold as a base space together with an embedded isotropy graph.

n

Cn

n

2 2

Dn

3

2 3

A4

4

2 3

S4

5

2 3

A5

Figure 1: The five types of trivalent points that correspond to finite subgroups
of SO.3;R/

The specific embedding of the isotropy graph will be useful in the arguments of this
paper. We will pay particular interest to the isometric embeddings of the vertices of
the isotropy graph. Using the spherical cosine law (see Roeder [23, Lemma 3] for
an application in this context), we can compute the angles between the axes for each
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type of isotropy group in Figure 1. If we consider the three axes fixed by elements of
torsion of orders a, b and c where the angles between these axes are ˛ , ˇ , 
 (see in
Figure 2), then

cos˛ D
cos �

a
C cos �

b
cos �

c

sin �
b

sin �
c

;

cosˇ D
cos �

b
C cos �

a
cos �

c

sin �
a

sin �
c

;

cos 
 D
cos �

c
C cos �

a
cos �

b

sin �
a

sin �
b

:

This table lists some particular values of .˛; ˇ; 
 / for given .a; b; c/:

.a; b; c/ .˛; ˇ; 
 /

.2; 2; n/
�
�

2
;
�

2
;
�

n

�
.2; 3; 3/

�
cos�1

�
1

3

�
; cos�1

�
1
p

3

�
; cos�1

�
1
p

3

��
.2; 3; 4/

�
cos�1

�
1
p

3

�
;
�

4
; cos�1

�p
2
p

3

��
.2; 3; 5/

�
cos�1

�
cos.�

5
/

p
3 sin.�

5
/

�
; cos�1

�
1

2 sin.�
5
/

�
; cos�1

�
2 cos.�

5
/

p
3

��
We note that only the dihedral isotropy groups have the property that there is an axis
perpendicular to all other fixed-point axes.

c

ˇ ˛



a b

Figure 2: The angles between axes of fixed points in finite subgroups of SO.3;R/
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2.3 The cusp-killing homomorphism

Let QDH3=�Q be a 1–cusped hyperbolic 3–orbifold. Denote by j
 j the order of
an element in �Q and denote RD f
 j 
 2 PQ; j
 j<1g. We define the cusp-killing
homomorphism to be

f W �Q! �Q=hhRii�Q
:

We will make use of the following proposition, which was also noticed by M Kapovich.

Proposition 2.3 Let S3 �K be a hyperbolic knot complement. Suppose S3 �K

covers an orientable orbifold Q with a nontorus cusp. Denote the cusp-killing homo-
morphism by f . Then f .�Q/ is trivial. Furthermore, jQj ŠD3 and each component
of the isotropy graph of Q is connected to the cusp.

Proof First note that �Q D PQ ��K .

Since a meridian � of �K is contained in PQ and PQ is generated by torsion elements
on the cusp (we recall Section 2.1), killing these torsion elements kills hh�ii�Q

as
well as killing PQ . However, �K D hh�ii�K

and hh�ii�K
� hh�ii�Q

. Hence the
cusp-killing homomorphism kills the whole group �Q .

Thus jQj is a simply connected space with S2 boundary. Therefore, jQj ŠD3 by the
solution to the Poincaré conjecture (see Morgan and Tian [15]).

If there were any pieces of the isotropy graph not connected to the cusp, then there would
be elements of finite order that are nontrivial under the cusp-killing homomorphism.
Hence each component of the isotropy graph is connected to the cusp.

Remark 2.4 We can also interpret the effects of the cusp-killing homomorphism on
the isotropy graph of Q when jQj is simply connected. Viewing the isotopy graph
as a weighted graph that generates the fundamental group of Q via the Wirtinger
presentation, killing elements of torsion on the cusp corresponds to erasing edges of the
graph. For each endpoint x of an erased edge corresponding to an elliptic element 
 ,
we introduce the relation 
 D 1 in the local isotropy group at x . If x corresponds to
a S2.2; 2; 2; 2/ cusp, then the new isotropy group at x is a quotient of the Klein 4

group. If not, then x corresponds to a trivalent vertex of the isotropy graph, say each
edge corresponds to torsion elements 
 , a and b . Introducing the relation that 
 D 1,
to ab
 D 1 yields a D b�1 . In particular a and b have the same order. Therefore,
in the image f .�Q/, f .a/ D f .b�1/ and graphically we can relabel the weights
corresponding to a and b with gcd.jaj; jbj/ (see Figure 3). Relabeling the edges could
introduce further reductions to the graph. However, since the isotropy graph has a finite
number of vertices and edges and each edge is weighted by a finite integer, this process
will terminate in a finite number of steps.
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3

4

3

3

2

5 2

2
2

3

2
2

(a) The isotropy graph before reduction

4

32

2 2
2

5 2

2

(b) The graph after removing edges corre-
sponding to torsion elements fixing points
on the cusp

2

2

2

2

2

2

5

(c) The graph after resolving the degree-2

vertices

2

5

2

(d) The result of cusp-killing is a graph
corresponding to a dihedral group

Figure 3: A step by step graphical interpretation of the cusp-killing homomorphism

3 Integral representations of knot groups

In this section, we provide two lemmas about the representations of knot groups into
PSL.2;A/. Both main theorems rely on these two lemmas in order to limit the possible
covers for pW S3�K!Q, where �K admits integral traces (see Section 2) and Q

has a rigid cusp.

The key tool from number theory used in the proofs of these lemmas is the Hilbert
class field. For further background on the Hilbert class field we refer the reader to
Koch [8, Section 10.2]. In the context of this paper, this field is special in two ways.
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First, if E is the Hilbert class field of L, then any ideal I in OL is principal in OE .
The second fact that we exploit is that E is an unramified extension of L. By this we
mean that for each prime ideal P of OL , P either remains prime or P splits into the
product of distinct prime ideals in OE , that is P D

Qm
iD1 Qi , where each Qi is prime

in OE and Qi ¤Qj for all i ¤ j .

Lemma 3.1 Let �K be a knot group admitting integral traces. Then for any Q such
that S3�K covers Q, �Q admits a representation into PSL.2;A/ where �K has an
upper-triangular meridian.

Proof Since �K admits integral traces, �Q admits integral traces. Therefore, there is
an integral representation of �Q into PSL.2;OH /, where H is the Hilbert class field
of the trace field of �Q ([10, Lemma 5.2.4]).

Recall that any parabolic in PSL.2;C/ fixing z D ˇ=
 can be expressed as�
1Cˇ
 �ˇ2


 2 1�ˇ


�
:

Consequently, if such a parabolic in PSL.2;C/ is also in PSL.2;A/, �ˇ2; 
 2 2 A
and therefore ˇ; 
 2A.

Considering a Wirtinger presentation for �K � �Q � PSL.2;A/, we may assume �K

is generated by parabolics. Hence

�K D h�1; �2; : : : ; �ni; where �i D

�
1Cˇi
i �ˇ2

i


 2
i 1�ˇi
i

�
and ˇi ; 
i 2A:

Denote by L the compositum of H and Q.ˇi ; 
i j 1 � i � n/. We see that H � L

and OH �OL . Hence we have �Q � PSL.2;OH /� PSL.2;OL/� PSL.2;A/.

We claim that we can conjugate �Q such that �Q remains in PSL.2;A/ with �1 upper
triangular. For ease of notation, we will suppress the subscript notation in the following
argument. Note that here � fixes ˇ=
 . Therefore, it is sufficient to construct an element
hD

�
a
c

b
d

�
with a; b; c; d 2A, ad�bcD 1 and �d=cDˇ=
 (so h.ˇ=
 /D1), since

enforcing these properties ensures h will be in PSL.2;A/ (so h�Qh�1 � PSL.2;A/)
and h�h�1 will be upper triangular. The next paragraph establishes this claim by
finding such an h.

If ˇOL and 
OL are comaximal, ie there exist p; q 2 OL such that pˇC q
 D 1,
then aD p , b D q , c D�
 , and d D ˇ or hD

�
p
�


q
ˇ

�
is a solution with the desired

properties. If ˇOL and 
OL are not comaximal, then I D hˇ; 
 i is a proper ideal. In
the case where I is principal, we may assume that ˇ D r˛ , 
 D s˛ for some ˛ 2OL
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or equivalently, I D ˛OL . Since OL is a Dedekind domain, there exist p; q 2 OL

such that pˇC q
 D ˛ and thus, pr C qs D 1. Here, a D p , b D q , c D �s , and
d D r or hD

�
p
�s

q
r

�
yields a solution with the desired properties. In the case that I is

not a principal ideal in OL , then we may pass to the Hilbert class field of L, say E ,
and apply the same argument since I is a principal ideal in OE .

The following lemma helps specify what values can go in the upper right entry of the
meridian exhibited above.

Lemma 3.2 Let �K be a knot group in PSL.2;A/ with an upper-triangular meridian
�D

�
1
0

x
1

�
. Then x is a unit in A. Furthermore, we may assume that �D

�
1
0

1
1

�
.

Proof Since �K is finitely generated, we can attach all of the entries of the generators
of �K to Q and get a finite extension of Q. Denote this extension by L. Although
this L could be a proper subfield of that of the previous lemma, we still have the
property that �K � PSL.2;OL/.

Assume x is not a unit. Then xOL is a proper ideal and we may say xOLD
Qn

iD1 P
ei

i ,
where each Pi is a maximal ideal in OL . Let J D

Qn
iD1 Pi for the same Pi .

Denote by E the Hilbert class field of L. Then J D ˛OE for some ˛ 2OE and is
principal. Since E is an unramified extension of L and each of the Pi are maximal
ideals in OL , J D

Qm
iD1 Qi , where Qi ¤Qj if i ¤ j .

Let g D
�

a
c

b
d

�
2 �K and denote by hD

�p˛
0

0
1=
p
˛

�
. Then

h �g � h�1
D

�
a b �˛

c=˛ d

�
:

We claim c=˛ is in OE . To see this it suffices to show c is in J . There exists a homo-
morphism fi W PSL.2;OE/! PSL.2;OE=Qi/ for each prime ideal Qi . Under such a
homomorphism fi.�K / is trivial, since fi.�/ is trivial and � normally generates �K .
Therefore, fi.g/D

�
1
0

0
1

�
and c is in Qi for each Qi . Hence c is in J .

Also, h �� � h�1 D
�

1
0

x˛
1

�
. Note, that x˛OE and xOE factor into the same set of

prime ideals, if we ignore the multiplicities of the factors. Hence the construction of J
is independent of starting with �K or h�K h�1 . In particular, fi.h �� � h

�1/ is trivial.
Therefore, by applying the above argument to h�K h�1 , c=˛ 2 J as well.

Let

V .g/D min
fQi jJ�Qi g

�
vQi

.c/

ˇ̌̌̌
g D

�
a b

c d

��
:
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Here vQi
.c/ denotes the power of Qi in the factorization of the ideal generated by c .

By the above argument, we have established that V .g/ > 0 for all g 2 �K . We also
note that V .h �g � h�1/D V .g/� 1.

There is an element g0 2�K such that V .g0/D s is minimal. Thus V .hs �g0 �h�s/D 0.
Thus, for some Qi , the lower left entry of hs �g0 �h�s is not in Qi and so fi.h

s �g0 �h�s/

is nontrivial. However, hs ���h�sD
�

1
0

x˛s

1

�
, implying x˛s 2Qi for all i . Furthermore,

hs �� � h�s normally generates hs ��K � h
�s and therefore fi.h

s ��K � h
�s/ is trivial.

This is a contradiction.

Finally, since x is a unit, we may conjugate �K by h0 D
�1=
p

x
0

0p
x

�
so that there is a

meridian of the form
�

1
0

1
1

�
, while preserving the integrality of the representation.

Remark 3.3 As a consequence of the argument in Lemma 3.2 with �K in PSL.2;OL/

(with L defined as in the proof of Lemma 3.1), the meridian

�D

�
1Cˇ
 �ˇ2


 2 1�ˇ


�
must have the property that ˇOL and 
OL are comaximal. Otherwise, after conjuga-
tion the upper-triangular meridian will not have a unit in the upper right entry.

4 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. In the proof, we assume that S3�K cyclically
covers an orbifold with a torus cusp, which we denote by QT throughout the section.
Also, we will use �T D �

orb
1
.QT / and denote by PT the peripheral subgroup of �T .

The main argument is that QT cannot admit multiple cyclic fillings because QT must
be a relatively high-degree cover of any rigid cusped orbifold.

We say the isotropy graph � of an orbifold Q has a loop if there is an edge in � that
begins and ends at the same vertex. If Q does not have a torus cusp and is covered by
a knot complement, it is a consequence of the cusp-killing homomorphism that loops
in � must begin and end at the cusp.

We note that Propositions 4.1 and 4.2 are used in the proof of Theorem 1.2. Also,
the figures in the remainder of the paper involving Q and its isotropy graph will
represent the cusp as a bolded point and the base space of Q should be thought of as
D3ŠS3�fptg. Thus the degree of cusp will be 3 if the cusp is rigid and 4 if the cusp
is S2.2; 2; 2; 2/� Œ0;1/. All other vertices will be degree 3 and we refer to them as
internal vertices for convenience.

We begin by classifying the possible abelian quotients of rigid cusped orbifolds covered
by hyperbolic knot complements.
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Proposition 4.1 Let S3 �K be a hyperbolic knot complement that covers an orb-
ifold Q.

(1) If Q has a S2.2; 3; 6/ cusp, then Z=2Z surjects onto �ab
Q

. Furthermore, �ab
Q
Š

Z=2Z if and only if there is a 2–fold cover Q0 of Q with a S2.3; 3; 3/ cusp.

(2) If Q has a S2.3; 3; 3/ cusp, then Z=3Z�Z=3Z surjects onto �ab
Q

.

(3) If Q has a S2.2; 4; 4/ cusp, �ab
Q

is trivial, Z=2Z, Z=2Z � Z=2Z or Z=4Z.
Furthermore, �ab

Q
Š Z=4Z if and only if the isotropy graph of Q has a loop.

Proof We note that �Q D PQ ��K . Therefore, we claim that

�Q D

��
t D

�
1 1

0 1

�
; r D

�
` 0

0 `�1

���
PQ��K

;

where r is an elliptic element of order 3, 4 or 6 depending on the cusp type. The
claim follows from the fact that r and t are generators for PQ and PQ contains a
meridian of �K .

First assume Q has a S2.2; 3; 6/ cusp. Then `D ei�=6 . Since PQ abelianizes to Z=6Z,
�ab

Q
is a quotient of Z=6Z. Also, the torsion element of order 6 is connected to an

interior vertex with the isotropy group a D6 (dihedral group of order 12). Under the
abelianization of this isotropy group, the element of order 6 maps to an element of
order 2. Thus �ab

Q
is a quotient of Z=2Z. If �ab

Q
Š Z=2Z, then Q has a 2–fold

cover Q0 such that �Q0 is the kernel of the abelianization. Thus Q0 has only 3–torsion
on the cusp.

Next, assume Q has a S2.3; 3; 3/ cusp. In this case, `D e2i�=3 . Then �ab
Q

is a quotient
of Z=3Z�Z=3Z, the abelianization of the peripheral subgroup (see Section 2.1).

Finally, assume Q has a S2.2; 4; 4/ cusp. Then ` D ei�=4 . In this case, �ab
Q

is a
quotient of the abelianization of PQ that is Z=2Z�Z=4Z.

Consider an edge e labeled by 4–torsion that connects the cusp c to another vertex x .
Then x is either the cusp itself, or it corresponds to a point fixed by an isotropy group
isomorphic to D4 or S4 (see Section 2.2).

Case 1: e is a loop In this case, e connects the cusp back to itself. Then we see
from a Wirtinger presentation for �Q coming from the isotropy graph that �ab

Q
is

either Z=4Z or Z=2Z�Z=4Z. In the first case, the image of a peripheral element of
order 4 generates �ab

Q
. In the second case, both a peripheral element of order 4 and a

peripheral element of order 2 generate �ab
Q

. However, in order for a peripheral element
of order 2 to map nontrivially under � W �Q! �ab

Q
, we would need a path labeled by

Algebraic & Geometric Topology, Volume 14 (2014)



Small knot complements, exceptional surgeries and hidden symmetries 3241

only even numbers that starts and ends at the cusp (by the cusp-killing homomorphism)
and includes the 2–torsion on the cusp. Such a cycle would also include the 4–torsion
on the cusp contradicting our assumption that e is a loop.

Case 2: x corresponds to D4 or S4 In this case, the isotropy graph of Q does not
contain a loop. Under the abelianizations of these groups, elements of order 4 are
mapped to elements of order 2. Under the abelianization of the cusp, the peripheral
elements of order 4 all have the same order in �ab

Q
. Therefore, Z=2Z�Z=2Z surjects

onto �ab
Q

.

In the following propositions and lemmas, we appeal to notation and definitions from [5].
In that paper, the authors define an orbilens space to be the quotient of S3=�, where �
is a finite cyclic subgroup of SO.4;R/. As noted in that paper, for any orbilens
space L, jLj is a lens space L.p; q/. Furthermore, there exists a Heegaard splitting
of jLj such that L decomposes into two pieces each of which is the quotient of solid
torus under rotation about its core. Using p; q to denote the underlying lens space
and m; n to denote the orders of these rotations, we use the notation L.p; qIm; n/ to
denote an orbilens space. Finally, by [5, Proposition 4.13] if two knot complements are
cyclically commensurable, they both cover the complement knot in an orbilens space.

The lower bound on the degree of a manifold cover exhibited by this proposition will
be used in the next section. However, the classification of knot complements in orbilens
spaces that 4–fold cover rigid cusped orbifolds with loops will be useful in this section.

Proposition 4.2 Let M be a hyperbolic manifold. If pW M !Q with a S2.2; 4; 4/

cusp, the isotropy graph for Q has a loop labeled 4, and M is covered by a knot
complement, then deg.p/ � 24. Furthermore, if there is a loop labeled 4, then there
exists f W QT ! Q, where QT is a knot complement in an orbilens space O and
deg.f /D 4, where the singular locus of O is two unknotted circles.

Proof Assume that Q is covered by a knot complement and has a loop labeled 4

in its isotropy graph (see Figure 4 for a possible example). Then by Proposition 4.1,
�ab

Q
is Z=4Z. Hence there is a unique orbifold that is a 2–fold cover of Q. We call

this orbifold Q0 . Since �Q0 is characteristic in �Q and the abelian quotient of �Q

is generated by PQ , PQ0 is characteristic in PQ . Thus PQ0 and PQ have the same
maximal parabolic subgroup and PQ0 contains a meridian � of �K . In particular,
hh�ii�K

� �Q0 . Therefore, S3�K covers Q0 . Again using the fact the �ab
Q

is Z=4Z
and that the isotropy graph of Q has a loop labeled 4, �Q0 is the kernel of the map
from �Q to Z=2Z, all elements of order 4 in PQ are nontrivial in the image of such
a map, and all elements of order 2 in PQ map trivially. Thus Q0 has a S2.2; 2; 2; 2/
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2
3

4

4

2 3

2

Figure 4: A possible isotropy graph of an orbifold with a S2.2; 4; 4/ cusp

cusp. By [17, Proposition 9.2], this cover p0W S3�K!Q0 is regular. Furthermore,
by the proof of that argument �Q0=�K is dihedral and there is an index-2 subgroup
of �Q0 , �T , that preserves the orientation of the meridians of �K . Thus there is
a unique 2–fold cover of Q0 that has a torus cusp. While keeping consistent with
our previous conventions, we denote this orbifold by QT . We know that S3 �K

covers QT since �K is generated by parabolics and ŒPQ W PT �D 4, which implies
that all parabolic elements of �Q are contained in �T .

Since QT Š .S3 �K/=Z for some cyclic group Z of isometries of S3 , we see
that QT is the complement of a knot in an orbilens space. By [5, Lemma 3.1], the
base space of QT is a lens space, Z preserves a Hopf fibration of S3 and isotropy
graph of QT is a set of circles C such that C lifts to 0, 1 or 2 great circles in S3 .
We can obtain Q0 as the quotient of QT by a symmetry � that fixes points on the cusp
of QT . With a slight abuse of notation, we may also view � as an isometry of S3 that
fixes points in S3 (or Q0 Š .S3�K/=hZ; �i). The fixed-point set of � is also a great
circle by the positive resolution of the Smith conjecture (see Morgan [14]). Hence the
fixed-point set of � must intersect each circle of C in 0 or 2 points. Therefore, the
isotropy graph for Q0 contains 0, 2 or 4 internal vertices. The next three paragraphs
deal with each case respectively.

The isotropy graph for Q0 cannot contain 0 vertices because that would imply that
the isotropy graph for Q only had vertices labeled by Klein 4 groups. Such a graph
would be nontrivial under the cusp-killing homomorphism. Since the 2–fold cover of
the loop labeled by 4 is a loop labeled by 2, the possible graphs as defined up to graph
isomorphism type can be seen in Figure 5.

We claim that the isotropy graph for Q0 cannot contain 2 internal vertices as well. First,
notice that the isotropy graph for Q0 has an edge e labeled by 2–torsion with both
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2

2

2

n

(a) A graph with 2 internal vertices

2

2

2

n

m

(b) A graph with 4 internal vertices

Figure 5: The possible isotropy graphs Q0

endpoints on the cusp. Thus the isotropy graph of Q takes the form of Figures 6(a), 6(b)
and 6(c). In the latter two cases, �orb

1
.Q/ is nontrivial under the cusp-killing homo-

morphism and therefore Q cannot be covered by a knot complement. In the first case,
we cannot close up the isotropy graph. Therefore, no such orbifold Q can be covered
by a knot complement.

Finally, if Q0 contains 4 internal vertices, then QT is the complement of a knot in an
orbilens space with an isotropy graph consisting of two unknotted circles. Since the
circles are labeled by m–torsion and n–torsion with m; n� 2 and .m; n/D 1, S3�K

is at least a 6–fold cover of QT and therefore at least a 24–fold cover of Q. This
completes the proof.

2

4

n

(a) The first case

2
2

4

2

n

(b) The second case

4
2

(c) The third case

Figure 6: The three cases for the isotropy graph in Proposition 4.2

Lemma 4.3 Let S3 �K is small hyperbolic knot complement that covers an orb-
ifold QT with a torus cusp. Furthermore assume QT covers Q with a rigid cusp with
covering degree d .

(1) If Q has a S2.3; 3; 3/ cusp, then d > 3.

(2) If Q has a S2.2; 3; 6/ cusp, then d > 6.

(3) If Q has a S2.2; 4; 4/ cusp, then d > 4 or QT ŠL.p; q W n;m/�K0 for some
embedded knot K0 and some n¤ 1 and m¤ 1.
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Proof Case 1: Q has a S 2.3; 3; 3/ cusp First note that d � 3 since Q has 3–
torsion on the cusp and QT has a torus cusp. If d D 3, then all isotropy groups must
lift to cyclic groups. From inspection of the possible isotropy groups, all groups must
be D3 since no other candidates have index 3 cyclic groups. In this case, �Q would
be nontrivial under the cusp-killing map, so it cannot be covered by a knot complement.
Thus d > 3.

Case 2: Q has a S 2.2; 3; 6/ cusp By a similar argument to that above d � 6. If
d D 6, then Œ�Q W �T � D 6 and there is a homomorphism from �Q to S6 via left
multiplication on the cosets of �T . Denote by r an element of 6–torsion that fixes a
point on the cusp. Then �Q D f�T ; r ��T ; r

2 ��T ; r
3 ��T ; r

4 ��T ; r
5 ��T g. Hence

r maps to an element of order 6 and the image of �Q is not a subgroup of A6 .
Therefore, �Q admits a Z=2Z quotient and a unique subgroup �Q0 of index 2 which
contains �T . As seen in Proposition 4.1, such a group corresponds to an orbifold Q0

with a S2.3; 3; 3/ cusp and so we have reduced the problem to the previous case.

Case 3: Q has a S 2.2; 4; 4/ cusp If d D 4, then the 4–torsion either forms a loop,
is connected to a D4 or S4 isotropy group. The first case is covered by Proposition 4.2.
In the second case, some 2–torsion must survive the lift. However, the 2–torsion on the
cusp must be a part of a D2nC1 in order to lift to a cyclic group and allow for �Q to
be nontrivial under the cusp-killing map. In the final case, S4 has no cyclic subgroups
of index 4.

Before providing the proof Theorem 1.1, we establish one more technical lemma that
exploits the properties of integral representations and presents the maximal abelian
subgroup of PQ in an especially useful manner.

Lemma 4.4 If Q is a rigid cusped orbifold such that Q is covered by a knot comple-
ment S3 �K and �Q � PSL.2;A/, then, up to conjugation in PSL.2;A/, PQ is of
the form ��

�m x

0 ��1
m

�
;

�
1 1

0 1

�
;

�
1 �2

m

0 1

��
;

where x 2 A and �m is a primitive mth root of unity. Furthermore, m D 6 if Q

has a S2.3; 3; 3/ cusp, m D 8 if Q has a S2.2; 4; 4/ cusp, and m D 12 if Q has a
S2.2; 3; 6/ cusp.

Proof First, the case where Q has a S2.3; 3; 3/ cusp. By assumption, Q is covered
by a knot complement S3 �K and �K � �Q � PSL.2;A/. Applying Lemma 3.2
to these assumptions, we may also assume that there is a meridian � of �K with
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�D
�

1
0

1
1

�
. In addition, PQ contains a rotation of order 3 of the form

�
�6

0
x
��1

6

�
, where

x 2A. The rotation and � generate a subgroup in PQ of the form

P 0 D

��
�6 x

0 ��1
6

�
;

�
1 1

0 1

�
;

�
1 �2

6

0 1

��
:

We claim that P 0 D PQ . First,

PQ D

��
�6 x

0 ��1
6

�
;

�
1 y

0 1

�
;

�
1 y�2

6

0 1

��
for some y 2A. Since � 2 PQ , we have that 1D y.r C s � �2

6
/, where r; s 2 Z, and

so y; .r C s � �2
6
/ are units in A. It also follows directly from this computation that

y 2Q.
p
�3/, and so y D �

j
6

for some j . This proves the claim, completing the proof
of the lemma in this case.

The cases where Q has a S2.2; 4; 4/ cusp or a S2.2; 3; 6/ cusp each follow by nearly
identical arguments where �6 is replaced by �8 and �12 respectively.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let S3 � K be a small knot complement that covers an
orbifold Q with a rigid cusp. Since S3�K is small, �K admits integral traces (see [4]).
Also, all groups commensurable with �K admit integral traces. In particular, �Q

admits integral traces. Hence, by [10, Lemma 5.2.4], there is a representation of �Q

into PSL.2;A/.

Assume S3�K0 is a knot complement that is cyclically commensurable with S3�K .
By [5, Proposition 4.7], both knot complements cover an orbifold QT , which is a knot
complement in an orbilens space covered by both S3�K0 and S3�K . The remainder
of the proof will show that such an orbifold QT cannot exist.

Since the commensurability class of S3�K contains at least two knot complements,
S3 �K is nonarithmetic (see [21]), and so we may assume that Q is the orientable
commensurator quotient. Therefore, S3 �K , S3 �K0 and QT cover Q. By con-
sideration of the representation for �Q constructed in Lemma 3.1, �T admits an
integral representation such that PT is upper triangular and contains two distinct knot
meridians �;�0 corresponding to S3 �K and S3 �K0 respectively. Moreover, by
Lemma 3.2, � and �0 have units in their upper right entries. By Lemma 4.4, if Q

has a S2.3; 3; 3/ or S2.2; 3; 6/ cusp, the maximal abelian subgroup of PQ is of the
form

˝�
1
0

1
1

�
;
�

1
0
!
1

�˛
(where !2 C ! C 1 D 0), and if Q has a S2.2; 4; 4/ cusp, the

maximal abelian subgroup of PQ is of the form
˝�

1
0

1
1

�
;
�

1
0

i
1

�˛
. Regardless of the cusp
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type, the property that PT contains two elements with units in the off diagonal entries
implies PT is the minimal index abelian subgroup of PQ . Since the index of PT

in PQ is the degree of the cover pW QT !Q, this contradicts Lemma 4.3 unless Q

has a S2.2; 4; 4/ cusp and QT ŠL.p; qIm; n/�K0 . In this case, m¤ 1 and n¤ 1.
However, by [5, Theorem 1.8], such a QT cannot be covered by two knot complements.
This completes the proof.

5 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The first step of the proof involves two argu-
ments that orbifolds with certain prescribed cusp volumes cannot be covered by knot
complements. The second ingredient is a lower bound on the degree of the covering
pW M ! Q, where M is a manifold covered by a small knot complement and Q

is a rigid cusped orbifold. The third part of the proof establishes an upper bound on
deg.p/ by combining the six theorem of Agol and Lackenby (see [2; 9]), the lemmas of
Section 3, and Adams’ classification of small cusp volume orbifolds (see Theorem 2.1).

In the following proofs, we will identify H3 with fzCcj 2H j z 2C; c > 0; j 2D�1g

(upper-half space) and @H3 with C[f1g. Here we denote by Bx the horoball that is
tangent to @H3 at x . Lemma 5.1 follows directly from Adams’ paper on small volume
orbifolds (see [1]). However, the explicit representation of �Q is unnecessary for the
results of that paper. Below, we give a relevant summary of Adams’ work in order to
provide this representation, which is the key component of the proof of Lemma 5.2.

Lemma 5.1 (Adams 1991) The orbifold fundamental group of the orbifold Q with
cusp volume

p
21=24 admits a representation into PSL.2;C/ given by

�Q D

�
t D

�
1

4
p

7

0 1

�
; r D

�
` 0

0 `�1

�
; 
 D

�
0 i � b
i
b

0

��
;

where `D .
p

3C i/=2 and b D
p

5C i
p

3=
p

2
p

7.

Proof Let Q be a 3–orbifold with a S2.2; 3; 6/ cusp and cusp volume
p

21=24. A
diagram of the horoballs associated to Q first appeared in Adams’ paper (see [1, Fig-
ure 5]). It is included here as Figure 7 for the sake of completeness. Furthermore,
following the discussion of this horoball diagram in [1], we use the following notation:
O D 0, D D

4
p

7, X D .5C i
p

3/=2
p

7 and Y D
4
p

7=2C i.
4
p

7=2
p

3/.

In this figure, there are four horoballs pictured. Following the description of this diagram
from Adams’ work, the horoballs BO and BD are of Euclidean diameter 1 and maximal
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in the sense that they are tangent to the horoball based at 1. The horoball BX has
Euclidean diameter 1=

p
7 and the horoball BY has Euclidean diameter 3

7
. The line

segment OY has length w D 4
p

7=
p

3 while the line segment OX has length 1=
4
p

7.
Note that 4

p
7=
p

3� 0:939104416< 1.

Y

X
O D

Figure 7: A horoball diagram for Q

Under Adams’ description of Q, we see that �Q contains a parabolic element t such
that t.1/D1 and t.0/D

4
p

7. In addition, �Q contains an order 6 rotation r that
fixes 0 and 1. Finally, as Adams notes, all horoballs of Euclidean diameter 1 are
equivalent under the action of PQ . By [1, Lemma 1.2], there is an element 
 that
exchanges 0 and 1 while sending 4

p
7 to .5C i

p
3/=.2 �

4
p

73/. Therefore,

t D

�
1

4
p

7

0 1

�
; r D

�
` 0

0 `�1

�
and 
 D

�
0 i � b
i
b

0

�
;

where `D .
p

3C i/=2 and b D
p

5C i
p

3=
p

2
p

7.

The isometric sphere of 
 is of radius 1 and centered at 0 (see Figure 8). Hence the
isometric sphere for t � 
 � t�1 is of radius 1 and centered at 4

p
7. Let � D ht; r; 
 i.

Since these two isometric spheres bound a fundamental domain for � away from C , �
has finite covolume. Also, since the cusp covolume of � is

p
21=24, Œ�Q W ��D 1.

The following lemma exploits the arithmetic properties of representation of �Q from
the previous lemma in order to show that an orbifold with cusp volume

p
21=24 cannot

be covered by a knot complement.

Algebraic & Geometric Topology, Volume 14 (2014)



3248 Neil R Hoffman

Lemma 5.2 (1) Any orbifold with a S2.3; 3; 3/ cusp and cusp volume
p

21
12

cannot
be covered by a knot complement.

(2) Any orbifold with a S2.2; 3; 6/ cusp and cusp volume
p

21
24

cannot be covered
by a knot complement.

Proof First, we appeal to Adams’ characterization of orbifolds of small cusp volume
(see Section 2.1) to reduce to case (2) as any orbifold with a S2.3; 3; 3/ cusp and cusp
volume

p
21=12 covers an orbifold with S2.2; 3; 6/ cusp and cusp volume

p
21=24.

Let Q be an orbifold with cusp volume
p

21
24

, then as seen in Lemma 5.1,

�Q D

�
t D

�
1

4
p

7

0 1

�
; r D

�
` 0

0 `�1

�
; 
 D

�
0 i � b
i
b

0

��
;

where `D .
p

3C i/=2 and b D
p

5C i
p

3=
p

2
p

7.

Y

X
O D

Figure 8: A horoball diagram for Q with the isometric spheres represented
by dotted curves around 0 and D

Let �D 1p
b

and g D
�
� 0
0 ��1

�
. Then

g ��Q �g
�1
D

�
t 0 D

�
1 ˛

0 1

�
;

�
` 0

0 `�1

�
; 
 0 D

�
0 i

i 0

��
;

where ˛ D
p

14=.5C i
p

3/. Note the minimal polynomial for ˛ is q4� 5q2C 7D

0. Thus ˛ is an algebraic integer, but not a unit since the constant term of this
polynomial is not 1. Under this integral representation of �Q , there are upper-triangular
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parabolic elements all of which have nonunits in their off diagonal entries. Hence a
knot complement covering Q would contradict Lemma 3.2.

The following proposition specifies which finite groups can act on a point of tangency
between two horoballs.

Proposition 5.3 Consider a maximal horoball packing corresponding to an orbifold
with a rigid cusp. Denote by Bx the horoball centered x and denote by B1 the
horoball at 1. If y is the point of tangency of Bx and B1 and y is fixed by an
element 
 2 Stab1 , then the isotropy group of y is Cn or Dn , where nD 2; 3; 4; 6.

Proof First 
 is order 2, 3, 4 or 6 because it fixes 1. If Staby is cyclic, we are
done. Thus we can assume the isotropy group of y has elements fixing two distinct
axes through y .

Denote by 
 0 be an element of the isotropy group of y such that the axis fixed by 
 0

intersects the axis fixed by 
 at the smallest (nonzero) angle possible. Denote this angle
by ˛ . If ˛ D �=2, then h
; 
 0i is dihedral (see Section 2.2). Hence we may assume
that ˛ < �=2. Therefore, 
 0 fixes points inside of B1 . However 
 0.B1/\B1 D∅
and 
 0 does not fix 1, which is a contradiction.

We are now ready to prove the following lemma.

Lemma 5.4 (1) Any orbifold Q with a S2.3; 3; 3/ cusp and cusp volume
p

3=4

such that �Q admits integral traces cannot be covered by a knot complement.

(2) Any orbifold Q with a S2.2; 3; 6/ cusp and cusp volume
p

3=8 such that �Q

admits integral traces cannot be covered by a knot complement.

Proof We begin by assuming that Q has a S2.3; 3; 3/ cusp and has cusp vol-
ume

p
3=4, and �Q admits integral traces. Consider a horoball diagram for the

fundamental domain of Q viewed from the point at 1. As in [1], we may assume there
is a horoball tangent to the horoball at 1 centered at 0. Furthermore, the cusp shape
and the cusp volumes provide a peripheral translation of length

p
3. Thus there is

also a full sized horoball centered at
p

3. We claim that such a diagram will look like
Figure 9. First, we will explain the labeling. In this figure, O D 0, Y D .

p
3C i/=2,

X D .
p

3� i/=2 and D D
p

3 and there are horoballs that are tangent to the horoball
at 1, which are of Euclidean diameter 1 tangent to @H3 at 0 and D . Also, there
are elliptic elements of order 3 in �Q fixing 0 and 1, X and 1, Y and 1, and D

and 1.

By Proposition 5.3 the point stabilizer of 0C j is D3 or C3 .
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Y

X

O D

Figure 9: A fundamental domain for Q lies above OXDY

Case 1 Assume the point stabilizer of 0C j is D3 .

Then there is an element 
 D
�

0
ie�i�

iei�

0

�
that fixes ei� and �ei� . Therefore, the

isometric sphere corresponding to 
 has radius 1 and is centered at 0. Also, let r be
the element of order 3 fixing Y and 1. Then

r D

�
! .
p

3C i/=2

0 !�1

�
and r
 r�1 admits an isometric sphere of radius 1 centered at

p
3. The boundaries

of these isometric spheres in C are depicted by dotted lines in Figure 9. Finally, let
t D

�
1
0

p
3

1

�
.

Since � 0 D h
; r; ti is a subgroup with finite covolume (see Figure 9), it must be of
finite index in �Q . Also, by combining the assumption that cusp volume is

p
3=4 with

the upper bound on the cusp density of 2=.v0

p
3/ (see Section 2.1), we know that

covolume.�Q/� v0=2. Hence Œ�Q W �
0�D 1; 2.

If Œ�Q W�
0�D2, then covolume.�Q/Dv0=2 and there are horoballs based at .

p
3Ci/=2

and .
p

3�i/=2 of Euclidean diameter 1. Thus, by Proposition 5.3, the point stabilizers
above these points are either both D3 or both C3 . Hence the cusp corresponds to a
vertex in the isotropy graph that is either connected to three vertices labeled by D3

isotropy groups, or there is a loop labeled by 3–torsion and the cusp connects to one
vertex labeled by a D3 isotropy group (see Figure 10). In either case, �Q cannot be
trivial under the cusp-killing homomorphism.

Therefore, we consider the case that Œ�Q W�
0�D1. Here, tr.
 �r/D�i..

p
3Ci/=2/e�i� .

Since �i.
p

3C i/=2 is a unit and we are assuming integral traces, e�i� is an algebraic
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2

2

3

2
2

3
3

2

2

2

2

3
3

Figure 10: The two possible types of isotropy graphs for the orbifold Q

described in Case 1 of Lemma 5.4

integer. Hence *�
0 iei�

ie�i� 0

�
;

�
1
p

3

0 1

�
;

 
!
p

3Ci
2

0 !�1

!+
is a representation of �Q with parabolic elements fixing 0 and 1 where all entries
of the generators are algebraic integers. If �K � �Q , then �K admits an integral
representation. However, the maximal abelian subgroup AQ of PQ is of the form��

1
p

3

0 1

�
;

�
1 !
p

3

0 1

��
:

In particular, AQ vanishes under reduction modulo the prime ideal I , if
p

3 2 I .
Therefore, no knot group �K is a subgroup of �Q by Lemma 3.2.

Case 2: The point stabilizer of 0C j is C3 In this case, there is a group element 
 0

that identifies 0C j with a point above either .
p

3C i/=2 or .
p

3� i/=2. We may
assume that 0C j is identified with .

p
3C i/=2C cj . Since 
 0 can be decomposed

into reflections in the plane defined by hemisphere of radius 1 centered at 0 and vertical
planes, 0C j and .

p
3C i/=2C cj are the same Euclidean distance above C and

c D 1.

Hence, under 
 0 , 1 7! 0, .
p

3C i/=2 7!1 and .
p

3C i/=2C j 7! j . Here


 0 D

�
0 .

p
3C i/=2

.�
p

3C i/=2 1

�
:

Let

r 0 D

�
! .�

p
3� 3i/=2

0 !�1

�
:

Since 
 0 admits an isometric sphere of radius 1 at .
p

3C i/=2, then 
 0�1 admits an
isometric sphere of radius 1 at 0, and r 0 � 
 0�1 � r 0�1 admits an isometric sphere of
radius 1 at

p
3.
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Hence by �3 D h

0; r 0; ti is a subgroup of finite covolume (t is defined in Case 1) and

�3 is of finite index in �Q . In this case, k�3 DQ.
p
�3/ and �3 has integral traces.

Thus, by [10, Theorem 8.3.2], �3 is arithmetic and therefore �Q is arithmetic. Again
by [21], the only knot complement that can cover Q is the figure-8 knot complement.
Cusp volume considerations would force the figure-8 knot complement to be a 4–fold
cover of Q. However, Q has 3–torsion on the cusp. Hence in this case, Q is not
covered by a hyperbolic knot complement.

Finally, if Q has a S2.2; 3; 6/ cusp and cusp volume
p

3=8 and �Q admits integral
traces, then the point stabilizer of 0C j is D6 . Hence an identical argument to Case 1
shows Q is not covered by a knot complement.

We now expand upon Lemma 4.3. However, unlike that lemma, we assume that
pW M !Q, where M is a manifold.

Lemma 5.5 Let pW M !Q, where M is a manifold covered by a hyperbolic knot
complement.

(1) If Q has a S2.3; 3; 3/ cusp, then deg.p/D 12n n� 1.

(2) If Q has a S2.2; 4; 4/ cusp, then the deg.p/� 24.

Proof (1) Assume that Q has a S2.3; 3; 3/ cusp. First, consider the isotropy graph
of Q. If there is a loop in the isotropy graph, then the other edge emanating from
the cusp cannot connect the cusp to a point with isotropy group D3 . In this case, �Q

would be nontrivial under the cusp-killing homomorphism (see Figure 11).

3

3

2

2

2

2

Figure 11: Application of the cusp-killing homomorphism to a graph with a
cycle labeled 3 and a vertex labeled D3

Therefore this vertex is fixed by a group G , where G is either A4 , S4 or A5 . For G

to lift to a torsion-free group, deg.p/ must be a multiple of the order of G . Hence
deg.p/D 12n (n 2 Z).
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If we assume that there is no edge in the isotropy graph with both endpoints on the
cusp, then there must be at least one vertex adjacent to the cusp labeled with a A4 , S4

or A5 subgroup. Otherwise, all vertices are labeled with D3 and just as above, �Q

would be nontrivial under the cusp-killing homomorphism. Thus deg.p/D 12n.

(2) Assume that Q has a S2.2; 4; 4/ cusp. Since S3�K is a manifold, all isotropy
subgroups of �Q must vanish in the lift. Either the order 4 elements in the cusp are
part of the same fixed axis (see Figure 4) or the 4–torsion on the cusp connects to a
pair of distinct vertices in the isotropy graph.

In the first case, deg.p/ � 24 by Proposition 4.2. In the second case, the vertices
are either of type D4 or S4 isotropy subgroup. If there is a vertex of type S4 , then
deg.p/ � 24. If we have a vertex of type D4 , there must be some edges in the
isotropy graph labeled with odd integers otherwise the graph would be nontrivial under
the cusp-killing homomorphism. Since M is a manifold, �M is torsion free. Thus
deg.p/D 8.2kC 1/n for some n; k � 1 and deg.p/� 24.

5.1 Length, area and volume on the cusp

We discuss length for peripheral elements fixing 1 below. Let Q be a 1–cusped
hyperbolic 3–orbifold and fix a representation for �Q in PSL.2;C/ such that PQ is
upper triangular and we consider �Q acting on upper half space. Denote by 1=c the
height of a maximal horoball tangent to 1 and denote by Sc the horosphere centered
at 1 of Euclidean height 1=c . If 
 2�Q is a parabolic element fixing 1, we measure
len.
 / by its translation length in Sc . If 
 D

�
1
0

x
1

�
, then len.
 /D c � jxj. Therefore,

if 
 corresponds to an exceptional slope, then by the six theorem c � jxj � 6 (see [2;
9]). Finally, by Lemma 3.2, we will only consider representations of �Q such that�

1
0

1
1

�
2 �Q . Since the interiors of maximal horoballs are disjoint, we know that c � 1.

Additionally,
�

1
0

x
1

�
and

�
1
0
�x
1

�
correspond to the same slopes in terms of Dehn surgery

parameters, so for convenience we consider them as one curve in our accounting of
short parabolic elements.

With �Q , PQ as above, recall that if A is the area of the fundamental domain for PQ

in the horosphere of Euclidean height 1, the cusp volume of Q is

(1)
Z 1

1
c

A

z
dz D

c2 �A

2
:

Proof of Theorem 1.2 Assume M admits two exceptional surgeries, M is not cov-
ered by the figure-8 knot complement, and M is covered by a small knot complement.
By [21], the second assumption is equivalent to M being nonarithmetic and by [4],
the third hypothesis implies that �M has integral traces. Also, assume pW M !Q,
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where Q has a rigid cusp (see Section 2.1). Finally, using Lemma 3.1, we assume that
�Q � PSL.2;A/ and PQ is upper triangular. We break the proof into three cases, one
for each cusp type of Q.

Case 1: Q has a S 2.2; 4; 4/ cusp By Lemma 3.2,
�

1
0

1
1

�
2 PM . By the six theorem

(see [2; 9]), PM must have another short peripheral curve. Combining the bound
deg.p/� 24 from Lemma 5.5 with PQ � PSL.2;A/ and Lemma 4.4,

PM D

��
1 1

0 1

�
;

�
1 6i

0 1

��
and c D 1 (with c defined above). In this case, deg.p/ D 24. Hence (1) shows the
cusp volume of M is 3 and therefore the cusp volume of Q is 3

24
. There is one such

orbifold with cusp volume 3
24

, which is arithmetic, contradicting our hypothesis.

Case 2: Q has a S 2.3; 3; 3/ cusp By Lemmas 3.2 and 4.4, we can find a represen-
tation for �M where

PM D

��
1 1

0 1

�
;

�
1 n!

0 1

��
such that !2C!C 1D 0. By the six theorem (see [2; 9]), n� 6. However, 3n must
be a multiple of 12. Hence, by Lemma 5.5, deg.p/ D 12 and so n D 4. Here the
two shortest parabolic elements (excluding inverses) are �D

�
1
0

1
1

�
and �D

�
1
0

2C4!
1

�
(j2C 4!j D 2

p
3).

In order to have two curves 
1 , 
2 2 PM with len.
i/ � 6, the horoballs tangent
to B1 have Euclidean height greater than 1=

p
3 and so c �

p
3. (Note if � is a longer

element, say � D
�

1
0

3C4!
1

�
, then we must have c � 6=

p
13 <

p
3). Thus the cusp

volume of M is in the range Œ
p

3; 3
p

3� (1 � jcj �
p

3) and the cusp volume of Q is
in the range Œ

p
3=12;

p
3=4�.

Since any orbifold Q with S2.3; 3; 3/ cusp and cusp volume
p

3=12,
p

3=6 or 1=4

is arithmetic (see Proposition 2.2), these orbifolds are excluded by hypothesis. By
Theorem 2.1, the only possible cusp volumes for Q are .3

p
3C
p

15/=24,
p

21=12

or
p

3=4. The first case implies that Q is H3=�.5; 2; 2; 3; 3; 3/ which has an order 60

isotropy group fixing a point (see [10, Section 4.7]). Thus it cannot have a 12–fold
manifold cover. In the second case, we know no such orbifold can be covered by a knot
complement by Lemma 5.2. Finally, we show the third case cannot occur by appealing
to Lemma 5.4.

Case 3: Q has S 2.2; 3; 6/ and M admits a nontrivial symmetry Since the ele-
ment of 6 torsion is part of a dihedral group of order 12, we know deg.p/D 12n.
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If deg.p/ > 24, we claim M cannot admit two exceptional surgeries. In this case,
again by Lemmas 3.2 and 4.4,

PM D

��
1 1

0 1

�
;

�
1 2n!

0 1

��
with n > 3 and !2C ! C 1 D 0. Since jcj � 1, if 
 2 PM with len.
 / � 6, then

 D

�
1
0
˙1
1

�
. However, these curves both correspond to surgery along the meridian.

If deg.p/ D 24, then PM is same as in Case 2 above. Therefore M has cusp vol-
ume in Œ

p
3; 3
p

3� and Q has cusp volume in Œ
p

3=24;
p

3=8�. For cusp volume in
Œ
p

3=24;
p

3=8/, these orbifolds fit Adams’ list and only the figure-8 knot complement
can 24–fold cover Q. This follows from Case 2 above. If the cusp volume is exactly
p

3=8, we appeal to Lemma 5.4.

If deg.p/D 12, we may consider �Q D PQ ��M . In this case,

PQ D

�
r D

�
` 0

0 `�1

�
; t D

�
1 !

0 1

�
; �D

�
1 1

0 1

��
;

where `D ei�=6 and � is the meridian of the knot complement which covers M .

Since t 62 �M , we first note that r; r2 62 N.�M /, where N.�M / is the normalizer
of �M in PSL.2;C/. Also, t 62N.�M / by Lemma 4.3.

Therefore the only symmetry M may admit can be realized by r3 and we may assume
N.�M /D hr3; �M i. Then the conjugates of �M in PQ ��M are �M , r ��M � r

�1 ,
r2 � �M � r

�2 , t � �M � t
�1 , r t � �M � .r t/�1 and r2t � �M � t

�1r�2 . In this case, t

maps to a product of three 2–cycles in S6 . Hence PQ � �M has a Z=2Z quotient.
Therefore Q is covered by an orbifold Q0 with a S2.3; 3; 3/ cusp with ŒPQ WPQ0 �D 2

and �Q0 DPQ0 ��M by Proposition 4.1. However M would be a 6–fold cover of Q0 ,
where Q0 has a S2.3; 3; 3/ cusp. This is a contraction to the minimum degree cover
of p0W M !Q0 established by Lemma 5.5.

6 Further remarks

We conclude by noting that there are knot complements that admit exceptional surgeries
and are not small. In fact, by work of Baker (see [3]), there are knot complements that
admit (nontrivial) finite cyclic fillings that are not small. It remains unknown whether
any of these knot complements admit hidden symmetries.

In the case where the knot complements cover a manifold of small volume, more can
be said. Let us consider manifolds ˇn;m that arise from .n;m/ surgery on one cusp
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of the Berge manifold as in [7]. That paper shows the existence of an infinite family
of commensurability classes such that each commensurability class contains exactly
three knot complements and a ˇn;m . However, the argument involves a geometric limit
of groups so finitely many commensurability classes in this family may admit hidden
symmetries. The following theorem provides a strengthening of the main theorem
of [7] in the sense that the argument produces an explicit family of commensurability
classes containing exactly three knot complements.

First, however, we must exclude the 6 slopes that correspond to nonhyperbolic fillings of
the Berge manifold (see Martelli and Petronio [12, Remark A.3, Table 7]). In that paper,
the authors refer to a census manifold description of the Berge manifold, which has now
been updated. The manifold in question was called M 42

3
, later called m202. � /; . � /,

and is currently the 150th manifold in SNAPPY’s OrientableCuspedCensus (see the
documentation for [6] for further background). Using SNAPPY’s standard framing on
the 150th manifold in the OrientableCuspedCensus, these slopes form the set

S D f.1; 0/; .0; 1/; .�1; 1/; .1; 1/; .�2; 1/; .�1; 2/g:

We note that both cusps are framed such that S is the set of exceptional slopes.

Theorem 6.1 If .n; 7/D 1, .n;m/D 1 and .n;m/ 62 S , then the commensurability
class of the manifold arising from .n;m/ surgery on one cusp of the Berge manifold
contains exactly three knot complements.

Proof Fix a pair .n;m/ with .n; 7/D 1, .n;m/D 1 and .n;m/ 62 S . Then ˇn;m is
covered by three hyperbolic knot complements since .n; 7/D 1 (see [7, Lemma 3.1]).
Also, ˇn;m is a manifold since .n;m/D 1. Therefore, if ˇn;m does not cover a rigid
cusped orbifold, then there are exactly three knot complements in the commensurability
class of ˇn;m (see [5, Theorem 1.2]). The remainder of the proof will be dedicated to
showing ˇn;m does not cover a rigid cusped orbifold.

We note that the volume of the Berge manifold is 4v0 , where just as before v0 is
the volume of a the regular ideal tetrahedron. Hence vol.ˇn;m/ < 4v0 by Thurston’s
hyperbolic Dehn surgery theorem [24, Theorem 5.8.2].

Suppose Q is an orbifold with a S2.3; 3; 3/ or S2.2; 4; 4/ cusp that is covered by ˇn;m .
By Lemma 5.5, vol.Q/ < v0=3 in the S2.3; 3; 3/ case and vol.Q/ < v0=6 in the
S2.2; 4; 4/ case. In either case, by Proposition 2.2, such a Q would be arithmetic and
therefore could not be covered by more than one knot complement by [21].

If Q has a S2.2; 3; 6/ cusp, then we use the fact that Q must have an isotropy
group which is dihedral and order 12. Hence, if pW ˇn;m ! Q, deg.p/ D 12n. If
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deg.p/� 24, then vol.Q/ < v0=6 and would be arithmetic by Proposition 2.2 and just
as above, this is a contradiction to [21] as these orbifolds are covered by more than one
knot complement. If deg.p/D 12, we note that since the Berge manifold is strongly
invertible, ˇn;m can be realized as the double branched cover of a tangle filling on
the quotient of the Berge manifold under a strong inversion. Hence ˇn;m admits a
symmetry. Therefore, we may appeal to the proof of Theorem 1.2 to see that there can
be no such covering map p of degree 12. Therefore, no manifold ˇn;m can cover an
orbifold with a rigid cusp.
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