Volume 14, issue 6 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Small knot complements, exceptional surgeries and hidden symmetries

Neil R Hoffman

Algebraic & Geometric Topology 14 (2014) 3227–3258
Bibliography
1 C C Adams, Noncompact hyperbolic $3$–orbifolds of small volume, from: "Topology '90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 1 MR1184398
2 I Agol, Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000) 431 MR1799796
3 K Baker, Closed essential surfaces in the complements of large volume Berge knots
4 H Bass, Groups of integral representation type, Pacific J. Math. 86 (1980) 15 MR586867
5 M Boileau, S Boyer, R Cebanu, G S Walsh, Knot commensurability and the Berge conjecture, Geom. Topol. 16 (2012) 625 MR2928979
6 M Culler, N Dunfield, J Weeks, Snappy: A computer program for studying the geometry and topology of $3$–manifolds
7 N Hoffman, Commensurability classes containing three knot complements, Algebr. Geom. Topol. 10 (2010) 663 MR2606796
8 H Koch, Number theory, Graduate Studies in Mathematics 24, Amer. Math. Soc. (2000) MR1760632
9 M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243 MR1756996
10 C Maclachlan, A W Reid, The arithmetic of hyperbolic $3$–manifolds, Graduate Texts in Mathematics 219, Springer (2003) MR1937957
11 G A Margulis, Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. 17, Springer, Berlin (1991) MR1090825
12 B Martelli, C Petronio, Dehn filling of the “magic” $3$–manifold, Comm. Anal. Geom. 14 (2006) 969 MR2287152
13 R Meyerhoff, The cusped hyperbolic $3$–orbifold of minimum volume, Bull. Amer. Math. Soc. 13 (1985) 154 MR799800
14 J W Morgan, The Smith conjecture, from: "The Smith conjecture" (editors J W Morgan, H Bass), Pure Appl. Math. 112, Academic Press (1984) 3 MR758460
15 J Morgan, G Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, Amer. Math. Soc. (2007) MR2334563
16 G D Mostow, Quasiconformal mappings in $n$–space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. (1968) 53 MR0236383
17 W D Neumann, A W Reid, Arithmetic of hyperbolic manifolds, from: "Topology '90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 273 MR1184416
18 W D Neumann, A W Reid, Notes on Adams' small volume orbifolds, from: "Topology '90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 311 MR1184417
19 G Prasad, Strong rigidity of $\mathbold{Q}$–rank $1$ lattices, Invent. Math. 21 (1973) 255 MR0385005
20 A W Reid, A note on trace-fields of Kleinian groups, Bull. London Math. Soc. 22 (1990) 349 MR1058310
21 A W Reid, Arithmeticity of knot complements, J. London Math. Soc. 43 (1991) 171 MR1099096
22 A W Reid, G S Walsh, Commensurability classes of $2$–bridge knot complements, Algebr. Geom. Topol. 8 (2008) 1031 MR2443107
23 R K W Roeder, Compact hyperbolic tetrahedra with nonobtuse dihedral angles, Publ. Mat. 50 (2006) 211 MR2325019
24 W P Thurston, The geometry and topology of $3$–manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
25 G S Walsh, Orbifolds and commensurability, from: "Interactions between hyperbolic geometry, quantum topology and number theory" (editors A Champanerkar, O Dasbach, E Kalfagianni, I Kofman, W Neumann, N Stoltzfus), Contemp. Math. 541, Amer. Math. Soc. (2011) 221 MR2796635