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A mapping theorem for topological complexity
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We give new lower bounds for the (higher) topological complexity of a space in
terms of the Lusternik–Schnirelmann category of a certain auxiliary space. We also
give new lower bounds for the rational topological complexity of a space, and more
generally for the rational sectional category of a map, in terms of the rational category
of a certain auxiliary space. We use our results to deduce consequences for the global
(rational) homotopy structure of simply connected hyperbolic finite complexes.

55M30, 55P62; 55S40, 55Q15

1 Introduction

The topological complexity of a space is a numerical homotopy invariant of Lusternik–
Schnirelmann type introduced by Farber [7] and motivated by the motion planning
problem from the field of topological robotics. In this paper, we prove several results
that establish new lower bounds for (higher) topological complexity in both the rational
and the integral (ordinary) settings. We begin with an outline of our main results.

By cat.X /, secat.p/, TC.X / and — for n� 3 — TCn.X /, respectively, we denote the
Lusternik–Schnirelmann category of a space X , the sectional category of a fibration
pW E! B , the topological complexity of X , and the higher topological complexity
of X , respectively. We adopt the notational convention that TC.X /D TC2.X /. We
refer to Cornea et al. [4] for a general introduction to LS category and related topics,
including sectional category; basic definitions are reviewed towards the end of this
introduction. The original articles that introduce (higher) topological complexity,
Farber [7] and Rudyak [22], discuss the connection to the motion planning problem.

Our first main result is as follows.

Theorem 1 (See Theorem 2.2) Consider two maps fj W Yj ! X of connected
spaces, j D 1; 2, with each .fj /#W �i.Yj /! �i.X / an inclusion and such that the
image subgroups .fj /#.�i.Yj // are complementary subgroups of �i.X / for all i � 1;
see Section 2 for details. Then for n� 2 we have

cat.Y1 �Y2 �X n�2/� TCn.X /:
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This leads immediately to the following inequality.

Corollary 2 (See Corollary 2.4) Consider a fibration sequence F ! E ! B of
connected CW complexes. If the fibration admits a (homotopy) section, then we have

cat.F �B/� TC.E/:

We give a number of other applications and consequences of our theorem. For instance,
it leads directly to the following inequality due to Dranishnikov [6, Theorem 3.6].

Corollary 3 (See Corollary 2.9) Suppose X and Y have the homotopy type of
connected CW complexes. Then cat.X �Y /� TC.X _Y /.

Furthermore, in our actual result we extend this inequality to one involving TCn.X_Y /.

We also show some results in the rational homotopy setting. The basic result here is of
a similar nature to our integral result, but allows for considerably greater flexibility in
its application. For our rational results, we assume spaces are simply connected. We
refer to Hilton, Mislin and Roitberg [18] for general results about rationalization of
simply connected spaces. We write XQ for the rationalization of a simply connected
space X , and gQW XQ! YQ for the rationalization of a map gW X ! Y of simply
connected spaces. Then �i.XQ/Š�i.X /˝Q are the rational homotopy groups of X ,
and gQ# D g# ˝ 1W ��.XQ/! ��.YQ/ is the homomorphism induced on rational
homotopy groups.

Theorem 4 (See Theorem 3.2) Consider two maps fj W Yj!X of simply connected
spaces, j D 1; 2, such that each .fjQ/#W ��.YjQ/! ��.XQ/ is an inclusion on all
rational homotopy groups, and the image subgroups satisfy

.f1Q/#.�i.Y1Q//\ .f2Q/#.�i.Y2Q//D 0� �i.XQ/

for each i � 2. Then for n� 2 we have

cat.Y1Q/C cat.Y2Q/C .n� 2/ cat.XQ/� TCn.XQ/:

The proof we give for Theorem 4 leads to the following consequence.

Corollary 5 (See Corollary 3.3) Let gW X !Z and f W Y !Z be maps of simply
connected spaces. If

(I) gQ#W ��.XQ/! ��.ZQ/ and fQ#W ��.YQ/! ��.ZQ/ are both injective,

(II) im.gQ#/\ im.fQ#/D 0� ��.ZQ/,

then we have cat.YQ/� secat.gQ/.
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Corollary 5 is worth highlighting, as it is a direct generalization of the so-called mapping
theorem of Félix and Halperin (see [9, Theorem I] or [12, Theorem 28.6]), a result of
fundamental importance in rational homotopy.

Theorem 6 (Félix–Halperin mapping theorem) Let f W Y !Z be a map of simply
connected spaces. If fQ#W ��.YQ/! ��.ZQ/ is injective, then cat.YQ/� cat.ZQ/.

We retrieve the original mapping theorem from Corollary 5 by taking X to be a point;
whereupon we have secat.gQ/D cat.ZQ/, (I) reduces to the condition that fQ# be
injective, (II) becomes vacuous, and the conclusion then reads cat.YQ/ � cat.ZQ/.
This connection accounts for the title of the paper.

Our rational results also lead to interesting consequences for the global rational homo-
topy structure of finite complexes. We mention two such here to suggest the kinds of
conclusions we are able to draw. For X a simply connected finite complex, we say that
X is (rationally) hyperbolic if it has infinitely many non-zero rational homotopy groups.
In some sense, this is the generic behavior of a finite complex; see [12, Part VI]. If a
simply connected space X has TC.X /D 2, then TC.XQ/� 2, and also cat.XQ/� 2.
The interest in the following result lies in the case in which cat.XQ/D 2.

Theorem 7 (See Corollary 5.5) Let X be a simply connected hyperbolic finite
complex. If TC.XQ/D 2, then X has some connective cover that is a rational co-H–
space. In particular, ��.�X /˝Q contains a free Lie algebra on two generators.

The Avramov–Félix conjecture [12, Problem 4, Section 39] says that the rational
homotopy Lie algebra ��.�X /˝Q of a simply connected hyperbolic finite complex
should have a sub-Lie algebra that is free on two generators. If true, the conjecture
would help explain the phenomenon of exponential growth of rational homotopy groups,
about which a great deal of work has been done. The conjecture has been established
for X with cat.XQ/ D 2; see Félix, Halperin and Thomas [11; 14]. However, our
conclusion here is somewhat stronger and follows by a simple argument, once given
our basic result. With our methods, we are able to glean various conclusions in this
direction, such as the following new cases of the conjecture.

Corollary 8 (See Corollary 5.8) Let X be a simply connected hyperbolic finite
complex with cat.XQ/ D3 and TCn.XQ/D3n�3 for some n�2. Then ��.�X /˝Q
contains a free Lie algebra on two generators.

Whereas some results of this article concentrate on simply connected spaces, a com-
panion article, Grant, Lupton and Oprea [17], considers analogous results applicable to
aspherical spaces.
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The paper is organized as follows. In Section 2 we work in ordinary homotopy theory
and establish Theorem 1 of this introduction. Section 3 contains our main rational
result which is Theorem 4 of this introduction. In Section 4, we briefly illustrate some
situations in which our rational results may be levered to yield calculations of (integral)
TC.X / for certain spaces X . In the final Section 5, we apply Theorem 4 to analyze
the behavior of TC.�/ with respect to connective covers, and draw our conclusions
concerning the Avramov–Félix conjecture.

We finish this introduction with a brief resume of definitions and basic facts. Recall
that cat.X / is the smallest n for which there is an open covering fU0; : : : ;Ung by
nC 1 open sets, each of which is contractible in X . Also, for a fibration pW E! B ,
secat.p/ is the smallest number n for which there is an open covering fU0; : : : ;Ung

of B by nC 1 open sets, for each of which there is a local section si W Ui ! E of
p , so that p ı si D ji W Ui! B , where ji denotes the inclusion. Let PX denote the
space of (free) paths on a space X . There is a fibration P2W PX ! X �X , which
evaluates a path at initial and final points: for ˛ 2PX , we have P2.˛/D .˛.0/; ˛.1//.
This is a fibrational substitute for the diagonal map �W X ! X � X . We define
TC.X / WD secat.P2/.

We also consider the “higher analogues” of topological complexity introduced by
Rudyak in [22]; see also [23] and Basabe, González, Rudyak and Tamaki [2]. Let
n� 2 and consider the fibration

PnW PX !X � � � � �X DX n;

defined by

Pn.˛/D

�
˛.0/; ˛

�
1

n�1

�
; : : : ; ˛

�
n�2

n�1

�
; ˛.1/

�
for ˛ 2 PX . This is a fibrational substitute for the n–fold diagonal �nW X ! X n .
Then we define TCn.X / WD secat.Pn/.

Note that the Farber [7] and Rudyak [22] use un-normalized TCn.�/, which is one
more than our (normalized) TCn.�/. Most of our results apply to ordinary TC.X / as
well as higher TCn.X / for n� 3.

There are several well-known and basic facts which we use throughout the article
to compare sectional categories of various maps. We state them here; each is easily
justified directly from the definitions. First, suppose given a fibration pW E! B and
any map f W B0! B . Form the pullback p0W E0! B0 of p along f . Then we have
secat.p0/ � secat.p/. Next, if E is contractible or, more generally, if pW E! B is
nullhomotopic, then we have secat.p/D cat.B/. Combining these ingredients readily
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leads to general inequalities

cat.X n�1/� TCn.X /� cat.X n/

for each n � 2. These basic facts are explained in Basabe, González, Rudyak and
Tamaki [2], and Lupton and Scherer [20], amongst other places.

We frequently use n–connective covers of a space. Our notation for this is X Œn� .
Namely, X Œn� is the homotopy fibre of the map from X to its nth Postnikov section,
and it is a connected space that satisfies �i.X

Œn�/D 0 for i � n, and �i.X
Œn�/D�i.X /

for i � nC 1.

Acknowledgements This work was partially supported by grants from the Simons
Foundation (209575 to Gregory Lupton and 244393 to John Oprea).

2 A lower bound on (higher) topological complexity

From now on, suppose that spaces X and Y are connected and of the homotopy type
of a CW complex. Constructions from them, such as �X or pullbacks that involve
them, may be disconnected. We begin with a result that may be well known, but which
we cannot find in the literature in the form we need. We include a proof here for
completeness. The case nD 2 is proved in [21, Proposition 3.2]; see also the proof of
[5, Theorem 7].

In the following proposition, �W �X��X!�X and �W �X!�X denote the usual
loop multiplication map and the inverse map of loops. Also, �j ;jC1 D .�j ; �jC1/W

.�X /n ! .�X /� .�X / for j D 1; : : : ; n� 1 denotes the projection onto the two
consecutive j th and .j C 1/st factors of the product.

Proposition 2.1 For n� 2, consider the fibration sequence

.�X /n�1
�! PX

Pn
�!X n

of the fibration Pn used in the above definition of TCn.X /. Then the connecting map
of this fibration sequence may be identified as a map

@D .@1; : : : ; @n�1/W �.X
n/D .�X /n! .�X /n�1

with coordinate functions @j D � ı .� � 1/ ı �j ;jC1 for each j D 1; : : : ; n� 1. On
homotopy groups, we may identify the induced homomorphism @#W �r .�X n/ !

�r .�X n�1/ for r � 1 as a homomorphism of abelian groups

@#W

nM
jD1

�rC1.X /!

n�1M
jD1

�rC1.X /;
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where, for aD .a1; : : : ; an/ 2 �r .�X n/D
Ln

jD1 �rC1.X /, we have

@#.a/D .�a1C a2;�a2C a3; : : : ;�an�1C an/:

On sets of components, the induced map of based sets @#W �0.�X n/ ! �0.�X n�1/

may be identified as

@# W

nY
jD1

�1.X /!

n�1Y
jD1

�1.X /

with @#.a/D ..a1/
�1a2; .a2/

�1a3; : : : ; .an�1/
�1an/.

Proof We adopt the notation of [26, pages 42–43, 141] for the homotopy fibre of a
map. Consider the fibration PnW PX !X n as above. The fibre here is F D .�X /n�1 ,
and the homotopy fibre is

T Pn D f.˛; 
 / 2 PX �PX n
j ˛.ti/D 
iC1.0/; i D 0; : : : ; n� 1g;

where ti D i=.n � 1/, and we have written the coordinate functions of 
 as 
 D
.
1; : : : ; 
n/W I !X n . A homotopy equivalence ˇW .�X /n�1! T Pn from fibre to
homotopy fibre is given by ˇ.�/ D .�;Cx0

/, where Cx denotes the constant path
at x , and x0 2 X n denotes the base point x0 D .x0; : : : ;x0/. Now for ˛ 2 PX ,
let ˛Œi �W Œti�1; ti � ! X denote the restriction of ˛ to the subinterval Œti�1; ti � for
i D 1; : : : ; n� 1. Then the inverse homotopy equivalence may be written explicitly as
ˇ�1W T Pn ! .�X /n�1 , with

ˇ�1.˛; 
 /D .
 1˛Œ1�
2; 
 2˛Œ2�
3; : : : ; 
 n�1˛Œn� 1�
n/:

Here, the notation � denotes the inverse path to � , ie �.t/D �.1� t/, and juxtaposition
of paths denotes their usual composition.

From the pullback of the based path fibration p0W PX n!X n along PnW PX !X n ,
we obtain the whisker map �W �X n! T Pn as �.
 /D .Cx0

; 
 /, whence we have the
connecting map @W �X n!�X n�1 as

@.
 /D ˇ�1
ı�.
 /D .
 1
2; 
 2
3; : : : ; 
 n�1
n/:

In terms of maps, then, we may identity the j th component of the connecting map as

@D � ı .�� 1/ ı�j ;jC1W �X n
!�X ��X !�X ��X !�X

for j D 1; : : : ; n� 1. The assertions about the homomorphisms induced on homotopy
groups and sets of components follow, as � induces the usual addition of homotopy
elements and � the inverse (anti-)homomorphism.
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Note that, in the above result, whilst �r .�X n/ and �r .�X n�1/ are both groups for
r � 0, they may be non-abelian for r D 0 and so the induced map @# may fail to be a
homomorphism for r D 0.

We will need the following generalization of the direct product of (non-abelian) groups:
say that subgroups A and B of a group G are complementary subgroups if they
(1) span G , that is, if any element of G may be written as a product ab for some
a 2A and b 2 B , and (2) also intersect trivially, that is, if A\B D feg. Note that if
A and B are complementary subgroups of an abelian group G , then G is isomorphic
to the direct sum A˚B .

Theorem 2.2 Consider two maps fj W Yj ! X of connected spaces, j D 1; 2, such
that for each i � 1

(i) each .fj /#W �i.Yj /! �i.X / is an inclusion,
(ii) .f1/#.�i.Y1// and .f2/#.�i.Y2// are complementary subgroups in �i.X /.

Then for n� 2, we have

cat.Y1 �Y2 �X n�2/� TCn.X /:

In particular, with nD 2, we have cat.Y1 �Y2/� TC.X /.

Proof Write Y D Y1 � Y2 �X n�2 and f D f1 � f2 � 1X n�2 W Y ! X n . Then let
N.f;Pn/ denote the pullback of Pn along f . Notice that, since Pn is a fibration, this
pullback is also a homotopy pullback. Extend this commutative diagram to a homotopy
commutative ladder of the fibre sequences of each vertical map, thus

�Y
�f //

ı
��

�X n

@
��

�X n�1

��

�X n�1

��
N.f;Pn/ //

Pn

��

PX

Pn

��
Y

f

// X n:

In the long exact homotopy sequence of Pn , identify the connecting map ıW �Y !

�X n�1 as ıD @ı�f , where @ denotes the connecting map from Proposition 2.1. So
on homotopy groups (or homotopy sets, for r D 0), we may identify the induced map
ı#W �r .�Y /! �r .�X n�1/ for each r � 0 as a map
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ı# D @# ıf#W �rC1.Y1/��rC1.Y2/�

nY
jD3

�rC1.X /!

n�1Y
jD1

�rC1.X /:

With bj 2 �rC1.Yj /, j D 1; 2, and aj 2 �rC1.X /, j D 3; : : : ; n, we have

ı#.b1; b2; a3; : : : ; an/D��
�f1#.b1/Cf2#.b2/;�f2#.b2/C a3;�a3C a4; : : : ;�an�1C an

�
if r � 1;�

.f1#.b1//
�1f2#.b2/; .f2#.b2//

�1a3; a
�1
3

a4; : : : ; .an�1/
�1an

�
if r D 0:

Because the images f1#.�rC1.Y1// and f2#.�rC1.Y2// span �rC1.X / for each r �0,
ı# is surjective. Because these images intersect only in 0 (or feg, in the case r D 0),
and because we also assume that f1# and f2# are injective, it follows that ı# is injective.
Thus ı#W �r .�Y /!�r .�X n�1/ is an isomorphism for each r � 1, and a bijection of
based sets for r D 0. Therefore N.f;Pn/ is weakly contractible, and thus contractible,
since it is of the homotopy type of a CW complex.

In the first pullback diagram, then, it follows that secat.Pn/ D cat.Y /. Since this
diagram is a pullback, we have

cat.Y /D secat.Pn/� secat.Pn/D TCn.X /:

Corollary 2.3 For maps fj W Yj !X that satisfy the hypotheses of Theorem 2.2, we
have cat.Y1/� secat.f2/.

Proof Consider the (standard) homotopy pullback

M.f1; f2/
f 1 //

f 2

��

Y2

f2

��
Y1

f1

// X:

That is,

M.f1; f2/D f.y1; ˛;y2/ 2 Y1 �map.I;X /�Y2 j ˛.0/D f1.y1/; ˛.1/D f2.y2/g:

Notice that M.f1; f2/ D N.f;P2/, where f D f1 � f2W Y1 � Y2 ! X � X and
P2W PX ! X � X are the maps involved in the proof of Theorem 2.2 for n D 2,
and N.f;P2/ is the pullback. Under the hypotheses of Theorem 2.2, we showed
that N.f;P2/ is contractible. It follows from the homotopy pullback that cat.Y1/D

secat.f 2/� secat.f2/.

There is a natural way in which the maps involved in Theorem 2.2 arise.
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Corollary 2.4 Consider a fibration sequence F ! E ! B of connected CW com-
plexes. If the fibration admits a (homotopy) section, then for each n� 2, we have

cat.F �B �En�2/� TCn.E/:

Proof The maps F !E and B!E , with the latter being the section, satisfy the
conditions of the theorem, with F;B;E identified with Y1;Y2;X , respectively.

We present several examples of situations covered by Corollary 2.4. Here, we use eX
to denote the universal cover of X .

Corollary 2.5 If X has fundamental group Z, then TC.X /� cat. eX �S1/. If X has
fundamental group Z�Z, then TC.X /� cat. eX �S1 �S1/.

Proof We argue for �1.X /Š Z�Z; the argument for �1.X /Š Z is identical. Let
kW X ! S1 � S1 D K.�1.X /; 1/ be the classifying map of the universal cover, so
that we have a fibre sequence eX ! X ! S1 � S1 . We obtain a section of k by
first choosing a map sW S1 _ S1 ! X for which k ı s � J W S1 _ S1 ! S1 � S1 ,
where J W S1 _S1! S1 �S1 is the inclusion, and noting that s extends to a map
� W S1 � S1 ! X , as �1.X / is abelian. Then k ı � W S1 � S1 ! S1 � S1 induces
an isomorphism on �1.�/ and thus, since S1 � S1 D K.�1.X /; 1/, is a homotopy
equivalence. We may adjust � , if necessary by pre-composing with a suitable self-
homotopy equivalence of S1�S1 , into a section of k up to homotopy. The inequality
now follows from Corollary 2.4.

Associated bundles provide another source of applications. Suppose that pW E!M

is a principal G–bundle, for G a topological group. For X a G–space, we have the
associated bundle E �G X !M , with fibre X .

Corollary 2.6 With the above notation, if the action of G on the connected space X

has a fixed point, then we have TC.E �G X /� cat.X �M /.

Proof If the action of G on X has a fixed point, then E �G X !M has a section,
and we may apply Corollary 2.4.

Examples 2.7 Here, since the bundle E �G X !M admits a section, we already
have the lower bound TC.E �G X / � TC.M /. In this situation, therefore, our new
lower bound will be useful when TC.M / is relatively small, compared with cat.M /.
This happens if, for instance, we also suppose that M is a group, in which case we
have TC.M /D cat.M /; see [8, Lemma 8.2; 20]. For example, take the principal circle
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bundle U.n/! PU.n/, and let X D S2 with the rotation action of the circle S1 .
Here we obtain a lower bound of TC.U.n/�S1 S2/� cat.S2 �PU.n//. As another
example, take the Hopf bundle S1! S3! S2 , and consider any S1 –action on CPn .
The action must have a fixed point, as �.CPn/ 6D 0. We obtain that TC.S3�S1 CPn/�

cat.CPn
�S2/D nC 1> cat.S2/.

Mapping tori are a further source of applications of Corollary 2.4.

Corollary 2.8 Let �W M !M be a diffeomorphism of a connected, smooth manifold
M and let M� denote the corresponding mapping torus. Then TC.M�/� cat.M�S1/.

Proof Corollary 2.4 obtains the lower bound, for we have a sectioned fibration
M !M�! S1 .

Using Corollary 2.4, we may also retrieve, and in a very transparent way, (part of) a
result of Dranishnikov as well as its extension to higher topological complexity.

Corollary 2.9 Suppose X and Y have the homotopy type of connected CW com-
plexes. Then

maxfcat.X �Y n�1/; cat.Y �X n�1/g � cat.X �Y � .X _Y /n�2/� TCn.X _Y /

for n� 2. In particular, we have cat.X �Y /� TC.X _Y /.

Proof Let p1W X _Y ! X be projection onto the first summand, i1W X ! X _Y

be inclusion into the first summand, and i2W Y !X _Y be inclusion into the second
summand. Because the composition p1 ı i2W Y ! X is null, there is a lift, up to
homotopy, of i2 through the (homotopy) fibre inclusion j W F !X _Y . Furthermore,
because i2 admits the retraction p2W X _ Y ! Y , this lift admits the retraction
p2 ı j W F ! Y . All this is summarized in the following diagram:

F

j
��

p2ıj

		
Y

;;

i2

// X _Y

p1

��
X

i1

]]

Now Corollary 2.4 gives cat.F �X � .X _Y /n�2/� TCn.X _Y /. But Y is a retract
of F , and hence Y �X � .X _ Y /n�2 is a retract of F �X � .X _ Y /n�2 . The
second inequality follows. The first follows because both X n�2 and Y n�2 are retracts
of .X _Y /n�2 .
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3 Rational results

We now turn our attention to the rational homotopy setting. Here, we consider sim-
ply connected spaces. Generally, TCn.XQ/ provides a lower bound for the (higher)
topological complexity. We include a formal statement and proof here for the sake of
completeness. We may also consider P –localization for this, as we use only generalities
about localization. The corresponding inequality for cat.�/ is a result of Toomer [25].

Lemma 3.1 Let f W E ! B be a fibration of simply connected spaces, and let
fP W XP ! YP be its P –localization (at any set of primes P ). Then secat.fP / �

secat.f /. In particular, we have TCn.XP /D secat..Pn/P /� secat.Pn/D TCn.X /.

Proof We may use general properties of localization (see eg [18, Section II.1]),
although not with the covering definition of secat.�/ that we have given. Instead, we
use Švarc’s fibrewise join definition of secat.�/. For this, one starts with the pullback
along f of f , and then forms the pushout of the top left corner to obtain the filler in
the following diagram:

pull //

��

E

f

��

ww
pushDG1.f /

p1 ((
E

f

//

66

B

Iterating this pullback-pushout step n–times, each time starting with the pullback along
f of pi�1 , results in a fibration pnW Gn.f /! Y , called the .nC 1/–fold fibrewise
join (of f with itself). Under mild conditions (eg B paracompact or normal), a result
of Švarc says that secat.f / equals the smallest n for which pnW Gn.f /! Y has a
(global) section. A proof of this identification is given in [15, Theorem 2.2].

Now suppose that secat.f /D n, and that lBW B! BP is a P –localization map. The
functorial nature of the fibrewise join construction results in a commutative diagram

Gn.f /
l //

pn.f /

��

Gn.fP /

pn.fP /

��
B

lP

// BP

and it is not difficult to identify the right-hand vertical map as .pn/P W .Gn.f //P!BP ;
see [25] for the case in which f is the path fibration. Since we assume that secat.f /Dn,
the left-hand vertical map admits a section, and the universal property of the localization
map lBW B!BP yields a section of pn.fP/W Gn.fP/!BP . That is, secat.fP /� n.
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The first equality of the last assertion follows from the fact that the induced map
.lP /�W map.I;X /!map.I;XP / is a P –localization [18, Theorem II.3.11].

Note that the simply connected hypothesis is necessary in Lemma 3.1; the inequality
may fail if the spaces are assumed only to be nilpotent. For instance, if we take
X D S1 , then we have TC.X / D cat.X / D 1. However, XQ D S1

Q is well known
to have cat.S1

Q/ D 2. Since S1 is an H–space, it follows that XQ D S1
Q is also an

H–space. Therefore, we have TC.XQ/D cat.S1
Q/D 2, and TC.XQ/ > TC.X / here.

We begin with a result in this setting whose conclusion is the same as that of Theorem 2.2,
but whose hypotheses are weaker (the images of the maps in rational homotopy groups
need not span). As we shall see, this allows for greater flexibility in applying the result.

Theorem 3.2 Consider maps fjQW YjQ!XQ of simply connected rational spaces,
j D 1; 2, such that each .fjQ/#W ��.YjQ/! ��.XQ/ is an inclusion on all (rational)
homotopy groups, and the image subgroups satisfy

.f1Q/#.�i.Y1Q//\ .f2Q/#.�i.Y2Q//D 0� �i.XQ/;

for each i � 2. Then for n� 2, we have

cat.Y1Q/C cat.Y2Q/C .n� 2/ cat.XQ/� TCn.XQ/:

In particular, with nD 2, we have cat.Y1Q/C cat.Y2Q/� TC.XQ/.

Proof We follow the same steps as in the proof of Theorem 2.2. Write YQ D

Y1Q�Y2Q�X n�2
Q , and fQD f1Q�f2Q�1X n�2

Q
W YQ!X n

Q . Then let N.fQ;PnQ/

denote the pullback along fQ of PnQW PXQ!X n
Q , and construct the same ladder of

fibrations as in the proof of Theorem 2.2; thus

�YQ

�fQ
//

ı
��

�X n
Q

@
��

�X n�1
Q

jQ

��

�X n�1
Q

��
N.fQ;PnQ/ //

PnQ

��

PXQ

PnQ

��
YQ

fQ

// X n
Q:
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Notice that here we are making various natural identifications, including .X n/Q D

.XQ/
n , .�X /Q D �.XQ/, and .PX /Q D P .XQ/. As we did in the proof of

Theorem 2.2, in the long exact homotopy sequence of the left-hand vertical map,
we now identify the connecting homomorphism (now in rational homotopy groups)
ı#W �i.�YQ/! �i.�X n�1

Q / for i � 1 as an injective homomorphism

ı# D @# ıfQ#W �iC1.Y1Q/��iC1.Y2Q/�

nY
jD3

�iC1.XQ/!

n�1Y
jD1

�iC1.XQ/:

From the long exact sequence in rational homotopy groups, this implies that the fibre
inclusion

jQW �X n�1
Q !N.fQ;PnQ/

is onto in rational homotopy groups. Now we rely upon a fact peculiar to the rational
setting: because the domain of jQ is a (rational) H–space, and jQ is onto in rational
homotopy groups, it follows that we have a (rational) section � W N.fQ;PnQ/ !

�X n�1
Q of jQ . Indeed, it is also true that N.fQ;PnQ/ is a (rational) H–space; see

the proof of the mapping theorem given in [4, Theorem 4.11]. Then it follows that we
have PnQ D PnQ ı jQ ı� D�ı� D�W N.fQ;PnQ/! YQ . Consequently, from the
bottom pullback square, we have

cat.YQ/D secat.PnQ/� TCn.XQ/:

Finally, we may rewrite cat.YQ/ as the sum cat.Y1Q/C cat.Y2Q/C .n� 2/ cat.XQ/,
because the product equality for LS category holds rationally [10].

We may draw the same corollary from this proof as we did from that of Theorem 2.2.

Corollary 3.3 For maps fjQW YjQ!XQ that satisfy the hypotheses of Theorem 3.2,
we have cat.Y1Q/� secat.f2Q/.

Proof Use the argument of Corollary 2.3 with the homotopy pullback

M.f1Q; f2Q/
f 1Q //

f 2Q

��

Y2Q

f2Q

��
Y1Q

f1Q

// XQ:

Note that f 2QW M.f1Q; f2Q/ ! Y1Q factors through P2QW N.fQ;P2Q/ ! YQ ,
where N.fQ;P2Q/ denotes the pullback of P2QW XQ ! XQ � XQ along fQ D

f1Q�f2QW Y1Q�Y2Q!XQ�XQ . In the proof of Theorem 3.2, we showed P2Q to
be (rationally) nullhomotopic, and hence f 2Q is nullhomotopic. The result follows.
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We continue with several illustrations of how Theorem 3.2 may be applied. We say
that a fibration pW E ! B of simply connected spaces admits a rational section if
the rationalization pQW EQ ! BQ admits a section. In this case, we may apply
Corollary 2.4 to the rationalized fibration sequence, and conclude that cat.FQ/C

cat.BQ/� TC.EQ/. Because of the relaxed hypotheses of Theorem 3.2, however, we
are able to obtain the following somewhat more general result.

Corollary 3.4 Suppose that i W Y ! X is a map of simply connected spaces that
induces an injection on rational homotopy groups, and F ! Y !B is a fibration of Y

by simply connected spaces that admits a rational section. Then we have

cat.FQ/C cat.BQ/C .n� 2/ cat.XQ/� TCn.XQ/:

Proof Suppose the maps involved in the fibration of Y , after rationalization, are

FQ
j // YQ p

// BQ;

�
xx

with p ı � D 1W BQ! BQ . Then i ı j W FQ!XQ and i ı � W BQ!XQ satisfy the
hypotheses of Theorem 3.2: they both induce injections in rational homotopy groups;
and it is easy to see that their image subgroups have trivial intersection in ��.XQ/.
Indeed, we have a direct sum decomposition ��.YQ/Š j#.��.FQ//˚ �#.��.BQ//.
Suppose we have a2��.FQ/, b2��.BQ/ such that .iıj /#.a/D .iı�/#.b/2��.XQ/.
Then i#.j#.a/� �#.b//D 0. Hence j#.a/� �#.b/D 0 2 ��.YQ/, as i is injective in
rational homotopy, and thus we have a D 0 2 ��.FQ/ and b D 0 2 ��.BQ/, since
j#.��.FQ//\ �#.��.BQ//D 0 2 ��.YQ/, and both j and � are injective in rational
homotopy. The result follows.

In the next example, and at several places in the sequel, we make use of minimal
models. These are a basic tool of rational homotopy theory that allows one to work in
an entirely algebraic setting. We refer to [12, Section 12 et seq] and [13, Chapter 2]
for comprehensive treatments of minimal models. Here, we simply recall that the
minimal model of a space X is a differential graded (DG) algebra

V
.V I d/, whereV

V denotes the free graded-commutative algebra generated by the graded vector
space V and d denotes a decomposable differential, that is, we have d W V !

V�2
V .

The minimal model encodes all of the rational homotopy information of X , in a
certain technical sense. Some rational homotopy data are readily extracted from it.
For example, on passing to cohomology we obtain H.

V
.V I d//ŠH�.X IQ/, and as

graded vector spaces we have isomorphisms Hom.V;Q/Š ��.X /˝Q. As another
example, Whitehead product structure in ��.X /˝Q corresponds to the quadratic part
of the differential d ; see [12, Section 13(e)] for details.
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A number of authors have used algebraic or minimal model versions of TC.�/ to study
rationalized topological complexity; eg [15; 19]. Whilst we use minimal models in
some of our examples and applications, we do not make use of an algebraic, or minimal
model, version of TCn.�/ as such.

Example 3.5 We analyze an example from [15]. Let X D S3 _ S3 [a e8 [b e8 ,
with the 8–cells attached by Whitehead products aD Œ�1; Œ�1; �2� � and b D Œ�2; Œ�1; �2� �.
In [15, Example 6.5], it is shown that the so-called module topological complexity is
MTC.X /D 3, which gives a better lower bound for (rational) TC.X / than does the
rational zero-divisors lower bound, which is 2 here. We will use Theorem 3.2 to match
this lower bound given by MTC.X /.

We construct maps fj W Yj !X with the salient properties. We may describe (the first
few terms of) the minimal model of X asV

.u3; v3; w5;x10; : : :/;

with subscripts denoting degrees, and differentials d.u/ D 0 D d.v/, d.w/ D uv ,
d.x/D uvw , and so on. Notice that the cycles uw and vw generate cohomology in
degree 8, and that X is not formal. Now we have an obvious projection of the minimal
model V

.u3; v3; w5;x10; : : :/!
V
.u; wI d D 0/

that corresponds to a map f1W Y1!X injective in rational homotopy. Indeed, Y1 'Q

S3 �S5 . On the other hand, we also have a projectionV
.u3; v3; w5;x10; : : :/!

V
.v;x; : : :/:

Here the quotient differential will be zero for the first terms, but it is generally not zero.
This likewise corresponds to a map f2W Y2!X injective in rational homotopy. Note
that Y2 fibres rationally over S3 with fibre X Œ9� , the 9–connective cover of X . The
images .fj /#.��.YjQ// in ��.XQ/ are distinct. Indeed, the only degree in which they
could possibly intersect non-trivially is in degree 3, and there the images are distinct
by choice. Applying Theorem 3.2, we obtain that

TC.XQ/� cat.YQ/D cat.Y1Q/C cat.Y2Q/� 2C 1D 3

since Y2 is not rationally contractible. In fact we have TC.XQ/� 3 in this example, as
follows from [15, Example 6.5] and [19, Proposition 1.5]. It follows that the space Y2

here is a rational co-H–space.

Connective covers provide one source of spaces Yj for Theorem 3.2. Since the map
X ŒN �!X is injective in (rational) homotopy groups, the mapping theorem (Theorem 6)
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yields cat.X ŒN �
Q /� cat.XQ/ for any N � 2. We illustrate the use of connective covers

in this setting with a proof of a rational version of the main result of [16].

Corollary 3.6 Let X be a simply connected space with TCn.XQ/D n� 1 for some
n� 2. Then X 'Q S2rC1 for some r � 1.

Proof First, X must have at least one non-zero odd-degree rational homotopy group.
Otherwise X would be rationally equivalent to a product of even-dimensional Eilenberg–
Mac Lane spaces, and we would have 1 D cat.XQ/ D TC.XQ/. So suppose that
�2rC1.XQ/ 6D 0, for some r � 1, and that all odd-degree rational homotopy groups
of X below this degree are zero. Then we may fibre the minimal model of X Œ2r � asV

.v/ // .
V
.v/˝

V
.W /; d/

uu
// .
V
.W /; d/;

with v a generator in degree 2rC1. Topologically, this corresponds to a fibration with
section

FQ
j // X Œ2r �

Q p
// S2rC1

Q :

�
tt

Note that, since .n�1/cat.XQ/�TCn.XQ/, our hypothesis implies that cat.XQ/D 1,
so that X is a rational co-H–space. Note also that we have cat.S2rC1

Q / D 1. Now
apply Corollary 3.4, and obtain that cat.FQ/C1C.n�2/�TC.XQ/D n�1, whence
cat.FQ/D 0, and so X Œ2r � 'Q S2rC1 .

Two possibilities remain. Either we have all rational homotopy groups of degree below
2r C 1 zero, in which case X 'Q S2rC1 . Or, if there are non-zero rational homotopy
groups of degree less than 2r C 1, the minimal model of X must be of the formV
.u1; : : : ;uk ; vI d/, with each ui of even degree. In this latter case, the only possible

non-zero differential is d.v/D P , where P is some polynomial in degree 2r C 2 in
the ui . A straightforward argument shows that if k � 2, then XQ has a non-zero cup
product in cohomology — indeed, must have infinite cup length — and hence X cannot
be a rational co-H–space. On the other hand, if k D 1, then H�.X IQ/ŠQŒu1�=.u

n
1
/

is a truncated polynomial algebra on a single even-degree generator. For such a space,
the zero-divisors lower bound implies that TC.XQ/� 2, and so this case may also be
eliminated. The only remaining possibility, then, is that X 'Q S2rC1 .

We give another consequence of Corollary 3.4 of a rather general nature.

Corollary 3.7 Let X be a simply connected hyperbolic space. Suppose that we have
linearly independent elements a 2 �2rC1.XQ/ and b 2 �2sC1.XQ/, r � s , with zero
Whitehead product: Œa; b�D 0 2 �2rC2sC1.XQ/. Then we have TCn.XQ/ � 2n� 1

for each n� 2.
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Proof We argue with minimal models. First, write the minimal model of X asV
.x1; : : : ;xk ; a;xkC1; : : : ;xl ; b; w1; : : : I d/

with generators in non-decreasing degree order and, by abuse of notation, with a and b

the odd-degree generators that correspond to the linearly independent rational homotopy
elements in the hypotheses. Then the ideal generated by fx1; : : : ;xk ;xkC1; : : : ;xlg

(without a) is d –stable, and we may project onto the quotient by this ideal:V
.x1; : : : ;xk ; a;xkC1; : : : ;xl ; b; w1; : : : I d/!

V
.a; b; w1; : : : I d/:

This corresponds to a map YQ! XQ that is injective in rational homotopy groups.
Next we may fibre the model

V
.a; b; w1; : : : I d/ of Y asV

.a; b/ // .
V
.a; b/˝

V
.W /; d/

tt
// .
V
.W /; d 0/

which corresponds to a fibration with section

FQ
j // YQ p

// S2rC1
Q �S2sC1

Q :

�

vv

Note that we obtain the section (retraction in minimal models) because of the assumption
about the Whitehead product vanishing: in minimal models, this means that the term ab

does not occur in any differential (in d , and hence in d 0 ). Because we assume that X is
hyperbolic, it follows that Y is hyperbolic and, in particular, FQ cannot be contractible.
Now apply Corollary 3.4 to obtain that TCn.XQ/ � cat.FQ/C 2C .n� 2/cat.XQ/.
Since XQ does not have a free homotopy Lie algebra, we have that cat.XQ/ � 2.
Hence we have TCn.XQ/� cat.FQ/C 2n� 2� 2n� 1, since cat.FQ/� 1.

This last result indicates an intriguing connection between (the vanishing of) products in
the homotopy Lie algebra and TC.�/, which we pursue in more detail in the last section.

4 From rational results to integral results

In this section, we illustrate how our rational lower bounds may lead to a determination
of ordinary (higher) TC.�/. Let X be a simply connected space of finite type. We
say that X is an oddly generated space if its rational homotopy groups are concen-
trated in finitely many odd degrees. In this case, X has minimal model of the formV
.v1; : : : ; vk I d/, with each jvi j odd, not necessarily of distinct degrees, and then we

say that X has rank k . Any iterated sequence of principal bundles starting from a
product of odd spheres has minimal model of this form. Lie groups themselves have
such models with zero differential.
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Theorem 4.1 Suppose X and Y are simply connected oddly generated spaces, both
of rank k . If X and Y satisfy cat.X /D cat.Y /D k , then TCn.X _Y /D nk .

Proof For any oddly generated space X of rank k , we have cat.XQ/D k . Applying
the rational version of Corollary 2.9,

nk D cat.XQ/C cat.YQ/C .n� 2/maxfcat.XQ/; cat.YQ/g � TCn.XQ _YQ/:

Now TCn.XQ _YQ/� TCn.X _Y /, and we have a general upper bound of

TCn.X _Y /� cat..X _Y /n/� n maxfcat.X /; cat.Y /g:

Under our hypotheses, the result follows.

For instance, we may take X or Y to be one of: a product of k odd-dimensional spheres,
U.k/, or SU.kC 1/; see [24] or [4, Proposition 9.5, Theorem 9.47]. It is not too hard
to construct further examples of oddly generated spaces to which Theorem 4.1 may be
applied, resulting in an exact determination of ordinary, and not just rational, TCn.�/.

Example 4.2 Here we construct a smooth manifold X that is oddly generated with
rank.X /D cat.X /D 3. Take pW E! S6 to be the (unit) sphere bundle of the tangent
bundle over S6 . This is an S5 –bundle over S6 . Now let f W S3 � S3 ! S6 be a
(smooth) map of degree 1, and form the pullback

X //

p0

��

E

p
��

S3 �S3

f

// S6

of p along f . This results in our space X , an S5 –bundle over S3 � S3 . We see
that the minimal model of X is

V
.v1; v2; v3I d/, with jv1j D jv2j D 3 and jv3j D 5,

with differential given by d.v3/ D v1v2 (this kind of example is discussed in [13]).
Using rational category (in fact, the rational Toomer invariant) as a lower bound, and
the usual “dimension over connectivity” upper bound [4, Theorem 1.49], we find that

3D e0.X /� cat.XQ/� cat.X /� dim.X /
3

D
11

3
< 4;

and thus we have cat.X / D 3. Then we have, for example, TC.X _ X / D 6 D

cat..X _X /� .X _X // from Theorem 4.1.
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5 Consequences for the Avramov–Félix conjecture

Conjecture 5.1 (Avramov–Félix) If X is a simply connected hyperbolic finite com-
plex, then ��.�X /˝Q contains a free Lie algebra on two generators.

This has been established in some cases, including the case in which X has cat.XQ/D2

(see [11], although some sub-cases are left open), the case in which ��.�X /˝Q has
depth 1 (see [3], which covers the sub-cases left open for cat.XQ/D 2), and the case
in which X is a Poincaré duality space, with H�.X IQ/ evenly graded and generated
by at most three generators (implied by the results of [1]).

For a given value of cat.XQ/, the general inequalities cat.X n�1/�TCn.X / � cat.X n/

for each n � 2, imply that TCn.XQ/ is lowest when TCn.XQ/ D .n� 1/cat.XQ/.
Said differently, amongst spaces with cat.XQ/D k , those with TCn.XQ/D .n� 1/k

for some n � 2 satisfy a particularly strong constraint, such that one might hope
to prove theorems about them. An extreme case of this point of view is given in
Corollary 3.6, and its integral counterpart in [16]. Here we make some progress on the
Avramov–Félix (AF) conjecture for spaces that satisfy TCn.XQ/D .n� 1/cat.XQ/.

A rational co-H–space, that is, a simply connected space X with cat.XQ/D 1, has
rational homotopy Lie algebra ��.�X /˝Q, a free graded Lie algebra, and thus
automatically satisfies the AF conjecture, assuming it is rationally hyperbolic. Also,
for any connective cover X ŒN � of a simply connected, finite-type space X , we have
an inclusion of rational homotopy Lie algebras ��.�X ŒN �/˝Q � ��.�X /˝Q.
Furthermore, by Theorem 6, we know that cat.X ŒN �

Q /� cat.XQ/ for any cover, however
there is no guarantee that cat.�/ will actually decrease upon passing to a cover. Our
basic strategy here is to consider connective covers, attempting to reduce cat.X ŒN �

Q / to
a value for which the AF conjecture is known to hold.

This strategy prompts the following questions.

Question 5.2 When does a simply connected hyperbolic finite complex have a connec-
tive cover that is a rational co-H–space? More generally, when does a simply connected
hyperbolic finite complex have a connective cover of strictly lower rational category?

Example 5.3 We observe that not every space has a connective cover that is a rational
co-H–space, and not every space has a connective cover of strictly lower rational
category: Take X D .S3 _S3/� .S3 _S3/. For each N , we have

X ŒN �
D .S3

_S3/ŒN � � .S3
_S3/ŒN �:
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It is easy to see here that cat.XQ/ D cat.X ŒN �
Q / D 2 for each N . We may adapt

this example to one in which cat.X ŒN �
Q / decreases from cat.XQ/ to any intermediate

value between cat.XQ/ and 1, and stabilizes at that value. For instance, consider
X D .S3 _ S3/ � .S3 _ S3/ � S5 � S7 . Then cat.XQ/ D 4, cat.X Œ5�

Q / D 3, and
cat.X ŒN �

Q /D 2 for N � 7.

We give a partial response to Question 5.2 in our next result. We will then specialize to
small values of cat.XQ/ (� 3) and establish some cases of the AF conjecture.

In the following results, note that �odd.X /˝Q must be non-zero, otherwise X would
have the rational homotopy type of a product of even-dimensional Eilenberg–Mac Lane
spaces, and could not be finite.

Theorem 5.4 Let X be a simply connected hyperbolic finite complex. Suppose that
we have TCn.XQ/D .n� 1/cat.XQ/ for some n� 2.

(1) Suppose 2rC1 is the lowest odd degree in which ��.X /˝Q is non-zero. Then

cat.X Œ2rC1�
Q /� cat.XQ/� 1:

(2) Suppose that there exist linearly independent elements a 2 �2p.�X /˝Q, b 2

�2p.�X /˝Q, p � q , with Samelson product ha; bi D 0 2 �2pC2q.�X /˝Q.
Then

cat.X Œ2qC1�
Q /� cat.XQ/� 2:

Proof (1) Choose any essential map ˛W S2rC1 ! XQ . Because odd-dimensional
spheres are rational Eilenberg–Mac Lane spaces, ˛ is injective in (all) rational homotopy
groups. Then the maps ˛W Y1 D S2rC1 ! XQ and i W X Œ2rC1�

Q ! XQ satisfy the
hypotheses of Theorem 3.2, yielding an inequality

1C cat.X Œ2rC1�
Q /C .n� 2/cat.XQ/� TCn.XQ/D .n� 1/cat.XQ/:

It follows that we must have cat.X Œ2rC1�
Q /� cat.XQ/� 1, as asserted.

(2) Under the standard identifications of ��.�X / with ��C1.X /, and Samelson prod-
uct in ��.�X / with Whitehead product in ��.X /, the assumption may be phrased as
follows: For linearly independent elements ˛ 2�2pC1.XQ/, ˇ 2�2qC1.XQ/, we have
Œ˛; ˇ�D 0 2 �2pC2qC1.XQ/, where the bracket denotes their Whitehead product. Be-
cause their Whitehead product is zero, we have a map f1W Y1 D S2pC1 �S2qC1!XQ

that restricts to .˛ j ˇ/W S2pC1 _S2qC1! XQ on the wedge. Once again, because
odd-dimensional spheres are rational Eilenberg–Mac Lane spaces, f1 is injective in
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(all) rational homotopy groups. Then the maps f1 and f2W Y2 D X Œ2qC1�
Q ! XQ

satisfy the hypotheses of Theorem 3.2, and we obtain an inequality

2C cat.X Œ2qC1�
Q /C .n� 2/cat.XQ/� TCn.XQ/D .n� 1/cat.XQ/;

whence cat.X Œ2qC1�
Q /� cat.XQ/� 2.

For a graded Lie algebra L, we say that L has no zero brackets if, whenever x;y 2L

are linearly independent elements, we have Œx;y� 6D 0 2L.

Recall again the general inequality .n� 1/cat.XQ/ � TCn.XQ/, for each n � 2. If
we assume that TCn.XQ/ � 2n� 3 for some n, then it follows that cat.XQ/ D 1,
and X is a rational co-H–space. Since we are assuming X is hyperbolic, this implies
that X has the same rational homotopy type as a wedge of at least two spheres,
and hence satisfies the AF conjecture. The next step, therefore, is the case in which
TCn.XQ/�2n�2 for some n�2. The interest here is in the case in which cat.XQ/D2

and TCn.XQ/D 2n� 2 for some n. Any space with cat.XQ/D 2 is already known
to satisfy the AF conjecture [11; 3]. Here, we will obtain a stronger conclusion using
the extra constraint on TCn.XQ/.

Corollary 5.5 Let X be a simply connected hyperbolic finite complex, and suppose
TCn.XQ/�2n�2 for some n�2. Then �even.�X /˝Q has no zero brackets. Further-
more, if �2r.�X /˝Q is the lowest-degree non-zero part of �even.�X /˝Q, then the
connective cover X Œ2rC1�

Q is a (rational) co-H–space. In particular, ��.�X /˝Q con-
tains as a sub-Lie algebra the infinite-dimensional free Lie algebra ��.�X Œ2rC1�/˝Q.

Proof The hypothesis TCn.XQ/ � 2n� 2 for some n � 2 entails cat.XQ/ � 2. If
cat.XQ/D 1, then ��.�X /˝Q is a free Lie algebra and we are done. So assume
that cat.XQ/D 2. First, suppose that we have two linearly independent, even-degree
elements in ��.�X / ˝ Q whose bracket is zero. Then part (2) of Theorem 5.4
contradicts the fact that each connective cover X ŒN �

Q is non-contractible. Hence,
�even.�X /˝Q has no zero brackets. The remaining assertion follows directly from
part (1) of Theorem 5.4.

Remark 5.6 The condition that a graded Lie algebra have no zero brackets is, in
general, strictly weaker than the condition that the Lie algebra be free. If a graded Lie
algebra is free, then it has no zero brackets. The example below illustrates that the
converse need not be true. Note, however, that our example is not the rational homotopy
Lie algebra of a hyperbolic space, as it does not have the (exponentially) increasing
ranks displayed by such. Clearly, no zero brackets entails a rich bracket structure. It
would be interesting to understand more fully the relationship, if any, between no zero
brackets and freeness in the context of hyperbolic rational homotopy Lie algebras.
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Example 5.7 Let L be the evenly graded vector space with L2i D hxii, a one-
dimensional vector space with basis element xi for each i D 1; 2; : : :. Define a bracket
structure on L by setting Œxi ;xj �D 2.j � i/xiCj for i < j . Then L is a graded Lie
algebra with no zero brackets. Evidently, L is not a free graded Lie algebra (nor does it
contain a sub-Lie algebra that is free on two generators). This example is based on the
Witt algebra; we thank Simon Wadsley for pointing it out to us (via MathOverflow).

We continue to probe the AF conjecture, relaxing the constraint on TCn.�/. For
TCn.XQ/ in the range 2n�2� TCn.XQ/� 3n�4 for any n, we are still constrained
to cat.XQ/� 2. However, in the range 2n� 1� TCn.XQ/� 3n� 4, we do not have
TCn.XQ/ as low as possible, given the value of cat.XQ/. The next step, then, is to
consider TCn.XQ/� 3n� 3, which now allows for cat.XQ/D 3. We will bootstrap,
using the affirmative solution to the AF conjecture for spaces of rational category 2,
and establish the AF conjecture here. As with the previous result, we will actually
obtain somewhat finer information.

Corollary 5.8 Suppose X is a simply connected hyperbolic finite complex with
cat.XQ/D 3 and TCn.XQ/D 3n�3 for some n� 2. If there exist linearly independent
elements a; b 2 �even.�X /˝Q with ha; bi D 0, and jaj � jbj D 2q , then X Œ2qC1�

Q
is a rational co-H–space. Independently of whether or not this is the case, we have
cat.X Œ2rC1�

Q /� 2, where 2r is the lowest-degree non-zero part of �even.�X /˝Q. In
all cases, X satisfies the AF conjecture.

Proof This follows directly from part (2) of Theorem 5.4. In the second case here,
we rely upon [11; 3] to conclude the AF conjecture for X ŒN �

Q , and thus for XQ .

Returning briefly to the situation in which cat.XQ/D2, and 2n�1�TCn.XQ/�3n�4

is not as low as possible, there is one more consequence to be gleaned from Theorem 3.2.
This concerns Question 5.2.

Corollary 5.9 Suppose X is a simply connected hyperbolic finite complex with
cat.XQ/D 2 and TCn.XQ/D 2n�1 for some n� 2. If there exist linearly independent
elements a; b 2 �even.�X /˝Q with ha; bi D 0, and jaj � jbj D 2q , then X Œ2qC1�

Q is
a rational co-H–space.

Proof This follows from the same argument used to show part (2) of Theorem 5.4.

It is irresistible to imagine using Theorem 5.4 inductively, so as to address Question 5.2
for spaces that satisfy TCn.XQ/D .n� 1/cat.XQ/. Unfortunately, we are not able to
do so at present. Another question prompted by our results here is the following. In
principle, the hypothesis that TCn.XQ/D .n� 1/cat.XQ/ gives a different hypothesis
on X for each n� 2. However, there is some evidence to suggest they are not separate.
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Question 5.10 Does TCn.X / D cat.X n�1/ for some n � 2 imply that TCn.X / D

cat.X n�1/ for all n� 2?
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