Volume 15, issue 2 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The Johnson cokernel and the Enomoto–Satoh invariant

James Conant

Algebraic & Geometric Topology 15 (2015) 801–821
Abstract

We study the cokernel of the Johnson homomorphism for the mapping class group of a surface with one boundary component. A graphical trace map simultaneously generalizing trace maps of Enomoto and Satoh and Conant, Kassabov and Vogtmann is given, and using technology from the author’s work with Kassabov and Vogtmann, this is is shown to detect a large family of representations which vastly generalizes series due to Morita and Enomoto and Satoh. The Enomoto–Satoh trace is the rank-1 part of the new trace, and it is here that the new series of representations is found. The rank-2 part is also investigated, though a fuller investigation of the higher-rank case is deferred to another paper.

Keywords
Johnson homomorphism, Enomoto–Satoh invariant, Johnson cokernel
Mathematical Subject Classification 2010
Primary: 17B40
Secondary: 20C15, 20F28
References
Publication
Received: 23 December 2013
Revised: 5 July 2014
Accepted: 7 July 2014
Published: 22 April 2015
Authors
James Conant
Department of Mathematics
University of Tennessee
227 Ayres Hall
1403 Circle Drive
Knoxville, TN 37996
USA
http://www.math.utk.edu/~jconant/