Volume 15, issue 2 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Positive quandle homology and its applications in knot theory

Zhiyun Cheng and Hongzhu Gao

Algebraic & Geometric Topology 15 (2015) 933–963
Bibliography
1 J S Carter, A survey of quandle ideas, from: "Introductory lectures on knot theory" (editors L H Kauffman, S Lambropoulou, S Jablan, J H Przytycki), Ser. Knots Everything 46, World Sci. Publ. (2012) 22 MR2885229
2 J S Carter, M Elhamdadi, M Saito, Twisted quandle homology theory and cocycle knot invariants, Algebr. Geom. Topol. 2 (2002) 95 MR1885217
3 J S Carter, D Jelsovsky, S Kamada, L Langford, M Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003) 3947 MR1990571
4 J S Carter, D Jelsovsky, S Kamada, M Saito, Computations of quandle cocycle invariants of knotted curves and surfaces, Adv. Math. 157 (2001) 36 MR1808844
5 J S Carter, D Jelsovsky, S Kamada, M Saito, Quandle homology groups, their Betti numbers and virtual knots, J. Pure Appl. Algebra 157 (2001) 135 MR1812049
6 J S Carter, M Saito, Canceling branch points on projections of surfaces in $4$–space, Proc. Amer. Math. Soc. 116 (1992) 229 MR1126191
7 J S Carter, M Saito, Knotted surfaces and their diagrams, Math. Surveys and Monographs 55, Amer. Math. Soc. (1998) MR1487374
8 S Carter, S Kamada, M Saito, Surfaces in $4$–space, Encyclopaedia of Math. Sciences 142, Springer (2004) MR2060067
9 W E Clark, M Elhamdadi, M Saito, T Yeatman, Quandle colorings of knots and applications, J. Knot Theory Ramifications 23 (2014) 1450035, 29 MR3253967
10 M Eisermann, The number of knot group representations is not a Vassiliev invariant, Proc. Amer. Math. Soc. 128 (2000) 1555 MR1657727
11 R Fenn, C Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992) 343 MR1194995
12 R Fenn, C Rourke, B Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3 (1995) 321 MR1364012
13 R Fenn, C Rourke, B Sanderson, James bundles, Proc. London Math. Soc. 89 (2004) 217 MR2063665
14 R H Fox, A quick trip through knot theory, from: "Topology of $3$–manifolds and related topics" (editor M K Fort Jr.), Prentice-Hall (1962) 120 MR0140099
15 C A Giller, Towards a classical knot theory for surfaces in $\mathbb{R}^{4}$, Illinois J. Math. 26 (1982) 591 MR674227
16 F Harary, L H Kauffman, Knots and graphs, I: Arc graphs and colorings, Adv. in Appl. Math. 22 (1999) 312 MR1675756
17 B Ho, S Nelson, Matrices and finite quandles, Homology Homotopy Appl. 7 (2005) 197 MR2175299
18 A Inoue, Quasitriviality of quandles for link-homotopy, J. Knot Theory Ramifications 22 (2013) 1350026, 10 MR3070837
19 A Inoue, Y Kabaya, Quandle homology and complex volume, Geom. Dedicata 171 (2014) 265 MR3226796
20 D Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982) 37 MR638121
21 S Kamada, Knot invariants derived from quandles and racks, from: "Invariants of knots and $3$–manifolds", Geom. Topol. Monogr. 4 (2002) 103 MR2002606
22 S Kamada, V Lebed, K Tanaka, The shadow nature of positive and twisted quandle cocycle invariants of knots, (2014) arXiv:1409.4072v2
23 R A Litherland, S Nelson, The Betti numbers of some finite racks, J. Pure Appl. Algebra 178 (2003) 187 MR1952425
24 T W Mattman, P Solis, A proof of the Kauffman–Harary conjecture, Algebr. Geom. Topol. 9 (2009) 2027 MR2550465
25 S V Matveev, Distributive groupoids in knot theory, Mat. Sb. 119(161) (1982) 78, 160 MR672410
26 T Mochizuki, Some calculations of cohomology groups of finite Alexander quandles, J. Pure Appl. Algebra 179 (2003) 287 MR1960136
27 M Niebrzydowski, J H Przytycki, Homology of dihedral quandles, J. Pure Appl. Algebra 213 (2009) 742 MR2494367
28 M Polyak, Minimal generating sets of Reidemeister moves, Quantum Topol. 1 (2010) 399 MR2733246
29 J H Przytycki, $3$–coloring and other elementary invariants of knots, from: "Knot theory" (editors V F R Jones, J Kania-Bartoszyńska, J H Przytycki, V G Traczyk Pawełand Turaev), Banach Center Publ. 42, Polish Acad. Sci., Warsaw (1998) 275 MR1634462
30 J H Przytycki, Distributivity versus associativity in the homology theory of algebraic structures, Demonstratio Math. 44 (2011) 823 MR2906433
31 J H Przytycki, A S Sikora, Distributive products and their homology, Comm. Algebra 42 (2014) 1258 MR3169627
32 D Rolfsen, Knots and links, Math. Lecture Series 7, Publish or Perish (1976) MR0515288
33 D Roseman, Reidemeister-type moves for surfaces in four-dimensional space, from: "Knot theory" (editors V F R Jones, J Kania-Bartoszyńska, J H Przytycki, V G Traczyk Pawełand Turaev), Banach Center Publ. 42, Polish Acad. Sci. (1998) 347 MR1634466
34 C Rourke, B Sanderson, There are two $2$–twist-spun trefoils, (2002) arXiv:math.GT/0006062
35 S Satoh, A Shima, The $2$–twist-spun trefoil has the triple point number four, Trans. Amer. Math. Soc. 356 (2004) 1007 MR1984465
36 M Takasaki, Abstraction of symmetric transformations, Tôhoku Math. J. 49 (1943) 145 MR0021002
37 L Vendramin, On the classification of quandles of low order, J. Knot Theory Ramifications 21 (2012) MR2926571