Volume 15, issue 2 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Corrigendum to “Homotopy theory of modules over operads in symmetric spectra”

John E Harper

Algebraic & Geometric Topology 15 (2015) 1229–1238
Bibliography
1 T G Goodwillie, Calculus, II: Analytic functors, $K\!$–Theory 5 (1991/92) 295 MR1162445
2 J E Harper, Homotopy theory of modules over operads in symmetric spectra, Algebr. Geom. Topol. 9 (2009) 1637
3 J Hornbostel, Preorientations of the derived motivic multiplicative group, Algebr. Geom. Topol. 13 (2013) 2667
4 M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 MR1806878
5 D Pavlov, J Scholbach, Rectification of commutative ring spectra in model categories, (2014)
6 L A Pereira, Goodwillie calculus in the category of algebras over a spectral operad, (2013)
7 S Schwede, An untitled book project about symmetric spectra, (2007)
8 B Shipley, A convenient model category for commutative ring spectra, from: "Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$–theory" (editors P G Goerss, S Priddy), Contemp. Math. 346, Amer. Math. Soc. (2004) 473 MR2066511