Volume 14, issue 6 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Commutative $\mathbb{S}$–algebras of prime characteristics and applications to unoriented bordism

Markus Szymik

Algebraic & Geometric Topology 14 (2014) 3717–3743
Bibliography
1 M Ando, J Blumberg Andrew, D Gepner, M J Hopkins, C Rezk, An $\infty$–categorical approach to $R$–line bundles, $R$–module Thom spectra, and twisted $R$–homology, J. Topol. 7 (2014) 869 MR3252967
2 V Angeltveit, Topological Hochschild homology and cohomology of $A_\infty$ ring spectra, Geom. Topol. 12 (2008) 987 MR2403804
3 S Araki, H Toda, Multiplicative structures in $\mathrm{mod} q$ cohomology theories, I, Osaka J. Math. 2 (1965) 71 MR0182967
4 S Araki, H Toda, Multiplicative structures in $\mathrm{mod}_{q}$ cohomology theories, II, Osaka J. Math. 3 (1966) 81 MR0202129
5 L Astey, Commutative $2$–local ring spectra, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 1 MR1433081
6 A Baker, Calculating with topological André–Quillen theory, I: Homotopical properties of universal derivations and free commutative $S$–algebras, arXiv:1208.1868
7 A Baker, $BP$: Close encounters of the $E_\infty$ kind, J. Homotopy Relat. Struct. 9 (2014) 553 MR3258694
8 A Baker, H Gilmour, P Reinhard, Topological André–Quillen homology for cellular commutative $S$–algebras, Abh. Math. Semin. Univ. Hambg. 78 (2008) 27 MR2501527
9 A Baker, B Richter, Uniqueness of $E_\infty$ structures for connective covers, Proc. Amer. Math. Soc. 136 (2008) 707 MR2358512
10 A Baker, B Richter, Some properties of the Thom spectrum over loop suspension of complex projective space, from: "An Alpine expedition through algebraic topology" (editors C Ausoni, K Hess, B Johnson, W Lück, J Scherer), Contemporary mathematics 617, Amer. Math. Soc. (2014)
11 M Basterra, André–Quillen cohomology of commutative $S$–algebras, J. Pure Appl. Algebra 144 (1999) 111 MR1732625
12 M Basterra, M A Mandell, Homology and cohomology of $E_\infty$ ring spectra, Math. Z. 249 (2005) 903 MR2126222
13 A J Blumberg, Topological Hochschild homology of Thom spectra which are $E_\infty$ ring spectra, J. Topol. 3 (2010) 535 MR2684512
14 J Boardman, Graded Eilenberg–Mac Lane ring spectra, Amer. J. Math. 102 (1980) 979 MR590641
15 R Bruner, J May, J McClure, M Steinberger, $H_\infty $ ring spectra and their applications, Lecture Notes in Mathematics 1176, Springer (1986) MR836132
16 S Chadwick, M Mandell, $E_n$ genera, arXiv:1310.3336
17 F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer (1976) MR0436146
18 A Elmendorf, I Kriz, M Mandell, J May, Rings, modules, and algebras in stable homotopy theory, Math. Surveys Monographs 47, Amer. Math. Soc. (1997) MR1417719
19 P Hu, I Kriz, J May, Cores of spaces, spectra, and $E_\infty$ ring spectra, Homology Homotopy Appl. 3 (2001) 341 MR1856030
20 S O Kochman, Homology of the classical groups over the Dyer–Lashof algebra, Trans. Amer. Math. Soc. 185 (1973) 83 MR0331386
21 N J Kuhn, Localization of André–Quillen-Goodwillie towers, and the periodic homology of infinite loopspaces, Adv. Math. 201 (2006) 318 MR2211532
22 A Lazarev, Cohomology theories for highly structured ring spectra, from: "Structured ring spectra", LMS Lecture Note Ser. 315, Cambridge Univ. Press (2004) 201 MR2125041
23 L Lewis Jr., J May, M Steinberger, J McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer (1986) MR866482
24 M Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979) 549 MR544245
25 M Mahowald, D C Ravenel, P Shick, The Thomified Eilenberg–Moore spectral sequence, from: "Cohomological methods in homotopy theory", Progr. Math. 196, Birkhäuser (2001) 249 MR1851257
26 M Mandell, J May, S Schwede, B Shipley, Model categ.ories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 MR1806878
27 A Pazhitnov, Y Rudyak, On commutative ring spectra of characteristic $2$, Mat. Sb. 124(166) (1984) 486 MR754472
28 S Priddy, Dyer–Lashof operations for the classifying spaces of certain matrix groups, Quart. J. Math. Oxford Ser. 26 (1975) 179 MR0375309
29 B Richter, Symmetry properties of the Dold–Kan correspondence, Math. Proc. Cambridge Philos. Soc. 134 (2003) 95 MR1937795
30 B Richter, Homotopy algebras and the inverse of the normalization functor, J. Pure Appl. Algebra 206 (2006) 277 MR2235363
31 J Rognes, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 898, Amer. Math. Soc. (2008) MR2387923
32 Y Rudyak, The spectra $k$ and $kO$ are not Thom spectra, from: "Group representations: cohomology, group actions and topology", Proc. Sympos. Pure Math. 63, Amer. Math. Soc. (1998) 475 MR1603140
33 R Schwänzl, R Vogt, F Waldhausen, Adjoining roots of unity to $E_\infty$ ring spectra in good cases—a remark, from: "Homotopy invariant algebraic structures", Contemp. Math. 239, Amer. Math. Soc. (1999) 245 MR1718085
34 B Shipley, $H\mathbb Z$–algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007) 351 MR2306038
35 M Szymik, String bordism and chromtic characteristics, arXiv:1312.4658
36 U Würgler, Commutative ring-spectra of characteristic $2$, Comment. Math. Helv. 61 (1986) 33 MR847518
37 D Y Yan, On the Thom spectra over $\Omega(\mathrm{SU}(n)/\mathrm{SO}(n))$ and Mahowald's $X_k$ spectra, Proc. Amer. Math. Soc. 116 (1992) 567 MR1123672
38 D Y Yan, The Brown–Peterson homology of Mahowald's $X_k$ spectra, Trans. Amer. Math. Soc. 344 (1994) 261 MR1272464