Volume 15, issue 3 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
 
Other MSP Journals
Knots with compressible thin levels

Ryan Blair and Alexander Zupan

Algebraic & Geometric Topology 15 (2015) 1691–1715
Bibliography
1 R Blair, Bridge number and Conway products, Algebr. Geom. Topol. 10 (2010) 789 MR2629764
2 R Blair, Bridge number and tangle products, Algebr. Geom. Topol. 13 (2013) 1125 MR3044605
3 R Blair, M Tomova, Width is not additive, Geom. Topol. 17 (2013) 93 MR3035325
4 R Blair, M Tomova, M Yoshizawa, High distance bridge surfaces, Algebr. Geom. Topol. 13 (2013) 2925 MR3116308
5 D Gabai, Foliations and the topology of $3$–manifolds, III, J. Differential Geom. 26 (1987) 479 MR910018
6 H Goda, M Scharlemann, A Thompson, Levelling an unknotting tunnel, Geom. Topol. 4 (2000) 243 MR1778174
7 C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371 MR965210
8 D J Heath, T Kobayashi, Essential tangle decomposition from thin position of a link, Pacific J. Math. 179 (1997) 101 MR1452527
9 J Johnson, Y Moriah, Bridge distance and plat projections, arXiv:1312.7093
10 J Johnson, M Tomova, Flipping bridge surfaces and bounds on the stable bridge number, Algebr. Geom. Topol. 11 (2011) 1987 MR2826930
11 T Kobayashi, R Qiu, The amalgamation of high distance Heegaard splittings is always efficient, Math. Ann. 341 (2008) 707 MR2399167
12 J H Rubinstein, An algorithm to recognize the $3$–sphere, from: "Proc. ICM, Vol. 1, 2" (editor S D Chatterji), Birkhäuser (1995) 601 MR1403961
13 M Scharlemann, J Schultens, $3$–manifolds with planar presentations and the width of satellite knots, Trans. Amer. Math. Soc. 358 (2006) 3781 MR2218999
14 A Thompson, Thin position and the recognition problem for $S^3$, Math. Res. Lett. 1 (1994) 613 MR1295555
15 A Thompson, Thin position and bridge number for knots in the $3$–sphere, Topology 36 (1997) 505 MR1415602
16 M Tomova, Compressing thin spheres in the complement of a link, Topology Appl. 153 (2006) 2987 MR2248402
17 M Tomova, Multiple bridge surfaces restrict knot distance, Algebr. Geom. Topol. 7 (2007) 957 MR2336246
18 Y Q Wu, Thin position and essential planar surfaces, Proc. Amer. Math. Soc. 132 (2004) 3417 MR2073319
19 A Zupan, Unexpected local minima in the width complexes for knots, Algebr. Geom. Topol. 11 (2011) 1097 MR2792375
20 A Zupan, Bridge spectra of iterated torus knots, Comm. Anal. Geom. 22 (2014) 931 MR3274955