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On the classification of quasitoric manifolds
over dual cyclic polytopes

SHO HASUI

For a simple n–polytope P , a quasitoric manifold over P is a 2n–dimensional
smooth manifold with a locally standard action of an n–dimensional torus for which
the orbit space is identified with P . This paper acheives the topological classification
of quasitoric manifolds over the dual cyclic polytope C n.m/� when n> 3 or m�nD

3 . Additionally, we classify small covers, the “real version” of quasitoric manifolds,
over all dual cyclic polytopes.

57R19, 57S25

1 Introduction

Quasitoric manifolds were introduced by Davis and Januszkiewicz [5] as a topological
generalization of nonsingular projective toric varieties. More precisely, a quasitoric
manifold is a 2n–dimensional manifold M with a locally standard T n –action for
which the orbit space M=T n is identified with a simple polytope as a manifold
with corners. Here “locally standard” means that the T n –action is locally identi-
fied with the coordinate-wise multiplication of T n on Cn , where T n is regarded
as T n D f.z1; : : : ; zn/ 2 Cn j jzi j D 1; i D 1; : : : ; ng. The simplest example is CPn

with the standard T n –action, whose supporting simple polytope is the n–dimensional
simplex �n .

There are other examples of quasitoric manifolds in Orlik and Raymond [7], where
it was shown that many compact oriented one-connected four-manifolds with smooth
effective T 2 –actions are quasitoric manifolds. In fact, that paper also provides a
classification of four-dimensional quasitoric manifolds up to diffeomorphism.

We consider the classification of quasitoric manifolds over the dual of a cyclic polytope
up to (i) weakly equivariant homeomorphism, (ii) homeomorphism and (iii) cohomology
equivalence. Here a “cohomology equivalence” between two topological spaces means
there exists a graded ring isomorphism between their integral cohomology rings that is
not necessarily induced by a continuous map. For a group G , a map f between two
G–spaces is called weakly equivariant if the condition f .g �x/D  .g/ �f .x/ holds
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for some automorphism  of G , where x and g are arbitrary points in the domain
and G respectively.

In [5], Davis and Januszkiewicz showed that every quasitoric manifold is represented
by a pair .P; �/, where P is a simple polytope and � is a characteristic matrix on P

(see Definition 2.5), up to their equivalence (which is stronger than weakly equivariant
homeomorphism). The next section is devoted to a review of their construction and
the classification of quasitoric manifolds up to weakly equivariant homeomorphism
(Proposition 2.12).

There are some results for the classification of quasitoric manifolds up to homeomor-
phism. The classification of quasitoric manifolds over �n is trivial by construction;
see [5, Example 1.18]. Using the results of Orlik and Raymond [7], we obtain the
classification over convex polygons; see [5, Example 1.20]. Moreover, Choi, Park
and Suh obtained in [3] the topological classification of quasitoric manifolds over the
product of two simplices �n ��m .

For a simple polytope P , let us denote by MP the set of all weakly equivariant
homeomorphism classes of quasitoric manifolds over P . Similarly, let Mhomeo

P
denote

the set of all homeomorphism classes and Mcoh
P

denote the set of all cohomology
equivalence classes. Then we have a sequence of surjections MP !Mhomeo

P
!Mcoh

P
.

Let us summarize the classification results using this notation.

Theorem 1.1 [3; 5] For quasitoric manifolds over a simplex, a convex polygon and
the product of two simplices, we have the following classification. Note that �1 ��1

is equal to the convex tetragon P4 .

(i) For the n–dimensional simplex �n , #M�n D #Mhomeo
�n D #Mcoh

�n D 1.

(ii) For the convex m–gon Pm , where m� 4, MPm
has countably infinite elements

and

#Mhomeo
Pm

D #Mcoh
Pm
D

(
1
2
.m� 1/ if m is odd;

1
2
mC 1 if m is even:

(iii) For �n��m , where n�1 and m�2, Mcoh
�n��m has countably infinite elements,

and M�n��m !Mhomeo
�n��m is not bijective but Mhomeo

�n��m !Mcoh
�n��m is.

Corollaries 2.16 and 4.7 give representatives of the elements of M�n and Mhomeo
Pm

respectively.

We will show the following new results for the classification of quasitoric manifolds
over the dual cyclic polytope C n.m/� . Note that in the case where n� 2 or m�n� 2,
the topological classification of quasitoric manifolds is already known since C 2.m/�
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is the convex m–gon and C n.nC2/� is �l��n�l , where l denotes the largest integer
less than 1

2
n.

Theorem 1.2 If n� 4 and m�n� 4, or n� 6 and m�n� 3, there exist no quasitoric
manifolds over C n.m/� .

Theorem 1.3 For quasitoric manifolds over the dual cyclic polytope C n.nC 3/� , we
have the following classification:

(i) The map MC 3.6/�!Mhomeo
C 3.6/�

is not bijective but Mhomeo
C 3.6/�

!Mcoh
C 3.6/�

is,
and all the classes have countably infinite elements.

(ii) #MC 4.7/� D #Mhomeo
C 4.7/�

D #Mcoh
C 4.7/�

D 4.

(iii) #MC 5.8/� D #Mhomeo
C 5.8/�

D #Mcoh
C 5.8/�

D 46.

Note that the classification of quasitoric manifolds over C 3.m/� for m � 7 is still
open since it is quite complicated, and it remains a subject for further study.

Theorem 1.3 yields a partial affirmative answer to the cohomological rigidity problem
for quasitoric manifolds over dual cyclic polytopes. A class of topological spaces
is called cohomologically rigid (for homeomorphisms) if two spaces in the class are
homeomorphic if and only if their cohomology rings (with coefficients in an appropriate
ring) are isomorphic as graded rings. Note that the Betti numbers of a quasitoric
manifold determine the f–vector of the supporting simple polytope (see Definition 2.19
and Theorem 2.20). As a corollary of Theorem 1.1, we obtain cohomological rigidity
of quasitoric manifolds over the simplices, the convex polygons and the products of two
simplices. There are several other results on the cohomological rigidity of quasitoric
manifolds. For more information, we refer the reader to Choi, Masuda and Suh [2].

Replacing T by Z=2 and C by R in the definition of a quasitoric manifold, we
obtain the notion of a small cover. Any quasitoric manifold has an involution called
“conjugation” for which the fixed point set is homeomorphic to a small cover. The
lifting problem asks whether or not a small cover can be realized as the fixed point set
for the involution on a quasitoric manifold. The answer is affirmative for any small
cover of dimension � 3 (Proposition 2.18).

For a simple polytope P , let us denote by RMP the set of all weakly equivariant
homeomorphism classes of small covers over P . Similarly, let RMhomeo

P
denote the

set of all homeomorphism classes and RMcoh
P

denote the set of all mod 2 cohomology
equivalence classes. We will show the following theorems.
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Theorem 1.4 If n� 4 and m� n� 4, or n� 6 and m� n� 3, there exists no small
cover over C n.m/� .

Theorem 1.5 For small covers over the dual cyclic polytope C n.m/� , we have the
following classification:

(i) RMC 3.m/� ! RMhomeo
C 3.m/�

is not bijective but RMhomeo
C 3.m/�

! RMcoh
C 3.m/�

is.

(ii) #RMC 4.7/� D #RMhomeo
C 4.7/�

D #RMcoh
C 4.7/�

D 1.

(iii) #RMC 5.8/� D #RMhomeo
C 5.8/�

D #RMcoh
C 5.8/�

D 1.

Note that Theorem 1.2 is a corollary of Theorem 1.4. Indeed, if there exists a quasitoric
manifold over a simple polytope P , the fixed point set for the conjugation involution
provides a small cover over the same polytope P .

With Theorems 1.3 and 1.5, we obtain the following corollary.

Corollary 1.6 The answer to the lifting problem is affirmative for all small covers
over dual cyclic polytopes.

Now we briefly describe how this paper is organized. In Section 2, we recall some basic
constructions and properties of quasitoric manifolds and small covers. In Section 3,
we recall some properties of a cyclic polytope, introducing some notation and the
connected sum operation. Using the connected sum operation, in Section 4 we give a
“purely quasitoric” proof for the topological classification of quasitoric manifolds and
small covers over C 2.m/� . In Section 5, we classify quasitoric manifolds over C 3.6/�

and small covers over C 3.m/� , again using the connected sum operation. In Section 6,
we prove Theorem 1.4 and list all small covers over C 4.7/� and C 5.8/� . In Section 7,
we list all elements of MC 4.7/� and show that their integer cohomology rings are not
isomorphic to each other. In Section 8, we similarly show the classification for C 5.8/� .

2 Basic constructions and properties

The purpose of this section is to define a quasitoric manifold and describe some of its
properties. Let us start by recalling some basic concepts and constructions for convex
polytopes.

Algebraic & Geometric Topology, Volume 15 (2015)



On the classification of quasitoric manifolds over dual cyclic polytopes 1391

2.1 Polytopes

An n–dimensional convex polytope is called simple if exactly n facets meet at each
vertex. We can naturally regard a simple polytope as a manifold with corners, in
the following sense: an n–dimensional manifold with corners is a Hausdorff space
that has an atlas of open subsets and homeomorphisms from them to open subsets of
Rn
CDf.x1; : : : ;xn/2Rn jxi � 0; i D 1; : : : ; ng, such that the transition maps preserve

the canonical stratification of Rn
C .

Let P be an n–dimensional simple polytope with m facets which are labeled by
F1; : : : ;Fm . We define an abstract simplicial complex KP on f1; : : : ;mg by

fi1; : : : ; ikg 2KP () Fi1
\ � � � \Fik

¤∅:

KP is identified with the face poset of P� . Note that fi1; : : : ; ing is a maximal face
of KP if and only if Fi1

; : : : ;Fin
meet at a vertex.

The nerve of KP provides a triangulation of P . We can see this as follows: Fix a point
cG 2 rel int G for each face G , and identify a chain G1 © � � �© Gk with the .k � 1/–
simplex spanned by cG1

; : : : ; cGk
. Therefore, if there is a simplicial isomorphism

between KP and KP 0 , it induces a homeomorphism between P and P 0 . We obtain
the following proposition.

Proposition 2.1 Let P and P 0 be simple polytopes. Then a simplicial isomorphism
between KP and KP 0 can be realized as a homeomorphism between P and P 0 as
manifolds with corners. Conversely, a homeomorphism between P and P 0 as manifolds
with corners induces a simplicial isomorphism between KP and KP 0 .

2.2 Definition of a quasitoric manifold

To define quasitoric manifolds and consider their classification, we recall some basic
concepts of T n –manifolds.

The standard action of the n–dimensional torus T n D .S1/n on Cn is given as

T n
�Cn

!Cn; .t1; : : : ; tn/� .z1; : : : ; zn/ 7! .t1z1; : : : ; tnzn/;

where we canonically regard T n as f.z1; : : : ; zn/ 2Cn j jzi j D 1; i D 1; : : : ; ng. Note
that the orbit space for this action is naturally identified with the positive cone Rn

C .

A T n –manifold is a differentiable manifold with a smooth action of T n .

Definition 2.2 Let G be a group, X and Y be G–spaces and f be a map from X to Y .
The map f is said to be weakly equivariant if the condition f .g �x/D  .g/ � f .x/
holds for any x 2M and g 2G , where  is some automorphism of G .
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Let M be a 2n–dimensional T n –manifold. A standard chart on M is a pair .U; f /,
where U is a T n –stable open subset of M and f is a weakly equivariant diffeomor-
phism from U onto some T n –stable open subset of Cn . An atlas which consists of
standard charts is called a standard atlas. If a 2n–dimensional T n –manifold has a
standard atlas, then we say that the T n –action is locally standard. The orbit space for
a locally standard action is naturally regarded as a manifold with corners. Then we
define a quasitoric manifold as follows.

Definition 2.3 A 2n–dimensional T n –manifold is said to be a quasitoric manifold
over a simple polytope P if the action is locally standard and the orbit space is
homeomorphic to P as a manifold with corners.

According to Proposition 2.1, we do not have to distinguish between combinatorially
equivalent simple polytopes in the above definition. The following proposition is
obvious.

Proposition 2.4 Let M and M 0 be quasitoric manifolds over simple polytopes P

and P 0 respectively. A weakly equivariant homeomorphism from M to M 0 descends
to a homeomorphism from P to P 0 as manifolds with corners.

2.3 Classification up to weakly equivariant homeomorphism

The notion of a characteristic matrix plays a central role in the classification of quasitoric
manifolds. Let P be an n–dimensional simple polytope with m facets F1; : : : ;Fm .

Definition 2.5 A characteristic matrix on P is an integer .n � m/–matrix � D

.�1; : : : ;�m/ satisfying the nonsingularity condition for P : if n facets Fi1
; : : : ;Fin

of P meet at a vertex, then det�.i1;:::;in/ D˙1, where �.i1;:::;in/ WD .�i1
; : : : ;�in

/.

For each quasitoric manifold M over P , we obtain the corresponding characteristic
matrix �.M / as follows. Let � denote the projection from M to P ŠM=T n . By
definition, we see that every point in ��1.rel int.Fi// has the same isotropy subgroup,
which is a one-dimensional subtorus of T n . We denote it by TM .Fi/. Then, taking
primitive vectors �i D

t.�1;i ; : : : ; �n;i/ 2 Zn .i D 1; : : : ;m/ such that

TM .Fi/D f.t
�1;i ; : : : ; t�n;i / 2 T n

j t 2C; jt j D 1g;

we obtain an integer .n � m/–matrix �.M / WD .�i;j /. Clearly, each �i is deter-
mined up to sign. Since the T n –action on M is locally standard, �.M / satisfies the
nonsingularity condition for P .

Conversely, we can construct a quasitoric manifold M.�/ from a simple polytope P

and a characteristic matrix � on P .
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Construction 2.6 For each point q 2 P , we denote the minimal face containing q by
G.q/. We define the characteristic map `� corresponding to �, a map from the set of
faces of P to the set of subtori of T n , as

`�.Fi1
\ � � � \Fik

/ WD im
�
�.i1;:::;ik/W T

k
! T n

�
;

where we regard T as R=Z and �.i1;:::;ik/ as the map induced from the linear map
determined by �.i1;:::;ik/ . Then we obtain a quasitoric manifold M.�/ over P by
setting

M.�/ WD .T n
�P /=��;

where .t1;p/�� .t2; q/ if and only if pD q and t1t�1
2
2 `�.G.q//. There is a standard

differentiable structure given by the atlas f��1.Uv/g, where the index v runs over all
vertices of P and Uv is the open subset obtained by deleting all faces not containing v
from P . Indeed, each Uv is homeomorphic to an open subset of Rn

C via an affine map,
and hence each ��1.Uv/ is weakly equivariantly homeomorphic to an open subset
of Cn . We easily see that the transition maps are diffeomorphic. It is obvious that the
T n –action on T n �P by multiplication on the first component descends to a locally
standard action on M.�/ for which the orbit space is identified with P . By definition,
� is the characteristic matrix corresponding to M.�/.

Definition 2.7 Let us denote the set of all characteristic matrices on a simple poly-
tope P by ƒP . As in Section 1, MP denotes the set of all weakly equivariant
homeomorphism classes of quasitoric manifolds over P . Then Construction 2.6 gives
the map ƒP !MP , � 7!M.�/. We denote this map by � .

The following lemma is essential to the classification of quasitoric manifolds up to
weakly equivariant homeomorphism; see Davis and Januszkiewicz [5, Lemma 1.4] and
Davis [4, page 344].

Lemma 2.8 For any quasitoric manifold M over a simple polytope P , there exists a
continuous map sW P !M such that � ı s D idP .

Then for any quasitoric manifold over P , the map T n�P!M , .t; q/ 7! t �s.q/ induces
an equivariant homeomorphism from M.�.M // to M . We obtain the following
proposition.

Proposition 2.9 [5, Proposition 1.8] For any quasitoric manifold over a simple
polytope P , M.�.M // is equivariantly homeomorphic to M . In particular, the map
�W ƒP !MP is surjective.
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Remark 2.10 Davis and Januszkiewicz [5, Proposition 1.8] state that the correspon-
dence � 7!M.�/ induces a surjection from ƒP to �MP . Here �MP denotes the set
of equivalence classes of quasitoric manifolds M over P equipped with specified
projections � W M !P (namely, equipped with a specified identification M=T nDP ),
where an equivalence f W M !N is a weakly equivariant homeomorphism such that
� D � ıf .

Next we consider when two characteristic matrices give rise to weakly equivariantly
homeomorphic quasitoric manifolds. Let us denote the group of simplicial automor-
phisms of KP by Aut.KP /.

Definition 2.11 GL.n;Z/ acts on ƒP by left multiplication. Similarly, .Z=2/m

acts on ƒP by multiplication by �1 on each column, and Aut.KP / acts by column
permutation. We denote GL.n;Z/nƒP=.Z=2/

m , the quotient of the biaction, by XP .
Then the right Aut.KP /–action on ƒP descends to an action on XP .

Let us show that �W ƒP !MP descends to x�W XP=Aut.KP / !MP . Let � D
.�1; : : : ;�m/, �0 D .�01; : : : ;�

0
m/ be characteristic matrices on a simple polytope P ,

and put M WDM.�/, M 0 WDM.�0/. Assume there are � 2Aut.KP / and A2GL.n;Z/
such that

�0�.i/ D˙A�i .i D 1; : : : ;m/:

Denote the realization of � by xf W P!P (recall Proposition 2.1) and the automorphism
induced from A by  W T n! T n . Then the map

zf W T n
�P ! T n

�P; .t; q/ 7! . .t/; xf .q//

descends to a homeomorphism f W M !M 0 which is weakly equivariant.

Conversely, assume that there is a weakly equivariant homeomorphism f from M

to M 0 for an automorphism  of T n . Let us denote the matrix corresponding
to  by A 2 GL.n;Z/ and the self-homeomorphism of P induced from f (recall
Proposition 2.4) by xf . Then we have

 .TM .Fi//D TM 0. xf .Fi// .i D 1; : : : ;m/;

in other words,
�0�.i/ D˙A�i .i D 1; : : : ;m/;

where � is the simplicial automorphism of KP defined by F�.i/ D xf .Fi/ for i D

1; : : : ;m. Hence we see that x�W XP=Aut.KP /!MP is injective. Now we obtain
the following proposition.
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Proposition 2.12 For any simple polytope P , �W ƒP !MP , � 7!M.�/ descends
to a bijection x�W XP=Aut.KP /!MP .

Definition 2.13 Let P be a simple polytope. We say that two characteristic matrices
on P are equivalent if they are equal in XP=Aut.KP /.

2.4 Moment-angle manifold

Sometimes it is more useful to regard a quasitoric manifold over P as the orbit space for
a free T m�n –action on the moment-angle manifold ZP than to regard it as a product
of Construction 2.6; for details, see Buchstaber and Panov [1]. The moment-angle
manifold corresponding to a simple n–polytope P with m facets is, as a topological
space, the subset of .D2/m defined as

ZP WD fz D .z1; : : : ; zm/ 2 .D
2/m j �z 2KP g;

where D2 denotes the unit closed disk in C and �z WD fi j jzi j< 1g. For a characteristic
matrix � on P , let T� be the kernel of the epimorphism from T m to T n induced
from �. Then T� is an .m�n/–dimensional subtorus of T m , which acts freely on ZP

by the restriction of the coordinate-wise T m –action. The T m –action is smooth with
respect to the natural differentiable structure on ZP . We can show that the orbit space
ZP=T� is equivariantly homeomorphic to M.�/ with respect to the action of T m=T� ,
which is identified with T n through the epimorphism �W T m! T n .

For example, there is a characteristic matrix �D .�I j 1/ on �n , where I denotes the
unit matrix of size n and 1 denotes the column vector with all components equal to
one. Since Z�n D S2nC1 and the one-dimensional torus T� acts diagonally, we see
that M.�/ is equivariantly homeomorphic to CPn with the standard T n –action.

2.5 Small covers

Again let P be an n–dimensional simple polytope. Replacing T n by .Z=2/n and Cn

by Rn in the definition of a quasitoric manifold, we obtain the notion of a small cover
over P ; for details, see Davis and Januszkiewicz [5]. Moreover, replacing Z by Z=2,
we define a real characteristic matrix on P . Then we can construct a small cover
RM.�/ from a real characteristic matrix �, in the same way as in Construction 2.6. We
denote the set of all real characteristic matrices on P by RƒP . Note that GL.n;Z=2/
acts on RƒP by left multiplication, and Aut.KP / acts by column permutation. As
in Section 1, we denote by RMP the set of all weakly equivariant homeomorphism
classes of small covers over P .
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Definition 2.14 Let us denote the map RƒP ! RMP , � 7! RM.�/ by R� , and
the quotient GL.n;Z=2/nRƒP by RXP . Then the right Aut.KP /–action on RƒP

descends to an action on RXP . We say that two real characteristic matrices on P are
equivalent if they are equal in RXP=Aut.KP /.

As for quasitoric manifolds, we get the following proposition for small covers.

Proposition 2.15 For any simple polytope P , R�W RƒP ! RMP , � 7! RM.�/

descends to a bijection R
x�W RXP=Aut.KP /! RMP .

Replacing D2 by the interval Œ�1; 1� and S1 by f1;�1g, we define the real moment-
angle manifold RZP . For a real characteristic matrix � on P , let S� be the kernel of
the epimorphism from .Z=2/m to .Z=2/n induced from �. In the same way as ZP ,
we see that the orbit space RZP=S� is equivariantly homeomorphic to RM.�/ with
respect to the action of .Z=2/m=S� , which is identified with .Z=2/n through the
epimorphism �W .Z=2/m! .Z=2/n . For example, there is a real characteristic matrix
�D .I j 1/ on �n . Since RZ�n D Sn and S� acts diagonally, we see that RM.�/ is
equivariantly homeomorphic to RPn with the standard .Z=2/n –action.

Then we have the classification of quasitoric manifolds and small covers over a simplex:

Corollary 2.16 For any positive integer n, M�n (resp. RM�n ) has only one element,
and it is represented by CPn (resp. RPn ) with the standard T n –action (resp. .Z=2/n –
action).

Let P be a simple n–polytope. If � is a characteristic matrix on P , then the modulo 2

reduction x� is a real characteristic matrix on P . The involution

T n
�P ! T n

�P; .t; q/ 7! .t�1; q/

descends to an involution on M.�/, and we call it the conjugation involution on M.�/.
Regarding (canonically) .Z=2/n as a subset of T n , we easily see that the fixed point set
for the conjugation involution is .Z=2/n –stable, and it is equivariantly homeomorphic
to RM.x�/. Then we can rephrase the lifting problem as follows.

Problem 2.17 For a real characteristic matrix � on a simple polytope P , is there a
characteristic matrix �0 on P such that � is the modulo-2 reduction of �0?

For a real characteristic matrix �D .�i;j / on P , let us define z�D .z�i;j / by z�i;j �

�i;j mod 2, so that z�i;j D 0; 1 for each i; j . Since the determinant of any three by
three matrix with each component zero or one is between �2 and 2, we see that, if the
dimension of P is not more than three, z� is a characteristic matrix on P . Then we
have the following proposition.
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Proposition 2.18 The answer to the lifting problem is affirmative for any real charac-
teristic matrix on a simple polytope of dimension � 3.

2.6 Cohomology

For the cohomology rings of a quasitoric manifold and a small cover, the following theo-
rems are known; see Davis and Januszkiewicz [5, Theorem 3.1] and [5, Theorem 4.14],
and also Buchstaber and Panov [1].

Definition 2.19 Let P be a simple n–polytope and fi be the number of .n� i � 1/–
dimensional faces of P . Then the integer vector .f0; : : : ; fn�1/ is called the f–vector
of P . We define the h–vector .h0; : : : ; hn/ of P by the equation

h0tn
C � � �C hn�1t C hn D .t � 1/nCf0.t � 1/n�1

C � � �Cfn�1

in the polynomial ring ZŒt �.

Note that, conversely, the h–vector of a simple polytope determines the f–vector.

Theorem 2.20 (Davis and Januszkiewicz) Let P be a simple n–polytope and let
.h0; : : : ; hn/ be the h–vector of P .

(i) Suppose that there exists a small cover M over P . Let bi.M / be the i th mod 2

Betti number of M , ie bi.M / WD dimZ=2 Hi.M IZ=2/. Then bi.M /D hi .

(ii) Suppose that there exists a quasitoric manifold M over P . The homology of M

vanishes in odd dimensions and is free in even dimensions. Let b2i.M / be the
2i th Betti number of M . Then b2i.M /D hi .

Let P be a simple polytope with m facets F1; : : : ;Fm and M be a quasitoric manifold
(resp. small cover) over P . We denote the projection from M to P by � . Then each
��1.Fi/ is a closed submanifold of dimension 2n� 2 (resp. n� 1).

Theorem 2.21 (Davis and Januszkiewicz) Let P be an n–dimensional simple poly-
tope with m facets and �D .�i;j / be a characteristic matrix on P , and put M WDM.�/.
Then the integral cohomology ring of M is given by

H�.M IZ/D ZŒv1; : : : ; vm�=.IP CJ�/;

where vi 2H 2.M IZ/ is the Poincaré dual of the closed submanifold ��1.Fi/, and
IP , J� are the ideals

IP D .vi1
� � � vik

j Fi1
\ � � � \Fik

D∅/;

J� D .�i;1v1C � � �C�i;mvm j i D 1; : : : ; n/:
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Remark 2.22 Let � and �0 be two characteristic matrices on P . If we assume
that G� D �0 , where G 2 GL.n;Z/, then J� D J�0 . Moreover, if G��� D �0 for
G 2GL.n;Z/, � 2Aut.KP / and �2 .Z=2/m , then the automorphism of ZŒv1; : : : ; vm�

induced by .v1; : : : ; vm/ 7! .v1; : : : ; vm/��
�1 maps IP CJ� into IP CJ�0 .

Theorem 2.23 (Davis and Januszkiewicz) Let P be an n–dimensional simple poly-
tope with m facets and � D .�i;j / be a real characteristic matrix on P , and put
M WD RM.�/. Then the mod 2 cohomology ring of M is given by

H�.M IZ=2/D .Z=2/Œv1; : : : ; vm�=.IP CJ�/;

where vi 2H 1.M IZ=2/ is the Poincaré dual of the closed submanifold ��1.Fi/ and
IP , J� are the ideals

IP D .vi1
� � � vik

j Fi1
\ � � � \Fik

D∅/;
J� D .�i;1v1C � � �C�i;mvm j i D 1; : : : ; n/:

Moreover, the following theorem is known for the total Stiefel–Whitney class w.M /

and the total Pontrjagin class p.M / of a quasitoric manifold or small cover M .

Theorem 2.24 (Davis and Januszkiewicz [5, Corollary 6.8]) With the notation in
Theorems 2.23 and 2.21, we have the following formulas:

(i) For a small cover M D RM.�/,

w.M /D

mY
iD1

.1C vi/ and p.M /D 1:

(ii) For a quasitoric manifold M DM.�/,

w.M /D

mY
iD1

.1C vi/ and p.M /D

mY
iD1

.1� v2
i /:

For convenience, in subsequent arguments we denote the integral cohomology ring
of M.�/ by H�.�/ for a characteristic matrix �. Similarly, for a real characteristic
matrix �0 , we denote the mod 2 cohomology ring of RM.�0/ by H�.�0/.

3 Cyclic polytopes and connected sums

First we review the definition of a cyclic polytope and its combinatorial structure. See
Ziegler [8] for details.
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3.1 Cyclic polytopes

Recall that a convex polytope is called simplicial if all facets are simplices. By
definition, the dual of a simplicial polytope is simple and vice versa. For a combinatorial
polytope P , we denote the dual of P by P� .

Given an increasing sequence t1 < � � �< tm of real numbers, let C n.t1; : : : ; tm/ be the
convex hull of m points

T1 WD .t1; t
2
1 ; : : : ; t

n
1 /; : : : ; Tm WD .tm; t

2
m; : : : ; t

n
m/

in Rn for n<m. Then C n.t1; : : : ; tm/ is an n–dimensional simplicial polytope with m

vertices T1; : : : ;Tm . The combinatorial structure of C n.t1; : : : ; tm/ is characterized
by the following result.

Theorem 3.1 (Gale’s evenness condition, [8, Theorem 0.7]) Let T denote the vertex
set fT1; : : : ;Tmg. Then an n–subset S � T forms a facet of C n.t1; : : : ; tm/ if and
only if any two elements in T nS are separated by an even number of elements from S

in the sequence .T1; : : : ;Tm/.

It follows immediately from this theorem that the combinatorial type of C n.t1; : : : ; tm/

depends only on m and n. Then we denote this combinatorial polytope by C n.m/

and call it the cyclic n–polytope with m vertices. In this paper, we are particularly
interested in the dual simple polytope C n.m/� . For convenience, we restate Gale’s
evenness condition in terms of C n.m/� .

Theorem 3.2 (dual evenness condition) There is an order of the facets of C n.m/� ,
say F1; : : : ;Fm , such that Fi1

; : : : ;Fin
meet at a vertex if and only if fi1; : : : ; ing is

the disjoint union of some Ij for j in f0; : : : ;mg, where Ij WD fj ; jC1g\f1; : : : ;mg.

3.2 Connected sums

Next we introduce the connected sum of characteristic (or real characteristic) matrices.
Let us first recall the connected sum of two combinatorial simple polytopes. For the
formal definition, see Buchstaber and Panov [1] and Ziegler [8, Section 2.6]. Let P

and Q be n–dimensional combinatorial simple polytopes with facets F1; : : : ;Fm1

and G1; : : : ;Gm2
respectively, and put F WD fF1; : : : ;Fm1

g and G WD fG1; : : : ;Gm2
g.

Take two vertices v 2 P and w 2Q. Denote the sets of the facets meeting at v and w
by Fv D fFi1

; : : : ;Fin
g and Gw D fGj1

; : : : ;Gjn
g respectively, and fix a one-to-one

correspondence � W fi1; : : : ; ing ! fj1; : : : ; jng. “Cutting off” the vertices v and w
from P and Q respectively, we obtain simple polytopes P 0 and Q0 , each of which has

Algebraic & Geometric Topology, Volume 15 (2015)



1400 Sho Hasui

a new simplex facet. Then, after a projective transformation, we can “glue” P 0 to Q0

along the simplex facets, using � . Thus we obtain the connected sum P #� Q, a simple
polytope the set of whose facets can be identified with F [� G , the quotient of the
equivalence relation �� on F qG defined by Fik

�� G�.ik/ (k D 1; : : : ; n). What is
important is that KP#�Q is identified with KP [� KQ n f�g as an abstract simplicial
complex on F [� G , where � denotes the simplex coming from fi1; : : : ; ing 2KP .

Moreover, suppose that there exist (real) characteristic matrices � D .�1; : : : ;�m1
/

and �0D .�01; : : : ;�0m2
/ on P and Q respectively. If they satisfy the condition �ik

D

�0�.ik/ for k D 1; : : : ; n, we obtain the connected sum � #� �0 , a (real) characteristic
matrix on P #�Q, as follows: Number the facets of P #�Q from 1 to m WDm1Cm2�n,
and define �#��0D .�001; : : : ;�00m/ by �00k WD�i if the k th facet of �#��0 corresponds
to Fi , and �00k WD �

0
j if the k th facet of � #� �0 corresponds to Gj . It is easy to

observe that M.� #� �0/ (resp. RM.� #� �0/) is homeomorphic to M.�/ # M.�0/

(resp. RM.�/ # RM.�0/) with respect to the proper orientations of M.�/ and M.�0/.

Conversely, suppose that a simple n–polytope P is decomposed into the connected
sum of simple polytopes P 0 , P 00 . Denote the facets of P by F1; : : : ;Fm . For
simplicity, we assume that the facets F1; : : : ;Fk come from P 0 and Fk�nC1; : : : ;Fm

from P 00 . Let � D .�1; : : : ;�m/ be a (real) characteristic matrix. If � satisfies the
condition det.�k�nC1; : : : ;�k/D˙1, then �D�0#� �00 , where �0D .�1; : : : ;�k/ and
�00 D .�k�nC1; : : : ;�m/ are (real) characteristic matrices on P 0 and P 00 respectively,
and � W fk � nC 1; : : : ; kg ! f1; : : : ; ng maps i to i C n � k . Thus we have the
following lemma.

Lemma 3.3 Let P be a simple n–polytope with m facets F1; : : : ;Fm and � be a
(real) characteristic matrix on P . Suppose that P is decomposed into the connected
sum of two simple polytopes P 0 , P 00 , and the n facets Fi1

; : : : ;Fin
come from both P 0

and P 00 . If the condition det�.i1;:::;in/ D ˙1 holds, then � is decomposed into the
connected sum of (real) characteristic matrices on P 0 and P 00 . In particular, M.�/

(resp. RM.�/) is decomposed into the connected sum of quasitoric manifolds (resp.
small covers) over P 0 and P 00 .

3.3 Conventions and remarks

In subsequent sections, we adopt the following conventions:

(i) If m� n> 2, we always label the facets of C n.m/� by F1; : : : ;Fm so that the
dual evenness condition (Theorem 3.2) works.

(ii) For an .n�m/–matrix �, we denote the minor det�.i1;:::;in/ by ji1; : : : ; inj� ,
or simply ji1; : : : ; inj if � is obvious.
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(iii) For a simple polytope P , we identify MP (resp. RMP ) with XP=Aut .KP /

(resp. RXP=Aut .KP /). Then, for an element ŒM � of MP (resp. RMP ), we
say that a (real) characteristic matrix � is a representative of ŒM � if M.�/

(resp. RM.�/) is a representative of ŒM �.

Note that since F1; : : : ;Fn meet at a vertex in C n.m/� , we can take a representative
of each element of XC n.m/� or RXC n.m/� of the form .I j �/, where I denotes the
unit matrix of size n and � denotes some .n� .m� n//–matrix. We will generally
take such a representative.

For a characteristic matrix �D .I j �/ on C n.m/� , the ideal J� in Theorem 2.21 is
reduced to

J� D .vi C�i;nC1vnC1C � � �C�i;mvm j i D 1; : : : ; n/:

Recall that a missing face of an abstract simplicial complex K on f1; : : : ;mg is a
minimal subset of f1; : : : ;mg which does not belong to K . Let us denote the set of
all missing faces of K by Miss.K/. Then for any simple polytope P , the ideal IP in
Theorem 2.21 is reduced to

IP D .vi1
� � � vik

j fi1; : : : ; ikg 2Miss.KP //:

Thus we can restate the theorem as follows.

Theorem 3.4 Let � D .�i;j / D .I j �/ be a characteristic matrix on C n.m/� . Set
v0i WD �i;nC1vnC1C� � �C�i;mvm 2ZŒvnC1; : : : ; vm� for i D 1; : : : ; n, and v0i WD vi for
i D nC 1; : : : ;m. Then the cohomology ring H�.�/DH�.M IZ/ is given by

H�.�/D ZŒvnC1; : : : ; vm�=I�;

where each vi has degree two and I� is the ideal

I� D .v0i1
� � � v0ik

j fi1; : : : ; ikg 2Miss.KP //:

We use this expression for the cohomology ring in subsequent sections.

4 Classification for C 2.m/�

C 2.m/� is obviously equal to the convex m–gon. As an application of the connected
sum operation, we consider the topological classification of quasitoric manifolds and
small covers over a convex polygon. This classification has already appeared in Davis
and Januszkiewicz [5], and for small covers, the proof below goes along the same
lines. Let us suppose that the facets F1; : : : ;Fm of the convex m–gon are numbered
clockwise. We will make use of the following easy lemmas.
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Lemma 4.1 Let � D .�1; : : : ;�m/ be a (real) characteristic matrix on the convex
m–gon. Suppose that i; j 2 f1; : : : ;mg (i < j ) satisfy ji; j j�D˙1 and Fi \Fj D∅.
Then, setting d WD j � i C 1, �0 WD .�i ; : : : ;�j / and �00 D .�j ; : : : ;�m;�1; : : : ;�i/

are (real) characteristic matrices on the convex d –gon and the convex .m�dC2/–gon
respectively. Moreover, � decomposes into the connected sum of �0 and �00 .

Proof It follows immediately from Lemma 3.3.

Lemma 4.2 For any integer matrix
�

a
b

c
d

�
of determinant ˙1, if jaj < jbj, then we

have jcj � jd j.

First, we consider the classification of small covers.

Theorem 4.3 If m> 4, any small cover over a convex polygon is homeomorphic to
the connected sum of copies of S1 �S1 and RP2 .

Proof Let � be a real characteristic matrix on the convex m–gon, where m> 4. First
we show that � is decomposed into the connected sum of real characteristic matrices
on two convex polygons. By the nonsingularity condition, we have j2; 3j D j1;mj D 1.
Then we can assume that � is of the form

�D

�
1 0 1 � � � b

0 1 a � � � 1

�
:

If a D 1, we have j1; 3j D 1. If a D 0, we have j3;mj D 1. Then we see that � is
decomposed into a connected sum by Lemma 4.1.

Denote the convex tetragon by P4 . By a direct calculation, we see that there exist
exactly two elements in RMP4

, which are represented by�
1 0 1 0

0 1 0 1

�
;

�
1 0 1 1

0 1 0 1

�
:

The left matrix corresponds to the small cover S1�S1 , and the right one is decomposed
into a connected sum. Then we obtain the theorem by induction on m.

By the classification theorem for closed surfaces, we obtain the topological classification
of small covers over a convex polygon as follows.

Corollary 4.4 A small cover over a convex polygon is homeomorphic to the connected
sum of copies of S1 �S1 or that of RP2 .
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Next, we consider quasitoric manifolds over a convex polygon. We will show their
topological classification without using the results of Orlik and Raymond [7].

Lemma 4.5 If m> 4, any characteristic matrix on the convex m–gon is decomposed
into the connected sum of characteristic matrices on two convex polygons.

Proof As in the proof of Theorem 4.3, we can assume that a characteristic matrix on
the convex m–gon has the form

�D

�
1 0 1 c1 � � � cm�4 b

0 1 a d1 � � � dm�4 1

�
:

If a D 0;˙1 or b D 0;˙1, we obtain the assertion by Lemma 4.1, so we assume
jaj> 1 and jbj> 1. Then, by Lemma 4.2, we have jci j D jdi j for some i . Since each
column vector is primitive, we have ci ; di D˙1 and therefore j1; i j D ˙1. Then the
proof is completed by Lemma 4.1.

By a direct calculation, we see that MP4
consists of the classes represented by

�k D

�
1 0 1 k

0 1 0 1

�
; �0 D

�
1 0 1 2

0 1 1 1

�
;

where k is an integer. We can see that M.�k/ is weakly equivariantly homeomorphic
to the Hirzebruch surface Hk , and M.�0/ is homeomorphic to CP2 # CP2 . Recall
that the Hirzebruch surface Hk is homeomorphic to S2 � S2 if k is even, and
homeomorphic to CP2 # CP2 if k is odd. Then we have the following theorem.

Theorem 4.6 A quasitoric manifold over a convex polygon is homeomorphic to a
connected sum of copies of CP2 , CP2 and S2 �S2 .

As is well-known, CP2 # .S2�S2/ is homeomorphic to CP2 # CP2 # CP2 . (This can
also be shown using characteristic matrices.) Then we obtain the classification below.

Corollary 4.7 A quasitoric manifold over a convex polygon is homeomorphic to a
connected sum of copies of S2 �S2 or a connected sum of copies of CP2 and CP2 .

Remark 4.8 Comparing their signatures, we obtain the cohomological rigidity of the
class consisting of the connected sums in Corollary 4.7. Namely, the class of quasitoric
manifolds over a convex polygon is cohomologically rigid.
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5 Classification for C 3.m/�

First, we list all maximal faces of KC 3.m/� :

f1; i; i C 1g .i D 2; : : : ;m� 1/

fi; i C 1;mg .i D 1; : : : ;m� 2/

Let F1; : : : ;Fm1
be the facets of C 3.m1/

� and F 0
1
; : : : ;F 0m2

those of C 3.m2/
� . Take

vertices v D F1 \Fm1�1 \Fm1
, w D F 0

1
\F 0

2
\F 0m2

, and put m WDm1Cm2 � 3.
The connected sum C 3.m1/

� #� C 3.m2/
� is equal to C 3.m/� , where

�W f1;m1� 1;m1g ! f1; 2;m2g; 1 7! 1; m1� 1 7! 2; m1 7!m2:

We label the facets of C 3.m1/
� #� C 3.m2/

� by F 00
1
; : : : ;F 00m as

F 001 D F1 D F 01; F 002 D F2; : : : F 00m1�2 D Fm1�2;

F 00m1�1 D Fm1�1 D F 02; F 00m1
D F 03; : : : F 00m�1 D F 0m2�1; F 00m D Fm1

D F 0m2
:

Then the dual evenness condition works for C 3.m1/
� #� C 3.m2/

� D C 3.m/� with
this labeling. We have the following lemma.

F1

F2 F3

F4

F5

F1

F2

F3 F4

F5

F6

Figure 1: The shapes of C 3.5/� and C 3.6/�

Lemma 5.1 Let � be a (real) characteristic matrix on C 3.m/� . If the condition
j1; k;mj� D ˙1 holds for some 2 < k < m � 1, then � is decomposed into the
connected sum of two characteristic matrices on C 3.kC 1/� and C 3.m� kC 2/� .

Proof This follows immediately from Lemma 3.3 and the above discussion.

Definition 5.2 A (real) characteristic matrix on C 3.m/� is said to be decomposable
if the condition j1; k;mj� D˙1 holds for some 2 < k <m� 1; otherwise it is said
to be indecomposable. Moreover, we say that a quasitoric manifold over C 3.m/� is
decomposable (resp. indecomposable) if the corresponding (real) characteristic matrix
is decomposable (resp. indecomposable).
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Lemma 5.3 If m > 5, Aut.KC 3.m/�/ is generated by � D
�

1
m

2
m�1

���

���

m�1
2

m
1

�
and

� D .1 m/, and if mD 5, it is generated by
�

1
3

2
4

3
5

4
2

5
1

�
and .1 5/.

Proof First, we can directly check that these permutations certainly give automor-
phisms of KC 3.m/� . Considering the number of vertices of each facets, we see that there
exists no other permutation of f1; : : : ; 5g which can be an automorphism of KC 3.5/� .
Similarly, for any � 2 Aut.KC 3.m/�/ for m> 5, we have f�.1/; �.m/g D f1;mg and
f�.2/; �.m�1/gD f2;m�1g. Composing � with � and � if necessary, we can assume
that �.1/ D 1, �.2/ D 2, �.m� 1/ D m� 1, �.m/ D m. Then we have �.3/ D 3

since �.f1; 2; 3g/D f1; 2; �.3/g 2KC 3.m/� and �.3/¤m. In the same way, we have
�.4/D 4; : : : ; �.m� 2/Dm� 2.

Let us remark that the action of Aut.KC 3.m/�/ preserves decomposability/indecomposa-
bility of (real) characteristic matrices. Then we say that an element M of MC 3.m/�

(resp. RMC 3.m/� ) is decomposable/indecomposable if a representative (real) charac-
teristic matrix of M is decomposable/indecomposable.

To classify quasitoric manifolds over C 3.6/� topologically, we start by listing all inde-
composable characteristic matrices on C 3.6/� up to equivalence. Then we will show
that the class of indecomposable quasitoric manifolds over C 3.6/� is cohomologically
rigid, ie their homeomorphism classes are distinguished by their cohomology rings.
In the statement of Proposition 5.4, by a matrix � we mean the whole characteristic
matrix .I j �/.

Proposition 5.4 All indecomposable elements of XC 3.6/� are represented by the
characteristic matrices

�1 D

0@ 0 0 1

1 1 2

2 1 1

1A; �01 D
0@ 0 0 1

1 2 3

1 1 1

1A;
�2 D

0@ 1 1 1

1 1 2

2 1 1

1A; �02 D
0@–1 –1 1

1 1 –2

1 0 1

1A; �002 D
0@ 0 1 1

1 1 3

1 0 1

1A; �0002 D
0@ 0 1 1

1 2 3

1 1 1

1A;
�d D

0@ 0 0 1

1 1 d

1 0 1

1A;
where d � �2 or d � 3, and the actions of �; � 2 Aut .KC 3.6/�/ are illustrated as
follows:
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�1

�

��

�

��

�2

�

��

�
// �0

2
oo

�

��

�d

�

��

�

��

�0
1

�

TT

OO

�00
2

OO

�
// �000

2
oo

OO

�1�d

�

VV

OO

Proof Let � be an indecomposable characteristic matrix on C 3.6/� . As j1; 3; 4jD˙1,
j1; 2; 6j D ˙1 and j2; 3; 6j D ˙1, we can assume that � has the form

�D

0@1 0 0 a1 b1 1

0 1 0 1 b2 c2

0 0 1 a3 b3 1

1A:
Moreover, a3 ¤ 0 from the indecomposability, and then we can assume a3 > 0 by
multiplication by �1 on the second and fourth columns and the middle row, if necessary.
Similarly, from the indecomposability, we have c2¤ 0;˙1. If a3D 1, we have c2 � 3

or c2 ��2, once more from the indecomposability. If a3 � 2, we obtain b2; b3 D˙1

by Lemma 4.2, and hence we have a3 D 2. By multiplication with �1 on the fifth
column if necessary, we can assume b2 D b3 D 1.

To summarize, we only have to consider two cases, (i) a3 D 1 and c2 � 3 or c2 � �2

and (ii) a3D c2D 2 and b2D b3D 1. By a direct calculation, in case (i) we obtain the
characteristic matrices �0

1
, �0

2
, �00

2
, �000

2
and �d for d � �2 or d � 3 in the statement.

Similarly, in case (ii) we obtain �1 and �2 .

Then we take M1 WD M.�0
1
/, M2 WD M.�000

2
/ and Md WD M.�d / for d � 3, and

also A1 WD H�.�0
1
/, A2 WD H�.�000

2
/ and Ad WD H�.�d / for d � 3. Notice that

Miss.KC 3.6/�/ consists of f2; 4g, f2; 5g, f3; 5g, f1; 3; 6g and f1; 4; 6g, so IC 3.6/� in
Theorem 2.21 is generated by v2v4 , v2v5 , v3v5 , v1v3v6 and v1v4v6 . Then, putting
X WD v4 , Y WD v5 , Z WD v6 in Theorem 3.4, we have

Ai D ZŒX;Y;Z�=.I4
i C I6

i /;

where I4
i and I6

i are the ideals

I4
1 D I4

2 D
�
X.X C 2Y C 3Z/;Y .X C 2Y C 3Z/;Y .X CY CZ/

�
;

I6
1 D

�
Z2.X CY CZ/;Z2X

�
;

I6
2 D

�
Z.Y CZ/.X CY CZ/;ZX.Y CZ/

�
;

I4
d D

�
X.X CY C dZ/;Y .X CY C dZ/;Y .X CZ/

�
;
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I6
d D

�
Z2.X CZ/;Z2X

�
:

Suppose that there exists a graded ring isomorphism from Ai to Aj , and denote
it by � . We may regard � as a graded ring automorphism of ZŒX;Y;Z� such
that �..I4

i C I6
i // � .I4

j C I6
j /. We put �.X / D a1X C b1Y C c1Z , �.Y / D

a2X C b2Y C c2Z and �.Z/ D a3X C b3Y C c3Z , and write a D .a1; a2; a3/,
b D .b1; b2; b3/ and c D .c1; c2; c3/. Thus we may denote � by the matrix .ta; tb; tc/.

Lemma 5.5 If i D 1; 2 and j D d � 3, then c �˙.1; 1; 1/ mod 3.

Proof Since Z2 does not appear in I4
d

, the coefficients of Z2 in �.X.XC2YC3Z//,
�.Y .X C 2Y C 3Z// and �.Y .X CY CZ// are zero. Hence we obtain

(1)

0@c1.c1C 2c2C 3c3/

c2.c1C 2c2C 3c3/

c2.c1C c2C c3/

1AD 0:

Similarly, comparing the coefficients of X 2 and those of ZX in �.X.XC2Y C3Z//,
�.Y .X C 2Y C 3Z// and �.Y .X CY CZ//, we obtain

(2) d

0@c1.a1C 2a2C 3a3/C a1.c1C 2c2C 3c3/

c2.a1C 2a2C 3a3/C a2.c1C 2c2C 3c3/

c2.a1C a2C a3/C a2.c1C c2C c3/

1AD
0@a1.a1C 2a2C 3a3/

a2.a1C 2a2C 3a3/

a2.a1C a2C a3/

1A :
From (1), we see that c�˙.0; 0; 1/;˙.1; 1; 1/ mod 3. If we assume that c� .0; 0; �/

mod 3, where � D˙1, then (2) reduces to

d

0@ 0

0

�a2

1A�
0@ a1.a1C 2a2/

a2.a1C 2a2/

a2.a1C a2C a3/

1A mod 3:

If a1 � 0 mod 3, one has 2a2
2
� 0 mod 3. This is a contradiction since a and c are

linearly independent modulo 3, and thus a1 6� 0 mod 3. By an analogous argument,
we see that a2 6� 0 mod 3, implying a1 � a2 mod 3 by a1C 2a2 � 0 mod 3.

� In the case that d � 0 mod 3, a�˙.1; 1; 1/ mod 3. Then we have �.X �Y /�

.b1 � b2/Y mod 3, but this is a contradiction since .X � Y /2 � 0 mod 3 in Ai and
Y 2 6� 0 mod 3 in Ad .

� In the case that d � 1 mod 3, �.X.X C 2Y // � a1.b1C 2b2/XY mod .I4
d
; 3/,

but a1.b1C 2b2/XY 6 2 .I4
d
; 3/. This is a contradiction.

� In the case that d � 2, there exists no isomorphism � since Ai mod 3 has a
homogeneous nonzero element ˛ of degree two such that ˛2 D 0 but Ad mod 3 does
not.
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Proposition 5.6 Ai is not isomorphic to Ad for i D 1; 2 and d � 3.

Proof From (1) and the previous lemma, we obtain cD˙.1;�2; 1/. Considering ��
instead of � if necessary, we can assume c D .1;�2; 1/. Then (2) reduces to

d

0@ a1C 2a2C 3a3

�2.a1C 2a2C 3a3/

�2.a1C a2C a3/

1AD
0@a1.a1C 2a2C 3a3/

a2.a1C 2a2C 3a3/

a2.a1C a2C a3/

1A:
Since a and c are linearly independent, we have a1C2a2C3a3¤0 or a1Ca2Ca3¤0.

� If a1C2a2C3a3¤0, we obtain a1Dd and a2D�2d . Then, considering the com-
ponent of ZX in �.X.XC2Y C3Z//2A4

d
with respect to the basis fZ2;YZ;ZX g

of A4
d

, we obtain .a3 � d/.1� d2/ D 0. Hence a3 D d and then a D d.1;�2; 1/,
which is a contradiction.

� If a1C a2C a3 ¤ 0, we obtain a2 D�2d . If a1 D d , we find a contradiction in
the same way as above, so we must have a1C 2a2C 3a3 D 0. Then

�.Y .X C 2Y C 3Z//� .b1C 2b2C 3b3/.b2� 2/.1� d/YZ mod I4
d ;

so b2 D 2 and .a2; b2; c2/D 2.�d; 1;�1/, which is a contradiction.

Proposition 5.7 For any d; d 0 � 3, Ad and Ad 0 are isomorphic if and only if d D d 0 .

Proof Clearly, we only have to consider the case d < d 0 and prove that there exists
no graded ring isomorphism from Ad to Ad 0 . Let us assume that there exists a graded
ring isomorphism �W Ad !Ad 0 given by0@�.X /�.Y /

�.Z/

1AD
0@a1 b1 c1

a2 b2 c2

a3 b3 c3

1A0@X

Y

Z

1A
and put a D .a1; a2; a3/, b D .b1; b2; b3/, c D .c1; c2; c3/. From �.Y .X CZ// D

�.X.X CY C dZ//D �.Y .X CY C dZ//D 0 in Ad 0 , we obtain

0D c2.c1C c3/;

0D a2.c1C c3/C c2.a1C a3/� d 0a2.a1C a3/;

0D c1.c1C c2C dc3/;

0D a1.c1C c2C dc3/C c1.a1C a2C da3/� d 0a1.a1C a2C da3/;

0D c2.c1C c2C dc3/;

0D a2.c1C c2C dc3/C c2.a1C a2C da3/� d 0a2.a1C a2C da3/:
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If we assume c2¤ 0, we have c1Cc3D c1Cc2Cdc3D 0, so cD˙.�1; 1�d; 1/. If
a1Ca2Cda3¤0, then d 0a1D˙1, which is a contradiction. Hence a1Ca2Cda3D0.
Similarly, a1C a3 D 0. However, these equations contradict the linear independence
of a and c . Therefore, we obtain c2 D 0 and c1.c1C dc3/D 0.

If c1 D 0, then we have c D ˙.0; 0; 1/. In a similar way as above, we can find a
contradiction if a1¤ 0 or a2¤ 0. Hence we obtain aD˙.0; 0; 1/, but this contradicts
the linear independence of a and c . If c1C dc3 D 0, we find a contradiction in the
same manner.

Proposition 5.8 M1 and M2 are homeomorphic.

To prove this proposition, we use Jupp’s classification theorem for closed, oriented, one-
connected 6–manifolds with torsion-free cohomology [6]. While there is a complete
classification of such 6–manifolds, to prove Proposition 5.8 we only need the following
special case.

Theorem 5.9 [6] Let M , N be closed, one-connected, smooth 6–manifolds with
torsion-free cohomology. If a graded ring isomorphism �W H�.N IZ/!H�.M IZ/
preserves the second Stiefel–Whitney classes and the first Pontrjagin classes, then there
exists a homeomorphism f W M !N which induces � in cohomology.

Proof of Proposition 5.8 Let us define a graded ring automorphism � of ZŒX;Y;Z�
by 0@�.X /�.Y /

�.Z/

1AD
0@1 1 0

0 –1 0

0 1 1

1A0@X

Y

Z

1A:
We easily see that �.I4

1
C I6

1
/ � .I4

2
C I6

2
/, and then � descends to a graded ring

isomorphism from A1 to A2 . Using Theorem 2.24, we also see that � maps the second
Stiefel–Whitney class and the first Pontrjagin class of M1 to those of M2 . Hence, by
Theorem 5.9, there exists a homeomorphism between M1 and M2 which induces �
in cohomology.

Next, let � be an indecomposable characteristic matrix on C 3.6/� and �0 a decompos-
able one.

Proposition 5.10 H�.�/ and H�.�0/ are not isomorphic as graded rings.

Algebraic & Geometric Topology, Volume 15 (2015)



1410 Sho Hasui

Proof First, we consider the case H�.�/DAi for i D 1; 2. If we assume that Ai Š

H�.�0/, we can take a basis fw1; w2; w3g of A2
i ŠH 2.�0/ such that w1w2Dw1w3D

0 and w3
1

spans A6
i , because �0 is decomposable. Put wj D aj X C bj Y C cj Z for

j D 1; 2; 3 and V D hw2; w3i. Let us take fYZ;ZX;Z2g as a basis of A4
i . Then we

have c1c2D c1c3D 0 from the coefficients of Z2 in the equation w1w2Dw1w3D 0.

� If c1 ¤ 0, we have c2 D c3 D 0 and c1 D˙1. Hence X;Y 2 V . However, there
occurs a contradiction since 0D w1X � .a1C b1/YZC c1ZX 6� 0 mod 3.

� If c1 D 0, we obtain a1.c2 � 3a2/ D a1.c3 � 3a3/ D 0 from the coefficients of
ZX in w1w2 D w1w3 D 0. Since .c1; c2; c3/ is primitive, we obtain a1 D 0, and
then w1 D˙Y . However, Y 3 D �2Y 2Z in Ai , so this contradicts the assumption
that w3

1
spans A6

i .

Next, we consider the case H�.�/D Ad for d � 3. Let us assume that there exists
a basis fw1; w2; w3g of A2

d
as above and put again wj D aj X C bj Y C cj Z , V D

hw2; w3i. Then similarly c1c2 D c1c3 D 0.

� If c1 ¤ 0, we obtain c2 D c3 D 0, c1 D ˙1 and X;Y 2 V . Then we have the
equation w1X D .a1� b1/YZC .c1� da1/ZX D 0, but this is a contradiction since
da1 ¤ c1 D˙1.

� If c1 D 0, we obtain a1 D 0 in the same way as for Ai .i D 1; 2/. However,
Y 3 D .1� d/Y 2Z in Ad , so this also contradicts the assumption.

Finally, we show that two decomposable quasitoric manifolds over C 3.6/� are homeo-
morphic if their cohomology rings are isomorphic, using the cohomological rigidity of
quasitoric manifolds over C 3.5/� D�1 ��2 . As remarked in Section 1, this rigidity
has been shown by Choi, Park and Suh [3].

Proposition 5.11 Let M DM1#M2 and N DN1#N2 , where M1 , N1 are quasitoric
manifolds over C 3.4/� and M2 , N2 over C 3.5/� . If the cohomology rings of M

and N are isomorphic as graded rings, then M and N are homeomorphic.

Proof Note that M1 and N1 are homeomorphic to CP3 . We can naturally consider
H 2.M / D H 2.M1/˚H 2.M2/. Then take a basis fu1;u2;u3g of H 2.M / such
that u1 is a basis of H 2.M1/ and fu2;u3g is a basis of H 2.M2/. We take a basis
fv1; v2; v3g of H 2.N / in a similar way. Assume that there exists a graded ring
isomorphism �W H�.M / ! H�.N /, and write �.ui/ D aiv1 C biv2 C civ3 for
i D 1; 2; 3. Then the matrix
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0@a1 b1 c1

a2 b2 c2

a3 b3 c3

1A
is invertible.

� If a1 D 0, then from u1u2 D u1u3 D 0 and v1v2 D v1v3 D 0 we have that
.b1v2Cc1v3/.b2v2Cc2v3/D .b1v2Cc1v3/.b3v2Cc3v3/D0. Since b1v2Cc1v3¤0,
b2v2 C c2v3 and b3v2 C c3v3 are linearly dependent. Therefore, we can take B 2

GL.2;Z/ such that

B

�
a2 b2 c2

a3 b3 c3

�
D

�
0 b0

2
c0

2

1 0 0

�
:

(Notice that b2v2Cc2v3 and b3v2Cc3v3 are linearly dependent, but a2v1Cb2v2Cc2v3

and a3v1Cb3v2Cc3v3 are linearly independent.) Then we see that v0
2
WD b1v2Cc1v3

and v0
3
WD b0

2
v2C c0

2
v3 form a basis of H 2.N2/. Moreover, since v0

2
D �.u1/ and

v0
3

is a linear combination of �.u2/ and �.u3/, we have v0
2
v0

3
D 0. Since quasitoric

manifolds over C 3.5/� are cohomologically rigid, N2 is homeomorphic to CP3#CP3 ,
and therefore N is homeomorphic to CP3 # CP3 # CP3 .

Similarly, taking .u0
2
;u0

3
/D ��1.v0

3
; v1/, u0

2
and u0

3
are in H 2.M2/ since u1u0

2
D

��1.v0
2
v0

3
/ D 0, u1u0

3
D ��1.v0

2
v1/ D 0. Thus fu0

2
;u0

3
g is a basis of H 2.M2/ and

u0
2
u0

3
D 0, so M is also homeomorphic to CP3 # CP3 # CP3 .

� If a1 ¤ 0, similarly we have a2 D a3 D 0. Then we see that the correspondence
u2 7! b2v2Cc2v3 , u3 7! b3v2Cc3v3 provides an isomorphism H�.M2/!H�.N2/.
Therefore, from the cohomological rigidity of quasitoric manifolds over C 3.5/� , M2

is homeomorphic to N2 . Since M1 DN1 DCP3 , M and N are also homeomorphic.

Then we see that M is homeomorphic to N in each case.

We obtain the following theorem.

Theorem 5.12 Over C 3.6/� , there exist countably infinite quasitoric manifolds up to
homeomorphism and they are distinguished by their integral cohomology rings.

The classification of quasitoric manifolds over C 3.6/� is comparatively easy since
indecomposable characteristic matrices are almost parametrized by one integer d ,
but it is more complicated for C 3.m/� with m > 6. There are countably infinite
indecomposable characteristic matrices on C 3.m/� up to equivalence, and for large m,
it seems hard to list them all. Then, for the time being, let us consider the classification
of small covers over C 3.m/� .
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Lemma 5.13 For m> 5, any real characteristic matrix on C 3.m/� is decomposable.

Proof Let � be a real characteristic matrix on C 3.m/� for m > 5. We can assume
that � is of the form

�D

0@1 0 0 a1 b1 � � � 1

0 1 0 1 b2 � � � c2

0 0 1 a3 b3 � � � 1

1A;
since j1; 2; 3j D j1; 3; 4j D j1; 2;mj D j2; 3;mj D 1. If c2D 1, then j1; 3;mj D 1, so �
is decomposable. Otherwise, if c2 D 0, then j1; 4;mj D 1. Hence � is decomposable.

Then we list all indecomposable real characteristic matrices over C 3.m/� for mD 4; 5

up to equivalence:

� On C 3.4/� , there exists only one real characteristic matrix

�D

0@1 0 0 1

0 1 0 1

0 0 1 1

1A
up to equivalence, and the corresponding small cover is RP3 .

� On C 3.5/�D�1��2 , there exist two indecomposable real characteristic matrices
up to equivalence,

�1 D

0@1 1 0 0 0

0 0 1 0 1

0 0 0 1 1

1A and �2 D

0@1 1 0 0 0

0 1 1 0 1

0 1 0 1 1

1A;
where we label the facets F1; : : : ;F5 so that F1 , F2 correspond to the facets of �1

and F3 , F4 , F5 to those of �2 .

Using the real moment-angle manifold RZ�1��2 D S1 � S2 , we easily see that
RM.�1/ is homeomorphic to RP1 �RP2 . Moreover, we can construct a homeomor-
phism from RM.�2/ to RM.�1/ explicitly, as the map induced by

S1
�S2

! S1
�S2;

.z1; z2; w1; w2; w3/ 7! .z1; z2; z1w1C z2w2;�z2w1C z1w2; w3/;

which is a weakly equivariant homeomorphism with respect to the free action of S�2

on the domain, and that of S�1
on the codomain. Here each S�i

denotes the kernel of
�i W .Z=2/5! .Z=2/3 for i D 1; 2. This construction follows the one for quasitoric
manifolds over �1 ��n by Choi, Park and Suh [3].
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Then we obtain the topological classification of small covers over C 3.m/� .

Theorem 5.14 For any m > 3, a small cover over C 3.m/� is homeomorphic to the
connected sum of copies of RP3 and RP1

�RP2 .

6 Small covers of higher dimensions

In this section, we list all real characteristic matrices over the dual cyclic polytopes
of dimension n � 4. As noted in Section 1, we only consider the case m� n � 3,
where m denotes the number of facets. We will use the following easy lemma.

Lemma 6.1 If there exists a (real) characteristic matrix � on C nC1.mC 1/� of the
form

�D

0BBB@
1 a2 � � � am

0
::: A
0

1CCCA;
then A is a (real) characteristic matrix on C n.m/� .

Proof It follows immediately from Gale’s evenness condition: If fi1; : : : ; ing is a
simplex of KC n.m/� , then f1; i1C1; : : : ; inC1g is a simplex of KC nC1.mC1/� . Hence
we have

ji1; : : : ; injA D j1; i1C 1; : : : ; inC 1j� D˙1

for any fi1; : : : ; ing 2KC n.m/� .

Proposition 6.2 If n� 4 and m� n� 4, there exists no real characteristic matrix on
C n.m/� .

Proof By the previous lemma, we only have to prove that there exists no real char-
acteristic matrix on C 4.m/� if m� 8. Assume that there exists a real characteristic
matrix � on C 4.m/� for m� 8. All the maximal faces of KC 4.m/� are

f1; i; i C 1;mg .i D 2; 3; : : : ;m� 2/;

fi; i C 1; j ; j C 1g .1� i < j � 1�m� 2/:

We can assume that � is of the form0BB@
1 0 0 0 1 b1 c1 � � � d1

0 1 0 0 a2 b2 c2 � � � 1

0 0 1 0 1 b3 c3 � � � d3

0 0 0 1 a4 b4 c4 � � � 1

1CCA:
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Let us consider the four cases a D .1; 0; 1; 0/, a D .1; 1; 1; 1/, a D .1; 1; 1; 0/ and
aD .1; 0; 1; 1/ separately, where a WD .1; a2; 1; a4/.

Case 1 If aD .1; 0; 1; 0/, � is of the form0BB@
1 0 0 0 1 b1 c1 � � � d1

0 1 0 0 0 b2 c2 � � � 1

0 0 1 0 1 b3 c3 � � � d3

0 0 0 1 0 b4 c4 � � � 1

1CCA:
From the nonsingularity condition, we have

1D j1; 2; 5; 6j D b4; 1D j3; 4; 5; 6j D b2:

Then we have j1; 5; 6;mj D 0, but this contradicts the nonsingularity condition.

Case 2 If aD .1; 1; 1; 1/, � is of the form0BB@
1 0 0 0 1 b1 c1 � � � d1

0 1 0 0 1 b2 c2 � � � 1

0 0 1 0 1 b3 c3 � � � d3

0 0 0 1 1 b4 c4 � � � 1

1CCA:
From the nonsingularity condition, we have

1D j1; 2; 5; 6j D b3C b4; 1D j2; 3; 5; 6j D b1C b4; 1D j3; 4; 5; 6j D b1C b2:

Therefore b WD .b1; b2; b3; b4/ is .1; 0; 1; 0/ or .0; 1; 0; 1/. In each case, we have the
contradiction 1D j1; 5; 6;mj D 0.

Case 3 If aD .1; 1; 1; 0/, � is of the form0BB@
1 0 0 0 1 b1 c1 � � � d1

0 1 0 0 1 b2 c2 � � � 1

0 0 1 0 1 b3 c3 � � � d3

0 0 0 1 0 b4 c4 � � � 1

1CCA:
From the nonsingularity condition, we have b4D1, b1Cb2D1, d3D0 and b2Cb3D0.
Therefore b is .0; 1; 1; 1/ or .1; 0; 0; 1/.

� In the case that bD .0; 1; 1; 1/, we have 1Dj1; 2; 6; 7jDc3Cc4 , 1Dj2; 3; 6; 7jDc1

and 1Dj4; 5; 6; 7jD c2Cc3 . In particular, we have c2D c4 . Then 1Dj1; 6; 7;mjD 0,
which is a contradiction.

� In the case that bD .1; 0; 0; 1/, we have 1D j1; 2; 6; 7j D c3 , 1D j3; 4; 6; 7j D c2 ,
and then 1D j4; 5; 6; 7j D 0. This is a contradiction.
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Case 4 If aD .1; 0; 1; 1/, � is of the form0BB@
1 0 0 0 1 b1 c1 � � � d1

0 1 0 0 0 b2 c2 � � � 1

0 0 1 0 1 b3 c3 � � � d3

0 0 0 1 1 b4 c4 � � � 1

1CCA:
From the nonsingularity condition, we have b3C b4 D 1, b1C b4 D 1, b2 D 1, and
then d3 D 1. Therefore b is .0; 1; 0; 1/ or .1; 1; 1; 0/.

� In the case that bD .0; 1; 0; 1/, we have 1D j1; 2; 6; 7j D c3; 1D j2; 3; 6; 7j D c1 ,
and then j4; 5; 6; 7j D 0. This is a contradiction.

� In the case that bD .1; 1; 1; 0/, we have 1Dj1; 2; 6; 7jDc4 , 1Dj3; 4; 6; 7jDc1Cc2

and 1D j4; 5; 6; 7j D c1C c3 . In particular, we have c2 D c3 , whence j1; 6; 7;mj D 0,
which is a contradiction.

Next, we will determine all real characteristic matrices on C 4.7/� . Note that the
maximal faces of KC 4.7/� are

f1; 2; 3; 4g; f2; 3; 4; 5g; f1; 2; 4; 5g; f1; 3; 4; 7g; f1; 2; 3; 7g;

f1; 2; 5; 6g; f1; 2; 6; 7g; f2; 3; 5; 6g; f2; 3; 6; 7g; f3; 4; 5; 6g;

f3; 4; 6; 7g; f1; 4; 5; 7g; f1; 5; 6; 7g; f4; 5; 6; 7g:

Proposition 6.3 RXC 4.7/� has exactly two elements, and they are represented by the
matrices 0BB@

1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

1CCA;
0BB@

1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1

1CCA:
Proof It is straightforward to check that the above two matrices are real characteristic
matrices on C 4.7/� . Then we prove that there exists no other real characteristic matrix
on C 4.7/� up to the action of GL.4;Z=2/. As in the proof of the previous proposition,
we can write a real characteristic matrix on C 4.7/� of the form

�D

0BB@
1 0 0 0 1 b1 c1

0 1 0 0 a2 b2 1

0 0 1 0 1 b3 c3

0 0 0 1 a4 b4 1

1CCA:
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We consider again the cases a D .1; 0; 1; 0/, a D .1; 1; 1; 1/, a D .1; 1; 1; 0/ and
aD .1; 0; 1; 1/ separately, where a WD .1; a2; 1; a4/. We can see that the first two cases
lead to contradictions by setting mD 7 in the previous proof.

Case 3 If aD .1; 1; 1; 0/, � is of the form0BB@
1 0 0 0 1 b1 c1

0 1 0 0 1 b2 1

0 0 1 0 1 b3 c3

0 0 0 1 0 b4 1

1CCA:
From the nonsingularity condition, we have

1D j1; 2; 5; 6j D b4; 1D j3; 4; 5; 6j D b1C b2; 1D j1; 4; 5; 7j D c3C 1;

1D j1; 5; 6; 7j D b2C b3C 1; 1D j1; 2; 6; 7j D b3:

Therefore b WD .b1; b2; b3; b4/ is .0; 1; 1; 1/. We also have c1 D j2; 3; 6; 7j D 1, so �
is equal to the left matrix in the statement.

Case 4 If aD .1; 0; 1; 1/, � is of the form0BB@
1 0 0 0 1 b1 c1

0 1 0 0 0 b2 1

0 0 1 0 1 b3 c3

0 0 0 1 1 b4 1

1CCA:
From the nonsingularity condition, we have

1D j1; 2; 5; 6j D b3C b4; 1D j2; 3; 5; 6j D b1C b4; 1D j3; 4; 5; 6j D b2;

1D j1; 5; 6; 7j D c3; 1D j4; 5; 6; 7j D c1C 1:

Therefore c WD .c1; c2; c3; c4/ is .0; 1; 1; 1/. We also have b1 D j3; 4; 6; 7j D 1, so �
is equal to the right matrix in the statement.

Corollary 6.4 RXC 5.8/� has exactly two elements, and they are represented by the
matrices 0BBBB@

1 0 0 0 0 0 0 1

0 1 0 0 0 1 0 1

0 0 1 0 0 1 1 1

0 0 0 1 0 1 1 0

0 0 0 0 1 0 1 1

1CCCCA;
0BBBB@

1 0 0 0 0 0 0 1

0 1 0 0 0 1 1 0

0 0 1 0 0 0 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 0 1

1CCCCA:
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Proof We can easily check that the above two matrices satisfy the nonsingularity
condition for C 5.8/� . Let � be a real characteristic matrix on C 5.8/� . By Lemma 6.1,
we can assume that � is of the form0BBBB@

1 0 0 0 0 a b 1

0 1 0 0 0 1 0 1

0 0 1 0 0 1 1 1

0 0 0 1 0 1 1 0

0 0 0 0 1 0 1 1

1CCCCA or

0BBBB@
1 0 0 0 0 a b 1

0 1 0 0 0 1 1 0

0 0 1 0 0 0 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 0 1

1CCCCA:

In the former case, the nonsingularity condition provides

1D j2; 3; 6; 7; 8j D aC bC 1; 1D j4; 5; 6; 7; 8j D aC 1:

Hence � is equal to the left matrix in the statement.

In the latter case, the nonsingularity condition provides

1D j2; 3; 6; 7; 8j D aC 1; 1D j3; 4; 6; 7; 8j D aC bC 1:

Hence � is equal to the right matrix in the statement.

For any matrix of the form0BBBBBBB@

1 0 0 0 0 0 1 a b

0 1 0 0 0 0 0 0 1

0 0 1 0 0 0 1 0 1

0 0 0 1 0 0 1 1 1

0 0 0 0 1 0 1 1 0

0 0 0 0 0 1 0 1 1

1CCCCCCCA
or

0BBBBBBB@

1 0 0 0 0 0 1 a b

0 1 0 0 0 0 0 0 1

0 0 1 0 0 0 1 1 0

0 0 0 1 0 0 0 1 1

0 0 0 0 1 0 1 1 1

0 0 0 0 0 1 1 0 1

1CCCCCCCA
;

it is obvious that j3; 4; 5; 6; 7; 8j D 0. Then we have the following corollary.

Corollary 6.5 There exists no real characteristic matrix on C n.nC 3/� for n> 5.

7 Classification for C 4.7/�

In the previous section, we showed that there are exactly two real characteristic matrices
on C 4.7/� up to the left GL.4;Z=2/–action, and they are represented by the matrices

x�D

0BB@
1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

1CCA; x�0 D
0BB@

1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1

1CCA:
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In a way similar to the proof of Lemma 5.3, it is shown that Aut .KC 4.7/�/ is generated
by

� D

�
1 2 3 4 5 6 7

2 3 4 5 6 7 1

�
and � D

�
1 2 3 4 5 6 7

7 6 5 4 3 2 1

�
:

Note that Aut .KC 4.7/�/ acts on RXC 4.7/� by �.x�/D x�, �.x�0/D x�0 and �.x�/D x�0 .
Then we have the following proposition.

Proposition 7.1 There exists only one small cover over C 4.7/� up to weakly equi-
variant homeomorphism.

Let p denote the map XC 4.7/�! RXC 4.7/� induced from the modulo 2 reduction. We
see that p�1.x�/=h�i corresponds to XC 4.7/�=Aut .KC 4.7/�/, so first we have to list
all elements of p�1.x�/.

Proposition 7.2 There are exactly twenty-eight elements in p�1.x�/, which are repre-
sented by the characteristic matrices

�1 D

0BB@
1 0 –1

–1 1 1

1 1 0

0 1 1

1CCA; �2 D

0BB@
1 2 1

1 1 1

1 1 0

0 1 1

1CCA; �3 D

0BB@
1 0 1

1 1 1

1 1 0

2 1 1

1CCA; �4 D

0BB@
1 2 1

1 3 1

1 1 0

2 3 1

1CCA;

�5 D

0BB@
1 0 1

1 1 1

1 1 0

0 –1 1

1CCA; �6 D

0BB@
1 2 1

1 3 1

1 1 0

0 1 1

1CCA; �7 D

0BB@
1 0 1

1 –1 1

1 1 0

2 1 1

1CCA; �8 D

0BB@
1 2 1

1 1 1

1 1 0

2 3 1

1CCA;

�9 D

0BB@
1 0 1

1 1 1

1 1 0

0 1 1

1CCA; �10 D

0BB@
1 –2 –1

–1 1 1

1 1 0

0 1 1

1CCA; �11 D

0BB@
1 0 –1

1 1 1

1 1 0

0 1 1

1CCA; �12 D

0BB@
1 0 1

3 1 1

1 1 0

2 1 1

1CCA;

�13 D

0BB@
1 0 1

3 1 1

1 1 0

0 –1 1

1CCA; �14 D

0BB@
1 0 1

–1 –1 1

1 1 0

2 1 1

1CCA; �15 D

0BB@
1 0 –1

1 1 1

1 1 0

0 –1 1

1CCA; �16 D

0BB@
1 0 –1

1 1 1

1 1 0

2 1 1

1CCA;

�17 D

0BB@
1 0 –1

–1 –1 1

1 1 0

2 1 1

1CCA; �18 D

0BB@
1 2 3

1 1 1

1 1 0

0 1 1

1CCA; �19 D

0BB@
1 0 1

1 1 1

1 3 2

0 1 1

1CCA; �20 D

0BB@
1 2 1

1 1 1

1 1 2

0 1 1

1CCA;
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�21 D

0BB@
1 0 1

1 1 1

1 1 2

0 1 1

1CCA; �22 D

0BB@
1 2 1

1 1 1

1 3 2

0 1 1

1CCA; �23 D

0BB@
1 0 1

1 –1 1

1 1 2

0 1 1

1CCA; �24 D

0BB@
1 2 1

1 3 1

1 3 2

0 1 1

1CCA;

�25 D

0BB@
1 0 1

1 1 1

1 1 2

2 1 1

1CCA; �26 D

0BB@
1 0 –1

1 1 1

1 1 2

0 1 1

1CCA; �27 D

0BB@
1 0 –1

1 1 1

1 1 2

2 1 1

1CCA; �28 D

0BB@
1 2 3

1 1 1

1 1 2

0 1 1

1CCA;
where by a matrix � we mean the whole matrix .I j �/, as in Proposition 5.4.

Proof Let � be a characteristic matrix on C 4.7/� of the form

�D

0BB@
1 0 0 0 a1 b1 c1

0 1 0 0 a2 b2 c2

0 0 1 0 a3 b3 c3

0 0 0 1 a4 b4 c4

1CCA�
0BB@

1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

1CCA mod 2:

Then j2; 3; 4; 5j�D�a1D˙1, j1; 2; 4; 5j�D�a3D˙1, j1; 3; 4; 7j�D c2D˙1 and
j1; 2; 3; 7j� D c4 D˙1, so we can assume

�D

0BB@
1 0 0 0 1 b1 c1

0 1 0 0 a2 b2 1

0 0 1 0 1 b3 c3

0 0 0 1 a4 b4 1

1CCA
up to the action of GL.4;Z/ and .Z=2/7 . The nonsingularity condition for � is
equivalent to the equations

j1; 2; 5; 6j� D b4� a4b3 D˙1;(3)

j1; 2; 6; 7j� D b3� b4c3 D˙1;(4)

j2; 3; 5; 6j� D b4� a4b1 D˙1;(5)

j2; 3; 6; 7j� D b1� b4c1 D˙1;(6)

j3; 4; 5; 6j� D b2� a2b1 D˙1;(7)

j3; 4; 6; 7j� D b1� b2c1 D˙1;(8)

j1; 4; 5; 7j� D a2c3� 1D˙1;(9)

j1; 5; 6; 7j� D

ˇ̌̌̌
ˇ̌a2 b2 1

1 b3 c3

a4 b4 1

ˇ̌̌̌
ˇ̌D˙1;(10)
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j4; 5; 6; 7j� D�

ˇ̌̌̌
ˇ̌ 1 b1 c1

a2 b2 1

1 b3 c3

ˇ̌̌̌
ˇ̌D˙1:(11)

Up to the action of .Z=2/7 , we can assume b3 > 0.

(i) First, we consider the case j1; 4; 5; 7j� D a2c3 � 1D �1, namely c3 D 0 (since
a2 � 1 mod 2). From (4), we obtain b3 D 1. From (6)–(8), .b2 � b4/c1 D 0;˙2.
Similarly, we obtain a4.b1� 1/D 0;˙2 from (3)–(5).

(i-A) If .b2�b4/c1D 0 and a4.b1�1/D 0, we obtain b2D b4 (since c1� 1 mod 2)
and a4D 0 (since b1� 0 mod 2). From (3), b4D˙1. Similarly, from (10), we obtain
a2 D˙1. Since � coincides with the matrix0BB@

1 0 0 0 1 b1 –c1

0 1 0 0 –a2 –b4 1

0 0 1 0 1 1 0

0 0 0 1 0 –b4 1

1CCA
up to the action of GL.4;Z/ and .Z=2/7 , we only have to consider the two cases
.a2; b4/D .1; 1/ and .a2; b4/D .1;�1/.

� If .a2; b4/D .1; 1/, we obtain b1 D 0; 2 from (7) and c1 D b1˙ 1 from (6). Then
� is of the form

�D

0BB@
1 0 0 0 1 b1 b1˙ 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

1CCA .b1 D 0; 2/;

and such � satisfies the nonsingularity condition. Thus we obtain the characteristic
matrices �2 , �9 , �11 and �18 .

� If .a2; b4/D .1;�1/, we obtain b1 D 0;�2 from (7) and c1 D�b1˙ 1 from (6).
Moreover, b1C 2c1� 1D˙1 from (11), so c1 D 1. Then � is of the form

�D

0BB@
1 0 0 0 1 b1 1

0 1 0 0 1 –1 1

0 0 1 0 1 1 0

0 0 0 1 0 –1 1

1CCA .b1 D 0;�2/;

and such � satisfies the nonsingularity condition. When b1D0, � coincides with �1 up
to the action of GL.4;Z/ and .Z=2/7 . Similarly, when b1D�2, � coincides with �10 .
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(i-B) If .b2 � b4/c1 D 0 and a4.b1 � 1/ D ˙2, we obtain b2 D b4 and a4 D ˙2,
b1 D 1˙ 1. As in (i-A) above, we only have to consider two cases, .a4; b1/D .2; 0/

and .a4; b1/D .2; 2/.

� If .a4; b1/ D .2; 0/, we obtain b4 D 2˙ 1 from (3) and b4 D ˙1 from (5), so
b4 D 1. Then we have c1 D ˙1 from (6) and a2 D 2˙ 1 from (10). Moreover,
.a2� 1/c1 D 1˙ 1 from (11). Then � is of the form

�D

0BB@
1 0 0 0 1 0 c1

0 1 0 0 a2 1 1

0 0 1 0 1 1 0

0 0 0 1 2 1 1

1CCA;
where .a2; c1/ is .1;˙1/ or .3; 1/, and such � satisfies the nonsingularity condition.
Thus we obtain the characteristic matrices �3 , �12 and �16 .

� If .a4; b1/D .2; 2/, we obtain b4 D 2˙ 1 from (3) and b4 D 4˙ 1 from (5), so
b4D 3. Then we have 2�3c1D˙1 from (6), so c1D 1. Similarly, we obtain a2D 1

from (7). Then

�D

0BB@
1 0 0 0 1 2 1

0 1 0 0 1 3 1

0 0 1 0 1 1 0

0 0 0 1 2 3 1

1CCA
satisfies the nonsingularity condition. Thus we obtain the characteristic matrix �4 .

(i-C) If .b2�b4/c1D˙2 and a4.b1�1/D 0, we obtain b2�b4D˙2, c1D˙1 and
a4 D 0. Similarly as before, we only have to consider the case b2� b4 D 2. From (3),
b4 D˙1.

� If b4D 1, then b2D 3. We have b1D˙1˙1 from (6) and b1D˙1˙3 from (8),
so b1D˙2. Then we have a2b1D˙2a2D 3˙1 from (7) and a2D 2˙1 from (10),
so a2 D 1 and b1 D 2. Moreover, c1 D 1 from (8). Then

�D

0BB@
1 0 0 0 1 2 1

0 1 0 0 1 3 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

1CCA
satisfies the nonsingularity condition. Thus we obtain the characteristic matrix �6 .
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� If b4D�1, then b2D1. We have b1Cc1D˙1 from (6) and b1�c1D˙1 from (8),
so b1D 0. We obtain a2D 2˙1 from (10) and �1Cc1.a2�1/D˙1 from (11). Then

�D

0BB@
1 0 0 0 1 0 c1

0 1 0 0 a2 1 1

0 0 1 0 1 1 0

0 0 0 1 0 –1 1

1CCA
satisfies the nonsingularity condition, where .a2; c1/D .1;˙1/; .3; 1/. Thus we obtain
the characteristic matrices �5 , �13 and �15 .

(i-D) If .b2� b4/c1 D˙2 and a4.b1� 1/D˙2, we obtain b2� b4 D˙2, c1 D˙1

and a4 D˙2, b1 D 1˙ 1. Similarly to the previous cases, we only have to consider
one case, namely a4 D 2.

� If b1 D 0, then b4 D˙1 from (5) and b2 D˙1 from (7). In addition, b4 D 2˙ 1

from (3), so b4D 1 and b2D�1. We obtain a2D˙1 from (10) and c1.a2C1/D 1˙1

from (11). Then

�D

0BB@
1 0 0 0 1 0 c1

0 1 0 0 a2 –1 1

0 0 1 0 1 1 0

0 0 0 1 2 1 1

1CCA
satisfies the nonsingularity condition, where .a2; c1/ D .�1;˙1/; .1; 1/. Thus we
obtain the characteristic matrices �7 , �14 and �17 .

� If b1 D 2, then we have b4 D 2˙ 1 from (3) and b4 D 4˙ 1 from (5), so b4 D 3.
From (8), b2 D˙.�2˙ 1/, and since b2 � b4 D˙2, we see that b2 D 1. Then we
obtain a2 D 1 from (7). Similarly, we obtain c1 D 1 from (6). Then

�D

0BB@
1 0 0 0 1 2 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 2 3 1

1CCA
satisfies the nonsingularity condition. Thus we obtain the characteristic matrix �8 .

(ii) Next, we consider the case j1; 4; 5; 7j� D a2c3 � 1 D 1, namely .a2; c3/ D

.1; 2/; .�1;�2/. Since � coincides with0BB@
1 0 0 0 1 b1 –c1

0 1 0 0 –a2 –b2 1

0 0 1 0 1 b3 –c3

0 0 0 1 –a4 –b4 1

1CCA
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up to the action of GL.4;Z/ and .Z=2/7 , we can assume .a2; c3/D .1; 2/. Moreover,
since we assume b3 > 0, we obtain b4 > 0 from (4). In the same way as in case (i),
we obtain .b2� b4/c1 D 0;˙2 and a4.b1� b3/D 0;˙2.

(ii-A) If .b2 � b4/c1 D 0 and a4.b1 � b3/ D 0, we obtain b2 D b4 and a4 D 0.
From (3), b4 D 1. Then

�D

0BB@
1 0 0 0 1 b1 c1

0 1 0 0 1 1 1

0 0 1 0 1 b3 2

0 0 0 1 0 1 1

1CCA:
We have b3 D 2˙ 1 from (4), b1 D 1˙ 1 from (7) and c1 D b1˙ 1 from (6).

� If b3 D 1, for any pair .b1; c1/ such that b1 D 1˙ 1 and c1 D b1˙ 1, � satisfies
the nonsingularity condition. Thus we obtain the characteristic matrices �20 , �21 , �26

and �28 .

� If b3 D 3, we have 2c1� b1 D 1˙ 1 from (11), so c1 D 1. Then

�D

0BB@
1 0 0 0 1 1˙ 1 1

0 1 0 0 1 1 1

0 0 1 0 1 3 2

0 0 0 1 0 1 1

1CCA
satisfies the nonsingularity condition. Thus we get the characteristic matrices �19 and
�22 .

(ii-B) If .b2 � b4/c1 D 0 and a4.b1 � b3/D˙2, we obtain b2 D b4 and a4 D˙2,
b1 D b3 ˙ 1. Since 1� a4 D ˙1 from (10), we obtain a4 D 2. From (3) and (4),
3.b3 � b4/ D ˙1˙ 1, so we get b3 D b4 D 1. (Notice that b4 > 0.) Moreover, we
obtain b1 D 0 from (5) and c1 D˙1 from (6). Then

�D

0BB@
1 0 0 0 1 0 ˙1

0 1 0 0 1 1 1

0 0 1 0 1 1 2

0 0 0 1 2 1 1

1CCA
satisfies the nonsingularity condition. Thus we get the characteristic matrices �25 and
�27 .

(ii-C) If .b2� b4/c1 D˙2 and a4.b1� b3/D 0, we obtain b2� b4 D˙2, c1 D˙1

and a4 D 0. Then b4 D 1 from (3).
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� If b2 � b4 D 2, then b2 D 3. We have b1 D ˙1˙ 1 from (6) and b1 D 3˙ 1

from (7), so b1 D 2. Then 4� 4c1 D˙1˙ 1 from (6) and (8), so c1 D 1. Moreover,
b3 D 3 from (4) and (10). Then

�D

0BB@
1 0 0 0 1 2 1

0 1 0 0 1 3 1

0 0 1 0 1 3 2

0 0 0 1 0 1 1

1CCA
satisfies the nonsingularity condition, so we obtain the characteristic matrix �24 .

� If b2� b4 D�2, then b2 D�1. Then 2b1 D˙1˙ 1 from (6) and (8), so b1 D 0.
From (4) and (10), we obtain b3D1. Moreover, 2c1D3˙1 from (11), so c1D1. Then

�D

0BB@
1 0 0 0 1 0 1

0 1 0 0 1 –1 1

0 0 1 0 1 1 2

0 0 0 1 0 1 1

1CCA
satisfies the nonsingularity condition, so we obtain the characteristic matrix �23 .

(ii-D) If .b2�b4/c1D˙2 and a4.b1�b3/D˙2, we obtain b2�b4D˙2, c1D˙1

and a4 D ˙2, b1 D b3 ˙ 1. If we assume a4 D �2, then b4 C 2b3 � 3, but this
contradicts (3). Thus a4D 2. From (3) and (4), 3.b3�b4/D˙1˙1, so b3D b4D 1.
We obtain b1 D 0 from (5), and hence b2 D �1 from (7) and b2 � b4 D ˙2. Then
j1; 5; 6; 7j� D�5, but this contradicts (10).

Thus we obtain all characteristic matrices on C 4.7/� up to the action of GL.4;Z/ and
.Z=2/7 .

Next, we consider the action of � on p�1.x�/. By a direct calculation, we see that the
action is illustrated as follows:

�1
�
// �9

�
// �5

�
// �21

�
// �3

�
// �2

�
// �11

�
// �1

�4
�
// �18

�
// �13

�
// �19

�
// �17

�
// �14

�
// �27

�
// �4

�6
�
// �26

�
// �7

�
// �20

�
// �14

�
// �22

�
// �16

�
// �6

�8
�
// �28

�
// �12

�
// �10

�
// �15

�
// �23

�
// �25

�
// �8

Then we obtain the following proposition.

Proposition 7.3 Over C 4.7/� , there are exactly four quasitoric manifolds M.�9/,
M.�17/, M.�16/ and M.�15/ up to weakly equivariant homeomorphism.
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Next, putting A WDH�.�9/, B WDH�.�17/, C WDH�.�16/, D WDH�.�15/, let us
show that A, B , C , D are not isomorphic to each other as graded rings. Miss.KC 4.7/�/

consists of f1; 3; 5g, f1; 3; 6g, f1; 4; 6g, f2; 4; 6g, f2; 4; 7g, f2; 5; 7g and f3; 5; 7g, so
IC 4.7/� in Theorem 2.21 is generated by v1v3v5 , v1v3v6 , v1v4v6 , v2v4v6 , v2v4v7 ,
v2v5v7 and v3v5v7 . With the notation of Theorem 2.21, we put X WD v5 , Y WD v6 ,
Z WD v7 . We can take ŒM � WD v1v5v6v7 as the fundamental cohomology class. Indeed,
each vi is the Poincaré dual of ��1.Fi/, and ��1.F1/, ��1.F5/, ��1.F6/ and
��1.F7/ intersect transversally at the point ��1.v/, where v denotes the vertex
F1\F5\F6\F7 . Table 1 shows the coefficients of ŒM � in each monomial.

X 4

Y 4

Z4

X 3Y

X 2Y 2

XY 3

Y 3Z

Y 2Z2

YZ3

Z3X

Z2X 2

ZX 3

X 2YZ

XY 2Z

XYZ2

A

0

0

–2

0

0

1

0

0

1

0

0

–1

1

–1

0

B

0

–4

0

0

0

1

2

0

1

0

0

–1

1

–1

0

C

0

6

–2

0

0

–1

0

0

1

0

0

–1

1

–1

0

D

0

–2

0

0

0

1

2

0

1

0

0

–1

1

–1

0

Table 1

Lemma 7.4 B is not isomorphic to A, C or D .

Proof Let us denote the generators X , Y , Z of A by X1 , Y1 , Z1 . Similarly, denote
the generators of B by X2 , Y2 , Z2 . If we assume that there exists a graded ring
isomorphism �W A!B , then ˙2ŒM �D �..Z1/

4/D �.Z1/
4D .aX2CbY2CcZ2/

4

for some integers a, b , c . However, since .X2/
4 D .Z2/

4 D .X2Y2/
2 D .Y2Z2/

2 D

.Z2X2/
2 D 0 and .Y2/

4 � 0 mod 4, we see that .aX2 C bY2 C cZ2/
4 � 0 mod 4.

This is a contradiction. We can prove the lemma similarly for C and D .
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Lemma 7.5 A and C are not isomorphic to D .

Proof It suffices to show that there exists no graded ring isomorphism from A=.3/ or
C=.3/ to D=.3/. Assume there exists a graded ring isomorphism �W A=.3/!D=.3/,
and take vectors vi D .ai ; bi ; ci/ 2 .Z=3/3 for i D 1; 2; 3 such that0@�.X /�.Y /

�.Z/

1AD
0@a1 b1 c1

a2 b2 c2

a3 b3 c3

1A0@X

Y

Z

1A:
Note that for any x 2Z=3 we have x3D x . From �.X /4D 0, we obtain the equation
2a1c1Ca1b1Cb2

1
D 0. Similarly, from �.Y /4D 0, we obtain 2a2c2Ca2b2Cb2

2
D 0.

From a direct calculation, we see that

vi D˙.0; 0; 1/;˙.1; 0; 0/;˙.1; 1; 2/;˙.1; 2; 0/

for i D 1; 2.

� If v1 D˙.0; 0; 1/, from �.X 3Y /D 0 and the list above, we have v2 D˙.1; 0; 0/.
Then, from �.Z3X /D �.Y 3Z/D 0, we obtain v3 D˙.1; 2; 0/, but this is a contra-
diction since 0¤ �.Z4/D˙.X C 2Y /4 D 0.

� If v1D˙.1; 0; 0/, from �.X 3Y /D 0 and the list above, we have v2D˙.1; 2; 0/.
Then, from �.Z3X /D �.Y 3Z/D 0, we obtain v3 D˙.0; 0; 1/, but this is a contra-
diction since 0¤ �.Z4/D˙Z4 D 0.

� If v1D˙.1; 1; 2/, from �.X 3Y /D 0 and the list above, we have v2D˙.1; 1; 2/,
but this contradicts the linear independence of v1 and v2 .

� If v1D˙.1; 2; 0/, from �.X 3Y /D 0 and the list above, we have v2D˙.0; 0; 1/.
Then, from �.Z3X /D �.Y 3Z/D 0, we obtain v3 D˙.1; 0; 0/, but this is a contra-
diction since 0¤ �.Z4/D˙X 4 D 0.

This proof also works when we consider C instead of A.

Lemma 7.6 A and C are not isomorphic as graded rings.

Proof We prove that there exists no graded ring isomorphism from A=.3/ to C=.3/.
Let us assume that there exists a graded ring isomorphism �W A=.3/! C=.3/. Using
the same notation as in the proof of the previous lemma, from �.X 4/D �.Y 4/D 0

we obtain the equations c2
i C 2aibi C bici C 2aici D 0 for i D 1; 2. Then we see that

vi D˙.0; 1; 0/; ˙.0; 1; 2/; ˙.1; 0; 0/; ˙.1; 0; 1/; ˙.1; 1; 1/; ˙.1; 1; 2/; ˙.1; 2; 1/

for i D 1; 2.
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� If v1 D˙.0; 1; 0/, from �.X 3Y /D 0 and the list above, we have v2 D˙.0; 1; 2/.
Then, from �.Z3X /D�.Y 3Z/D 0, we obtain v3D˙.1; 2; 0/, but this is a contradic-
tion since 0D �.Z2X 2/¤ 0. This proof also works in the case that v1 D˙.1; 1; 1/.

� If v1 D˙.0; 1; 2/, from �.X 3Y /D 0 and the list above, we have v2 D˙.1; 1; 1/.
Then 0 D �.X 2Y 2/ ¤ 0, which is a contradiction. This proof also works when
v1 D˙.1; 0; 1/; ˙.1; 1; 2/.

� If v1D˙.1; 0; 0/, from �.X 3Y /D 0 and the list above, we have v2D .0; b; 0/ for
bD˙1. Then, from �.Z3X /D �.Y 3Z/D 0, we obtain v3D˙.0; 0; c/ for cD˙1.
Besides, from Z4 D XY 3 D YZ3 D 2ZX 3 in A=.3/, we have 1 D 2b D bc D c .
However, this equation has no root.

� If v1D˙.1; 2; 1/, from �.X 3Y /D 0 and the list above, we have v2D˙.1; 2; 1/.
This contradicts the linear independence of v1 and v2 .

Hence we see that there exists no isomorphism A=.3/! C=.3/.

Thus we have completed the topological classification of quasitoric manifolds over
C 4.7/� .

Theorem 7.7 Any quasitoric manifold over C 4.7/� is homeomorphic to M.�9/,
M.�17/, M.�16/ or M.�15/, and the cohomology rings of those manifolds are not
isomorphic.

8 Classification for C 5.8/�

In Section 6, we showed that RXC 5.8/� has exactly two elements and they are repre-
sented by the real characteristic matrices0BBBB@

1 0 0 0 0 0 0 1

0 1 0 0 0 1 0 1

0 0 1 0 0 1 1 1

0 0 0 1 0 1 1 0

0 0 0 0 1 0 1 1

1CCCCA;
0BBBB@

1 0 0 0 0 0 0 1

0 1 0 0 0 1 1 0

0 0 1 0 0 0 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 0 1

1CCCCA:
As in the previous section, let us denote these two matrices by x�, x�0 and the map
XC 5.8/� ! RXC 5.8/� by p . It is shown in the same way as in Lemma 5.3 that
Aut .KC 5.8/�/ is generated by

� D

�
1 2 3 4 5 6 7 8

8 2 3 4 5 6 7 1

�
and � D

�
1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

�
:
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They act on RXC 5.8/� by �.x�/D x�, �.x�0/D x�0 and �.x�/D x�0 . Then we obtain the
following proposition.

Proposition 8.1 There exists only one small cover over C 5.8/� up to weakly equi-
variant homeomorphism.

We also see that p�1.x�/=h�i corresponds to XC 5.8/�=Aut .KC 5.8/�/. Any element in
p�1.x�/ is represented by a characteristic matrix of the form

.�k I a; b/ WD

0BBBB@
1 0 0 0 0 a b 1

0

0
�k0

0

1CCCCAD
0BBBB@

1 0 0 0 0 a b 1

0 1 0 0 0 1 b1 c1

0 0 1 0 0 a2 b2 1

0 0 0 1 0 1 b3 c3

0 0 0 0 1 a4 b4 1

1CCCCA;
where a, b are even integers and �k .k D 1; 2; : : : ; 28/ are the characteristic matrices
on C 4.7/� given in Proposition 7.2. Notice that .�k I a; b/ satisfies the equality
j1; i1; i2; i3; i4j D ˙1 for each f1; i1; i2; i3; i4g 2 KC 5.8/� . Therefore, .�k I a; b/

is a characteristic matrix on C 5.8/� if and only if the following equalities hold:
j2; 3; 5; 6; 8j D ac3 � 1 D ˙1, j3; 4; 5; 6; 8j D ac1 � 1 D ˙1, j2; 3; 6; 7; 8j D ˙1,
j3; 4; 6; 7; 8j D ˙1, j4; 5; 6; 7; 8j D ˙1. Solving these equations, we obtain sixty-four
characteristic matrices up to the action of GL.5;Z/ and .Z=2/8 , and the action of �
is illustrated in the figure on page 1429.

Hence we obtain the following proposition.

Proposition 8.2 There are exactly forty-six quasitoric manifolds over C 5.8/� up to
weakly equivariant homeomorphism.

We will show that the cohomology rings of these quasitoric manifolds are not isomor-
phic. Notice that Miss.KC 5.8/�/ consists of f2; 4; 6g, f2; 4; 7g, f2; 5; 7g, f3; 5; 7g,
f1; 3; 5; 8g, f1; 3; 6; 8g and f1; 4; 6; 8g, so IC 5.8/� in Theorem 2.21 is generated by
v2v4v6 , v2v4v7 , v2v5v7 , v3v5v7 , v1v3v5v8 , v1v3v6v8 and v1v4v6v8 .

For a characteristic matrix � D .�k I a; b/D .�i;j / on C 5.8/� , let us denote v0i1
� � � v0ik

in Theorem 3.4 by Œi1; : : : ; ik �� or simply Œi1; : : : ; ik �. Put X WD v6;Y WD v7;Z WD v8 .
Then we obtain H�.�/Š ZŒX;Y;Z�=.I6

�
C I8

�
/, where I6

�
and I8

�
are the ideals

I6
� D .Œ2; 4; 6�; Œ2; 4; 7�; Œ2; 5; 7�; Œ3; 5; 7�/;

I8
� D .Œ1; 3; 5; 8�; Œ1; 3; 6; 8�; Œ1; 4; 6; 8�/:

Note that I6
�

is determined by �k (namely, independent of a and b ). Hence we write
I6

k
D I6

�
.
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.�1I 0; 2/

�

��

.�1I 0; 0/

�

��

.�2I 0; 0/

�

��

.�3I 0; 0/

�

��

.�4I 0; 0/

�

��

.�2I 0; 2/

OO

.�1I �2; 0/

�

��

.�1I �2;�2/

�

��

.�2I 2; 2/

�

��

.�2I 2; 4/

�

��

.�3I 0;�2/

�

��

.�3I 2; 0/

OO

.�4I 2; 2/

OO

.�3I 2; 2/

OO

.�4I 2; 4/

OO

.�4I 0; 2/

OO

.�5I 0;�2/

�

��

.�5I 0; 0/

�

��

.�6I 0; 0/

�

��

.�7I 0; 0/

�

��

.�8I 0; 0/

�

��

.�6I 0; 2/

OO

.�5I 2; 0/

�

��

.�5I 2; 2/

�

��

.�6I 2; 2/

�

��

.�6I 2; 4/

�

��

.�7I 0;�2/

�

��

.�7I 2; 0/

OO

.�8I 2; 2/

OO

.�7I 2; 2/

OO

.�8I 2; 4/

OO

.�8I 0; 2/

OO

.�9I 0; 0/

�

��

.�10I 0; 0/

�

��

.�9I 0; 2/
� // .�10I 0; 2/oo

.�11I 0; 0/

�

��

.�12I 0; 0/

�

��

.�11I �2; 0/
� // .�12I 2; 0/oo

.�13I 0; 0/

�

��

.�14I 0; 0/

�

��

.�13I 2; 0/
� // .�14I 2; 0/oo

.�15I 0; 0/

�

��

.�16I 0; 0/

�

��

.�17I 0; 0/

�

��

.�18I 0; 0/

�

��

.�19I 0; 0/

�

��

.�20I 0; 0/

�

��

.�19I 0; 2/
� // .�20I 0; 2/oo

.�21I 0; 0/

�

��

.�22I 0; 0/

�

��

.�21I 0; 2/
� // .�22I 0; 2/oo

.�23I 0; 0/

�

��

.�24I 0; 0/

�

��

.�23I 0; 2/
� // .�24I 0; 2/oo

.�25I 0; 0/

�

��

.�26I 0; 0/

�

��

.�27I 0; 0/

�

��

.�28I 0; 0/

�

��
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Definition 8.3 For k; k 0D 1; 2; : : : ; 28, we denote by Ak;k0 the set of all graded ring
automorphisms of ZŒX;Y;Z� that map I6

k
into I6

k0
.

Now we briefly explain the procedure for classifying quasitoric manifolds over C 5.8/� .
First, we list all elements of Ak;k0 for any k , k 0 . Then we only have to verify that
those automorphisms do not map

I8
.�k Ia;b/

! I6
k0 C I8

.�k0 Ia
0;b0/

for any combination of even integers a, b , a0 , b0 such that .�k I a; b/ and .�k0 I a
0; b0/

are characteristic matrices on C 5.8/� . Since each Ak;k0 proves to have at most 8

elements, we can do this by means of a computer-assisted calculation.

Let us define the equivalence relation �� on f1; : : : ; 28g as follows: k �� k 0 if
and only if �..�k I a; b// D .�k0 I a

0; b0/ for some a, b , a0 , b0 such that .�k I a; b/

and .�k0 I a
0; b0/ are characteristic matrices on C 5.8/� . Then the equivalence classes

for �� are f1; 2; 3; 4g, f5; 6; 7; 8g, f9; 10g, f11; 12g, f13; 14g, f15g, f16g, f17g, f18g,
f19; 20g, f21; 22g, f23; 24g, f25g, f26g, f27g, f28g.

Remark 8.4 Let � D .�k I a; b/ and �0 D .�k0 I a
0; b0/ be characteristic matrices on

C 5.8/� such that �.�/D �0 . By Remark 2.22, there is a graded ring automorphism
�.� I�;�0/ of ZŒX;Y;Z� which maps I� into I�0 , in particular, I6

k
into I6

k0
. Then we

only have to determine Ak;k0 for k; k 0 2K , where

K WD f1; 5; 9; 11; 13; 15; 16; 17; 18; 19; 21; 23; 25; 26; 27; 28g:

Hereafter we assume that a graded ring automorphism � of ZŒX;Y;Z� maps I6
�

into I6
�0

, where � D .�k I a; b/ and �0 D .�k0 I a
0; b0/ are two characteristic matrices

with k; k 0 2K . Write

�D

0BBBB@
1 0 0 0 0 a b 1

0 1 0 0 0 1 p q

0 0 1 0 0 x y 1

0 0 0 1 0 1 s t

0 0 0 0 1 m n 1

1CCCCA; �0 D

0BBBB@
1 0 0 0 0 a0 b0 1

0 1 0 0 0 1 p0 q0

0 0 1 0 0 x0 y0 1

0 0 0 1 0 1 s0 t 0

0 0 0 0 1 m0 n0 1

1CCCCA:

It is convenient to identify a homogeneous polynomial f of degree 6 in ZŒX;Y;Z�
with the row vector u defined through

f D .X 3;Y 3;Z3;X 2Y;XY 2;Y 2Z;YZ2;Z2X;ZX 2;XYZ/ tu:

Algebraic & Geometric Topology, Volume 15 (2015)



On the classification of quasitoric manifolds over dual cyclic polytopes 1431

Then we see that t.Œ2; 4; 6��; Œ2; 4; 7��; Œ2; 5; 7��; Œ3; 5; 7��/ is identified with the matrix

(12)

0BB@
1 0 0 pC s ps 0 0 qt qC t pt C qs

0 ps 0 1 pC s pt C qs qt 0 0 t C q

0 pn 0 m pmC n pC qn q 0 0 1C qm

0 yn 0 xm ymCxn yC n 1 0 0 xCm

1CCA;
which is congruent with the following matrix modulo 2:

(13)

0BB@
1 0 0 1 0 0 0 0 1 1

0 0 0 1 1 1 0 0 0 1

0 0 0 0 1 1 1 0 0 1

0 1 0 0 1 0 1 0 0 1

1CCA :
As in Section 5, we write 0@�.X /�.Y /

�.Z/

1AD
0@a1 b1 c1

a2 b2 c2

a3 b3 c3

1A0@X

Y

Z

1A
and put a WD .a1; a2; a3/, b WD .b1; b2; b3/, c WD .c1; c2; c3/. Then we may denote �
by the matrix .ta; tb; tc/.

Lemma 8.5 � �

0@1 0 0

0 1 0

0 0 1

1A mod 2

Proof By row operations, we transform the matrix (13) into

(14)

0BB@
1 0 0 0 0 0 1 0 1 1

0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 1 1 0 0 1

0 1 0 0 0 1 0 0 0 0

1CCA:
Since the coefficients of Z3 in �.Œ2; 4; 6�/, �.Œ2; 4; 7�/, �.Œ2; 5; 7�/ and �.Œ3; 5; 7�/
are equal to zero (see the matrix (12)), we obtain

(15)

0BB@
.c1Cpc2C qc3/.c1C sc2C tc3/c1

.c1Cpc2C qc3/.c1C sc2C tc3/c2

.c1Cpc2C qc3/.mc1C nc2C c3/c2

.xc1Cyc2C c3/.mc1C nc2C c3/c2

1CCA D 0:

� If c1� 1 and c2� 0 mod 2, we have c3� 1 mod 2. Since the coefficient of Z2X

in �.Œ2; 4; 6�/ is congruent to zero modulo 2, we obtain a1C a3 � 0 mod 2. Due to
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the linear independence of a, b , c , we have a2 � 1 and b1C b3 � 1 mod 2. Besides,
since the coefficients of X 3 and ZX 2 in �.Œ3; 5; 7�/ are congruent modulo 2, we have
a1 � 0 mod 2, so a� .0; 1; 0/ mod 2. Then the coefficient of X 3 in

�.Œ2; 4; 6�/� Y .X C .b1C b2/Y /.b1Y CZ/

� .0; b1.b1C b2/; 0; 0; b1; b2; 1; 0; 0; 1/ mod 2

is zero, so the coefficients of XY 2 and XYZ are congruent modulo 2. Hence we
have b1 � 1 mod 2, and then b3 � 0 mod 2. However,

�.Œ2; 5; 7�/� Y .X C b2Y CZ/.X C b2Z/

� .0; b2; 0; 1; 0; b2; 0; 0; 0; 1/ mod 2

is not a linear combination of Œ2; 4; 6�, Œ2; 4; 7�, Œ2; 5; 7� and Œ3; 5; 7�.

� If c1 � 0 and c2 � 1 mod 2, the second and fourth components of the left-hand
side of (15) can not be congruent to zero modulo 2 simultaneously.

� If c1 � c2 � 1 mod 2, due to (15), we have c3 � 1 mod 2. From the coefficient
of Z2X in �.Œ3; 5; 7�/, we obtain a2 � a3 mod 2. Then a1 6� a2 mod 2 due to the
linear independence of a and c . Similarly, from the coefficients of X 3 and ZX 2 in
�.Œ2; 4; 6�/ and �.Œ2; 4; 7�/, we obtain a1 � a2 � 1 mod 2. This is a contradiction.

� If c1 � c2 � 0 mod 2, then we have c3 � 1 mod 2. From the coefficient of Z2X

in �.Œ2; 5; 7�/, we obtain a2 � 0 mod 2. Besides, from det� � 1 mod 2, we obtain
a1 � b2 � 1 mod 2. Comparing the coefficients of X 3 and ZX 2 in �.Œ2; 4; 6�/, we
obtain a3 � 0 mod 2. Then the coefficient of X 3 in

�.Œ2; 4; 7�/� .X C .b1C b3/Y CZ/.X C .b1C 1/Y /Y

� .0; .b1C b3/.b1C 1/; 0; 1; b3C 1; b1C 1; 0; 0; 0; 1/ mod 2

is zero, so the coefficients of XY 2 and XYZ are congruent. Hence b3 � 0 mod 2,
and since �.Œ2; 4; 7�/ needs to be congruent to .0; 0; 0; 1; 1; 1; 0; 0; 0; 1/ modulo 2, we
obtain b1 � 0 mod 2.

By Lemma 8.5, .xc1 C yc2 C c3/.mc1 C nc2 C c3/ � 1 mod 2. Moreover, since
q � 1 mod 2, we have c1C pc2C qc3 � 1 mod 2. Hence we obtain the following
corollary from (15).

Corollary 8.6 c2 D .c1C tc3/c1 D 0
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Comparing the coefficients of X 3 and Z2X in �.Œ2; 4; 6�/, �.Œ2; 4; 7�/, �.Œ2; 5; 7�/
and �.Œ3; 5; 7�/, we obtain

(16) q0t 0

0BB@
.a1Cpa2C qa3/.a1C sa2C ta3/a1

.a1Cpa2C qa3/.a1C sa2C ta3/a2

.a1Cpa2C qa3/.ma1C na2C a3/a2

.xa1Cya2C a3/.ma1C na2C a3/a2

1CCA

D

0BB@
.c1C qc3/f.c1C tc3/a1C .a1C sa2C ta3/c1g

.c1C qc3/.c1C tc3/a2

.c1C qc3/.mc1C c3/a2

.xc1C c3/.mc1C c3/a2

1CCA:
If we assume a2 ¤ 0, from (16) we obtain q0t 0.xa1Cya2Ca3/.ma1Cna2Ca3/D

.xc1C c3/.mc1C c3/. The left hand side of this equation is even but the right hand
side is odd. Hence we have the following lemma.

Lemma 8.7 a2 D 0

By Corollary 8.6 and Lemma 8.7, we obtain the following proposition.

Proposition 8.8 .a2; b2; c2/D˙.0; 1; 0/

Considering �� if necessary, we can assume b2 D 1.

First, we consider the case c1¤ 0. From (15), we have c1Ctc3D 0. Hence t ¤ 0 (note
that, in view of the list of characteristic matrices, this means tD2) and cD c3.�2; 0; 1/,
where c3 D˙1. From (16), we have

q0t 0.a1C qa3/.a1C 2a3/a1 D�2.q� 2/.a1C 2a3/:

Since a1C 2a3 ¤ 0 by Lemma 8.5, this equation reduces to

q0t 0.a1C qa3/a1 D�2.q� 2/:

Moreover, since the right hand of this equation is not zero, we have t 0 D t D 2 and

(17) q0.a1C qa3/a1 D 2� q:

Comparing the coefficients of X 3 and ZX 2 in �.Œ2; 4; 6�/, we obtain

.q0C 2/.a1C qa3/.a1C 2a3/a1 D .a1C 2a3/f.a1C qa3/.�2c3/C .q� 2/c3a1g:

Since a1C 2a3 ¤ 0, this equation can be shortened to

(18) .q0C 2/.a1C qa3/a1 D f�2.a1C qa3/C .q� 2/a1gc3:
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Since det� D ˙1, we obtain c3.a1 C 2a3/ D ˙1. Putting � D c3 det� , we have
a1C 2a3 D � . Then (17) is rewritten as

.�C .q� 2/a3/.�� 2a3/q
0
D 2� q:

� If q D 1 or 3, �� 2a3 divides 1. Since a3 is even, we obtain a3 D 0.

� If q D�1, �� 3a3 divides 3. Hence we obtain a3 D 0.

In any case, we obtain a3 D 0, implying that q0 D 2 � q . From (18), we have
q0C 2D�.q0C 2/a1c3 , namely, a1c3 D�1. Thus we obtain the following lemma.

Lemma 8.9 If c1 ¤ 0, we have t 0 D t D 2, q0 D 2� q and

� D˙

0@a1 b1 2a1

0 1 0

0 b3 –a1

1A:
Then we consider the cases .q; q0/ D .3;�1/, .q; q0/ D .�1; 3/ and .q; q0/ D .1; 1/
separately.

Case 1 If q D 3 and q0 D�1, then �D .�28I 0; 0/ and �0 D .�26I 0; 0/; .�27I 0; 0/.
The matrix (12) for �0 reduces to0BB@

1 0 0 1 0 0 0 –2 1 –1

0 0 0 1 1 –1 –2 0 0 1

0 0 0 m0 1 –1 –1 0 0 1�m0

0 1 0 m0 m0C 1 2 1 0 0 1Cm0

1CCA:
Since the coefficient of Y 3 in �.Œ2; 4; 6��b1Œ2; 4; 7�/ is zero, the coefficients of XY 2

and Y 2Z in �.Œ2; 4; 6�� b1Œ2; 4; 7�/ are negatives of each other. Then we have

a1.b1C 3b3C 2/.b1C 2b3C 1/D�2a1.b1C 3b3C 2/.b1C 2b3C 1/:

Since a1; b1C 2b3C 1� 1 mod 2, this equation reduces to b1C 3b3C 2D 0. Then

�.Œ2; 4; 6�� b1Œ2; 4; 7�/

D .X �Z/.a1X � .b3C 1/Y /.X C 2Z/

D .a1; 0; 0;�b3� 1; 0; 0; 2.b3C 1/;�2a1; a1;�b3� 1/

� .0; 0; 0;�a1� b3� 1; 0; 0; 2.b3C 1/; 0; 0; a1� b3� 1/ mod I6
�0 :

Hence there exists an integer ˛ such that

˛.1�m0/D�a1� b3� 1; �˛ D 2.b3C 1/; ˛m0 D a1� b3� 1:
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We obtain .b3C1/.1�2m0/D a1 D˙1 from these equations. Then we have m0 D 0,
b3 D a1� 1. Therefore we see that

� D

0@ 1 –2 2

0 1 0

0 0 –1

1A or

0@–1 4 –2

0 1 0

0 –2 1

1A:
In each case,

�.Œ2; 5; 7�/D .X �Z/.Y �Z/Y D .0; 0; 0; 0; 1;�1; 1; 0; 0;�1/ 6 2I6
�0 :

Hence we see that there exists no graded ring isomorphism from H�.�/ to H�.�0/ in
this case.

Case 2 If q D�1 and q0 D 3, from the conclusion of the previous case, we see that
there exists no graded ring isomorphism from H�.�/ to H�.�0/.

Case 3 If qD q0D 1, then we can assume �; �0D .�19I 0; 0/, .�21I 0; 0/, .�23I 0; 0/,
.�25I 0; 0/. In a similar way to Case 1, we can show that all graded ring automorphisms
that map I6

�
into I6

�0
and such that c1 ¤ 0 are in the illustration below:

.�21I 0; 0/

˙�1;˙�2

��
˙�1;˙�2

// .�23I 0; 0/

˙�1;˙�2

��

oo

Here

�1 D

0@ 1 2 2

0 1 0

0 –2 –1

1A and �2 D

0@–1 0 –2

0 1 0

0 0 1

1A:
Next, in the case that c1 D 0, by the same method as above, we can show that all
nontrivial graded ring automorphisms that map I6

�
into I6

�0
and such that c1 D 0 are

in the illustration below:

.�1I 0; 0/

˙�4

��

˙�5;˙�6

��

.�11I 0; 0/

˙�5

��

.�21I 0; 0/

˙�7

��

˙I;˙�7

��

.�5I 0; 0/

˙�3

VV

OO

.�13I 0; 0/

OO

.�23I 0; 0/

˙�7

VV

OO
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Here �3; : : : ; �7 denote the matrices

�3 D

0@–1 –2 0

0 1 0

0 2 –1

1A; �4 D

0@–1 –2 0

0 1 0

0 –2 –1

1A;
�5 D

0@ 1 0 0

0 1 0

0 0 –1

1A; �6 D

0@–1 –2 0

0 1 0

0 –2 1

1A; �7 D

0@–1 2 0

0 1 0

0 –2 –1

1A:
Now we have all graded ring automorphisms of ZŒX;Y;Z� which map I6

�
into I6

�0

with respect to some characteristic matrices � and � 0 on C 5.8/� . In fact, none of these
automorphisms maps I8

�
into I�0 . One can verify it by means of a computer-assisted

calculation. Thus we have the topological classification of quasitoric manifolds over
C 5.8/� .

Theorem 8.10 There are exactly forty-six quasitoric manifolds over C 5.8/� up to
homeomorphism, and they are distinguished by their cohomology rings.

Acknowledgements The author is deeply grateful to Daisuke Kishimoto for his sup-
port and valuable advice, and also appreciates the comments of the referee, which
helped to improve the paper.

References
[1] V M Buchstaber, T E Panov, Torus actions and their applications in topology and

combinatorics, University Lecture Series 24, Amer. Math. Soc. (2002) MR1897064

[2] S Choi, M Masuda, D Y Suh, Rigidity problems in toric topology: A survey, Tr. Mat.
Inst. Steklova 275 (2011) 188–201 MR2962979 Also in Proc. Steklov Inst. Math. 275
(2011), 177–190

[3] S Choi, S Park, D Y Suh, Topological classification of quasitoric manifolds with
second Betti number 2 , Pacific J. Math. 256 (2012) 19–49 MR2928539

[4] M Davis, Smooth G –manifolds as collections of fiber bundles, Pacific J. Math. 77
(1978) 315–363 MR510928

[5] M W Davis, T Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions,
Duke Math. J. 62 (1991) 417–451 MR1104531

[6] P E Jupp, Classification of certain 6–manifolds, Proc. Cambridge Philos. Soc. 73
(1973) 293–300 MR0314074

[7] P Orlik, F Raymond, Actions of the torus on 4–manifolds, I, Trans. Amer. Math. Soc.
152 (1970) 531–559 MR0268911

Algebraic & Geometric Topology, Volume 15 (2015)

http://www.ams.org/mathscinet-getitem?mr=1897064
http://dx.doi.org/10.1134/S0081543811080128
http://www.ams.org/mathscinet-getitem?mr=2962979
http://dx.doi.org/10.2140/pjm.2012.256.19
http://dx.doi.org/10.2140/pjm.2012.256.19
http://www.ams.org/mathscinet-getitem?mr=2928539
http://projecteuclid.org/euclid.pjm/1102806454
http://www.ams.org/mathscinet-getitem?mr=510928
http://dx.doi.org/10.1215/S0012-7094-91-06217-4
http://www.ams.org/mathscinet-getitem?mr=1104531
http://www.ams.org/mathscinet-getitem?mr=0314074
http://dx.doi.org/10.2307/1995586
http://www.ams.org/mathscinet-getitem?mr=0268911


On the classification of quasitoric manifolds over dual cyclic polytopes 1437

[8] G M Ziegler, Lectures on polytopes, Graduate Texts in Mathematics 152, Springer,
New York (1995) MR1311028

Department of Mathematics, Faculty of Science, Kyoto University
Sakyo-ku, Kyoto 606-8502, Japan

s.hasui@math.kyoto-u.ac.jp

Received: 24 November 2013 Revised: 27 April 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-1-4613-8431-1
http://www.ams.org/mathscinet-getitem?mr=1311028
mailto:s.hasui@math.kyoto-u.ac.jp
http://msp.org
http://msp.org



	1. Introduction
	2. Basic constructions and properties
	2.1. Polytopes
	2.2. Definition of a quasitoric manifold
	2.3. Classification up to weakly equivariant homeomorphism
	2.4. Moment-angle manifold
	2.5. Small covers
	2.6. Cohomology

	3. Cyclic polytopes and connected sums
	3.1. Cyclic polytopes
	3.2. Connected sums
	3.3. Conventions and remarks

	4. Classification for C2(m)*
	5. Classification for C3(m)*
	6. Small covers of higher dimensions
	7. Classification for C4(7)*
	8. Classification for C5(8)*
	References

