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A classifying space for commutativity in Lie groups

ALEJANDRO ADEM

JOSÉ MANUEL GÓMEZ

In this article we consider a space BcomG assembled from commuting elements
in a Lie group G first defined by Adem, Cohen and Torres-Giese. We describe
homotopy-theoretic properties of these spaces using homotopy colimits, and their
role as a classifying space for transitionally commutative bundles. We prove that
Z�BcomU is a loop space and define a notion of commutative K–theory for bundles
over a finite complex X , which is isomorphic to ŒX;Z�BcomU � . We compute the
rational cohomology of BcomG for G equal to any of the classical groups SU.r/ ,
U.q/ and Sp.k/ , and exhibit the rational cohomologies of BcomU , BcomSU and
BcomSp as explicit polynomial rings.

22E99; 55R35

1 Introduction

Let G denote a topological group and consider the spaces fHom.Zn; G/gn�0 of ordered
commuting n–tuples in G . Adem, Cohen and Torres-Giese [3] showed that they can
be assembled into a simplicial space where the resulting geometric realization, denoted
here by BcomG , is the first term in an increasing filtration of BG . The universal bundle
over BG pulls back to a principal bundle over BcomG with total space EcomG that can
also be described simplicially (see Section 2). In this paper we analyze the properties of
EcomG and BcomG when G is a Lie group. We also study variants of our constructions,
denoted EcomG1 and BcomG1 , which arise from the components of the identity in the
commuting varieties (see Section 3 for details). These two constructions agree if the
spaces Hom.Zn; G/ are path-connected for every n � 0. It can be shown that for a
compact Lie group G , this condition is equivalent to the property that the maximal
abelian subgroups of G are precisely the maximal tori (see the proof of Adem and
Gómez [4, Proposition 2.5]). For example, this condition holds for the classical groups
SU.r/, U.q/ and Sp.k/ (see Borel [9, Theorem 5.2]), and therefore for any of their
finite cartesian products.

We start by applying the recent work of Pettet and Souto [23] to reduce matters to
compact Lie groups:
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Theorem 3.1 If G is a real or complex reductive algebraic group with maximal
compact subgroup K , then the inclusion map K �G induces homotopy equivalences
BcomK ' BcomG and EcomK 'EcomG .

A similar statement is true for the variants EcomG1 and BcomG1 (see Section 3 for
details). Based on this we can focus on the case of a compact connected Lie group G .
The connected component of the identity in the commuting variety Hom.Zn; G/ has the
key feature that any n–tuple in it can be conjugated into a maximal torus in G . Using
this we obtain a natural identification BcomG1Š colimS2T .G/BS , where T .G/ is the
topological poset formed by the maximal tori and their intersections under inclusion
(see Definition 5.3). We describe the homotopy of these spaces using more tractable
homotopy colimits defined over a discrete category. Let Z DZ.G/ be the center of
G and write nD rank.G/� rank.Z/ � 0. Consider the poset S.n/ consisting of all
the nonempty subsets of f0; 1; : : : ; ng, with the order given by the reverse inclusion
of sets. For each G we have functors FG ;HG W S.n/! Top such that the following
holds (see Section 6 for the definitions of FG and HG ).

Theorem 6.3 Suppose that G is a compact, connected Lie group. Then there is a
natural homotopy equivalence hocolimi2S.n/ FG.i /' BcomG1 .

Theorem 6.5 Suppose that G is a compact connected Lie group. Then there is a
natural G–equivariant homotopy equivalence hocolimi2S.n/HG.i /'EcomG1 .

In terms of bundle theory, we prove that BcomG is a classifying space for bundles that
are transitionally commutative.

Theorem 2.2 Suppose that G is a Lie group and let f W X ! BG denote the classi-
fying map of a principal G–bundle qW E!X over the finite CW–complex X . Then
up to homotopy, f factors through BcomG if and only if there is an open cover of X
on which the bundle is trivial over each open set and such that on intersections the
transition functions commute when they are simultaneously defined.

From this we can define the notion of equivalence between transitionally commutative
vector bundles and thus define commutative K–theory Kcom.X/ in a manner analogous
to ordinary complex K–theory. Let U D colimn!1 U.n/; then we can establish that
BcomU plays a role similar to BU :

Theorem 4.1 The space Z�BcomU is a loop space and for any finite CW–complex
X there is a natural isomorphism of groups Kcom.X/Š ŒX;Z�BcomU �.
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Adem, Gómez, Lind and Tillmann [5] proved that Z�BcomU is in fact an infinite
loop space so that commutative K–theory forms part of a generalized cohomology
theory. Having established the role played by BcomG in bundle theory, it seems natural
to compute its cohomology. As can be seen from the homotopy colimit model and
computations for SU.2/ (see Example 6.4), we expect these spaces to have rather
intricate torsion. Here we focus on calculations for the rational cohomology (inverting
the order of the Weyl group W would suffice).

Theorem 7.2 Suppose that G is a compact, connected Lie group. Then

H�.BcomG1IQ/

is a free module over H�.BGIQ/ of rank jW j, where W is the corresponding
Weyl group.

On the other hand, by [3, Theorem 6.1] we have a natural isomorphism

H�.BcomG1IQ/Š .H
�.G=T IQ/˝H�.BT IQ//W ;

where the Weyl group W acts diagonally on the tensor product. As a corollary we
deduce the following algebra isomorphism:

Corollary 7.4 Suppose that G is a connected compact Lie group with maximal torus
T and associated Weyl group W . Then there is a natural isomorphism of rings

H�.EcomG1/Š .H
�.G=T /˝H�.G=T //W ;

and the Poincaré series of BcomG1 and EcomG1 satisfy

PBcomG1
.t/D PBG.t/PEcomG1

.t/:

From this we derive the following.

Corollary 7.5 These statements are equivalent for a compact connected Lie group G :

(1) EcomG1 is contractible.

(2) EcomG1 is rationally acyclic.

(3) G is abelian.

Using the theory of multisymmetric polynomials in Section 8 we provide combinatorial
descriptions and Poincaré series for these algebras in the case of the classical groups
SU.r/, U.q/ and Sp.k/. Taking limits we obtain that the algebras H�.BcomU IQ/,
H�.Bcom SUIQ/ and H�.Bcom SpIQ/ are polynomial algebras on countably many

Algebraic & Geometric Topology, Volume 15 (2015)



496 Alejandro Adem and José Manuel Gómez

generators (Corollaries 8.3, 8.5 and 8.9, respectively). For example we have an isomor-
phism of Q–algebras

H�.BcomU IQ/ŠQŒza;b j .a; b/ 2N2 and b > 0�;

where the elements za;b are polynomial generators of degree 2aC 2b .

This paper is organized as follows. In Section 2 we describe basic properties of the
spaces EcomG and BcomG for G a topological group. In Section 3 we focus on the case
when G is a Lie group. In Section 4 we introduce commutative K–theory. Section 5
describes the topological poset generated by the maximal tori in a Lie group T .G/. In
section Section 6 we derive the decompositions of BcomG1 and EcomG1 as homotopy
colimits. Section 7 deals with cohomology calculations. In Section 8 we consider
the particular cases when G D SU.n/, U.n/ and Sp.n/ and finally in the appendix
it is proved that ŒBcomG�� is a proper simplicial space for any Lie group G . We are
grateful to the referee for providing helpful comments.

Acknowledgements The first author was supported by NSERC. The second author
would like to thank PIMS for hosting him when part of this work was completed.

2 Definitions and basic properties of the spaces BcomG and
EcomG

In this section we study general properties of the spaces BcomG and EcomG , which
are constructed by assembling the different spaces of ordered commuting k–tuples in
a topological group G . These spaces were first introduced in [3] where their basic
properties were derived, mostly for the case of finite groups.

Suppose that G is a topological group. For technical reasons we will assume that G
is locally compact, Hausdorff and that 1G 2G is a nondegenerate basepoint. We can
associate to G a simplicial space, denoted by ŒBcomG�� , in the following way. For any
integer n� 0 define

ŒBcomG�n WD Hom.Zn; G/�Gn:

Note that ŒBcomG�n can be identified with the subset of Gn consisting of all ordered
commuting n–tuples in the group G , and as such it is given the subspace topology.
The face and degeneracy maps are defined by

sj .g1; : : : ; gn/D .g1; : : : ; gj ; 1G ; gjC1; : : : ; gn/;

@i .g1; : : : ; gn/D

8<:
.g2; : : : ; gn/ if i D 0;
.g1; : : : ; gigiC1; : : : ; gn/ if 0 < i < n;
.g1; : : : ; gn�1/ if i D n:
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The different si and @j are well-defined and satisfy the simplicial identities, as these
maps are precisely the restrictions of the degeneracy and face maps in the bar construc-
tion ŒBG�� . We denote by BcomG the geometric realization of the simplicial space
ŒBcomG�� . As shown in [3], the space BcomG is in fact the first space in an increasing
filtration of the classifying space of G defined using the descending central series of
the free groups. Similarly we can define ŒEcomG�n WD Hom.Zn; G/�G �GnC1 and
use the analogous face and degeneracy maps to define a simplicial space ŒEcomG��
and its geometric realization EcomG .

The projection on the first n–coordinates ŒEcomG��! ŒBcomG�� defines a simplicial
map and therefore at the level of geometric realizations we obtain a continuous map
pcomW EcomG! BcomG . This defines a principal G–bundle that can be seen as the
restriction of the universal principal G–bundle pW EG!BG , and we have a morphism
of principal G–bundles that fits into the following diagram:

EcomG //

pcom

��

EG

p

��
Bcom

i // BG

Note that up to homotopy this gives rise to a fibration sequence EcomG!BcomG!BG .

Recall that the bundle pW EG ! BG is universal in the sense that if qW E ! X is
a principal G–bundle over a CW–complex X , then we can find a continuous map
f W X ! BG such that qW E!X is isomorphic to f �pW f �.EG/!X .

Definition 2.1 Suppose that X is a CW–complex. We say that a principal G–bundle
qW E ! X is transitionally commutative if and only if we can find an open cover
fUigi2I of X such that the bundle qW E ! X is trivial over each Ui and the tran-
sition functions �i;j W Ui \ Uj ! G commute with each other whenever they are
simultaneously defined.

When G is a Lie group the bundle pcomW EcomG! BcomG is a universal bundle for
transitionally commutative principal G–bundles. To make this precise we need to
establish the following notation. Let k � 0 be an integer and consider the standard
k–simplex

�k D

�
.t0; : : : ; tk/ 2RkC1

ˇ̌̌̌
ti � 0;

kX
jD0

tj D 1

�
:

Note that the symmetric group †kC1 acts by permutation on the vertices of �k and
this action can be extended to a linear action on �k . Suppose that we have a sequence
of integers i WD f0 � i1 < � � � < iq � kg and let ei denote the element in �k given
by ei D ıiq � � � ıi1.

1
k�qC1

; : : : ; 1
k�qC1

/, where ıi1 ; : : : ; ıiq denote the different face
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maps. That is, the element ei 2�k has barycentric coordinates .t0; : : : ; tk/ given by

tj D

�
0 if j 2 fi1; : : : ; iqg;

1
k�qC1

if 62 fi1; : : : ; iqg:

The length of such a sequence i is defined to be the number ji j D q . Observe that
if i runs through all the different sequences of integers i WD f0� i1 < � � �< iq � kg

then the collection fei gi is precisely the collection of barycenters associated to all the
nonempty faces in the standard simplex in �k . Let fW k

q g
k
qD0 be a collection of open

sets in �k satisfying the following properties:

(1) For each 0 � q � k and each i D f0 � i1; : : : ; iq � kg there is an open
neighborhood V k

i
of ei such that W k

q D
F
ji jDqC1 V

k
i

.

(2) If t D .t0; : : : ; tk/ 2 V ki for some i D f0 � i1 < � � � < iq � kg, then tj > 0 if
j … fi1; : : : ; iqg.

(3) Each open set W k
q is invariant under the action of †kC1 .

(4) The sets fW k
q g
k
qD0 form an open cover of �k .

Clearly such an open cover exists and can be constructed in an inductive way. Using this
we have the following geometric description for the bundle pcomW EcomG! BcomG .

Theorem 2.2 Suppose that G is a Lie group and let f W X !BG denote the classify-
ing of a principal G–bundle qW E! X over the finite CW–complex X . Then up to
homotopy, f factors through BcomG if and only if q is transitionally commutative.

Proof Let X be a finite CW–complex. Assume that the classifying map of qW E!X

factors through BcomG ; that is, suppose that the classifying map of this bundle is of the
form f W X ! BcomG � BG . We will show first that q is transitionally commutative.
By Proposition A.1 in the appendix we have that ŒBcomG�� is a proper simplicial
space (see the appendix for the definition of a proper simplicial space). It follows
that the geometric realization of ŒBcomG�� is equivalent to Segal’s fat geometric
realization where the equivalences associated to the degeneracy maps are ignored (see
[25, Appendix A]). This realization is denoted here by BcomG , and similarly we have
EcomG . For the first part of the proof it will be more convenient for us to work with
the (equivalent) principal G–bundle pcomW EcomG! BcomG .

By definition

BcomG WD

�G
n�0

Hom.Zn; G/��n

� ı
�;

where ..g1; : : : ; gk/; ıiu/� .@i .g1; : : : ; gk/; u/ with u 2�k�1 . For each k � 0, let
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FkBcomG D Im
� G
0�n�k

Hom.Zn; G/��n

�
� BcomG:

In this way we obtain an increasing filtration of BcomG

F0BcomG � F1BcomG � � � � � FkBcomG � � � � � BcomG

and BcomGDcolimk!1FkBcomG . Since X is a finite CW–complex, we can find some
k � 0 such that the map f factors through FkBcomG ; that is, f W X ! FkBcomG �

BcomG . It suffices to show the result for the restriction of the universal principal
G–bundle pcomW EcomG! BcomG over FkBcomG for each k � 0 fixed. For this fix
i WD f0 � i1 < � � � < iq � kg a sequence of integers and assume that .g1; : : : ; gk/ 2
Hom.Zk; G/ D ŒBcomG�k . Then we can see .g1; : : : ; gk; 1/ 2 Hom.Zk; G/ �G D
ŒEcomG�k and we define

'i .g1; : : : ; gk/ WD �k�q.@i1 � � � @iq .g1; : : : ; gk; 1//
�1:

In this equation, @i1; : : : ;@iq denote the face maps in the simplicial space ŒEcomG��
and �n�k W Hom.Zn�k�1/�G ! G is the projection onto the last coordinate. For
example if .g1; g2; g3/2Hom.Z3; G/ and i Df2; 3g, then 'i .g1; g2; g3/D g

�1
3 g�12

and if j D f1; 3g then 'i .g1; g2; g3/ D g
�1
3 . For any .g1; : : : ; gk/ 2 Hom.Zk; G/

and any sequence i we have 'i .g1; : : : ; gk/ D g�1j1
� � �g�1jr

for suitable integers
j1; : : : ; jr . The functions 'i can be used to define local sections of the restriction
of the bundle pcomW EcomG ! BcomG over FkBcomG . Indeed, for each 0 � q � k
let U kq be the image of Hom.Zk; G/ �W k

q in FkBcomG . Thus defined, each U kq
is an open set in FkBcomG and the collection fU kq g

k
qD0 forms an open cover of

FkBcomG . Define �qW U kq ! p�1com.U
k
q / in the following way. Let x 2 U kq and

write x D Œ.g1; : : : ; gk/; t � for some .g1; : : : ; gk/ 2 �k and t 2 W k
q . We define

�q.x/ WD Œ.g1; : : : ; gk; 'i .g1; : : : ; gk//; t �, provided that t 2 V k
i

. The functions 'i

are defined so that the function �q is well defined and continuous over U kq . Thus �q
is a continuous section of the restriction of pcom over U kq making it a trivial principal
G–bundle. With the trivializations provided by these sections, if x D Œ.g1; : : : ; gk/; t �
in U kr \U

k
q , then the transition function �r;qW U kr \U

k
q !G is such that

x D Œ.g1; : : : ; gk/; t � 7! g˙1j0
� � �g˙1jr

for a suitable sequence of integers j0; : : : ; jr . In particular it follows that the different
transition functions �r;q are pairwise commutative whenever they are simultaneously
defined as .g1; : : : ; gk/ 2 Hom.Zk; G/ for any x D Œ.g1; : : : ; gk/; t � 2 U kr \U

k
s .

Conversely, suppose that qW E!X is a transitionally commutative principal G–bundle.
Then we can find an open cover U WD fUigi2I of X such that the bundle qW E!X

is trivial over each Ui and the transition functions �i;j W Ui \Uj !G commute with
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each other whenever they are simultaneously defined. By passing to a refinement of U ,
we can assume that each nonempty intersection of the sets Ui is contractible. Moreover,
this cover can be reduced to a countable cover. Let U D fUigi�0 be the resulting open
cover of X . For each i � 0, fix 'i W q�1.Ui /!Ui �G a trivialization of the restriction
of q over Ui . These trivializations define transition functions �i;j W Ui \ Uj ! G

whenever Ui \Uj ¤∅ and satisfy the cocycle condition �ik D �ij�jk whenever they
are defined and are pairwise commutative by assumption. Consider the nerve N�.U/ of
the cover U . This is a simplicial set with Nk.U/D

F
0�i1�����ikC1

Ui1 \ � � � \UikC1
.

The different transition functions can be used to define a map of simplicial spaces
��W N�.U/! ŒBcomG�� in the following way. Suppose that x 2 Ui1 \ � � � \ UikC1

for some 0 � i1 � � � � � ikC1 . Define �k.x/D .�i1i2.x/; �i2i3.x/; : : : ; �ikikC1
.x// 2

Hom.Zk; G/. It is easy to see that this defines a map of simplicial spaces and in
particular it induces a continuous map g D j��jW N.U/! BcomG . Since the cover U
was chosen so that each nonempty intersection of sets in U is contractible, then the
natural map ˛W N.U/!X is a homotopy equivalence (see for example [14, Corollary
4G.3]). Let ˇW X!N.U / be a homotopy inverse of ˛ . Then f WDgıˇW X!BcomG

is a continuous map that classifies the principal G–bundle qW E!X .

As a consequence of the proof of the previous theorem, we have that the restriction of the
bundle pcomW EcomG!BcomG to each FkBcomG defines a transitionally commutative
principal G–bundle. From this we infer that the bundle pcomW EcomG ! BcomG is
itself transitionally commutative, as is the equivalent bundle pcomW EcomG! BcomG .

As an application of the previous theorem suppose that G is a Lie group and that X
is a finite CW–complex for which we can find an open cover X D U [V with both
U and V contractible. Let qW E!X be any principal G–bundle over X . Then the
restriction of q over U and V is trivial since U and V are contractible. Over this
trivialization there is only one transition function and thus any such principal G–bundle
over X is transitionally commutative. By the previous theorem we conclude that the
classifying map of the bundle qW E ! X factors through BcomG up to homotopy.
This situation applies in particular to X D Sn for any n� 0. Therefore the inclusion
map i W BcomG ,! BG induces a surjective map i#W ŒSn; BcomG�! ŒSn; BG�. The
following corollary is an immediate consequence after modifying for basepoints and
using the fibration EcomG! BcomG! BG .

Corollary 2.3 Let G be a Lie group. Then the map i W BcomG ! BG induces a
surjection i�W �n.BcomG/ ! �n.BG/ for every n � 0 and in particular, for every
n� 0 we have a short exact sequence

1! �n.EcomG/! �n.BcomG/
i�
�! �n.BG/! 1:
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Remark 2.4 Suppose that G is a connected Lie group. Then by [3, Theorem 6.3] the
fibration sequence �EcomG ! �BcomG ! �BG has a natural continuous section
�.G/W �BG ! �BcomG . This implies that for such groups and every n � 0 the
short exact sequence of homotopy groups obtained in the previous corollary splits
naturally. Moreover, by [3, Theorem 6.3] there is a natural homotopy equivalence
�.G/W G ��EcomG!�BcomG .

Suppose that X is a finite CW–complex. Note that two principal G–bundles q0W E0!
X and q1W E1!X are isomorphic if and only if we can find a principal G–bundle
pW E ! X � Œ0; 1� such that q0 D pjp�1.X�f0g/ and q1 D pjp�1.X�f1g/ . Suppose
now that q0W E0!X and q1W E1!X are two transitionally commutative principal
G–bundles. Then we say that these bundles are transitionally commutative isomorphic
if we can find a transitionally commutative principal G–bundle pW E ! X � Œ0; 1�

such that q0 D pjp�1.X�f0g/ and q1 D pjp�1.X�f1g/ . Thus we can identify the set
ŒX; BcomG� with the set of transitionally commutative isomorphism classes of transi-
tionally commutative principal G–bundles over X . In other words, the space BcomG

is a classifying space for transitionally commutative bundles. If two transitionally
commutative principal G–bundles are transitionally commutative isomorphic then
they are isomorphic as principal G–bundles. However, the converse is not true as is
demonstrated in the next example.

Example 2.5 Let G D SU.2/ and T � G the maximal torus, which in this case is
a circle. The quotient G=T can be identified with the sphere S2 , let f W S2!G=T

be a fixed homeomorphism. Now the action map G �T n! Hom.Zn; G/ defined by
.g; t1; : : : ; tn/ 7! .gt1g

�1; : : : ; gtng
�1/ factors through G=T � T n . Looking at the

realizations of the respective simplicial spaces, this defines a map � W G=T �BT !
BcomG . According to [3, Theorem 6.1], this gives rise to a rational cohomology
isomorphism H�.BcomG;Q/ ! H�.G=T � BT;Q/W , where W D Z=2Z is the
Weyl group. This group acts through the sign representation both on the generator
a 2H 2.BT;Q/ and on the top class b 2H 2.G=T;Q/. The invariant classes a2 and
ab correspond to a basis for H 4.BcomG;Q/. Now let gW S2 ! BT Š CP1 be a
representative of a generator of �2.CP1/ Š Z. Consider the map hW S2 � S2 !
Bcom SU.2/ given by the composition � ı .f �g/. In the next section we shall see that
BcomG is 3–connected for GDSU.2/, which implies that this map is nullhomotopic on
S2_S2 and so defines a map zhW S4!BcomG . By construction this map is nontrivial in
rational cohomology, corresponding to the element ab . Moreover, if i W BcomG!BG

denotes the inclusion map, then the composition i ı zh is trivial in cohomology (as the
Chern class in dimension four corresponds to b2 ) and so is nullhomotopic. It follows
that the principal G–bundle over S4 induced by zh is trivial as a principal G–bundle
but not as a transitionally commutative principal G–bundle.
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Remark 2.6 If GDU.k/ with k>1 , then the map i�W �n.BcomU.k//!�n.BU.k//

cannot be an isomorphism for every n� 0. If this were true i would be a homotopy
equivalence; however it follows from [3, Theorem 6.1] that the rational cohomology of
BcomU.k/ is not isomorphic to that of BU.k/. More generally we shall see that if G
is a compact connected Lie group which is not abelian, then EcomG is not contractible,
unlike the classical universal space EG .

3 Properties of BcomG and EcomG when G is a Lie group

In this section we focus our attention on the case when G is a real or complex reductive
algebraic group. We can consider G as a real or complex Lie group, respectively. Let
K � G be a maximal compact subgroup; it is well known that such a group always
exists and the inclusion map i W K ,!G is a strong deformation retract. However, in
general there is no retraction r W G!K that preserves commutativity; see for example
[26] where the nonexistence of such a retraction was proved for the groups SLn.C/
with n� 8. On the other hand, by [23, Corollary 1.2] the inclusion Hom.Zn; K/ ,!
Hom.Zn; G/ is a strong deformation retract. We show here that this can be used to
prove that the inclusion i W BcomK ,! BcomG is also a strong deformation retract.

Theorem 3.1 Suppose that G is a real or complex reductive algebraic group and let K
be a maximal compact subgroup. Then the inclusion map i W K ,!G induces homotopy
equivalences i W BcomK! BcomG and i W EcomK!EcomG .

Proof We can view G as a (real or complex) Lie group and thus by Proposition A.1
in the appendix ŒBcomG�� and ŒBcomK�� are proper simplicial spaces. The inclusion
map i W K ,! G induces a map of simplicial spaces i�W ŒBcomK��! ŒBcomG�� that
is a level-wise homotopy equivalence. By [19, Theorem A.4] we conclude that the
induced map at the level of geometric realizations i W BcomK! BcomG is a homotopy
equivalence. Next we prove that i W EcomK ! EcomG is a homotopy equivalence.
For this, note that the inclusion map BcomK ! BcomG induces a morphism of the
corresponding fibrations:

Ecom //

i
��

BcomK //

i
��

BK

i
��

Ecom // Bcom // BG

This diagram induces a commutative diagram between the corresponding long exact
sequences in homotopy groups. Since the inclusion maps i W BcomK ! BcomG and
i W BK!BG are homotopy equivalences, by the five lemma it follows that the inclusion
map i W EcomK!EcomG is also a homotopy equivalence.
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If G is a compact Lie group then it can be given the structure of a real algebraic variety
that is reductive by complete reducibility. Let GC denote its complexification. Then
by the previous theorem it follows that BcomG and BcomGC are homotopy equivalent
and similarly for EcomG and EcomGC . This shows that we can work in the category
of compact Lie groups without loss of generality whenever we want to study the spaces
BcomG and EcomG for a real or complex reductive algebraic group G .

Suppose that G is a topological group; Hom.Zn; G/ may fail to be path-connected
even if we assume that G is path-connected or simply connected. For every n�0 define
Hom.Zn; G/1 to be the path-connected component of Hom.Zn; G/ containing the triv-
ial representation 1W Zn!G . It is easy to see that the collection fHom.Zn; G/1gn�0
forms a simplicial subspace of ŒBcomG�� . We denote by BcomG1 its geometric realiza-
tion. When G is a compact Lie group the path-connected component Hom.Zn; G/1
has the following important feature as already pointed out in [8, Lemma 4.2]. An
n–tuple .g1; : : : ; gn/ of elements in G belongs to Hom.Zn; G/1 if and only if there
is a maximal torus T � G that contains g1; : : : ; gn . On the other hand, if G is a
complex reductive algebraic variety then a commuting tuple .g1; : : : ; gn/ belongs to
Hom.Zn; G/1 if and only if there is a torus T �G containing the semisimple part of
the Jordan decomposition of gi for all 1 � i � n. The spaces BcomG and BcomG1

agree if Hom.Zn; G/ is path-connected for all n � 0. When G is a compact Lie
group this is the case if and only if a subgroup A�G is a maximal abelian subgroup
in G if and only if A is a maximal torus in G by [4, Proposition 2.5]. This is true
for Lie groups that arise as finite cartesian products of the groups SU.r/, U.q/ and
Sp.k/ by [9, Theorem 5.2] and thus Hom.Zn; G/ is path-connected for every n� 0.
The same is true for their corresponding complexifications SLr.C/, GLq.C/ and
Spk.C/. Thus BcomG D BcomG1 for such groups. Note that the argument provided
in Theorem 3.1 works exactly in the same way if we replace BcomG by BcomG1 .
Thus if G is a real or complex reductive algebraic group and K � G is a maximal
compact subgroup then BcomK1 is homotopy equivalent to BcomG1 . On the other
hand, define EcomG1 WDp

�1.BcomG1/. Note that EcomG1 is the geometric realization
of the simplicial subspace of ŒEcomG�� defined by ŒEcomG1�n D Hom.Zn; G/1 �G .
We have a commutative diagram:

EcomG1
//

p

��

EG

p

��
BcomG1

// BG

Here the lower horizontal map is the inclusion map i W BcomG1!BG . After replacing
i with a fibration we obtain a fibration sequence EcomG1! BcomG1! BG and in
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the same way as was done in Theorem 3.1, we can prove that if G is a real or complex
reductive algebraic group and K �G is a maximal compact subgroup then EcomK1

is homotopy equivalent to EcomG1 .

If G is a connected topological group, the long exact sequence in homotopy groups
associated to the fibration sequence G ! EG ! BG can be used to show that
BG is simply connected. Moreover, if G is a simply connected Lie group, then G
is 2–connected since �2.G/ D 0 for any Lie group G (see [10, page 225] for the
compact case). Thus BG is 3–connected for any such group. As a consequence of [13,
Theorem 1.1] similar statements are also true for BcomG and BcomG1 as is proved
next.

Proposition 3.2 Suppose that G is a real or complex reductive algebraic group that
is connected as a topological space. Then BcomG and BcomG1 are simply connected.
Moreover, if G is simply connected then BcomG1 is 3–connected.

Proof By Theorem 3.1 we only need to prove the theorem for a compact connected
Lie group. Also, by Proposition A.1 in the appendix for any Lie group G the simplicial
space ŒBcomG�� is a proper simplicial space; in fact it is a strictly proper simplicial
space (see Remark A.2). The same is true for ŒBcomG1�� . If G is a connected Lie
group then ŒBcomG�0 D ŒBcomG1�0 D � is in particular 1–connected and ŒBcomG�1 D

ŒBcomG1�1 D G is 0–connected. By [18, Theorem 11.12] it follows that BcomG

and BcomG1 are simply connected. Suppose now G is simply connected. Then
ŒBcomG1�0 D � is in particular 3–connected, ŒBcomG1�1 D G and thus this space is
2–connected since G is simply connected and thus 2–connected as pointed out before.
Also, ŒBcomG1�2 D Hom.Z2; G/1 is 1–connected as it is path-connected and simply
connected by [13, Theorem 1.1]. Finally, ŒBcomG�3DHom.Z3; G/1 is path-connected
by definition. Using [18, Theorem 11.12] it follows that BcomG1 is 3–connected in
this case.

Suppose now that G is a Lie group that arises as a finite product of the classical groups
SU.r/, U.q/ and Sp.k/. For such groups EcomG1 D EcomG since Hom.Zn; G/ is
path-connected for all n� 0 for such groups. Moreover, we have the following.

Proposition 3.3 Assume that G is a Lie group isomorphic to a finite product of the
classical groups SU.r/, U.q/ and Sp.k/ for r; q; k � 1. Then EcomG is 3–connected.

Proof Observe that if G and H are topological groups we have a natural homeo-
morphism Hom.Zn; G �H/ Š Hom.Zn; G/�Hom.Zn;H/ for every n � 0. This
implies that there is a homeomorphism Ecom.G �H/Š EcomG �EcomH . Because
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of this we only need to prove the proposition when G is one of the groups SU.r/,
U.q/ and Sp.k/. For the groups SU.r/ and Sp.k/ the proposition follows from the
previous proposition and Corollary 2.3. Thus we only need to prove the proposition
for the case G D U.q/. By Proposition 3.2 and Corollary 2.3 it follows that EcomG

is simply connected. Hence to show that EcomG is 3–connected it suffices to prove
that zHn.EcomG/ D 0 for 0 � n � 3. To see this, recall that the natural filtration of
EcomG as the geometric realization of the simplicial space ŒEcomG�� induces a spectral
sequence

E2p;q DHpHq.ŒEcomG��/)HpCq.EcomGIZ/:

The term E2p;q in this spectral is obtained by taking the pth homology group of the
simplicial group Hq.ŒEcomG��/. Trivially we have E20;0 D Z. We show next that
E2p;q D 0 for all p; q � 0 with 0 < pC q � 3. To prove this, we claim that the map
of simplicial spaces i�W ŒEcomG�� ! ŒEG�� induced by the inclusion map induces
an isomorphism i�W HpHq.ŒEcomG��/!HpHq.ŒEG��/ for 0 � pC q � 3. Since
HpHq.ŒEG��/D 0 for all pCq > 0 then the proposition follows. The claim is trivial
for q D 0 because ŒEcomG�k is connected for all k � 0. When q D 1 the simplicial
groups H1.ŒEcomG��/ and H1.ŒEG��/ are isomorphic by [13, Theorem 1.1]. Suppose
now that q D 2. Let Cn D H2.Hom.Zn; G/ �GIZ/ so that fCngn�0 is the chain
complex whose pth homology is HpH2.ŒEcomG��/. Trivially we have that C0 D 0
since H2.GIZ/D 0. Also, C1ŠZ and the differential @W C2!C1ŠZ is surjective
since the inclusion G _G ,! Hom.Z2; G/ induces a split injection at the level of
homology by [1, Theorem 1.6]. This shows that HpH2.ŒEG��/ D 0 for p D 0; 1.
Finally, H0H3.ŒEcomG��/ vanishes trivially.

4 Commutative K–theory

Suppose that X is a finite CW–complex and let pW E! X be an n–plane complex
vector bundle. As in the case of a principal bundles, we say that E is transitionally
commutative if we can find an open cover fUigi2I of X such that E is trivial over each
Ui and the corresponding transition functions commute with each other whenever they
are simultaneously defined. This is equivalent to saying that, with a Hermitian metric in
sight, the corresponding frame bundle is a transitionally commutative principal U.n/–
bundle. Similarly, two such complex vector bundles q0W E0!X and q1W E1!X are
said to be transitionally commutative isomorphic if their frame bundles are transitionally
commutative isomorphic. This means that we can find a transitionally commutative
vector bundle pW E!X � Œ0; 1� such that q0D pjp�1.X�f0g/ and q1D pjp�1.X�f1g/ .
Let Vectcom.X/ be the set of transitionally commutative isomorphism classes of transi-
tionally commutative vector bundles over X . The Whitney sum of two transitionally
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commutative vector bundles is also transitionally commutative and thus Vectcom.X/

has the structure of a monoid. We define the commutative K–theory of X to be
Kcom.X/W D Gr.Vectcom.X//, where Gr denotes the Grothendieck construction. It is
easy to see that if E and F are two transitionally commutative vector bundles over X ,
then E˚F is transitionally commutative isomorphic to F ˚E . This shows that, as
in the case of classical K–theory, this construction defines a functor from the category
of topological spaces to the category of abelian groups.

By Theorem 2.2 any transitionally commutative n–plane complex vector bundle is
classified by a map f W X ! BcomU.n/. Moreover, two such vector bundles classified
by maps f; gW X ! BcomU.n/ are transitionally commutative isomorphic if and only
if f is homotopic to g . Let U D colimn!1 U.n/, where the colimit is taken over the
natural inclusions inW U.n/!U.nC1/. We conclude, in an analogous way to the case
of K–theory, that there is a natural isomorphism of groups Kcom.X/Š ŒX;Z�BcomU �.

Theorem 4.1 The space Z�BcomU is a loop space and for any finite CW–complex X
there is a natural isomorphism of groups Kcom.X/Š ŒX;Z�BcomU �.

Proof As pointed out above we have a natural isomorphism Kcom.X/Š ŒX;Z�BcomU �

for any finite CW–complex X . Consider M WD
F
n�0BcomU.n/; this space has the

structure of a topological monoid defined as follows. For each n;m� 0 consider the
homomorphism of topological groups

�n;mW U.n/�U.m/! U.nCm/;

.A;B/ 7!
�
A 0
0 B

�
:

This homomorphism induces a continuous map

�n;mW BcomU.n/�BcomU.m/D Bcom.U.n/�U.m//! BcomU.nCm/:

The different maps f�n;mgn;m�0 can be assembled to obtain a map �W M �M !M

giving M the structure of a strictly associative topological monoid. Moreover, this
monoid is commutative up to homotopy. Indeed, for each n;m�0 fix a continuous path
ˇn;mW Œ0; 1�! U.nCm/ from the identity matrix InCm to the matrix

�
0 Im

In 0

�
. Such

a path exists because U.nCm/ is path-connected. These paths induce a continuous
family of homomorphisms

hn;m.t/W U.n/�U.m/! U.nCm/;

.A;B/ 7! ˇn;m.t/�n;m.A;B/ˇn;m.t/
�1

defined for 0� t � 1. After applying the functor Bcom , these maps induce a homotopy
hW M �M �I !M such that h.A;B; 0/D �.A;B/ and h.A;B; 1/D �.B;A/. The
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above proves that M is a strict topological monoid that is commutative up to homotopy.
On the other hand, observe that �0.M/ D N . Fix an element m 2 BcomU.1/ and
consider the mapping telescope

M1 D Tel
�
M
�m
��!M

�m
��!M

�m
��! � � �

�
Š Z�BcomU:

By the group completion theorem (see for example [21, Proposition 1]), it follows that
the natural map M !�BM induces a map �W M1ŠZ�BcomU !�BM that is an
isomorphism in homology. Let .�BM/0 be the path-connected component of �BM
containing the trivial loop. Then the restriction of �, �0W BcomU ! .�BM/0 , induces
an isomorphism in homology with integer coefficients. By Proposition 3.2 the space
BcomU.n/ is simply connected for every n� 0. Since BcomU D colimn�0BcomU.n/

the same is true for BcomU . Similarly .�BM/0 is simply connected. Therefore
�0W BcomU ! .�BM/0 is a homology isomorphism between simply connected spaces.
By the Hurewicz theorem we conclude that �0 is a homotopy equivalence. On the
other hand, since �BM is a loop space, all of its connected component are homotopy
equivalent. We conclude that there is a homotopy equivalence Z�BcomU '�BM

and thus Z�BcomU is a loop space.

Proposition 4.2 If X is a connected finite CW–complex, there is a natural isomor-
phism of groups Kcom.†X/ŠK

0.†X/� Œ†X;EcomU �.

Proof By [3, Theorem 6.3], for any n � 0 there is a natural homotopy equiv-
alence given by �.U.n//W U.n/ � �EcomU.n/

'
! �BcomU.n/. Since BcomU D

colimn!1BcomU.n/ and EcomU D colimn!1EcomU.n/, by passing to the colimit
as n!1 we obtain a homotopy equivalence �BcomU ' U ��EcomU . Using this
homotopy equivalence and adjunction between the functors † and �, we obtain natural
isomorphisms

Kcom.†X/Š Œ†X;Z�BcomU �Š Z� Œ†X;BcomU �

Š Z� ŒX; U ��EcomU �Š Z� ŒX; U �� ŒX;�EcomU �

Š Œ†X;Z�BU �� ŒX;�EcomU �ŠK
0.†X/� Œ†X;EcomU �:

Example 4.3 Using this proposition we see that Kcom.Sm/ŠK0.Sm/ for 0�m� 3.
For mD 0 this is trivial; for 1�m� 3, by the above computation there is an isomor-
phism Kcom.Sm/ŠK0.Sm/� ŒSm; EcomU �. The space EcomU.n/ is 3–connected by
Proposition 3.3 for all n�0. By passing to the colimit as n!1 it follows that the same
is true for EcomU . Therefore for 1�m� 3 we have that �m.EcomU/Š ŒSm; EcomU �

is trivial and we conclude that Kcom.Sm/ Š K0.Sm/ for 0 � m � 3. However,
Kcom.S4/©K0.S4/. To see this note that the cohomological computations derived in
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Section 8 imply that H 4.EcomU IQ/¤ 0. This together with the universal coefficient
theorem and the Hurewicz theorem imply that �4.EcomU/ Š ŒS4; EcomU � ¤ 0 and
thus Kcom.S4/ © K0.S4/. This in particular shows that the functor Kcom does not
satisfy Bott periodicity for its values on spheres. We should also mention that the
nontrivial element in �4.Bcom SU.2//, which we described in Example 2.5, is mapped
nontrivially to �4.BcomU.2// and this defines a nontrivial commutative vector bundle
over S4 , which is trivial as an ordinary bundle.

Remark 4.4 In [5] it is proved that Z�BcomU is in fact an infinite loop space. In
particular it follows that the definition of commutative K–theory can be extended to
obtain a generalized cohomology theory. Moreover, it is shown there that the fibration
sequence EcomU !BcomU !BU splits and that Z�BcomU ' .Z�BU/�EcomU

as infinite loop spaces. This implies in particular that commutative K–theory contains
topological K–theory as a summand. Note however that, as proved in Example 4.3,
commutative K–theory is not 2–periodic, unlike classical K–theory. The homotopy
type of Z�BcomU remains to be determined.

5 The topological poset associated to maximal tori in a Lie
group

Our next goal is to provide a description of the spaces BcomG1 as suitable homotopy
colimits for any Lie groups G that are compact and connected. To achieve this
decomposition we first need to study the poset generated by all maximal tori in a
compact Lie group.

We begin by recalling the definition of a topological poset.

Definition 5.1 A topological poset is a partially ordered set .R;�/ together with a
topology on the set of objects R in such a way that the order space OR WD f.x; y/ 2

R�R j x � yg is a closed subset of R�R.

A topological poset can be seen as a topological category where the space of objects
is R and the space of morphisms is the order space OR . In this article, by a topo-
logical category we mean a small category D for which the sets Ob.D/ and Mor.D/
come equipped with topologies in such a way that the structural maps source, target,
composition and identity are continuous maps.

Example 5.2 Let n� 0 be a fixed integer. Given 0� k � n, denote by Gk.Cn/ the
Grassmannian manifold consisting of all those k–dimensional C–vector spaces in Cn .
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Let Gr.n/ be the poset of all C–vector subspaces in Cn . This set naturally has the
structure of a poset by inclusion. Note that Gr.n/D

F
0�k�nGk.C

n/. We can use
this identification to give Gr.n/ a topology making it into a topological poset.

The maximal tori in a compact Lie group G define a topological poset in the following
natural way.

Definition 5.3 Suppose that G is a Lie group. Define T .G/ to be the poset whose
objects are closed subspaces S � G arising as the intersection of a collection of
maximal tori in G , with the order in T .G/ given by inclusion.

The set T .G/ can be given a topology making it into a topological poset as follows. Let
C.G/ denote the set of all closed subspaces in G . Suppose that U WD fU1; : : : ; Ung is a
finite collection of open sets in G . Define C.G;U/ to be the set of elements A 2 C.G/
such that A �

Sn
iD1 Ui and A \ Ui ¤ ∅ for all 1 � i � n. The sets of the form

C.G;U/ form a basis for a topology in C.G/ called the finite topology (see [22] for
details). Note that T .G/ � C.G/ and in this way we can give T .G/ the subspace
topology making it into a topological poset. Our next goal is to describe the structure
of T .G/ as a topological space for any compact connected Lie group G .

Let g denote the Lie algebra of G and fix T � G a maximal torus in G with Lie
algebra t. Let ˆ be the root system associated to .g; t/ and fix a subset ˆC of positive
roots of ˆ. For each ˛ 2ˆC and any integer n, define

t˛ WD fX 2 t j ˛.X/ 2 2�iZg; t˛;n WD fX 2 t j ˛.X/D 2�ing:

Each t˛;n is a hyperplane of codimension one and the set D.G/ WD
S
˛2ˆC t˛ is

called the Stiefel diagram of G . Recall that an element g 2 G is called singular if
it belongs to more than one maximal torus in G . Equivalently, g 2 G is singular if
and only if dim.ZG.g// > dim.T /. Let Gs �G be the set of singular elements in G
and let Ts D T \Gs be the set of singular elements in T . Consider the restriction
of the exponential map expW t! T . We have exp�1.Ts/ D D.G/; that is, if X 2 t

then exp.X/ is singular if and only if X 2 D.G/. Given a set of positive roots
I D f˛1; : : : ; ˛kg define

tI D

k\
iD1

t˛i
and TI WD exp.tI /� T:

In the previous definition we allow the case k D 0. In this case we take the convention
that t∅ D t and thus T∅ D T . Let �D f˛1; : : : ; ˛rg be a set of simple roots for the
root system ˆ. Recall that the Weyl group W is a reflection subgroup generated by
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the reflections s˛ corresponding to elements ˛ 2�. Given I ��, the subgroup of
WI of W generated by the reflections s˛ corresponding to elements ˛ 2 I is called
a parabolic subgroup of W . Note that each parabolic subgroup is itself a reflection
subgroup. We are interested in the different parabolic subgroups of W up to conjugacy.
If I; J ��, then WI is conjugated to WJ if and only if I DwJ for some w 2W . In
that case we say that I and J are in the same Coxeter class and write I �W J . The
relation �W defines an equivalence relation on the set of subsets of �. We denote by
EW the set of equivalence classes of subsets of � under this equivalence relation and
by ŒI � the equivalence class in EW that contains I ��.

Theorem 5.4 Suppose that G is a compact connected Lie group. Fix �Df˛1; : : : ; ˛rg
a set of simple roots. Then any element S 2 T .G/ is conjugated to TI for some I ��.
Moreover, there is a G–equivariant homeomorphism T .G/Š

F
ŒI �2EW

G=NG.TI /.

Proof Fix a maximal torus T � G and suppose that S 2 T .G/. Since any two
maximal tori in G are conjugated, after replacing S with a suitable conjugate we may
assume that S � T . If S D T , then S D T∅ and there is nothing to prove. Assume
then that S ¨ T . We will show that under this assumption S is conjugated to TI
for some set of simple roots I � �. Let S0 be the identity component of S . Then
S0 is a compact, connected and abelian subgroup of G . Thus S0 is a torus and in
particular we can find an element x0 2 S0 such that S0 D hx0i. Let ˇ1; : : : ; ˇl be the
set of positive roots ˛ with x0 2 T˛ . It follows that S0 � Tˇ1

\� � �\Tˇl
D TJ , where

J Dfˇ1; : : : ; ˇlg. In fact S0�TJ;0 , where TJ;0 denotes the identity component of TJ .
As a first step we show that S0D TJ;0 . To see this recall that the adjoint representation
provides a decomposition of the complexification of g into a direct sum of weight
spaces gC D tC˚.

L
˛2ˆL˛/. This in turn provides a decomposition of g in the form

gD t˚.
L
˛2ˆCM˛/, where M˛D .L˛˚L�˛/\g. Note that ZG.x0/DZG.S0/ and

in particular this group is connected since the centralizer of any torus in G is connected.
By [10, Proposition V 2.3] the Lie algebra of ZG.x0/ is zg.x0/D t˚ .

Ll
iD1Mˇi

/.
On the other hand, the Lie algebra of TJ;0 is tJ;0 WD tˇ1;0\ � � � \ tˇl ;0 . It follows that
the Lie algebra of ZG.TJ;0/ is zg.tJ;0/D t˚ .

Ll
iD1Mˇi

/. This proves that ZG.x0/
and ZG.TJ;0/ are connected subgroups of G that have the same Lie algebra, which in
turn implies that ZG.x0/DZG.TJ;0/. Suppose now that T 0 is a maximal torus that
contains x0 . Then T 0 � ZG.x0/ D ZG.TJ;0/, which implies that TJ;0 � T 0 since
the centralizer of a connected abelian subgroup of G is the union of all maximal tori
containing it. This shows that TJ;0 is contained in the intersection of all maximal tori
that contain x0 . Since S is the intersection of a family of maximal tori, it follows that
TJ;0 � S , and by connectedness we have TJ;0 � S0 . We conclude that S0 D TJ;0 . To
show that TJ DS recall that the center of G is the intersection of all maximal tori in G .
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Therefore S contains the center of G . This is also true for TJ . Moreover, it is easy to
see that the center of G intersects all the connected components of S and TJ . From
here it follows that S D TJ and that the Lie algebra of S is tJ;0 . We will show now
that after replacing S with some further conjugate, we can choose the ǰ to be simple
roots. Choose a minimal set of positive roots 
1; : : : ; 
k with tJ;0D t
1;0\� � �\ t
k ;0 .
Then we have proper inclusions t
1;0\ � � � \ t
k ;0 � t
1;0\ � � � \ t
k�1;0 � � � � � t
1;0

.
As t n

S
˛2ˆC t˛;0 is a union of Weyl chambers, then we can find some (closed) Weyl

chamber C in such a way that each t
i ;0 is a face of C for every 1� i � k . Associated
to the Weyl chamber C there is a set of simple roots of ˆ. Since each t
i ;0 is a face of
the chamber C then, after replacing the sign of the 
i if necessary, the roots 
1; : : : ; 
k
are roots in some base of ˆ. Since the Weyl group acts transitively on the set of all
bases on ˆ, it follows that we can find some w 2W such that w
1; : : : ; w
k are in
�. This shows that S is conjugated to TI , where I D f˛i1 ; : : : ; ˛ikg is some set of
simple roots.

On the other hand, it is easy to see that for any I � �, the closed subspace TI is
the intersection of all the maximal tori containing it and thus TI 2 T .G/. Also, if I
and J are subsets of �, then TI is conjugated to TJ if and only if J D wI for some
w 2W ; that is, TI is conjugated to TJ if and only if I and J are in the same Coxeter
class. To finish note that the space of subgroups in G that are conjugated to TI can be
identified with G=NG.TI / and thus the theorem follows.

Example 5.5 Suppose that GDU.n/ for n�1. For this group a maximal torus T can
be chosen to be the set of all diagonal matrices with diagonal entries x1; : : : ; xn 2 S1 .
The Weyl group W D†n acts by permutation on the diagonal entries. The Lie algebra
t can be identified with t D f.X1; : : : ; Xn/ j Xi 2 iR for all 1 � i � ng. The root
system ˆ consists of all functions ˛i;j .X1; : : : ; Xn/DXi �Xj for 1� i , j � n with
i ¤ j . A choice of positive roots is the set of roots ˛i;j with i < j and the roots

� WD f˛1 WD ˛1;2; ˛2 WD ˛2;3; : : : ; ˛n�1 WD ˛n�1;ng

form a set of simple roots. By the previous theorem any S 2 T .U.n// is conjugated
to some TI , where I WD f˛i1 ; : : : ; ˛ikg and 1 � i1 < � � � < ik � n� 1. Unraveling
the definition, we see that TI consists of all diagonal matrices with entries x1; : : : ; xn
and with xir D xirC1 for all 1 � r � k . In other words, the roots ˛i1 ; : : : ; ˛ik
determine the number of repeated diagonal entries in the elements of TI . The conjugacy
classes of such tori can be parametrized using partitions of the number n. Recall
that a nondecreasing sequence of integers � D .�1; : : : ; �k/ is a partition of n if
nD �1C�2C� � �C�k . We write � ` n to mean that � is a partition of n. The set of
Coxeter classes in � are in bijective correspondence with the set of partitions � of
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the number n. This can be seen by corresponding for a partition � of n the Coxeter
class represented by the set of simple roots I.�/ WD�nf˛�1

; : : : ; ˛�1C���C�k�1
g. Note

that if � ` n then the associated torus TI.�/ is the subspace of T consisting of those
diagonal matrices with entries of the form

.x1; : : : ; x1„ ƒ‚ …
�1

; : : : ; xk; : : : ; xk„ ƒ‚ …
�k

/:

Therefore each S 2T .U.n// is conjugated to TI.�/ for some unique �`n. On the other
hand, given a partition � of n, let Fl.�/ WD U.n/=.U.�1/� � � � �U.�k//. The space
Fl.�/ is the flag manifold consisting of all flags of the form V1 � V2 � � � � � Vk DCn ,
where Vi is a C–vector subspace of Cn of dimension dimC.Vi /D �1C� � �C�i . We
can see the partition � as an ordered k–tuple .�1; : : : ; �k/. The symmetric group †k
acts on the set of such k–tuples by permutation. We denote by †� the isotropy of †k
at � under this action. With this notation, the group NU.n/.TI.�// fits in a short exact
sequence

1! U.�1/� � � � �U.�k/!NU.n/.TI.�//!†�! 1:

It follows that if � ` n, then

U.n/=NU.n/.TI.�//Š .U.n/=.U.�1/� � � � �U.�r///=†� D Fl.�/=†�:

We conclude that T .U.n//D
F
�`n

Fl.�/=†� , where � runs through all partitions of n.

6 The space BcomG1 as a homotopy colimit

In this section we derive a description of BcomG1 as a suitable homotopy colimit for a
real or complex reductive algebraic group G . Note that by Theorem 3.1 we can work
without loss of generality in the category of compact Lie groups.

To start we show that the space BcomG1 is a colimit over the poset T .G/.

Proposition 6.1 For any compact connected Lie group G we have

BcomG1 Š colimS2T .G/BS:

Proof Suppose that T � G is a maximal torus. Then T n � Hom.Zn; G/1 for all
n� 0 and thus BT � BcomG1 . This proves that

S
T2T .G/BT � BcomG1 . Suppose

now that x 2BcomG1 . Then x can be represented in the form xD Œ.g1; : : : ; gn; t /� for
some .g1; : : : ; gn/2Hom.Zn; G/1 and t 2�n . By [8, Lemma 4.2] there is a maximal
torus T �G such that gi 2 T for all 1� i � n. Therefore x 2 BT . This proves that
BcomG1 D

S
T2T .G/BT and thus BcomG1 D

S
T2T .G/BT Š colimS2T .G/BS .
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As is well known, homotopy colimits are better suited for homotopical computations
than colimits. Therefore we would like to obtain a decomposition BcomG1 as a
homotopy colimit over a suitable category. It can be seen that the space BcomG1

can be described as the homotopy colimit of the functor BW T .G/! Top. However,
this decomposition is not very helpful as the category T .G/ is a topological category
(see [16; 17] for a discussion of homotopy colimits over topological categories). In
particular the usual Bousfield–Kan spectral sequence does not apply to such homotopy
colimits. We will get around this issue by obtaining a decomposition of BcomG1 as
a homotopy colimit over a discrete category. A key element in this decomposition
is the rank function defined over the poset T .G/. To be more precise, suppose that
G is a compact connected Lie group. Let Z D Z.G/ be the center of G and write
nD rank.G/� rank.Z/ � 0. If S 2 T .G/ then S is a closed subgroup of G and in
particular it is a compact Lie group. Define

�.S/ WD rank.S/� rank.Z/:

This way for every S 2 T .G/ we obtain 0� �.S/� n.

Proposition 6.2 If G is a compact connected Lie group the function �W T .G/!N
is strictly increasing and continuous. Moreover, � attains any value 0�m� n.

Proof Suppose that S2¨S1 are elements in T .G/. Fix a maximal torus T �G and a
set ˆC of positive roots. By Theorem 5.4 we can find simple roots I WD f˛i1 ; : : : ; ˛ikg
and J WD f ǰ1

; : : : ; ǰl
g and g1; g2 2G such that S2 D g2TJg�12 ¨ S1 D g1TIg

�1
1 .

Since the exponential map is surjective this implies g2tJg�12 ¨ g1tIg
�1
1 . In fact

we must have g2tJ;0g�12 ¨ g1tI;0g
�1
1 . Therefore rank.S2/ D dimR.g2tJ;0g

�1
2 / <

dimR.g1tI;0g
�1
1 /D rank.S1/ and thus �.S2/<�.S1/. Also recall that by Theorem 5.4

we have T .G/ Š
F
ŒI �2EW

G=NG.TI /. The map � is constant on each connected
component of the form G=NG.TI /. Thus �W T .G/! N is a continuous function.
Finally, fix 0 � m � n and let r be the rank of the center of G . Choose any set I
consisting of mC r simple roots. Then the corresponding element TI 2 T .G/ is such
that �.TI /DmC r � r Dm.

Choose n�0 as in the previous proposition and let S.n/ be the poset consisting of all the
nonempty subsets of f0; 1; : : : ; ng, with the order given by the reverse inclusion of sets.
We see an element in S.n/ of the form i WD fi0; : : : ; ikg, with 0� i0<i1< � � �<ik �n.
Associated to the group G we have a functor FG W S.n/!Top defined in the following
way. Suppose that i WD fi0; : : : ; ikg is an object in S.n/. Then we define

FG.i / WD f.S0; : : : ; Sk; a/ jS0�� � ��Sk 2T .G/; �.Sr/D ir for 0� r �k; a2BS0g:
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Note that we have a natural inclusion FG.i /� T .G/kC1 �BG and we give FG.i /
the subspace topology. If j is a subset of i then the natural projection maps induce
continuous functions pi ;j W FG.i /!FG.j /. This defines a functor FG W S.n/!Top.
To simplify matters, we use the following notation for elements in FG.i /. Given a chain
S0 � � � � � Sk in T .G/ with �.Sk/D ir for 0� r � k , we denote Si D .S0; : : : ; Sk/.
With this notation the objects in FG.i / are pairs of the form .Si ; a/ with a 2 BS0 .

Theorem 6.3 Suppose that G is a compact connected Lie group. Then there is a
natural homotopy equivalence

hocolim
i2S.n/

FG.i /' BcomG1:

Proof The proof of this theorem will be divided into two steps. As a first step we
construct a topological category D in such a way that there is a homotopy equivalence
BD' BcomG1 .

Let C be the topological category whose objects are the elements in BcomG1 and the
only morphisms are the identity maps. Since there are no nontrivial morphisms in C we
have BC D BcomG1 as topological spaces. Also, consider the topological category D
defined as follows. The objects in D are pairs of the form .S; a/, where S 2 T .G/ and
a 2 BS . If .S1; a/ and .S2; b/ are two objects in D , then there is a unique morphism
i W .S1; a/! .S2; b/ if and only if aD b and S1 � S2 . We have a functor F W D! C
that sends an object .S; a/ in D to F.S; a/Da2BS �BcomG1 . The functor F sends
every morphism in D to the corresponding identity morphism in C . Fix an element
a 2 BcomG1 and consider the under category anF . The objects in this category are
tuples of the form ..S; a/; ida/, where S 2T .G/ is such that a2BS and idaW a!a is
the identity morphism in C . There is a unique morphism ..S1; a/; ida/! ..S2; a/; ida/
in anF whenever S1 � S2 . We observe that the category anF has an initial object.
Indeed, let Sa D

T
S2T .G/;a2BS S . Then Sa is the smallest element in T .G/ such

that a 2 BSa and this implies that ..Sa; a/; ida/ is an initial object in anF . We
conclude that the category anF is a contractible category since it has an initial object.
This means that is classifying space is contractible. Therefore as a particular case of
[17, Lemma A.5] we obtain that the map BF W DD! BC Š BcomG1 is a homotopy
equivalence.

As a second step we show that there is a natural homeomorphism

�W hocolim
i2S.n/

FG.i /! BD:

This will finish the proof. For this recall that by definition hocolimi2S.n/ FG.i /DBG ,
where G is the topological category whose objects are sequences of the form .i ;Si ; a/.
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Here i Dfi0 : : : ; ikg is an element in S.n/, Si D .S0; : : : ; Sk/ is a chain in T .G/ with
�.Sr/D ir for 0� r � k and a 2 BS0 . Whenever j � i there is a unique morphism
in G , .i ;Si ; a/! .j ;Sj ; a/, which is induced by the corresponding projections. An
element in BG is of the form w D Œ.g1; : : : ; gl/; t �, where t 2�l and .g1; : : : ; gl/ is
a sequence of composable morphisms in G of the form

.il ;Sil
; a/

gl
�! .il�1;Sil�1

; a/
gl�1
���! � � �

g1
�! .i0;Si0

; a/:

This implies in particular that i0� � � �� il is a nested sequence of nonempty sets. Write
i WD il D fi0; : : : ; ikg and Si D .S0; : : : ; Sk/. Therefore the morphisms g1; : : : ; gl
induce composable morphisms in D

.S0; a/
f1
�! .S1; a/

f2
�! � � �

fk
�! .Sk; a/;

where fr is the unique morphism in D from .Sr�1; a/ to .Sr ; a/. Consider the
standard k–simplex �k that corresponds to the composable sequence .fk; : : : ; f1/ in
D . We identify the vertices of �k with the numbers i0; : : : ; ik by corresponding to
each ir the vertex vir D .0; : : : ; 1; : : : ; 0/ 2�k , with the entry 1 in the r th position.
If j D fir0

; : : : ; irm
g � i , we denote by vj the barycenter of the simplex generated by

the vertices vir0
; : : : ; virm

. Thus with this notation, all the vertices in the barycentric
subdivision of �k , B�k , are of the form vj , where j is a nonempty subset of i . We
can associate to the nested sequence i0 � � � � � il the face of B�k generated by the
vertices vi0

; : : : ; vil
. Given t D .t0; : : : ; tl/ 2�l , define 
.t/ 2�k by


.t/D 
.t0; : : : ; tl/D t0vil
C i1vil�1

C � � �C tlvi0
:

Using this convention we define

�.Œ.g1; : : : ; gl/; t �/ WD Œ.fk; : : : ; f1/; 
.t/� 2 BD:

In other words, the map � is a linear isomorphism from the standard simplex �l , that
corresponds to the composable sequence .g1; : : : ; gl/ in G , onto the face of B�k that
corresponds to the chain i0 � i2 � � � � � il , where �k is the simplex associated to the
composable sequence .ik; : : : ; i1/ in D . It can be seen that the map � is well defined
and is in fact a homeomorphism.

The values of the functor FG can be described explicitly as follows. Fix i Dfi0; : : : ; ikg

an element in S.n/. The conjugation action of G defines an equivalence relation on the
set of chains in T .G/ in the following way. Suppose that Si D fS0 � � � � � Skg and
S 0

i
D fS 00 � � � � � S

0
k
g are two chains with �.Sr/D �.S 0r/D ir for 0 � r � k . Then

we say that Si � S 0
i

if and only if we can find some g 2G such that Si D gS 0
i
g�1 ;

that is, Sr D gS 0rg
�1 for all 0 � r � k . Denote by E.i / the set of all equivalence
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classes of such chains and by ŒSi � the equivalence class representing Si in E.i /. Fix a
chain Si WD fS0� � � � � Skg in T .G/ with �.Sr/D ir for 0� r � k . The conjugation
action of G induces a continuous map

x�Si
W G �BS0! FG.i /; .g; a/ 7! .gSig

�1; gag�1/:

Let NG.Si / be the normalizer of Si in G ; that is, the subgroup of G consisting of
elements g 2G such that gSig

�1 D Si . The group NG.Si / acts by conjugation on
BS0 and on the left on G by the assignment n �g D gn�1 . This induces a diagonal
action of NG.Si / on G�BS0 and the map x�Si

is invariant under this action. Therefore
x�Si

induces a continuous function

�Si
W G �NG.Si /

BS0! BT .G/.i /:

If we vary Si through the different equivalence classes in E.i /, then we obtain a
continuous map

�i D

G
ŒSi �2E.i /

�Si
W

G
ŒSi �2E.i /

G �NG.Si /
BS0! FG.i /:

This map is clearly surjective. In fact this map is also injective. Indeed, suppose that

�i .g; a/D .gSig
�1; gag�1/D .g1S

0
ig
�1
1 ; g1a1g

�1
1 /D �i .g1; a1/:

Then gSig
�1 D g1S

0
i
g�11 , which means that ŒSi � D ŒS 0

i
�. Thus we can assume

without loss of generality that Si D S 0
i

. Also we have g�11 gSi .g
�1
1 g/�1 D Si

and gag�1 D g1a1g�11 . Therefore n WD g�11 g 2 NG.Si / is such that nan�1 D a1 .
We conclude that in G �NG.Si /BS0 we have Œ.g; a/�D Œgn�1; nan�1�D Œ.g1; a1/�,
proving that �i is injective. Moreover, it can easily be seen that ��1

i
is also continuous

and thus �i is a homeomorphism. We conclude that for every element i in S.n/ there
is a natural homeomorphism

FG.i /Š
G

ŒSi �2E.i /

G �NG.Si /
BS0:

The sets E.i / that appear in the previous description can be expressed in terms of
the root system ˆ associated to a maximal torus T � G in the following way. Let
i D fi0; : : : ; ikg be an object in S.n/ and Si D fS0 � � � � � Skg a chain in T .G/
with �.Sr/D ir for 0� r � k . After replacing Si with a suitable conjugate we may
assume that Si is such that S0 � � � � � Sk � T . By Theorem 5.4, for every 0� r � k
we can find a set of simple roots Ir in such a way that Sr D grTIr

g�1r for some
gr 2G . Let TIr ;0 denote the connected component of TIr

that contains the identity.
Then TIr ;0 is a torus since it is a compact, connected abelian Lie group. Therefore
for each 0 � r � k we can find some element xr such that TIr ;0 D hxri. Each xr
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is such that xr 2 TIr
� T and also grxrg�1r 2 T . By [10, Lemma IV 2.5], for each

1 � r � k we can find some wr 2 W such that wrxr D grxrg
�1
r . We conclude

then that Sr;0 D wrTIr ;0 and this in turn implies that Sr D wrTIr
D Tw�1

r Ir
for all

1� r � k . This proves that any chain Si D fS0 � � � � � Skg in T .G/ is conjugated to
a chain of the form TJ0

� TJ1
� � � � � TJk

for a collection of sets of roots J0; : : : ; Jk .
Moreover, two chains such chains TI0

� TI1
� � � � � TIk

and TJ0
� TJ1

� � � � � TJk

are conjugated if and only if we can find some w 2 W such that TIr
D TwJr

for
0� r � k . This proves that the set E.i / can be identified with the set of equivalence
classes of sequences of sets of roots of the form .J0; : : : ; Jk/ with �.TJr

/ D ir for
0� r � k , where .J0; : : : ; Jk/� .I0; : : : ; Ik/ if and only if we can find some w 2W
such that TIr

D TwJr
for 0� r � k .

Example 6.4 Take G D SU.2/, which is a Lie group of rank 1. In this case the poset
T .G/ has one element corresponding to the center of G (isomorphic to Z=2) which
has rank zero and an element for every maximal torus in G . Fix T �G the maximal
torus consisting of those 2�2 diagonal matrices in G . The Weyl group W DZ=2 acts
by permutation on the diagonal entries for such matrices. The space of all maximal tori
in G is homeomorphic to G=NG.T /. Therefore T .G/D �tG=NG.T /Š �tRP2 .
By Theorem 6.3 it follows that BcomG ' hocolimi2S.1/ FG.i /. In this case we have

FG.0/D BZ.G/D BZ=2DRP1;

FG.1/DG=T �W BT D S2 �Z=2CP1;

FG.0; 1/DG=NG.T /�BZ=2DRP2 �RP1:

Therefore BcomG is homotopy equivalent to the homotopy pushout of the diagram

FG.0/
p0
 � FG.0; 1/

p1
�! FG.1/;

where
p0W FG.0; 1/ŠRP2 �RP1! FG.0/ŠRP1

corresponds to second projection and

p1W FG.0; 1/ŠRP2 �RP1! FG.1/Š S2 �Z=2CP1

is the map induced by the inclusion Z=2 ,! T . Using the associated Mayer–Vietoris
sequence we obtain

Hk.Bcom SU.2/IZ/Š

8̂̂̂<̂
ˆ̂:

Z if k D 0;
0 if k D 2 or k odd;
Z˚Z if k � 0 .mod 4/; k > 0;
Z=2 if k � 2 .mod 4/; k > 2:
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Note in particular the presence of a Z=2–factor in cohomological degrees k�2 (mod 4)
and k>2. The existence of this 2–torsion is particularly intriguing and we are interested
in finding a suitable geometric interpretation.

Suppose now that G is a Lie group that is compact and connected Lie group with
center Z . Let nD rank.G/� rank.Z/. Define a functor HG W S.n/! Top as follows.
If i D fi0; : : : ; ikg is an object in S.n/ then we define

HG.i / WDf.S0; : : : ; Sk; x/ jS0�� � ��Sk 2T .G/; �.Sr/D ir for 0�r�k; x2G=S0g:

If j is a subset of i then the corresponding function is the map pi ;j W HG.i /!HG.j /
induced by the projection maps and the quotient map.

Theorem 6.5 Suppose that G is a compact connected Lie group. Then there is a
natural G–equivariant homotopy equivalence

hocolim
i2S.n/

HG.i /'EcomG1:

Proof Define a functor zHG W S.n/! Top that associates an object i in S.n/ with

zHG.i / WD f.S0; : : : ; Sk; x/ jS0� � � � �Sk; �.Sr/D ir for 0� r � k; x 2p�1com.BS0/g;

where pcomW EcomG1 ! BcomG is the projection map. Note that p�1com.BS0/ is
the geometric realization of the subsimplicial space of ŒEcomG�� whose nth space
is Hom.Zn; S0/ � G D Sn0 � G . In particular we have a homotopy equivalence
p�1com.BS0/ ' ES0 �S0

G ' G=S0 . Using this equivalence we obtain a natural
transformation �W HG ! zHG such that �i W HG.i / ! zHG.i / is a G–equivariant
homotopy equivalence for every i . We conclude then that there is a G–equivariant
homotopy equivalence

hocolim
i2S.n/

HG.i /' hocolim
i2S.n/

zHG.i /:

On the other hand, let D be the topological category whose objects are pairs of the
form .S; x/, where S 2 T .G/ and x 2 p�1com.BS/. There is a unique morphism
.S1; x/! .S2; y/ in D if and only if x D y and S1 � S2 . An argument similar to the
one provided in Theorem 6.3 shows that there is a G–equivariant homeomorphism
hocolimi2S.n/HG.i /Š BD . Finally, let C be the topological category whose objects
are the elements in EcomG1 and the only morphisms are the identity morphisms. Thus
we have BC DEcomG1 . Let F W D! C be the functor that for an object .S; x/ in D
corresponds F.S; x/D x 2p�1com.BS/�EcomG1 . The functor F sends any morphism
in D to the corresponding identity morphism in C . Using the same argument as in
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Theorem 6.3 we conclude that the map BF W BD! BC is a G–equivariant homotopy
equivalence.

Remark 6.6 Let Y.G/ WD hocolimi2S.n/HG.i /. Note that Y.G/ is a finite G–CW–
complex and by Theorem 6.5 we have BcomG1 'EG �G Y.G/. When G is abelian
Y.G/ is a contractible space, and so it can be seen as measuring how far G is from being
a commutative group. Using the Atiyah–Segal completion theorem we conclude that
K�.BcomG1/ is the completion of K�G.Y.G// with respect to the augmentation ideal
IG in the complex representation ring R.G/ of G . This can be seen as a generalization
of the classical computation K�.BG/ŠR.G/^IG

for a compact Lie group G .

7 Rational cohomology of BcomG1

In this section we provide computations for the cohomology of the spaces BcomG1 with
rational coefficients for a real or complex reductive algebraic group G that is connected
as a topological space. By Theorem 3.1 we can work with compact connected Lie
groups without loss of generality. Throughout this section we take the rational numbers
as the ground field for all computations unless otherwise specified.

Fix a compact connected Lie group G . Let T �G be a maximal torus and let W be
the corresponding Weyl group. For every n� 0 consider the map

x'nW G �T
n
! Hom.Zn; G/1;

.g; t1; : : : ; tn/ 7! .gt1g
�1; : : : ; gtng

�1/:

The group NG.T / acts naturally on G �T n by

n � .g; t1; : : : ; tn/ WD .gn
�1; nt1n

�1; : : : ; ntnn
�1/:

The map x'n is invariant under this action; as a result we obtain a continuous map

'nW G=T �W T n DG �NG.T / T
n
! Hom.Zn; G/1;

Œ.g; t1; : : : ; tn/� 7! .gt1g
�1; : : : ; gtng

�1/:

Here W acts diagonally on T n . This map is surjective as any n–tuple .g1; : : : ; gn/ of
elements in G belongs to Hom.Zn; G/1 if and only if there is a maximal torus in G
that contains g1; : : : ; gn and all maximal tori in G are conjugated. By [8, Lemma 3.2] it
follows that the fibers of 'n are rationally acyclic and thus 'n induces an isomorphism
in cohomology with rational coefficients. It is easy to see that the collection f'ngn�0
defines a map of simplicial spaces and by passing to the geometric realization we obtain
a continuous surjective map

'W G=T �W BT ! BcomG1:
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In the same way as in [3, Theorem 6.1], we conclude that the map ' induces an iso-
morphism in cohomology with rational coefficients and thus we obtain an isomorphism

(7-1) '�W H�.BcomG1/
Š
! .H�.G=T /˝H�.BT //W ;

with W acting diagonally on H�.G=T /˝H�.BT /. This can be used to provide the
following useful identification of the rational cohomology of BcomG1 .

Proposition 7.1 Suppose that G is a compact connected Lie group and let T �G be
a maximal torus. Then there is a natural isomorphism of rings

˛G W H
�.BcomG1/

Š
! .H�.BT /˝H�.BT //W =JG :

In the above equation W acts diagonally on H�.BT /˝H�.BT / and JG is the ideal
generated by the elements of positive degrees in the image of

i1W H
�.BG/! .H�.BT /˝H�.BT //W ;

x 7! x˝ 1:

Proof The Eilenberg–Moore spectral sequence with Q–coefficients associated to the
fibration

G=T ! BT
i
�! BG

collapses at the E2–term (see [20, page 278]). Also, there is a W –equivariant isomor-
phism of graded rings H�.G=T /ŠH�.BT /=IG , where IG is the ideal in H�.BT /
generated by the elements of positive degree in the image of i�W H�.BG/!H�.BT /.
Consider now the natural map

� W H�.BT /˝H�.BT /! .H�.BT /=IG/˝H
�.BT /:

This is a surjective map whose kernel is the ideal zIG generated by the elements of
positive degree in the image of the map i1W H�.BG/!H�.BT /˝H�.BT / given
by x 7! x˝ 1. Thus we have a short exact sequence

0! zIG!H�.BT /˝H�.BT /! .H�.BT /=IG/˝H
�.BT /! 0:

Since we are working in characteristic zero and W is a finite group, the exactness of
this sequence is preserved at the level of W –invariants; that is, there is a short exact
sequence

(7-2) 0! zIWG ! .H�.BT /˝H�.BT //W! ..H�.BT /=IG/˝H
�.BT //W! 0:

Note that JG D zIWG ; thus we obtain a natural isomorphism

 W .H�.BT /˝H�.BT //W =JG! .H�.G=T /˝H�.BT //W :

The required isomorphism is then ˛G WD  �1 ı' , where ' is as in (7-1).
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The previous proposition has a number of interesting applications. To start note that
we have a natural inclusion BT �BcomG1 �BG . At the level of cohomology groups
this induces a natural monomorphism H�.BG/ ,! H�.BcomG1/ and thus we can
consider H�.BcomG1/ as a module over H�.BG/. Under the identification

˛W H�.BcomG1/
Š
! .H�.BT /˝H�.BT //W =JG

provided in the previous proposition, this structure as H�.BG/–module corresponds
to the structure on .H�.BT /˝H�.BT //W =JG given by g � Œx˝y� WD Œx˝gy�. As
a consequence of this we derive the following theorem.

Theorem 7.2 Suppose that G is a compact, connected Lie group. Then

H�.BcomG1/

is a free module over H�.BG/ of rank jW j, where W is the corresponding Weyl group.

Proof Fix a maximal torus T � G and let W be the corresponding Weyl group.
Let S D H�.BG/ and A D H�.BT /. These are graded rings, W acts on A with
degree-preserving ring automorphisms and we have a natural isomorphism S Š AW .
The ring S is a polynomial ring in finitely many commuting variables. Also, the ring
A can be seen as a graded module over S and this is in fact a free module of rank
jW j. Consider MW WD .A˝A/W . This is a graded ring that contains R WD S ˝ S
as a subring. Thus MW can be seen as a graded module over R . As a first step we
will show that MW is a finitely generated free R–module. To this end, note that R
is a Cohen–Macaulay ring as it is a polynomial ring over Q. The same is true for
A˝A. Since W acts by degree-preserving ring automorphisms on A˝A, it follows
that MW D .A˝A/W is also a Cohen–Macaulay ring by [15, Proposition 13]. We
observe that MW is finitely generated as an R–module. Indeed, suppose fewgw2W is
a free basis of A as a module over S . Then fev˝ ewgv;w2W is a free basis of A˝A
as a module over RD S ˝S . Define the averaging operator

�W A˝A! .A˝A/W DMW;

f 7!
1

jW j

X
w2W

w �f:

The map � is surjective and R–linear; this implies that the collection f�.ev˝ew/gv;w2W
generates MW as a module over R . Thus MW is a finitely generated R–module.
Since R is a polynomial algebra over Q, then any finitely generated R–module has
finite projective dimension. Using the Auslander–Buchsbaum formula for graded rings
we obtain

pdR.M
W /D depth.R/� depth.MW /;
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where pdR.M
W / is the projective dimension of MW as an R–module. Since both

MW and R are Cohen–Macaulay rings and MW is finitely generated as an R–module,
this implies pdR.M

W /D dim.R/�dim.MW /D 0. This means that MW is projective
as an R–module and by the Quillen–Suslin theorem (see [24, Theorem 4]), it follows
that MW is a free R–module. Recall that JG is the ideal in MW generated by the
elements of positive degree of the form x˝1 for x 2 S . Suppose that fawgw is a free
basis of MW as a module over R . If fw D xaw is the image of aw in MW=JG under
the natural map, then it follows that ffwgw is a free basis of MW=JG as a module
over S . By Proposition 7.1 this means that H�.BcomG1/ is free as a module over
H�.BG/. To finish we only need to compute the rank of H�.BcomG1/. For this recall
that we have a natural isomorphism '�W H�.BcomG1/

Š
! .H�.G=T /˝H�.BT //W .

As an ungraded W –module H�.G=T / is isomorphic to the regular W –representation.
It follows that as an ungraded module, H�.BcomG1/ is isomorphic to H�.BT / and
the latter has rank jW j as a module over H�.BG/. This implies that as a graded
H�.BG/–module H�.BcomG1/ is free and of rank jW j.

Remark 7.3 The previous theorem is not true in general if we use integer coefficients.
For example if G D SU.2/ then H�.Bcom SU.2/IZ/ is not free as a module over
H�.BSU.2/IZ/ because the former contains 2–torsion as we proved in Example 6.4
and the latter does not contain torsion.

Consider now the inclusion map i W BcomG1 ! BG . Up to homotopy we have a
fibration sequence

(7-3) EcomG1

pcom
���! BcomG1

i
�! BG:

Since G is assumed to be connected then the base space, BG , is simply connected. The
E2–term of the Eilenberg–Moore spectral sequence with Q–coefficients associated to
the fibration (7-3) is

E
�;�
2 D TorH�.BG/.Q;H

�.BcomG1//

and this spectral sequence converges strongly to H�.EcomG1/. By the previous
theorem, if G is a compact connected Lie group then H�.BcomG1/ is a free module
over H�.BG/. It follows that

TorH�.BG/.Q;H
�.BcomG1//ŠQ˝H�.BG/H

�.BcomG1/

and the Eilenberg–Moore spectral sequence collapses to the E0;�2 –column. The map
p�comW H

�.BcomG1/ ! H�.EcomG1/ is surjective since Im.p�com/ D E
0;�
1 and the

sequence collapses at the E0;�2 –column. Let KG denote the ideal in H�.BcomG1/

generated by the elements in H�.BG/ of positive degree. Then Ker.p�com/DKG and
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we conclude that there is an isomorphism of rings H�.EcomG1/ŠH
�.BcomG1/=KG .

Using the isomorphism provided in Proposition 7.1 we conclude that if LG is the
ideal in .H�.BT /˝H�.BT //W generated by the elements of positive degree in the
image of H�.BG/˝H�.BG/, then there is a natural isomorphism H�.EcomG1/Š

.H�.BT /˝H�.BT //W =LG Š .H
�.G=T /˝H�.G=T //W . This proves the follow-

ing corollary.

Corollary 7.4 Suppose that G is a connected compact Lie group with maximal
torus T and associated Weyl group W . Then there is a natural isomorphism of rings

H�.EcomG1/Š .H
�.G=T /˝H�.G=T //W ;

and the Poincaré series of BcomG1 and EcomG1 satisfy

PBcomG1
.t/D PBG.t/PEcomG1

.t/:

Note that G=T �G=T is a compact, orientable manifold and that W preserves ori-
entation. Hence we infer that the fundamental class is W –invariant. This yields the
following:

Corollary 7.5 These statements are equivalent for a compact connected Lie group G :

(1) EcomG1 is contractible.

(2) EcomG1 is rationally acyclic.

(3) G is abelian.

Proof If EcomG1 is contractible then it is acyclic. If it is acyclic, then G=T must be
zero-dimensional, hence G D T and so G is abelian. If G is abelian BcomG1 D BG

and so EcomG1 is contractible.

From the description given in Corollary 7.4, it follows that the Poincaré series for
EcomG1 encodes information about all the complex irreducible representations of the
Weyl group W associated to the pair .G; T /. To see this recall that as an ungraded
W –representation H�.G=T IC/ is isomorphic to the regular representation and thus it
contains all the irreducible representations of W . For every irreducible representation
� of W , consider its character �� . The multiplicity of � in the regular representation
equals its degree, which we denote by f � D ��.e/. The multiplicity of the represen-
tation � in the representations H i .G=T IC/ for i � 0 can be described by the fake
degree polynomial f �.t/ defined by

f �.t/ WD
X
i�0

t i h��;H i .G=T IC/i:
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In other words, the coefficient of t i in f �.t/ is exactly the multiplicity of � in
H i .G=T IC/. The Poincaré polynomial of the flag manifold G=T is then given by

PG=T .t/D
X
�

f �f �.t/D
X
�

f �.1/f �.t/;

where � runs through all complex irreducible representations of W . On the other hand,
the Poincaré polynomial of EcomG1 is given by

PEcomG1
.t/D

X
�

f
x�.t/f �.t/;

where � runs through all complex irreducible representations of W , and x� is the
complex conjugate of �. To see this, note that by Corollary 7.4 and the universal
coefficient theorem we have H�.EcomG1IC/ Š .H

�.G=T IC/˝H�.G=T IC//W .
On the other hand, for each 0� k � n we have an isomorphism�
Hk.G=T IC/˝Hn�k.G=T IC/

�W
Š HomW

�
Hom.Hk.G=T IC/;C/;Hn�k.G=T IC/

�
:

This together with Schur’s lemma shows that Hn.EcomG1IC/ is a vector space over
C of dimension X

0�k�n

X
�

h�
x�;Hk.G=T IC/ih��;Hn�k.G=T IC/i

and thus PEcomG1
.t/D

P
� f
x�.t/f �.t/.

8 The cases SU.n/, U.n/ and Sp.n/

In this section we study in detail the cohomology with rational coefficients of the space
BcomG when G is one of the classical groups SU.n/, U.n/ and Sp.n/ and also for
their corresponding complexifications SLn.C/, GLn.C/ and Spn.C/. In particular we
provide explicit free bases of H�.BcomGIQ/ as a module over H�.BGIQ/. As in
the previous section, we take the rational numbers as the ground field unless otherwise
specified.

To start, recall that by [4, Proposition 2.5] we have that Hom.Zn; G/ is path-connected
for all n � 0 when G is one of the groups SU.n/, U.n/ and Sp.n/. Thus for such
groups G and their corresponding complexifications we have BcomG D BcomG1 and
EcomG DEcomG1 .
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8.1 Case G D U.n/

Suppose G D U.n/. In this case we can choose a maximal torus T � U.n/ to be
the set of diagonal matrices with entries in S1 . We have H�.BT / Š QŒx�, where
x WD fx1; : : : ; xng and deg.xi /D 2 for 1� i � n. The Weyl group is the symmetric
group W D †n acting by permutation on the variables x1; : : : ; xn . Therefore by
Proposition 7.1 we have an isomorphism

˛n WD ˛U.n/W H
�.BcomU.n//

Š
! .QŒx�˝QŒy�/†n=JU.n/;

where †n acts diagonally by permuting the variables x D fx1; : : : ; xng and y D

fy1; : : : ; yng. The algebra M†n WD .QŒx�˝QŒy�/†n is known as the algebra of
multisymmetric polynomials. In this case Jn WD JU.n/ is the ideal in M†n generated
by the elementary symmetric polynomials

ek.x1; : : : ; xn/D
X

1�i1<i2
<���<ik�n

xi1xi2 � � � xik

for 1 � k � n. Since we are working with rational coefficients, the ideal Jn is also
the ideal generated by the power sums pn.a; 0/ WD xa1 C � � � C x

a
n for 1 � a � n.

These classical power sums have analogues in the ring of multisymmetric polynomials.
For every pair of integers a; b � 0 define the power sum pn.a; b/ WD x

a
1y

b
1 C � � � C

xany
b
n . Clearly pn.a; b/ 2M†n for all a; b � 0. Moreover, it is well known that the

polynomials pn.a; b/ for 0 < aCb � n generate the Q–algebra M†n although these
polynomials are not algebraically independent. (See for example [27] for a modern
account on multisymmetric polynomials). We know by Theorem 7.2 that M†n=Jn is
a free module over H�.BU.n//ŠQŒy�†n . An explicit free basis for M†n=Jn as a
module over QŒy�†n can be constructed using the work in [7]. For this consider the
averaging operator

�W QŒx�˝QŒy�! .QŒx�˝QŒy�/†n DM†n;

f .x;y/ 7!
1

nŠ

X
w2†n

f .wx; wy/:

For every w 2†n the diagonal descent monomial is defined to be

ew WD
Y

w�1.i/

>w�1.iC1/

.x1 � � � xi /˝
Y
w.j /

>w.jC1/

.yw.1/ � � �yw.j //:

By [7, Theorem 1.3] the collection f�.ew/gw2†n
forms a free basis of M†n as a

module over QŒx�†n ˝QŒy�†n .
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Example 8.1 Suppose that nD 3. In this case we obtain the following basis of M†3

as a module over QŒx�†3 ˝QŒy�†3 :

e1 D 1; e2 D �.x1y2/; e3 D �.x1y2y3/;

e4 D �.x1x2y3/; e5 D �.x1x2y1y3/; e6 D �.x
2
1x2y

2
3y2/:

Let fw be the image of �.ew/ in M†n=Jn . Then it follows that ffwgw2†n
forms a

free basis of H�.BcomU.n//ŠM
†n=Jn as a module over H�.BU.n//ŠQŒy�†n .

For each w 2†n define the descent of w to be the set

Des.w/ WD f1� i � n� 1 j w.i/ > w.i C 1/g:

The major index of w , denoted by maj.w/, is defined to be

maj.w/ WD
X

i2Des.w/

i D
X

w.i/>w.iC1/

i:

For every w 2 †n we have degfw D 2.maj.w/Cmaj.w�1//. As a corollary we
obtain the following.

Corollary 8.2 Suppose that n� 1. Then

PEcom GLn.C/ D PEcomU.n/.t/D
X
w2†n

t2.maj.w/Cmaj.w�1//;

PBcom GLn.C/ D PBcomU.n/.t/D

P
w2†n

t2.maj.w/Cmaj.w�1//Q
1�i�n.1� t

2i /
:

Consider now the standard inclusion inW U.n/!U.nC1/. Let U WD colimn!1 U.n/.
Then BcomU D colimn!1BcomU.n/ and H�.BcomU.n//Š lim

 ��
H�.BcomU.n//. The

isomorphisms ˛n and the maps in are compatible in the sense that

H�.BcomU.nC 1//

i�n
��

˛nC1 // M†nC1=JnC1

j�n
��

H�.BcomU.n//
˛n // M†n=Jn

is a commutative diagram, where j �n W M
†nC1!M†n is the map obtained by sending

xi 7! xi , yi 7! yi for 1� i � n and xnC1; ynC1 7! 0. Define

M†1 WD lim
 ��

M†n and J1 WD lim
 ��

Jn:
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Then we obtain an isomorphism of graded Q–algebras

H�.BcomU/Š lim
 ��

M†nJn ŠM
†1=J1:

The last isomorphism follows from the fact that j �n W JnC1! Jn is surjective for every
n � 1 and thus lim

 ��

1 Jn vanishes. We show next that this algebra is a polynomial
algebra. For every pair of integers a; b � 0 we have j �n .pnC1.a; b//D pn.a; b/ and
thus these polynomials define an element in M†1 , which we denote by p.a; b/. By
[27, Theorem 2] the algebra M†1 is a polynomial algebra over Q generated by the
elements p.a; b/ for .a; b/ ¤ 0. On the other hand, since Jn is the ideal in M†n

generated by the power sums pn.1; 0/; : : : ; pn.n; 0/, it follows that J1 is the ideal
generated by p.a; 0/ for a� 1. For each pair of integers a; b� 0 not both zero let za;b
be a 2.aCb/–dimensional variable such that the collection fza;bga;b is a collection of
commuting independent variables. Define MU D f.a; b/ 2N2 j b > 0g; we conclude
that the assignment

QŒza;b j .a; b/ 2MU �!M†1=Jn ŠH
�.BcomU/;

za;b 7! p.a; b/

is an isomorphism of algebras over Q. Also define GL1.C/ WD colimn!1GLn.C/.
Since BcomU.n/' Bcom GLn.C/ for every n� 0, it follows that

BcomU ' Bcom GL1.C/:

This proves the following corollary.

Corollary 8.3 Let MU D f.a; b/ 2 N2 j b > 0g. Then we have isomorphisms of
Q–algebras

H�.Bcom GL1.C//ŠH�.BcomU/ŠQŒza;b j .a; b/ 2MU �:

8.2 Case G D SU.n/

The case of the special unitary groups G D SU.n/ can be handled in a similar way.
In this case we can choose T � SU.n/ to be the set of diagonal matrices with entries
in S1 and determinant one. The Weyl group is the symmetric group W D†n acting
by permutation on the diagonal entries and H�.BT / Š QŒx�=.pn.1; 0//, where as
before we use the notation x D fx1; : : : ; xng. Using an argument similar to that in
Proposition 7.1, we conclude that

H�.Bcom SU.n//Š .QŒx�˝QŒy�/†n=Kn DM
†n=Kn;

where Kn is the ideal in M†n generated by the multisymmetric polynomials pn.a; 0/
for 1� a � n and pn.0; 1/. As it was pointed out before the collection f�.ew/gw2†n
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forms a free basis for M†n as a module over QŒx�†n ˝QŒy�†n . Let gw denote the
image of �.ew/ in M†n=Kn . Then it follows that fgwgw2†n

forms a free basis for
H�.Bcom SU.n//ŠM†n=Kn as a module over

H�.BSU.n//DQŒpn.0; 2/; : : : ; pn.0; n/�:

As a corollary we get the following.

Corollary 8.4 Suppose that n� 1. Then

PEcom SLn.C/.t/D PEcom SU.n/.t/D
X
w2†n

t2.maj.w/Cmaj.w�1//;

PBcom SLn.C/.t/D PBcom SU.n/.t/D

P
w2†n

t2.maj.w/Cmaj.w�1//Q
2�i�n.1� t

2i /
;

where maj.w/ is the major index of w as defined above.

As in the case of the unitary groups we have a stabilization process given by the standard
inclusions inW SU.n/! SU.nC 1/. Let SU WD colimn!1 SU.n/. It follows that

H�.Bcom SU/D lim
 ��

H�.Bcom SU.n//D lim
 ��

M†n=Kn:

Let K1 �M†1 denote the ideal corresponding to the ideals Kn �M†n for n� 0.
For SU we have H�.Bcom SU/ ŠM†1=K1 . Note that K1 is precisely the ideal
in M†1 generated by p.a; 0/ for a � 1 and p.0; 1/. Similarly define SL1.C/ WD
colimn!1 SLn.C/. As a corollary we get the following.

Corollary 8.5 Let MSU D f.a; b/ 2 N2 j .a; b/ ¤ .0; 1/; b > 0g. Then we have
isomorphisms of Q–algebras

H�.Bcom SL1.C//ŠH�.Bcom SU/ŠQŒza;b j .a; b/ 2MSU�:

8.3 Case G D Sp.n/

Finally, suppose that GDSp.n/. In this case H�.BT /ŠQŒx�, where xDfx1; : : : ;xng

and deg.xi /D 2. The Weyl group is a semi-direct product W D†n Ë .Z=2/n . This
group can be identified with the group of signed permutations. More precisely, let

In WD f�n;�nC 1; : : : ;�1; 1; : : : ; n� 1; ng:

Let Bn denote the group of bijections � W In! In such that �.�k/D��.k/ for all k 2
In , with the composition of functions as the group operation. Under this identification
the group W Š Bn acts on QŒx� by signed permutations. In this case H�.BG/ is a
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polynomial algebra generated by e1.x21 ; : : : ; x
2
n/; : : : ; en.x

2
1 ; : : : ; x

2
n/, or equivalently,

by the power sums pn.2; 0/; : : : ; pn.2n; 0/. Also MBn WD .QŒx�˝QŒy�/Bn is the ring
of diagonally signed-symmetric or signed-invariant multisymmetric polynomials. Note
in particular that MBn is a subalgebra of the algebra of multisymmetric polynomials
M†n . By Proposition 7.1 we have an isomorphism

˛Sp.n/W H
�.Bcom Sp.n// Š!MBn=Ln;

where Ln D JSp.n/ is the ideal in MBn generated by the power sums pn.2; 0/; : : : ,
pn.2n; 0/. An explicit basis for MBn=Ln as a module over QŒy�Bn can be found
using the work in [12]. As before, given w 2 Bn , define its descent to be the set

Des.w/ WD f1� i � n� 1 j w.i/ > w.i C 1/g:

For 1� i � n let

di .w/ WD jfj 2 Des.w/ j j � igj;

fi .w/ WD 2di .w/C "i .w/;
"i .w/ WD

�
0 if w.i/ > 0;
1 if w.i/ < 0:

The diagonal signed descent monomial associated to w is defined to be

cw WD

� nY
iD1

x
fi .w

�1/
i

�� nY
iD1

y
fi .w/

jw.i/j

�
D

nY
iD1

x
fi .w

�1/
i y

f
jw�1.i/j

.w/

i :

By [12, Theorem 1.1] the collection f�.cw/gw2†n
forms a free basis of MBn as a

module over QŒx�Bn ˝QŒy�Bn .

Example 8.6 Suppose that nD 2. In this case we obtain the following basis of MB2

as a module over QŒx�B2 ˝QŒy�B2 :

c1 D 1; c2 D �.x1y1/; c3 D �.x
2
1y
2
2/; c4 D �.x1y1y

2
2/;

c5 D �.x
2
1x2y2/; c6 D �.x1x2y1y2/; c7 D �.x

2
1x2y

2
1y2/; c8 D �.x

3
1x2y

3
1y2/:

Let hw be the image of �.cw/ in MBn=Ln . It follows that fhwgw2Bn
forms a free

basis of H�.Bcom Sp.n//ŠMBn=Ln as a module over H�.BSp.n//ŠQŒy�Bn . The
flag major index of a signed permutation w was defined in [6] to be

fmaj.w/D
nX
iD1

fi .w/D 2maj.w/C neg.w/;

where maj.w/ WD
P
i2Des.w/ iD

P
w.i/>w.iC1/ i and neg.w/ WDjf1� i�n jw.i/<0gj.

Note that for every w 2Bn we have deg hw D2.fmaj.w�1/Cfmaj.w//. As a corollary
we get the following.
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Corollary 8.7 Suppose that n� 1. Then

PEcom Spn.C/.t/D PEcom Sp.n/.t/D
X
w2Bn

t2.fmaj.w�1/Cfmaj.w//;

PBcom Spn.C/.t/D PBcom Sp.n/.t/D

P
w2Bn

t2.fmaj.w�1/Cfmaj.w//Q
1�i�n.1� t

4i /
:

As in the case of the unitary groups we have a stabilization process given by the standard
inclusions inW Sp.n/! Sp.nC 1/. Let Sp WD colimn!1 Sp.n/. Recall that we have
an isomorphism H�.Bcom Sp.n//ŠMBn=Ln , where LnD JSp.n/ is the ideal in MBn

generated by the power sums pn.2; 0/; : : : ; pn.2n; 0/. Thus for Sp we have

H�.Bcom Sp/Š lim
 ��

H�.Bcom Sp.n//Š lim
 ��

MBn=Ln:

Define

MB1 D lim
 ��

MBn and L1 WD lim
 ��

Ln:

Thus for the group Sp we have an isomorphism of algebras over Q

H�.Bcom Sp/ŠMB1=L1:

Next we show that MB1 is a polynomial algebra. To see this we first show that the
power sums pn.a; b/D xa1y

b
1 C � � �C x

a
ny

b
n , where a; b runs though all nonnegative

integers such that 0 < aC b and aC b is even, generate MBn as a Q–algebra. For
this, consider the averaging operator �W QŒx;y�!QŒx;y�

Bn corresponding to the
group Bn . Note that as a Q–vector space MBn is generated by the elements of the
form �.m.x;y//, where m.x;y/D xi11 y

j1

1 � � � x
in
n y

jn
n is a monomial. By [12, Lemma

3.2] if ik C jk is odd for some 1 � k � n then �.m.x;y//D 0. It follows that as a
Q–vector space MBn is generated by the elements of the form �.m.x;y//, where
m.x;y/D x

i1
1 y

j1

1 � � � x
in
n y

jn
n and ikCjk is even for 1� k � n. Suppose that m.x;y/

is such a monomial. Define the length of m.x;y/, `.m.x;y//, to be the number of
tuples .ik; jk/ that are nonzero for 1 � k � n. We can show that �.m.x;y// is a
polynomial on the different pn.a; b/ in an inductive way on the length of the monomial
m.x;y/. If `.m.x;y//D 1 we have

�.m.x;y//D
1

n
.xi1y

j
1 C � � �C x

i
ny
j
n /D

pn.i; j /

n

and there is nothing to prove. Given any monomial m.x;y/D xi11 y
j1

1 � � � x
in
n y

jn
n with

length `.m.x;y// D r , let .ik1
; jk1

/; : : : ; .ikr
; jkr

/ be the corresponding different
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tuples that are nonzero. Note that

pn.ik1
; jk1

/ � � �pn.ikr
; jkr

/D

� nX
iD1

x
ik1

i y
jk1

i

�
� � �

� nX
iD1

x
ikr

i y
jkr

i

�
D c�.m.x;y//C q.x;y/;

where c is a nonzero constant and q.x;y/ is a sum of certain monomials n.x;y/
with `.n.x;y// < r . This proves that the elements pn.a; b/, where aCb > 0 is even,
generate MBn . In fact it can be seen that the collection fpn.a; b/g, where a; b run
through all the nonnegative integers such that 0 < aC b � 2n and aC b is even,
generate MBn , but we do not need that fact. Recall that for every n � 1 we have
a map j �n W M

BnC1 ! MBn obtained by sending xi 7! xi , yi 7! yi for 1 � i � n
and xnC1; ynC1 7! 0 and MB1 WD lim

 ��
MBn . Suppose that a; b are nonnegative

integers. Note that j �n .pnC1.a; b// D pn.a; b/ and thus the different polynomials
pn.a; b/ induce an element p.a; b/ in MB1 . Note that each signed-multisymmetric
polynomial is in particular a multisymmetric polynomial; that is, we can see MB1 as
a subset of M†1 . Also, we know that M†1 is a polynomial algebra on the different
elements p.a; b/ where aC b > 0 by [27, Theorem 2]. This implies in particular
that the collection fp.a; b/gaCb>0;even is algebraically independent in M†1 and in
particular, it is also algebraically independent in MB1 . As a corollary we obtain:

Corollary 8.8 The Q–algebra MB1 is a polynomial algebra on the generators
p.a; b/, where a; b run through all nonnegative integers such that 0 < aC b is even.

Using the previous fact we can obtain a description of H�.Bcom Sp/ as an algebra.
Indeed, recall that

H�.Bcom Sp/ŠMB1=L1;

where L1 is the ideal generated by the power sums p.2n; 0/ for all n� 1. Similarly
define Sp1.C/D colimn!1 Spn.C/. As a corollary we obtain the following.

Corollary 8.9 Define MSp D f.a; b/ 2 N2 j b > 0; a C b eveng. Then we have
isomorphisms of Q–algebras

H�.Bcom Sp1.C//ŠH
�.Bcom Sp/ŠQŒza;b j .a; b/ 2MSp�:

Appendix

The goal of this appendix is to show that for any Lie group G the simplicial space
ŒBcomG�� is a proper simplicial space. This fact was proved in [1, Theorem 8.3] for
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Lie groups G that are closed subgroups of GLn.C/ for some n� 0 and extended in
the equivariant setting in [2] for compact Lie groups. Here we show that the arguments
in [1] can be used to proved this result for any Lie group G .

We start by recalling some basic definitions. Recall that a pair of topological spaces
.X;A/ is said to be an NDR pair if there exist continuous functions hW X � Œ0; 1�!X

and uW X ! Œ0; 1� such that the following conditions are satisfied:

(1) AD u�1.0/.

(2) h.x; 0/D x for all x 2X .

(3) h.a; t/D a for all a 2 A and all t 2 Œ0; 1�.

(4) h.x; 1/ 2 A for all x 2 u�1.Œ0; 1//.

In this case we say that .h; u/ is a representation of .X;A/ as an NDR pair. If in
addition we have u.h.x; t// < 1 for all t 2 Œ0; 1� whenever u.x/ < 1, then .X;A/
is called a strong NDR pair. A simplicial space X� is said to be proper if each pair
.XnC1; sXn/ is a strong NDR pair, where sXn is the image of the different degeneracy
maps in XnC1 .

Proposition A.1 If G is a Lie group then ŒBcomG�� is a proper simplicial space.

Proof Suppose that G is a Lie group and let g denote its Lie algebra endowed with a
norm k�kg . Recall that the exponential map expW g!G is a local homeomorphism.
Let U � g be any Ad –invariant open neighborhood of 0 2 g on which the exponential
map is injective. Fix some � > 0 such xB�.0/�U . Then in particular expjW xB�.0/!G

is a homeomorphism onto its image. Define a function uW G! Œ0; 1� by

u.g/D

�
2jyjg=� if g D exp.y/ for g 2 exp. xB�=2.0//;
1 if g 2G � exp.B�=2.0//:

Also, let sW G! Œ0; 1� be any bump function satisfying the following conditions

s.g/D

�
1 if g D exp.y/ for g 2 exp. xB�=2.0//;
0 if g 2G � exp.B�.0//:

Finally, define a homotopy hW G � Œ0; 1�!G by

h.g; t/D

8<:
exp..1� t /y/ if g D exp.y/ for y 2 xB�=2.0/;
exp..1� s.g/t/y/ if g D exp.y/ for y 2 xB�.0/�B�=2.0/;
g if g 2G � exp.B�.0//:

The functions h and u are defined so that .h; u/ is representation of .G; f1Gg/ as an
NDR pair. This can be seen in the same way as in [1, Proposition 8.2]. Moreover,
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we claim that the function h satisfies the following property: for each g ¤ 1G in
G and each 0 � t < 1 we have ZG.h.g; t// D ZG.g/. Indeed, assume that g 2 G
with g ¤ 1G . Note that if 0 � t < 1 then h.g; t/ D g if g 2 G � exp.B�.0// and
h.g; t/D exp.ky/ for some 0 < k � 1 if gD exp.y/ with y 2 exp.B�.0//. In the first
case we have nothing to prove. Suppose then that g D exp.y/ with y 2 exp.B�.0//
and thus h.g; t/ D exp.ky/ for some 0 < k � 1. Since y 2 exp.B�.0// � U and
U is an Ad –invariant open set on which the exponential map is injective, then by
[11, Lemma 3.2.1] we have ZG.g/ D ZG.exp.y// D ZG.exp.ky// D ZG.h.g; t//
proving that ZG.g/DZG.h.g; t// as claimed. By [1, Theorem 7.3] we conclude that
the inclusion map Ij W Sn.j; G/ ,! Sn.j � 1;G/ is a cofibration for every 1� j � n
(in the terminology of [1, Definition 6.1], G has cofibrantly commuting elements).
Here Sn.j; G/ denotes the subspace of Hom.Zn; G/ consisting of the commuting
n–tuples with at least j coordinates equal to 1G . This implies in particular that the
inclusion map s.ŒBcomG�n�1/DSn.1;G/ ,!Hom.Zn; G/D ŒBcomG�n is a cofibration.
Using the explicit NDR–pair representation of .Hom.Zn; G/; Sn.1;G// provided by
[1, Theorem 7.3] it can easily be seen that .Hom.Zn; G/; Sn.1;G// is actually a strong
NDR–pair, proving that ŒBcomG�� is a proper simplicial space.

Remark A.2 Using the explicit NDR representation provided by [1, Theorem 7.3]
for the pair .Hom.Zn; G/; Sn.1;G//, it can be seen that in fact ŒBcomG�� is a strictly
proper simplicial space (see [18, Definition 11.2] for the definition of a strictly proper
simplicial space).
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