Volume 15, issue 2 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Cohomological non-rigidity of eight-dimensional complex projective towers

Shintarô Kuroki and Dong Youp Suh

Algebraic & Geometric Topology 15 (2015) 769–782
Bibliography
1 M F Atiyah, E Rees, Vector bundles on projective $3$–space, Invent. Math. 35 (1976) 131 MR0419852
2 A Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953) 115 MR0051508
3 V M Buchstaber, T E Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series 24, Amer. Math. Soc. (2002) MR1897064
4 S Choi, M Masuda, D Y Suh, Topological classification of generalized Bott towers, Trans. Amer. Math. Soc. 362 (2010) 1097 MR2551516
5 S Choi, M Masuda, D Y Suh, Rigidity problems in toric topology: A survey, Tr. Mat. Inst. Steklova 275 (2011) 188 MR2962979
6 Y Fukukawa, H Ishida, M Masuda, The cohomology ring of the GKM graph of a flag manifold of classical type, Kyoto J. Math. 54 (2014) 653 MR3263556
7 S Kuroki, D Y Suh, Complex projective towers and their cohomological rigidity up to dimension six, arXiv:1203.4403
8 M Mimura, H Toda, Homotopy groups of $\mathrm{SU}(3)$, $\mathrm{SU}(4)$ and $\mathrm{Sp}(2)$, J. Math. Kyoto Univ. 3 (1963) 217 MR0169242