Volume 15, issue 1 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Unit spectra of $K$–theory from strongly self-absorbing $C^*$–algebras

Marius Dadarlat and Ulrich Pennig

Algebraic & Geometric Topology 15 (2015) 137–168
Bibliography
1 M Ando, A J Blumberg, D Gepner, Twists of K–theory and TMF, from: "Superstrings, geometry, topology, and C∗–algebras", Proc. Sympos. Pure Math. 81, Amer. Math. Soc. (2010) 27 MR2681757
2 M Atiyah, G Segal, Twisted K–theory, Ukr. Matem. Visn. 1 (2004) 287 MR2172633
3 M G Barratt, M E Mahowald, editors, Geometric applications of homotopy theory, II, 658, Springer (1978)
4 B Blackadar, K–theory for operator algebras, 5, Cambridge Univ. Press (1998) MR1656031
5 M Dadarlat, U Pennig, A Dixmier–Douady theory for strongly self-absorbing C–algebras, arXiv:1302.4468
6 M Dadarlat, W Winter, On the KK–theory of strongly self-absorbing C–algebras, Math. Scand. 104 (2009) 95 MR2498373
7 I Dell’Ambrogio, H Emerson, T Kandelaki, R Meyer, A functorial equivariant K–theory spectrum and an equivariant Lefschetz formula, (2011) arXiv:1104.3441v1
8 P Donovan, M Karoubi, Graded Brauer groups and K–theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. (1970) 5 MR0282363
9 J M Gómez, On the nonexistence of higher twistings over a point for Borel cohomology of K–theory, J. Geom. Phys. 60 (2010) 678 MR2602381
10 N Higson, E Guentner, Group C–algebras and K–theory, from: "Noncommutative geometry", Lecture Notes in Math. 1831, Springer, Berlin (2004) 137 MR2058474
11 M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 MR1695653
12 M Joachim, K–homology of C–categories and symmetric spectra representing K–homology, Math. Ann. 327 (2003) 641 MR2023312
13 M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 MR1806878
14 J P May, E ring spaces and E ring spectra, 577, Springer (1977) 268 MR0494077
15 J P May, J Sigurdsson, Parametrized homotopy theory, 132, Amer. Math. Soc. (2006) MR2271789
16 M Rørdam, E Størmer, Classification of nuclear C–algebras. Entropy in operator algebras, 126, Springer (2002) MR1878881
17 J Rosenberg, Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A 47 (1989) 368 MR1018964
18 S Sagave, C Schlichtkrull, Diagram spaces and symmetric spectra, Adv. Math. 231 (2012) 2116 MR2964635
19 C Schlichtkrull, Units of ring spectra and their traces in algebraic K–theory, Geom. Topol. 8 (2004) 645 MR2057776
20 S Schwede, Stable homotopical algebra and Γ–spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 329 MR1670249
21 G Segal, Categories and cohomology theories, Topol. 13 (1974) 293 MR0353298
22 D P Sullivan, Geometric topology : Localization, periodicity and Galois symmetry, 8, Springer (2005) MR2162361
23 A S Toms, W Winter, Strongly self-absorbing C–algebras, Trans. Amer. Math. Soc. 359 (2007) 3999 MR2302521
24 J Trout, On graded K–theory, elliptic operators and the functional calculus, Illinois J. Math. 44 (2000) 294 MR1775323
25 M S Weiss, Cohomology of the stable mapping class group, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 379 MR2079381
26 W Winter, Strongly self-absorbing C–algebras are 𝒵–stable, J. Noncommut. Geom. 5 (2011) 253 MR2784504