Volume 15, issue 3 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Knots with compressible thin levels

Ryan Blair and Alexander Zupan

Algebraic & Geometric Topology 15 (2015) 1691–1715
Bibliography
1 R Blair, Bridge number and Conway products, Algebr. Geom. Topol. 10 (2010) 789 MR2629764
2 R Blair, Bridge number and tangle products, Algebr. Geom. Topol. 13 (2013) 1125 MR3044605
3 R Blair, M Tomova, Width is not additive, Geom. Topol. 17 (2013) 93 MR3035325
4 R Blair, M Tomova, M Yoshizawa, High distance bridge surfaces, Algebr. Geom. Topol. 13 (2013) 2925 MR3116308
5 D Gabai, Foliations and the topology of $3$–manifolds, III, J. Differential Geom. 26 (1987) 479 MR910018
6 H Goda, M Scharlemann, A Thompson, Levelling an unknotting tunnel, Geom. Topol. 4 (2000) 243 MR1778174
7 C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371 MR965210
8 D J Heath, T Kobayashi, Essential tangle decomposition from thin position of a link, Pacific J. Math. 179 (1997) 101 MR1452527
9 J Johnson, Y Moriah, Bridge distance and plat projections, arXiv:1312.7093
10 J Johnson, M Tomova, Flipping bridge surfaces and bounds on the stable bridge number, Algebr. Geom. Topol. 11 (2011) 1987 MR2826930
11 T Kobayashi, R Qiu, The amalgamation of high distance Heegaard splittings is always efficient, Math. Ann. 341 (2008) 707 MR2399167
12 J H Rubinstein, An algorithm to recognize the $3$–sphere, from: "Proc. ICM, Vol. 1, 2" (editor S D Chatterji), Birkhäuser (1995) 601 MR1403961
13 M Scharlemann, J Schultens, $3$–manifolds with planar presentations and the width of satellite knots, Trans. Amer. Math. Soc. 358 (2006) 3781 MR2218999
14 A Thompson, Thin position and the recognition problem for $S^3$, Math. Res. Lett. 1 (1994) 613 MR1295555
15 A Thompson, Thin position and bridge number for knots in the $3$–sphere, Topology 36 (1997) 505 MR1415602
16 M Tomova, Compressing thin spheres in the complement of a link, Topology Appl. 153 (2006) 2987 MR2248402
17 M Tomova, Multiple bridge surfaces restrict knot distance, Algebr. Geom. Topol. 7 (2007) 957 MR2336246
18 Y Q Wu, Thin position and essential planar surfaces, Proc. Amer. Math. Soc. 132 (2004) 3417 MR2073319
19 A Zupan, Unexpected local minima in the width complexes for knots, Algebr. Geom. Topol. 11 (2011) 1097 MR2792375
20 A Zupan, Bridge spectra of iterated torus knots, Comm. Anal. Geom. 22 (2014) 931 MR3274955