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Ellis enveloping semigroup for almost
canonical model sets of an Euclidean space

JEAN-BAPTISTE AUJOGUE

We consider certain point patterns of a Euclidean space and calculate the Ellis
enveloping semigroup of their associated dynamical systems. The algebraic structure
and the topology of the Ellis semigroup, as well as its action on the underlying
space, are explicitly described. As an example, we treat the vertex pattern of the
Amman–Beenker tiling of the plane.

37B50, 37B05

Introduction

This article proposes to study certain aspects of dynamical systems associated with point
patterns of Euclidean space. The topic of point patterns arose in symbolic dynamics,
and also concerns aperiodic tilings. Point patterns have been studied by numerous
authors for the last thirty years after the discovery by Schetchmann et al of the physical
materials now commonly called quasicrystals. In this context, a point pattern of a
Euclidean space Rd is thought of as an alloy, where points are understood as positions
of atoms (or molecules or electrons) and the quasicrystalline structure then arises when
a certain long range order is observed on the disposition of points within the pattern.

A great success in the topic of point patterns is the possibility to handle a pattern
ƒ0 of Rd by considering the dynamical system associated to it. The system consists
of a space Xƒ0 , called the hull of ƒ0 , which is formed of all other point patterns
that locally look like ƒ0 and is endowed with a suitable compact topology, together
with an action of the space Rd by homeomorphisms. Natural properties of a pattern
of geometric, combinatoric or statistical nature are then displayed by topological,
dynamical or ergodic features in this dynamical system. This is particularly true for
long range order on point patterns, where the counterpart seems to rely on the existence
of eigenfunctions for the associated dynamical system. For instance, within the class
of substitutive point patterns, the Meyer property, which is a strong form of internal
order (Moody [23]), is equivalent to the existence of a nontrivial eigenfunction for the
associated dynamical system (Lee and Solomyak [22]). This type of statement also
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exists outside the realm of substitution patterns (Kellendonk and Sadun [17]). Another
example concerns the subclass of model sets, which can be viewed as the most ordered
aperiodic patterns. The property of being a model set is equivalent to being a Meyer
set such that continuous eigenfunctions separate a residual subset of elements in its
associated hull (see [1], Baake, Lenz and Moody [5] and Lee and Moody [20]). In other
words, model sets are exactly the point patterns with the Meyer property and almost
automorphic associated dynamical system. A third striking result is that pure point
diffractivity of a pattern (Hof [15]), with is truly of statistical nature (Moody [25]), is
known to be equivalent to the existence of a basis of eigenfunctions for the Hilbert
space provided by the hull together with a certain ergodic measure (there is widely
developed literature about this aspect of patterns; see for instance Lee, Moody, and
Solomyak [21] and Baake and Lenz [4] and references therein). These statements have
been proven under various mild assumptions on the pattern considered.

A certain form of this eigenvalue problem for a point pattern can be addressed, from a
topological point of view, by the knowledge of the Ellis enveloping semigroup of its
dynamical system .X;Rd /. This semigroup was introduced for dynamical systems by
Ellis and Gottschalk [7] as a way to study actions of a group on a compact space from
an algebraic point of view. In a series of papers, Glasner investigated this semigroup for
fairly general dynamical systems (see the review Glasner [11] and references therein),
and he and Megrelishvili showed in [13] that the Ellis semigroup E.X;Rd / obeys a
dichotomy: It is either the sequential closure of the acting group Rd or contains a
topological copy of the Stone–Čech compactification ˇN of the integers. The former
situation admits several equivalent formulations, and when it occurs the underlying
dynamical system is called tame; see Glasner [10]. Tame systems are dynamically
simple; indeed it is proved in Glasner [12] that they are uniquely ergodic, almost
automorphic and measurably conjugated with a Kronecker system. In particular, a
point pattern with the Meyer property and a tame dynamical system must be a model
set.

In this work we propose a qualitative description of the Ellis semigroup of dynamical
systems associated with particular point patterns, the almost canonical model sets. These
particular patterns are relevant in the crystallographic sense, as well as very accessible
mathematically: One can get a complete picture of the hull Xƒ0 of such patterns
(Le [19]), as well as their associated C �–algebras (a recent source is Putnam [27], see
references therein), and also compute their cohomology and K–theory groups (Forrest,
Hunton, and Kellendonk [8], Gähler, Hunton and Kellendonk [9] and Putnam [27]) as
well as the asymptotic exponent of their complexity function (Julien [16]). We show
that in our situation it is possible to completely describe elements of the Ellis semigroup,
their action onto the underlying space, as well as the algebraic and topological structure
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of this semigroup. The type of calculations made here can be compared with the
calculations performed in Pikula [26] about Sturmian and Sturmian-like systems (see
also Glasner [11, Example 4.5]). We also show that for those dynamical systems
the Ellis semigroup is of first class in the sense of the dichotomy of Glasner and
Megrelishvili [13], that is, almost canonical model sets have tame systems.

The contents of the paper

To construct a model set of Rd , one begins by considering a higher-dimensional
Euclidean space RnCd , together with a lattice † in it, as well as an embedded d –
dimensional slope, usually placed in an “irrational” manner, which is thought as the
space Rd itself. Such an environment used to construct a model set is called a cut and
project scheme. The second step is to consider a suitable region W of the Euclidean
subspace Rn orthogonal to Rd . The model set in question thereby emerges as the
orthogonal projection to Rd of certain points in †, namely those that fall into the
region W when projected orthogonally onto Rn . A model set is thus written as

ƒ0 WD f

k
j 
 2† and 
? 2W g;

where k and ? denote the orthogonal projections onto Rd and Rn respectively. In the
above context we will speak about a real model set (see the discussion in Section 1),
the word “real” coming from the fact that the summand Rn used here to form the cut
and project scheme is a Euclidean space.

The dynamical system .X;Rd / associated with a real model set is of a very particular
form: It is an almost automorphic extension over a torus

TnCd
WDRnCd=†

(see the material of Section 2). This property will be central to our task, and shows up
in the consideration of a certain factor map, known as the parametrization map (Baake,
Hermisson and Pleasant [3] and Schlottmann [29]),

� W X �! TnCd :

This mapping also demonstrates that any pattern ƒ in the hull X of a model set ƒ0
is also a model set, such that if Œw; t �† 2 RnCd=†D TnCd is its image, then ƒ is
determined, as model set, by the region W Cw in Rn , next translated by the vector t
in Rd . This is described in better details in first section of the main text.

The first step in determining the Ellis semigroup E.X;Rd / is to describe it as a
suspension of another (simpler) semigroup (see Section 3). To that end we let � be
the subgroup of Rd obtained as the orthogonal projection of the lattice † used to
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construct ƒ0 as a model set. � is generally not a lattice in Rd , and will even often be
dense in Rd , although it is always finitely generated. We now consider the collection
„� of point patterns in X that are contained, as subsets of Rd , in � . This subset
of X remains stable under the action of any vector of Rd which lies in � , and when
endowed with a suitable topology it gives rise to a new dynamical system .„� ; �/.
We call this latter system the subsystem associated with ƒ0 . The space „� will have
a locally compact totally disconnected topology, and as a result its Ellis enveloping
semigroup E.„� ; �/ will be a locally compact totally disconnected topological space
(for Ellis semigroup of dynamical systems over locally compact spaces, see Section 2).
The importance of this semigroup in our setting is highlighted by Theorem 3.6, which
yields an algebraic isomorphism and homeomorphism

E.X;Rd /'E.„� ; �/�� Rd ;

where the right-hand term is understood as a quotient of E.„� ; �/ � Rd under a
natural diagonal action of � . This theorem shows in particular that the Ellis semigroup
E.X;Rd / is in our context a matchbox manifold: It is locally the product of an
Euclidean open subset with a totally disconnected space. It also asserts that the
nontrivial (and in particular the noncommutative) part of E.X;Rd / is displayed by
the semigroup E.„� ; �/.

We will thus from now on focus on the calculation of E.„� ; �/. At first, we show the
existence of an onto continuous semigroup morphism

…�W E.„� ; �/ �!Rn:

This morphism is closely related to the parametrization map presented above, and will
allow us to understand the convergence of a net in E.„� ; �/ by studying how the
corresponding net, via this morphism, converges in Rn .

Our wish is to find a certain semigroup S , together with a semigroup morphism from
E.„� ; �/ into S , such that the Ellis semigroup E.„� ; �/ embeds in the direct product
S �Rn . To simplify the problem we let the almost canonical property enter the game.
This property consists of a condition on the region W used to obtain ƒ0 as model set,
that is, W must be a polytope of Rn satisfying a particular condition (see Section 4).
Under the assumption that the region W is almost canonical, together with the almost
automorphic property observed on the dynamical system .Xƒ0 ;R

d /, we are able to
identify the correct semigroup S as the face semigroup associated with the polytope
W in Rn (see Sections 5 and 6 for our presentation and results).

We may briefly present the face semigroup TW associated with the polytope W in
Rn as follows: The polytope W determines a finite collection of linear hyperplanes
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HW in Rn , namely the ones that are parallel to at least one face of W . This collection
in turn determines a stratification of Rn by cones, all being, for each hyperplane
H 2 HW , included in H or integrally part of one of the two possible complementary
half-spaces. An illustration of this construction is provided in Section 7, where W is a
regular octagon in R2 . The face semigroup TW is set-theoretically the finite collection
of cones resulting from this stratification process, together with a (noncommutative)
semigroup product stating that the product C:C 0 of two cones is the cone which the
head of C enters after being translated by small vectors of C 0 . The elements of TW
are more conveniently described as “side maps”, which consist of mappings from HW
to the three symbol set f�; 0;Cg, giving the relative position of any cone with respect
to each hyperplane. This formalism has the advantage to allows for a concise and handy
formulation of the product law on this semigroup (see Section 6).

The embedding morphism

E.„� ; �/ �! HW �Rn

comes from the observation that a neighborhood basis of any transformation g 2

E.„� ; �/ is provided by the vector wg WD…�.g/ of Rn , together with a certain cone

Cg 2 TW ;

in the sense that a net in � converges to g in the Ellis semigroup E.„� ; �/ (such a
net exists by construction) if and only if the corresponding net in Rn converges to wg
and eventually lies in CgCwg . In this sense, the cone Cg provides the direction a net
must follow in order to converge to the transformation g . This allows us to calculate
the corresponding image subsemigroup in HW �Rn , which is the aim of Theorem 6.3,
and proves to be a finite disjoint union of subgroups of Rn . Moreover the topology of
E.„� ; �/ is completely described by a geometric criterion of convergence for nets.

Finally, we fusion Theorems 3.6 and 6.3 to formulate our main theorem 7.1, which
establishes the existence of an embedding semigroup morphism

E.X;Rd / �! HW �TnCd

for which the image subsemigroup together with its topology are identified. Interestingly,
this semigroup remains exactly the same for model sets issued after translating, dilating,
or deforming the region W as long as the hyperplanes determined by the faces are
unchanged. As a byproduct of the previous analysis we show that the topology of the
Ellis semigroup E.X;Rd / admits a first countable topology, and thus is the sequential
closure of the acting group Rd . We conclude this work by determining some algebraic
features of this Ellis semigroup, as well as a picture of its underlying action on the
space X.
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1 Model sets and associated dynamical systems

1.1 General definition of inter-model set

To define what an (almost canonical) model set in Rd is (see [29], as well as [24] for a
more detailed exposition), we first consider an environment used to construct it, namely
a cut and project scheme. This consists of a triple .H; †;Rd / and a diagram

H H�Rd Rd

� � �

�� † � ,

where H is a locally compact Abelian group and

� † is a countable lattice in H�Rd, ie a countable discrete and cocompact subgroup,

� the canonical projection �Rd onto Rd is bijective from † onto its image � ,

� the image �� of † under the canonical projection �H is a dense subgroup of H.

Hence such an environment consists of a Euclidean space Rd embedded into H�Rd

in an “irrational position” with respect to the lattice †. There is a well-established
formalism for these different ingredients: the space Rd is often called the physical
space, whereas the space H is called the internal space. Moreover the morphism
�! H which maps any 
 onto 
� WD �H.�

�1
Rd
.
// 2 �� is the �–map of the cut and

project scheme, whose graph is the lattice †. We will say that a cut and project scheme
is real whenever the internal space H is a finite-dimensional real vector space Rn .

We shall also consider a certain type of subset in the internal space H, usually called a
window, which consists of a compact and topologically regular subset W , supposed
irredundant in the sense that the compact subgroup of elements w 2 H that satisfy
W Cw DW is trivial. When HDRn , this condition is immediately satisfied.

If we are given a cut and project scheme together with a window W in its internal space,
we may form a certain point pattern P.W / in Rd by projecting onto the physical
space the subset of points of the lattice † lying within the strip W �Rd . This is
illustrated in Figure 1 (see also [3]).

Figure 1 presents the most simple real cut and project scheme one may consider, that
is, with physical and internal spaces being 1–dimensional, and with a lattice †D Z2

not crossing these spaces except at the origin. As window we consider the projection
onto the internal space of the unit square in R2 .
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The point pattern P.W / may be written using the �–map as

P.W / WD f
 2 � j 
� 2W g:

We may allow ourselves to translate the resulting point pattern by any vector t in
the physical space Rd , which we call here a physical translation, or to translate the
window W by an element w 2 H, which we call an internal translation. In both cases
this leads to a new point pattern in Rd . We now introduce the class of model sets of
Rd as follows:

Definition 1.1 An inter-model set associated to a cut and project scheme .H; †;Rd /
together with a window W is a subset ƒ of Rd that satisfies

P.wC
ı

W /� t �ƒ�P.wCW /� t:

An inter-model set is called regular whenever the window W used to construct it has
boundary of Haar measure zero in H. Due to the assumptions on the underlying cut
and project scheme and on the window W , any inter-model set is a Delone set, that
is a uniformly discrete and relatively dense subset of Rd . In fact, it also satisfies the
stronger property of being a Meyer set, meaning that any inter-model set ƒ admits a
uniformly discrete difference subset ƒ�ƒ in Rd . Most of the content of this article
is about real cut and project schemes together with polytopic windows in their internal
spaces, that hence provide regular inter-model sets.

Algebraic & Geometric Topology, Volume 15 (2015)



2202 Jean-Baptiste Aujogue

1.2 Nonsingular model sets

An important notion affiliated with a point pattern ƒ is its language, namely the
collection of all “circular-shaped” patterns appearing at sites of the point pattern:

Lƒ WD f.ƒ� 
/\B.0;R/ j 
 2ƒ; R > 0g:

Not all inter-model sets coming from a common cut and project scheme and window
have same language. However, the class of nonsingular model sets, also often called
generic model sets, do share a language:

Definition 1.2 A nonsingular model set is an inter-model set ƒ for which we have
equalities

P.wC
ı

W /� t DƒDP.wCW /� t:

The situation where such equality occurs for a given couple .w; t/ clearly only depends
on the choice of w 2 H. We will then call an element w 2 H nonsingular when the
inter-model sets P.wC

ı

W /� t DƒDP.wCW /� t are nonsingular. Such a subset
of nonsingular elements may easily be described: it consists of all w 2 H where no
point of the subgroup �� of H enters the boundary wC @W of the translated window
wCW . It thus consists of the complementary subset

NS WD Œ��� @W �c :

This set is always nonempty by the Baire category theorem, as W was assumed
topologically regular, hence with boundary of empty interior in H, and † (hence �� )
was supposed to be countable. As already pointed out, the nonsingular model sets
arising from a common cut and project scheme with window have a common language,
which means that any pattern of some nonsingular model set appears elsewhere in all
other nonsingular model sets. Denoting this language by LNS , we are led to consider
its associated hull.

Definition 1.3 Given a cut and project scheme and a window, and the language LNS

of any nonsingular model set arising from this data, the hull of this data is the collection

X WD fƒ point pattern of Rd j Lƒ D LNSg:

We call a model set any point pattern within the hull X associated with some cut and
project scheme and window.

The hull X associated with some cut and project scheme and window is also called the
local isomorphism class (or simply LI–class) of any model set within this hull.
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1.3 The hull as dynamical system

There is a natural topology on the hull X, which is metrizable and may be described
by setting a basis of open neighborhoods of any point pattern ƒ 2X to be (see [24])

(1) UK;".ƒ/ WD fƒ0 2X j 9 jt j; jt 0j< "; .ƒ� t /\K D .ƒ0� t 0/\Kg;

where K is any compact set in Rd and " > 0. This topology roughly means that two
point patterns are close if they agree on a large domain about the origin up to small
shifts. The hull X, endowed with this topology, is a compact metrizable space, and is
equipped with a natural action of Rd given by ƒ:t WDƒ� t , that is, by translating any
point pattern. This provides a dynamical system .X;Rd /. To figure out what exactly
this space consists of, we invoke the following beautiful result:

Theorem 1.4 [29] Let X be the hull associated with a cut and project scheme
.H; †;Rd / and a window W . Then X is compact and the dynamical system .X;Rd /
is minimal. Each ƒ 2X satisfies inclusions of the form

P.wƒC VW /� tƒ �ƒ�P.wƒCW /� tƒ;

where .wƒ; tƒ/ 2 H�Rd is unique up to an element of †, thus defining a factor map

� W X �! H�†Rd ;

where H�† Rd is the compact Abelian group quotient of H�Rd by the lattice †.
The map � is injective precisely on the collection of nonsingular model sets of X.

By a factor map we mean a continuous, onto and Rd –equivariant map, where on the
compact Abelian group H�†Rd the space Rd acts through Œw; t �†:s WD Œw; t C s�† .
In the context of real cut and project schemes the compact Abelian group is given by
ŒRnCd �† , that is, it is a .nCd/–torus. In the theory of point patterns the above factor
map is called the parametrization map, and shows in particular that any model set
of X is an inter-model set in the sense of Definition 1.1. In fact, the collection X of
model sets of a given cut and project scheme and window is precisely the collection of
repetitive inter-model sets arising from this data (see for instance [29]).

1.4 An explicit example

A well-known example of a model set is the vertex point pattern of the famous Ammann–
Beenker tiling, from which an uncolored local pattern about the origin shows up as in
Figure 2.
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We can set a cut and project scheme and window giving rise to the desired point pattern
as follows: In a physical space R2 we embed the group � algebraically generated by
four vectors whose coordinates in an orthonormal basis are

e1 D .1; 0/; e2 D
�
1
p
2
;
1
p
2

�
; e3 D .0; 1/; e4 D

�
�
1
p
2
;
1
p
2

�
:

These four vectors are algebraically independent, and thus � is isomorphic to Z4 .
Next we set the internal space R2int to be a 2–dimensional real vector space, into which
we define a �–map through the images of the four above vectors, reading in some
orthonormal basis of R2int as

e�1 D .1; 0/; e�2 D
�
�
1
p
2
;
1
p
2

�
; e�3 D .0;�1/; e�4 D

�
1
p
2
;
1
p
2

�
:

The four vectors zei WD .ei ; e�i /, i D 1; 2; 3; 4, are linearly independent in R2int �R2

and thus form a lattice †, which projects onto a dense subgroup �� in R2int . This
defines a real cut and project scheme. We choose the window to be canonical, that is,
to be the projection to the internal space of the unit cube in R2int �R2 with respect to
the basis . ze1; ze2; ze3; ze4/. Hence we get a regular octagonal window Woct of the form
in Figure 3.

Then the vertex point pattern appearing in the Ammann–Beenker tiling is given by the
nonsingular model set P.Woct�

1
2
.e�1 C e

�
2 C e

�
3 C e

�
4 //.
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2 Ellis semigroups of dynamical systems

2.1 Ellis semigroup and equicontinuity

Let us consider a compact dynamical system, that is, a compact (Hausdorff) space X
together with an action of a group T by homeomorphisms.

Definition 2.1 [2] The Ellis semigroup E.X; T / is the pointwise closure of the group
of homeomorphisms given by the T–action in the space XX of self-mappings on X.

The Ellis semigroup E.X; T / is a family of transformations on the space X that are
pointwise limits of homeomorphisms coming from the T–action, and is stable under
composition. Moreover it is a compact (Hausdorff) space when endowed with the
pointwise convergence topology coming from XX . If the acting group is Abelian,
then although the Ellis semigroup may not be itself Abelian, all of its transformations
commute with any homeomorphism coming from the action.

The Ellis semigroup construction is functorial (covariant) in the sense that any onto
continuous and T–equivariant mapping � W X! Y gives rise to an onto continuous
semigroup morphism ��W E.X; T /!E.Y ; T /, satisfying �.x:g/D �.x/:��.g/ for
any x 2 X and any transformation g 2 E.X; T /. Here we have written x:g for the
evaluation of a mapping g at a point x . With this convention the Ellis semigroup is
always a compact right-topological semigroup, that is, if some net .h�/ converges
pointwise to h then the net .g:h�/ converges pointwise to g:h for any g , where g:h
stands for the composition map which at each point x reads .x:g/:h.

Among the whole category of dynamical systems, certainly the most simple objects
are the equicontinuous dynamical systems. These are dynamical systems such that the
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family of homeomorphisms coming from the group action is equicontinous, and within
the more specific class of compact minimal dynamical systems they exactly show up as
the well-known class of Kronecker systems. About these particular dynamical systems
one has the following:

Theorem 2.2 [2; 14] Let .X; T / be a minimal dynamical system over a compact
metric space, with Abelian acting group. Then the following assertions are equivalent:

(1) The dynamical system .X; T / is equicontinuous.

(2) E.X; T / is a compact group acting by homeomorphisms on X.

(3) E.X; T / is metrizable.

(4) E.X; T / has left-continuous product.

(5) E.X; T / is Abelian.

(6) E.X; T / is made of continuous transformations.

In this case, E.X; T /DX as compact Abelian groups.

Here the compact Abelian group structure of a compact minimal equicontinuous system
.X; T / with Abelian acting group is only determined by the choice (which is arbitrary)
of one element e 2X which plays the role of a unit, from which the group structure
extends that of T mapped on the dense orbit e:T . In this case the equality E.X; T /DX
is achieved by identifying a transformation g 2E.X; T / with e:g in X.

Outside the scope of equicontinuous systems, the Ellis semigroup is a quite complicated
object as it is formed of mappings neither necessarily continuous nor invertible, and is
not commutative. However a general construction allows us to attach to any compact
dynamical system a particular factor:

Theorem 2.3 Let .X; T / be a compact dynamical system. There exist an equicontinu-
ous dynamical system .Xeq; T / together with a factor map � W X!Xeq such that any
equicontinuous factor of .X; T / factors through � .

The space Xeq with its T–action is called the maximal equicontinuous factor of
.X; T /, and it is a Kronecker system whenever .X; T / is topologically transitive. From
Theorem 2.2 one has E.Xeq; T / D Xeq as compact groups, and from the functorial
property of the Ellis semigroup the quotient factor map � from X onto its maximal
equicontinuous factor gives rise to an onto and continuous semigroup morphism

��W E.X; T / �!Xeq:
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2.2 The tame property

The following statement is obtained from [14, Theorem 6.1, proof of Theorem 6.3].

Theorem 2.4 [11] The Ellis semigroup E.X; T / of a dynamical system over a
compact metric space is either the sequential closure of the acting group T in XX or
contains a topological copy of the Stone–Čech compactification ˇN of the integers.

The first case of this dichotomy admits several different formulations (see Glasner [11]
and Glasner, Megrelishvili and Uspenskij [14] and references therein) and whenever it
occurs the underlying dynamical system is called tame. If a compact metric dynamical
system admits an Ellis semigroup with first countable topology then it is automatically
a tame system. The tame property is related to the following notion:

Definition 2.5 A compact dynamical system .X; T / is almost automorphic if the
factor map � W X!Xeq possesses a one-point fiber.

Theorem 2.6 [12] If a compact metric minimal dynamical system with Abelian
acting group is tame, then it is almost automorphic.

In case of metrizability of the space X, Veech showed in [31, Lemma 4.1] that any
almost automorphic system in fact has a residual subset of one-point fibers with respect
to the mapping � . In the situation of a hull X of model sets, the factor map � onto the
maximal equicontinuous factor is precisely the parametrization map of Theorem 1.4,
and thus .X;Rd / is almost automorphic since � is one-to-one on a nonempty subclass
of X (the nonsingular model sets). Even more is true: The hull X consists of regular
model sets (meaning that the region W as its boundary of null Haar measure in H)
if and only if the map � is one-to-one above a full Haar measure subset of Xeq [5,
Theorem 5].

2.3 Ellis semigroup for locally compact dynamical systems

We wish to include here two elementary results about the Ellis semigroup one may
define for dynamical systems over locally compact spaces. Let X be a locally compact
space together with an action of a group T by homeomorphisms, and as in the compact
case, set the Ellis semigroup E.X; T / to be the pointwise closure in the product space
XX of the group of homeomorphisms coming from the T–action. In order to extend
some results available in the compact case to this setting we consider the one-point
compactification yX of X, endowed with a T–action by homeomorphism so that the
infinite point remains fixed through any such homeomorphism. Let us denote by FX
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the subset of yXyX of transformations mapping X into itself and keep the point at infinity
fixed, endowed with relative topology. Then FX is a semigroup which is isomorphic
and homeomorphic with the product space XX , and under this identification

E.X; T /DE.yX; T /\FX:

Observe that E.X; T / is, as in the compact flow case, a right-topological semigroup
containing T as a dense subgroup (or rather the subsequent group of homeomorphisms).
The following is a general fact, whose proof for compact dynamical systems can be
found in [2]:

Proposition 2.7 Let � W X! Y be a continuous, proper, onto, and T–equivariant
map between locally compact spaces. Then there exists a continuous, proper, and
onto morphism ��W E.X; T / ! E.Y ; T / that satisfies the equivariance condition
�.x:g/D �.x/:��.g/ for any x 2X and g 2E.X; T /.

Proof Denote by ?X and ?Y the respective points at infinity in the compactified
spaces. Since � is continuous and proper, it extends to a continuous and onto map
y� W yX ! yY , such that y��1.?Y / D f?Xg. Obviously y� is T–equivariant with re-
spect to the extended T–actions. Then there exists a continuous and onto morphism
y��W E.yX; T /!E.yY ; T /, satisfying the equivariance equality y�.x:g/D y�.x/:y��.g/
for any x 2 yX and g 2 E.yX; T /. The later equivariance condition implies that a
transformation g of E.yX; T / lies in FX if and only if y��.g/ lies in FX : it follows
that E.X; T / D .y��/�1.E.Y ; T //. Restricting the morphism to E.X; T / gives the
map, together with the onto property. Finally a compact set in E.Y ; T / must be
compact in E.yY ; T /, as is easy to check, so it has a compact inverse image in E.yX; T /
under y�� . This latter is entirely included in E.X; T /, so it is compact for the relative
topology on E.X; T /. This gives the properness.

Observe that ��.t/D t for any t 2 T . As in the compact setting, if the acting group T
is Abelian then any induced homeomorphism commutes with any mapping in E.X; T /.
To end this subsection we state without proof an easy property of locally compact
Kronecker systems:

Proposition 2.8 If T is a dense subgroup of a locally compact Abelian group G , T
acting by translation, then E.G; T / is topologically isomorphic to G , where any g 2G
is identified with its translation map in E.G; T /.
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3 The internal system of a hull of model sets

3.1 Internal system

What we introduce here is an analogue in the hull X of the internal space H we may
find in the compact Abelian group H�†Rd (the torus ŒRnCd �† in case of a real cut
and project scheme). We call this analogue the internal system of a hull of model sets.
The consideration of this particular space is not new (it appeared in [8] as well as in
the formalism of C �–algebras in [27]), although it is often not explicitly mentioned,
and we record here the main aspects of this space.

Definition 3.1 Let X be the hull of model sets associated with a cut and project
scheme .H; †;Rd / and a window W . Then its internal system is the subclass „� of
point patterns that are supported on the structure group � in Rd , that is,

„� WD fƒ 2X jƒ� �g:

According to Theorem 1.4, any model set admits inclusions of the form stated in
Definition 1.1, and we can see that the subclass „� consists exactly of the model sets
for which these inclusions read

P.wC
ı

W /�ƒ�P.wCW /:

Equivalently, „� is the subclass of model sets in X whose image under the parametriza-
tion map � of Theorem 1.4 is of the form Œw; 0�† in the compact Abelian group
H�†Rd . On the other hand, there exists a natural morphism mapping any element w
of the internal space H to Œw; 0�† in H�†Rd , which is one-to-one and continuous.
This suggests the existence of a mapping from the internal system „� onto the internal
space H of the cut and project scheme. However, similar to the fact that H is in general
not topologically conjugated with its image in H �† Rd , one cannot just consider
the topology of X restricted to „� . Rather, we consider on the internal system the
topology whose basis of open neighborhoods around any ƒ 2„� is

(2) UK.ƒ/ WD fƒ0 2„� jƒ\K Dƒ0\Kg;

where K is any compact set in Rd . This means that two point patterns are close
in „� if they exactly match on a large domain about the origin. On the internal
system equipped with the above topology, we consider the action of the group �

by homeomorphisms given by translation on each model set, so that one obtains a
dynamical system .„� ; �/. From the minimality of the dynamical system .X;Rd / by
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Theorem 1.4, this dynamical system is also minimal. Of particular importance is the
subcollection, often called the transversal, of point patterns containing the origin:

„ WD fƒ 2X j 0 2ƒ� �g:

Any model set containing the origin must be entirely included in the structure group � ,
that is, „ is a subset of the internal system „� . A fact of fundamental importance
is that „ is in fact a clopen set, that is, a subset which is both open and closed in the
internal system „� : Indeed any accumulation point pattern of „ must possess the
origin in its support, and thus is actually an element of „, and on the other hand for
each ƒ 2„ and any radius R > 0 the collection UB.0;R/.ƒ/ is an open neighborhood
of ƒ in „� that is clearly contained in the transversal „.

About the topology of the transversal one may observe that there is a one-to-one
correspondence between circular-shaped local configuration of radius R in the language
LNS and subsets in „ of the form UB.0;R/.ƒ/, for the same radius R and ƒ chosen
in „. Thus compactness of „ is rephrased by the existence of only a finite number of
such circular-shaped patterns for any radius R , a property called finite local complexity
for the underlying point patterns in X. This property holds in our context [24; 29], so
„ is a compact open subset of the internal system „� .

Proposition 3.2 The internal system „� of a hull of model sets is a totally discon-
nected locally compact topological space, and a subbasis for its topology is formed by
all �–translates of „ and its complementary set „c .

Proof Any point pattern ƒ2„� is uniquely determined by the knowledge of whether
a point 
 2 � lies in ƒ or not, for each 
 2 � . Thus a subbasis for the topology of the
internal system is given by the subsets

„
 WD fƒ 2„
�
j 
 2ƒg

or their complementary sets „c
 for 
 2 � . Since they are both open they are thus
both closed as well, giving that the internal system is totally disconnected. Now any
„
 or „c
 is nothing but the �
 translate of „ or the complementary set „c , as

ƒ 2„:.�
/”ƒ:
 2„” 0 2 .ƒ� 
/” 
 2ƒ”ƒ 2„
 :

As any point pattern ƒ 2„� must contain at least one element 
 2 � , one gets that
the compact open subsets „
 form a covering of „� , giving the local compactness.

Proposition 3.3 [29] Let „� be the internal system associated with a cut and project
scheme .H; †;Rd / and some window. Then there exists a factor map

…W „� �! H
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mapping a point pattern ƒ onto the unique element ….ƒ/D wƒ of H satisfying

P.wƒC VW /�ƒ�P.wƒCW /:

Moreover, the map … satisfies ….„/D�W , and is injective precisely on the dense
family of nonsingular model sets of „� , whose image is the dense subset NS of H.

From the above proposition we thus have a correspondence between any w 2 NS with
a unique nonsingular model set P.wCW / 2„� , and we may also write NS for the
dense subclass of nonsingular model sets of „� . Thus the internal system „� and the
internal space H as different completions of a single set NS . This observation allows
us to set, for any subset A of H, a corresponding subset of „� of the form

(3) ŒA�„ WD A\NS
„�

:

Such a ŒA�„ will be nonempty if and only if A intersects NS . In particular ŒA�„
will have nonempty interior (and hence will be nonempty) whenever A has nonempty
interior. We will have use of the following lemma, which we state without proof:

Lemma 3.4 Let X be a topological space, and Y a dense subset. Then each clopen
subset V of X is equal to the closure of V \ Y . Moreover, if two clopen subsets
coincide on Y , then they are equal.

For instance, one is able to show that „D Œ�W �„D Œ� VW �„ , underlying a link between
the topology of the internal system and the geometry of W in the internal space.

Proposition 3.5 There exists an onto and proper continuous morphism

…�W E.„� ; �/ �! H

that satisfies the equivariance relation ….ƒ:g/ D….ƒ/C…�.g/ for any model set
ƒ 2„� and any mapping g 2E.„� ; �/.

Proof Let us show that the map … of Proposition 3.3 is proper, that is, the inverse
image of any compact set of H is compact in „� : Let K be a compact subset of H

and pick a model set ƒ in …�1.K/. Since �� is dense in H there exist 
1; : : : ; 
l in
� such that

K �

l[
kD1


�k �
VW :

Thus wƒ 2K falls into some 
�
k
� VW , which implies that 
k lies in P.wƒC VW /�ƒ.

This in turns means that 0 2ƒ� 
k , so ƒ� 
k 2„ and thus ƒ 2„:.�
k/. Hence
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the closed set …�1.K/ is entirely included in a finite union of translates of „, each
being compact, and so is a compact set of „� . Now Proposition 2.7 applies, and after
invoking Proposition 2.8 it gives the desired morphism …� .

3.2 Hull and internal system Ellis semigroups

We want to relate the Ellis semigroup of the dynamical systems .X;Rd / with that of
.„� ; �/. To this end, let g be any mapping in the Ellis semigroup E.„� ; �/. Using
Theorem 1.4 together with the definition of the internal system, one sees that any point
pattern ƒ in X can be written as ƒ0 Dƒ� t for some model set ƒ 2„� and some
vector t 2 Rd . The mapping g is well defined on each ƒ 2 „� , and we may thus
extend it into a self-map zg of X by setting

(4) ƒ0:zg D .ƒ� t /:zg WDƒ:g� t:

This is well defined since if one has ƒ � t D ƒ0 � t 0 with ƒ and ƒ0 2 „� then
necessarily � � t D � � t 0 , which means that t � t 0 2 � , and since g commutes with
the �–action on „� then applying (4) gives the same result. Let us now consider
the semigroup E.„� ; �/�� Rd to be the (topological) quotient of the direct product
semigroup E.„� ; �/�Rd by the normal subsemigroup formed of elements .
; 
/
with 
 2 � .

Theorem 3.6 Let X and „� be the hull and internal system generated by a cut and
project scheme .H; †;Rd / and some window. Then there is a homeomorphism and
semigroup isomorphism

E.„� ; �/�� Rd 'E.X;Rd /

mapping each element Œg; t �� of E.„� ; �/�� Rd to zg� t .

Proof First we show that the quotient semigroup E.„� ; �/ �� Rd is compact
(Hausdorff): From the existence of the morphism …� one then gets a natural onto
semigroup morphism …� � idW E.„� ; �/�Rd ! H�Rd , which maps the normal
subsemigroup formed by elements .
; 
/ with 
 2� onto the lattice †. Since H�†Rd

is compact (Hausdorff), and since …� � id is continuous and proper, we deduce that
E.„� ; �/�� Rd must itself be compact (Hausdorff).

Now it is clear that the mapping associating g 2E.„� ; �/ with zg 2XX is a semigroup
morphism for the composition laws of mappings. This association is moreover contin-
uous: For this it suffices to check the continuity of each evaluation map g 7! ƒ0:zg ,
with ƒ0 2 X. Write ƒ0 as ƒ� t for some ƒ 2 „� . If g� is a net in E.„� ; �/
pointwise converging in „� to a mapping g , then one has convergence of the net
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ƒ:g� to ƒ:g in the internal system „� . Comparing the topologies coming from the
topologies (1) on X and (2) on „� , one sees that the embedding of „� into the hull
X is continuous, so that the net ƒ:g� also converges to ƒ:g in the hull X. Hence the
net ƒ0:zg� Dƒ:g�� t converges to ƒ:g� t Dƒ0:zg , as desired.

From this we can define a continuous semigroup morphism from E.„� ; �/�Rd into
XX that associates a pair .g; t/ with zg� t . Clearly any pair of the form .
; 
/ with

 2 � is mapped to the identity map, thus giving a continuous semigroup morphism

E.„� ; �/�� Rd �!XX; Œg; t �� 7�! zg� t:

This map is one-to-one: If Œg; t �� and Œg0; t 0�� are such that zg � t � zg0 � t 0 , then
they must in particular coincide at any model set ƒ 2„� , thus giving for each such
point pattern ƒ:g� t Dƒ:g0� t 0 . As ƒ:g and ƒ:g0 are supported on � we deduce
that t 0� t DW 
 2 � , and that g0 coincides with gC 
 everywhere on „� . It follows
that Œg0; t 0�� D ŒgC 
; t C 
�� D Œg; t �� , giving injectivity. Now the stated morphism
conjugates, both topologically and algebraically, the semigroup E.„� ; �/�� Rd with
its image in XX . To conclude it suffices then to show that this image densely contains
the group of homeomorphisms coming from the Rd –action on X. Obviously this
group is contained in the image in question, appearing as Œ0; t �� , where 0 stands for
the identity mapping on „� , lying in � and thus in E.„� ; �/. Let zg � t be some
mapping in this image. A neighborhood basis for this latter in XX may be given as
finite intersections of sets

VX.ƒ;U / WD ff 2XX
jƒ:f 2 U g

containing zg� t . Let ƒ1; : : : ; ƒk be model sets and U1; : : : ; Uk be open subsets of
X such that zg� t lies in V.ƒj ; Uj / for each j . To get density it then suffices to show
the existence of some element of Rd also contained in V.ƒj ; Uj / for each j . Let us
write ƒj as a sum ƒ0j � tj with ƒ0j 2„

� . Hence the mapping g , being the restriction
of zg to „� , lies in each subset

(5) V„� .ƒ
0
j ; „

�
\ .Uj C t C tj // WD ff 2 .„

�/„
�

jƒ0j :f 2 Uj C t C tj g:

The embedding of „� into the hull X is clearly continuous, so that

„� \ .Uj C t C tj /

are open sets of the internal system, so the sets (5) are open in .„�/„
�

. As E.„� ; �/
is the closure of � in .„�/„

�

one may thus find some 
 2 � within each set (5),
giving that 
 � t 2Rd lies in each V.ƒj ; Uj /, as desired.
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Apart from this, the parametrization map � of Theorem 1.4 also implies the existence
of an onto continuous semigroup morphism

��W E.X;Rd / �! H�†Rd

that satisfies the equivariance relation �.ƒ:g/ D �.ƒ/C ��.g/ for any model set
ƒ 2X and any Ellis transformation g 2E.X;Rd /. Then the morphism �� extends
the morphism …� in the sense that for any transformation g in E.„� ; �/ and t 2Rd ,
one has the equality

��.zg� t /D Œ…�.g/; t �†:

4 The almost canonical property for model sets

We wish to define here the almost canonical property on a model set. To this end we
restrict ourselves to real cut and project scheme .Rn; †;Rd /, and we ask the window
W to be a n–dimensional compact convex polytope of the internal space Rn . The
definition of almost canonical model sets will be derived from a corresponding notion
on W , which consists of a pair of assumptions we will now present.

In fact, it will be much more convenient to consider the reversed window M WD�W in
the internal space. It also consists of a n–dimensional compact convex polytope in Rn ,
whose boundary is given by @M D�@W . If we now let f be any .n�1/–dimensional
face of M , we define:

� Af or A0
f

to be the affine hyperplane generated by f .

� Hf or H 0
f

be the corresponding linear hyperplane in Rn .

� Stab�.Af / to be the subgroup of 
 2 � with 
� 2Hf .

We remark that Stab�.Af / is precisely the subgroup of elements 
 2 � such that
Af C 


� D Af , whence the notation. We may also write Stab�.Af /� for its image in
the internal space under the �–map.

Assumption 1 For each face f of M , the sum Stab�.Af /�Cf covers Af in Rn .

The above assumption implies in particular that Stab�.Af / has a relatively dense
image in Hf under the �–map, and thus must be of rank at least n� 1. Under the
above assumption we get a nice description of the subset of nonsingular vectors:

NS WD Œ��� @W �c D Œ��C @M�c D

� [
f face ofM

��CAf

�c
:
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As we see above, the subset of nonsingular vectors arises as the complementary subsets
of all the �–translates of singular hyperplanes, namely the affine hyperplanes Af
with f a face of the reversed window M . Let us in addition define for each .n� 1/–
dimensional face f of M :

� H�
f

and HC
f

to be the open half-spaces with boundary Hf .

� H�0
f

and HC0
f

to be the closed half-spaces with boundary Hf .

� A�
f

, AC
f

, A�0
f

and AC0
f

be the corresponding objects with respect to Af .

The choice of orientation on each linear hyperplane provided by the above notation is
not relevant, but will be remained fixed from now on. Observe that a hyperplane H
may be associated to two different faces, which in this case leaves a common orientation
on the corresponding affine spaces.

Recall that to any Euclidean subset A may be associated a corresponding subset ŒA�„
of the internal system according to (3). We will be specially interested here in a certain
collection of Euclidean subsets which we call the family of admissible half-spaces,

AD f
�CA˙f j 
 2 �; f face of M g:

Assumption 2 Any set ŒA�„ , where A 2 A, is a clopen set.

It can be shown that Assumption 2 implies Assumption 1, but as we don’t really need
to prove this fact here we assume both independently. We wish to illustrate what type
of polytope could satisfies Assumptions 1 and 2 by showing situations where this holds,
but first let us define what an almost canonical model set is:

Definition 4.1 A model set is almost canonical when it may be constructed with a
real cut and project scheme and a compact convex polytopic window in its internal
space that satisfy Assumptions 1 and 2.

The term almost canonical makes reference to the first point patterns defined as
model sets, the canonical model sets, constructed via a real cut and project scheme
.Rn; †;Rd / together with an orthogonal projection of a unit cube for a window, with
respect to the lattice †, in the internal space. Our example in Section 1 is of this form.
The terminology almost canonical was introduced by Julien in [16] to define slight
generalizations of these model sets. However, our definition doesn’t fit exactly with the
one given in [16] (it can be shown that ours implies the one of Julien), but as we don’t
want to introduce another definition for something so close to the situation of [16], we
allow ourselves to abuse terminology and call ours almost canonical. As shown in [8],
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a canonical window always satisfies Assumptions 1 and 2 and is thus almost canonical
in our sense.

A condition that ensures that Assumptions 1 and 2 hold is the requirement that any
stabilizer Stab�.Af / is dense in the corresponding linear hyperplane Hf for any
face f of the window W (or its reversed window M , which remains the same). A
lighter condition that also ensures Assumptions 1 and 2 is a slight strengthening of
Assumption 1:

Assumption 1’ For each face f of M , the sum Stab�.Af /�C Vf covers Af , where
Vf denotes the relative interior of f .

5 Preparatory results on the Ellis semigroup of the internal
system

5.1 Internal system topology

Proposition 5.1 The collection of clopen sets ŒA�„; where A 2 A, forms a subbasis
for the topology of the internal system. Moreover, for any pair A;A0 in A the following
Boolean rules are true:

ŒA[A0�„ D ŒA�„[ ŒA
0�„; ŒA�c„ D ŒA

c�„; ŒA\A0�„ D ŒA�„\ ŒA
0�„:

Proof Whenever w is a nonsingular element of NS�Rn , one has for any 
 2 � that

P.W Cw/:
 WDP.W Cw/� 
 DP.W CwC 
�/:

This is the key that lets us write, for any 
 2 � , the equalities

(6) ŒAC
f
�„:
 D ŒA

C

f
C 
��„:

This observation being made, let us start the proof by showing the Boolean equalities.
The equality on the left is a simple consequence of closure operation. The equality in
the middle is equivalent to having disjoint decompositions

(7) ŒAC
f
C 
��„ t ŒA

�
f C 


��„ D„
�

which reduces, due to the equalities provided in (6), to showing that ŒACf �„t ŒA
�
f �„D

„� . To that end, note that any element of the internal system „� is the limit of a
sequence of nonsingular elements, a sequence which can be taken after extraction into
one of the two open half-spaces ACf and A�f . Therefore such element remains in either
ŒACf �„ or ŒA�f �„ , showing that their union covers the internal system. On the other
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hand, these subsets are by assumption clopen, so they must have a clopen intersection.
Assume for a contradiction that this is not the empty set: It must contain a nonsingular
model set ƒ, whose image under … is a nonsingular element wƒ 2NS�Rn . However
ƒ is the limit of two sequences of nonsingular model sets, with associated sequences
of nonsingular elements in Rn taken in ACf for the first sequence and in A�f for the
second one. Taking limits one must have wƒ 2 Af , and since wƒ has been taken
nonsingular one has the desired contradiction.

Having proven the left and middle Boolean equalities, one can deduce third one by
general Boolean algebra.

To show that the sets ŒA�„ where A 2A form a subbasis for the topology, observe that
the set VM D� VW is precisely the intersection of admissible half-spaces Asf

f
, where

sf is the sign � or C such that Asf
f

contains the interior of M . From this we deduce

„D Œ� VW �„ D Œ VM�„ D

� \
f face ofW

A
sf
f

�
„

D

\
f face ofW

ŒA
sf
f
�„:

Thus the set „ and its complementary set can be obtained as finite intersections of sets
of the statement. Since „� admits a subbasis formed by the �–translates of „ and its
complementary set by Proposition 3.2, the proof is complete.

5.2 Cones associated with model sets

We define the cut type of a vector w 2Rn to be the family of linear hyperplanes for
which some parallel singular hyperplane passes through w ,

(8) Hw WD fHf 2 HW j w 2 �
�
CAf g:

To each w 2Rn is associated a family of cones (also called corners in [19]), which
are open cones with vertex 0 and boundaries formed by hyperplanes in Hw . We may
label each of these cones by a cone type cW HW !f�;C;1g, so that the labeled cone
is obtained, according to the notations of Section 4, as

C WD
\

H2HW

H c.H/:

In the above intersection only hyperplanes where c has value not equal to 1 are
consistent, and we may set the domain of a cone type c to be the subset dom.c/ of HW
where it has value different from 1. Moreover, a cone determined by the cut type Hw
has only one cone type whose domain is precisely Hw . Now, given a cone C in Rn

and some vector w of Rn , we define

(9) C.w; "/ WD .C \B.0; "//Cw
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to be the head of the cone C , translated by w and of length ". One can easily verify
that a vector w 2Rn belongs to the nonsingular vectors NS if and only if its cut type
Hw is empty. In this latter case the unique resulting cone C is the full Euclidean space
Rn , for which any set of the form (9) is a Euclidean ball.

Proposition 5.2 Given a model set ƒ 2 „� , there exists a cone Cƒ , admitting a
cone type cƒ with domain Hwƒ , such that the following equivalence holds for each
admissible half-space A 2 A:

ƒ 2 ŒA�„ ” Cƒ.wƒ; "/� A for some " > 0:

Proof Let ƒ2„� . If H is a hyperplane of the cut type Hwƒ , that is, if one has some

 2 � and some face f with wƒ 2 
�CAf , Af parallel to H , then the hyperplane
HCwƒ is equal to 
�CAf and the half-spaces H˙Cwƒ are admissible. Therefore
ŒHCCwƒ�„ and ŒH�Cwƒ�„ are clopen complementary sets, and the one containing
ƒ defines the sign cƒ.H/. This provides cƒ uniquely. From the Boolean rules stated
in Proposition 5.1, the model set ƒ is such that

(10) ƒ 2
\

H2Hwƒ

ŒH cƒ.H/Cwƒ�„ D

� \
H2Hwƒ

H cƒ.H/Cwƒ

�
„

D ŒCƒCwƒ�„

with C
ƒ

the unique cone with cone type cƒ , in particular nonempty. We now show
that a model set ƒ has a neighborhood basis in the internal system obtained as

(11) ŒCƒCwƒ�„\…
�1.B.wƒ; "//:

From the inclusion of ƒ stated in (10) it is clear that (11) is a family of open neighbor-
hoods of ƒ in the internal system. We will use the following lemma:

Lemma 5.3 Let � W X! Y be a continuous and proper map between locally compact
spaces. Let Xx be the fiber of x with respect to � for each x 2X . If there is a clopen
neighborhood Vx of x satisfying Vx \Xx D fxg, then a neighborhood basis of x is
provided by Vx \��1.U / with U running among the neighborhoods of �.x/.

Proof Suppose for a contradiction that the stated family is not a neighborhood basis
of x . One may then select an open neighborhood V of x such that Vx \ ��1.U /
meets V c for each neighborhood U of �.x/. Let � be the directed family of open
neighborhoods of �.x/ falling in some compact neighborhood U0 of �.x/. One may
select a net fxU gU2� in V c and with each xU belonging to Vx \��1.U /. This net
falls in the compact set Vx \��1.U0/ and in V c as well. Taking some accumulation
point x0 , necessarily lying in both Vx and Xx , and in the closed set V c as well, gives
the contradiction as we supposed Vx \Xx D fxg contained in V .

Algebraic & Geometric Topology, Volume 15 (2015)



Ellis enveloping semigroup for almost canonical model sets 2219

We then show that a clopen neighborhood of ƒ which fits the condition of the above
lemma is provided by ŒCƒCwƒ�„ : For this, suppose that ƒ and ƒ0 are such that
wƒ D wƒ0 DW w in Rn . From Proposition 5.1 there is a face f of W as well as an
element 
 2 � such that (up to a permutation of signs C and �) ƒ 2 ŒAC

f
C 
��„

and ƒ0 2 ŒA�
f
C 
��„ . Then the vector w falls into both closed half planes AC0

f
C 
�

and A�0
f
C 
� , and thus into Af C 
� . The latter hyperplane can consequently also

be written Hf Cw , and it follows that ƒ 2 ŒHC
f
Cw�„ whereas ƒ0 2 ŒH�

f
Cw�„ .

This shows that ƒ0 is outside ŒCƒCwƒ�„ , as desired.

Now, it is clear that ƒ2 ŒA�„ if and only if one has a subset of the form ŒCƒCwƒ�„\

…�1.B.wƒ; "// included in ŒA�„ for some " > 0. Then intersecting with NS gives
that Cƒ.wƒ; "/\NS falls into A\NS , and by taking closure and next interior in Rn

one obtains the right-hand inclusion of the statement. Conversely if the right-hand
inclusion of the statement occurs for some ƒ 2„� then we may choose a sequence
of nonsingular model sets converging to it, in a manner that the associated sequence
of nonsingular vectors falls into (11), and thus into Cƒ.wƒ; "/. The sequence of
nonsingular model sets then lies in ŒA�„ , and since this latter is closed we obtain the
result.

5.3 Topology of the internal system Ellis semigroup

Recall that by construction, the Ellis semigroup for the internal system is a closure of
the group � , or rather the resulting group of homeomorphisms on the internal system.
Thus for any Euclidean subset A one may set a corresponding subset ŒA�E to be the
closure of f
 2 � j 
� 2 Ag in the Ellis semigroup E.„� ; �/ of the internal system.
We would in fact consider a specific family of Euclidean subsets, namely

AEllis WD fH
t
Cw jH 2 HW ; t 2 f�; 0;Cg; w 2Rng:

Observe that the above family contains the family A of admissible half-spaces, in a
strict sense however.

Proposition 5.4 Any set ŒA�E , where A2AEllis , is clopen, and the collection of these
sets forms a subbasis for the topology of E.„� ; �/. Moreover, for any pair A;A0 in
AEllis the following Boolean rules are true:

ŒA[A0�E D ŒA�E [ ŒA
0�E ; ŒA�cE D ŒA

c�E ; ŒA\A0�E D ŒA�E \ ŒA
0�E :

Proof From Proposition 5.1, the sets ŒA�„ , where A is an admissible half-space, are
clopen subsets of the internal system „� , and form a subbasis for its topology. It thus
follows that the sets

V.ƒ; ŒA�„/ WD fg 2E.„
� ; �/ jƒ:g 2 ŒA�„g;
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where ƒ is any model set in the internal system and A is any admissible half-space,
are clopen subsets of the Ellis semigroup E.„� ; �/, and that they form a subbasis
for its topology. Moreover, using the fact that Œ
� C A˙f �„ is equal to ŒA˙f �„:


whatever the element 
 2 � one can directly check that V.ƒ; Œ
�CA˙f �„/ is equal
to V.ƒ:.�
/; ŒA˙

f
�„/. This shows that a subbasis for the Ellis semigroup topology is

obtained as the collection

(12) fV.ƒ; ŒA˙f �„/ jƒ 2„
� ; f face of M g:

In order to relate these sets with the ones given in the statement we prove a cornerstone
lemma to this proposition:

Lemma 5.5 Let ƒ be in the internal system „� . Then

V.ƒ; ŒAC
f
�„/D

8̂<̂
:
ŒAC0
f
�wƒ�E if cƒ.Hf /DC;

ŒAC
f
�wƒ�E if cƒ.Hf /D�;

ŒAC0
f
�wƒ�E D ŒA

C

f
�wƒ�E if cƒ.Hf /D1:

The same statement holds with the C and � signs switched everywhere.

Proof Recall from Lemma 3.4 that a clopen set of E.„� ; �/ is the closure of its
subset of �–elements. Now given V.ƒ; ŒACf �„/, an element 
 2 � lies inside if and
only if ƒ:
 2 ŒACf �„ , which happens by Proposition 5.2 if and only if Cƒ:
 .wƒ:
 ; "/
embeds into ACf for some " > 0. As the cones of ƒ and its 
 –translate are the same,
and because the factor map … is �–equivariant, the previous condition is equivalent to

(13) Cƒ.

�; "/� AC

f
�wƒ

for some " > 0. It is then obvious that:

� Whenever 
� 2 AC
f
�wƒ this condition is satisfied.

� Whenever 
� 2 A�
f
�wƒ this condition is not satisfied.

Now suppose that cƒ.Hf /D1, so that Hf doesn’t belong to the cut type of wƒ :
Then no element of � maps to Af �wƒ under the �–map, and thus by taking closure
in the Ellis semigroup one has the desired equality in the case cƒ.Hf /D1.

Suppose by contrast that cƒ.Hf /¤1, so that there exist elements of � whose image
under the �–map falls into Af � wƒ . Then for each such 
 2 � the hyperplane
Af �wƒ may also be written Hf C 
� , giving AC

f
�wƒ DH

C

f
C 
� . Hence such

a 
 satisfies (13) if and only if the cone Cƒ lies into HC
f

, which can be rewritten
as cƒ.Hf /DC. Again by taking closure in the Ellis semigroup, one has the desired
equalities in the case cƒ.Hf /¤1.
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The argument remains valid when interchanging the C and � signs everywhere,
completing the proof of the lemma.

Lemma 5.6 For each hyperplane H and vector w 2 Rn , one has a partition of the
Ellis semigroup by clopen sets

(14) E.„� ; �/D ŒH�Cw�E t ŒH Cw�E t ŒH
C
Cw�E :

Proof First observe that by construction the group � is dense in the Ellis semigroup,
and consequently the union of the three right-hand sets stated in the equality must
covers the Ellis semigroup. Now select a face f with H DHf and let w0 2 Rn be
such that H tCw can be rewritten as At

f
�w0 for each sign t 2 f�; 0;Cg (this can

always be achieved as H and Af are parallel). This choice of vector w0 will be kept
along this proof. It is quite clear that the middle term ŒHf C w�E is nonempty if
and only if one has an element 
 2 � such that 
� is in Hf Cw , or equivalently in
Af �w

0 , which in turns exactly means that H is a hyperplane of the cut type Hw 0 .
Thus we will consider two cases:

Suppose that H 2 Hw 0 : We may select two cones, both determined by the cut type
Hw 0 , living at opposite sides with respect to H . Let us pick two model sets ƒ and
ƒ0 with common associated vector w0 in Rn and associated with these cones, so
that cƒ.H/ D C and cƒ0.H/ D � up to a switch of signs (the existence of such
model sets is shown in Theorem 8.1 appearing later, whose proof is independent of
the present statement). Then by the previous lemma, the set ŒH�f Cw�E is the clopen
subset V.ƒ; ŒA�f �„/, and is disjoint from the other two since they are both included in
V.ƒ; ŒACf �„/. In the same way the set ŒHCf Cw�E is the clopen subset V.ƒ0; ŒACf �„/,
and is disjoint from the two others since they are both included in V.ƒ0; ŒA�f �„/. As
the left-hand term and the right-hand term are clopen and disjoint from the respective
two other sets then the stated union must be disjoint, and the middle term is clopen as
well.

If H …Hw 0 then things are even easier: The middle term becomes empty, and in pretty
much the same way as before, by picking only one model set with associated vector
w0 one can show that the two sets of the union are clopen and disjoint.

Now the proof of the statement almost immediately follows: By Lemma 5.6, the sets of
the statement are clopen sets, and form a subbasis since any subset of the family (12)
can be written as one of them by Lemma 5.5. It remains to show the Boolean rules:
The left-hand rule is a direct consequence of the closure operation, whereas the middle
rule follows from the family of partitions given by Lemma 5.6. The third rule naturally
follows from the two others.
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6 Main result on the internal system Ellis semigroup

6.1 The face semigroup of a convex polytope

Given a real cut and project scheme .Rn; †;Rd / with an almost canonical window
W in the internal space, we shall define the face semigroup of W [6; 28].

Let HW be the family of linear hyperplanes parallel to the faces of W . It defines a
stratification of Rn by cones of dimension between 0 and n (those cones are called
faces in [28]), that is, by nonempty sets of the form

(15)
\

H2HW

H t.H/;

where t.H/ is one of the symbols f�; 0;Cg for each H 2HW . Then each such cone C
is determined by a unique map tC W HW !f�; 0;Cg, which we call here its cone type.
A special class of cones is that of chambers, that is, the cones of maximal dimension n,
which are open in Rn and are precisely those with a nowhere-vanishing cone type. On
the other extreme is the unique cone of dimension 0, namely the singleton f0g, whose
type is entirely vanishing and which we denote by o.

Let us denote by TW the above set of cones, and define on this set a semigroup law: If
C;C 0 2 TW are given, then the product C:C 0 is the face whose type is given by

tC:C 0.H/D tC :tC 0.H/ WD

�
tC 0.H/ if tC .H/D 0;
tC .H/ else:

The reading direction is from right to left, as for actions: First we look at the value of
tC 0.H/, we keep it when tC .H/D 0 and else replace it by tC .H/, which in this case
makes us forget the existence of tC 0 . It may easily checked that this product law is well
defined on TW , that is, the product of two (nonempty) cones is again a (nonempty)
cone, and it is associative.

Definition 6.1 The face semigroup associated with the polytope W in Rn is the set
TW equipped with the above product law.

It is clear from the formula that o is an identity for TW . Moreover, any cone C
satisfies the equality C:C D C , that is, is idempotent in TW . There moreover exists a
natural partial order on the face semigroup under which C 6 C 0 if and only if C 0 is
a lower-dimensional facet of C , or equivalently when the inclusion C 0 � C occurs.
This may be rephrased by means of the semigroup law on TW , as we have

C 6 C 0 ” tC D tC 0 :tC :
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With respect to this order, the chambers are the minimal cones whereas o is the (unique)
maximal cone in the face semigroup. Some authors use the reverse order instead, but it
appears more convenient for later needs to define the order as above.

6.2 Taking � into account

Here we introduce a modified version of the face semigroup obtained from an almost
canonical window W of the internal space Rn of some real cut and project scheme.

Let us call a cone C of the face semigroup nontrivial whenever the origin in Rn is an
accumulation point of elements of C\�� . We moreover denote the family of nontrivial
cones of the face semigroup by TW;� , and refer it as the nontrivial face semigroup. It
is at this point not clear whether TW;� is a subsemigroup of TW . However to convince
ourselves that this is the case, we may observe that the product C:C 0 of two cones of
the face semigroup is the only cone containing a small head of the cone C 0 when this
latter is shifted by a small vector of C , and that this preserves the subset TW;� in the
face semigroup.

Given a nontrivial cone C , as C \�� accumulates at 0, the vector space hC i spanned
by C admits a subgroup hC i \�� which cannot be uniformly discrete, and thus is
”dense along some subspace”. More precisely we state in our setting a theorem of [30]:

Theorem 6.2 The vector space hC i uniquely decomposes as a direct sum V ˚D ,
where V \�� is dense in V , D \�� is uniformly discrete in D , and hC i \�� D
.V \��/˚ .D\��/.

Now given a nontrivial cone C of the face semigroup with decomposition hC iDV ˚D
provided by the previous theorem, the summand V is nontrivial and thus one may
attach to it another smaller cone,

C WD C \V:

We call C the plain cone associated to C . By construction, the cone C is open in the
space V and spans this latter space, and C\�� is a dense subset of the plain cone C.
It is easy to observe that CD C when and only when the set C \�� is dense in the
cone C . For any nontrivial cone type t 2 TW;� we may define Ct to be the plain cone
associated with Ct .

6.3 The main theorem for internal system Ellis semigroup

Let us consider an Ellis transformation g 2E.„� ; �/ with associated translation vector
wg in Rn . Given a hyperplane H 2 HW , it has been shown in Lemma 5.6 that the

Algebraic & Geometric Topology, Volume 15 (2015)



2224 Jean-Baptiste Aujogue

mapping g falls into one and only one clopen subset of the form ŒH tCwg �E , whose
sign for any hyperplane H 2 HW determines a face type tg uniquely. To see that tg
is a face type in the above sense, that is, is associated with a nonempty cone Cg of the
stratification obtained from HW , observe that from the Boolean rules of Proposition 5.4
one has

(16) g 2
\

H2HW

�
H tg.H/Cwg

�
E
D

� \
H2HW

H tg.H/Cwg

�
E

D ŒCg Cwg �E ;

which ensures that Cg must be nonempty. Having related the internal system Ellis
semigroup with the face semigroup just defined, we are now able to state our main
theorem concerning the internal system Ellis semigroup:

Theorem 6.3 The mapping associating to any transformation g the couple .wg ; tg/
establishes an isomorphism between the Ellis semigroup E.„� ; �/ and the subsemi-
group of the direct product Rn �TW;� given byG

t2TW;�

ŒhCtiC�
��� ftg:

This isomorphism becomes a homeomorphism when the above union is equipped with
the following convergence class: .w�; t�/! .w; t/ if and only if

8" > 0; 9 ı� > 0 such that Ct�.w�; ı�/� Ct.w; "/ for large enough �:

The Ellis semigroup E.„� ; �/ has a first countable topology.

The convergence class of the statement is there to precisely state the full family of nets
and limit points which obey the above condition. This family completely characterizes
the Ellis semigroup topology since, being derived from the topology of the internal
system Ellis semigroup, it satisfies a correct set of axioms which permit to recover the
closure operator on the Ellis semigroup, and thus its topology (see [18]).

The remaining part of this section is devoted to the proof of this theorem. To this end we
decompose the proof into three parts: The first one states the existence of a semigroup
isomorphism between the internal system Ellis semigroup and a subsemigroup of the
direct product Rn �TW . The second step states the proof that the isomorphic image
maps into Rn�TW;� and is of the form stated above. In a third part we then show the
topological part of the statement.

6.3.1 Step 1: Existence of the semigroup isomorphism

Proposition 6.4 The mapping E.„� ; �/!TW that associates to each transformation
g its face type tg is a semigroup morphism.
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Proof We have to show that given two transformations g and h the face types tg:h and
tg :th are equal. By (16) the transformation g:h lies in the clopen subset ŒCg:hCwg:h�E .
Since, by construction, � is dense in the Ellis semigroup, and since the composition
law on this latter is right-continuous, one can find a 
 2 � sufficiently close to h in
the sense that

(i) 
 2 ŒChCwh�E ; (ii) g:
 2 ŒCg:hCwg:h�E :

From Lemma 5.6 together with the Boolean rules of Proposition 5.4, one can deduce
from (i) that 
� 2 Ch Cwh , or equivalently .
� �wh/ 2 Ch in the internal space.
Moreover, as the transformation g:
 lies both in the clopen subset ŒCg:
 Cwg:
 �E
and the open subset .…�/�1.B.wg:
 ; "//, again from the density of � in the Ellis
semigroup together with point (ii), one can find an element 
" 2 � sufficiently close to
g:
 so that


�" 2 .Cg:hCwg:h/\ .Cg:
 Cwg:
 /\B.wg:
 ; "/:

Since the cone associated with g:
 is equal to the one associated with g , the previous
fact implies that

Cg.

�
�wh; "/\Cg:h ¤∅ 8" > 0 with 
��wh 2 Ch:

Let us now consider three cases about a hyperplane H 2 HW :

th.H /DC In this case the vector 
��wh 2 Ch falls into the open half-space HC ,
and thus one may find a "0 with Cg.
��wh; "0/ included in HC , so that HC must
intersect the cone Cg:h . This forces Cg:h �HC , or equivalently tg:h.H/DC.

th.H /D� By the same type of argument one can show that tg:h.H/D�.

th.H /D 0 In this last case one has 
��wh 2H and thus Cg.
��wh; "/�H tg.H/ ,
whatever the symbol tg.H/. It thus follows that H tg.H/\Cg:h is nonempty, which
necessary gives Cg:h �H tg.H/ , or equivalently tg:h.H/D tg.H/.

The above three cases show that the cone type tg:h is equal to the composition tg :th ,
as desired.

Combining the previous proposition with the existence of the onto morphism of
Proposition 3.5, we see that the mapping that associates to each transformation g
in E.„� ; �/ the couple .wg ; tg/ in the product semigroup Rn �TW is a semigroup
morphism. Thus to settle Step 1, we only need to show injectivity:

Suppose for that purpose that two transformations g and h satisfy wg D wh DW w in
the internal space. By using the subbasis of Proposition 5.4, one can find a vector w0
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as well as a hyperplane H 2 HW such that g and h fall into different clopen subsets
among the partition

E.„� ; �/D ŒH�Cw0�E t ŒH Cw0�E t ŒH
C
Cw0�E :

Thus one must have that w and w0 are equal up to a vector of the hyperplane H , and
this implies that the signs tg.H/ and th.H/ must be different. This exactly means that
the associated cone types tg and th are different, and the proof of Step 1 is complete.

6.3.2 Step 2: Determination of the isomorphic image The problem now is to
identify the subsemigroup of Rn�T isomorphic to the internal system Ellis semigroup
via the previous mapping. To that end, one may describe this subsemigroup as a disjoint
union G

t2TW

Rnt � ftg

for some Euclidean subsets Rnt , the allowed translations of a cone type t, which we
need to identify. A first point about this is the following lemma.

Lemma 6.5 For any cone type t 2 TW with associated cone Ct one has

Rnt D fw 2Rn j .CtCw/\�
� accumulates at wg:

Proof Given some t 2 TW with associated cone Ct , its set of allowed translations
Rnt is by construction Rnt D fwg j g 2E.„

� ; �/ and tg D tg.

Let us show �: If w is such that .CtCw/\�
� accumulates at w then the intersection

.Ct C w/ \ B.w; "/ \ �
� is nonempty for any " > 0, and thus the family fŒCt C

w�E \ .…
�/�1.B.w; "//g">0 forms a filter base in the space E.„� ; �/. In turn, the

morphism …� is, by Proposition 2.7, a proper map so this filter base, for 0 < " < "0 ,
lies in the fixed compact subset .…�/�1.B.w; "0// and thus possess an accumulation
point g . This Ellis transformation necessarily satisfies wg D w , and because the set
ŒCtCw�E D ŒCtCwg �E is closed, containing the above filter base, it thus contains g .
We deduce that Cg D Ct , or equivalently tg D t, giving that w D wg 2Rnt .

Conversely we show �: Given some cone type t and some Ellis transformation
g with t D tg , then as g lies in ŒCg C wg �E one can select a net of elements of
.Cg C wg/ \ �

� D .Ct C wg/ \ �
� converging to g in the internal system Ellis

semigroup. Applying …� we obtain a net of .CtCwg/\�
� converging to wg in the

Euclidean space Rn , so that .CtCwg/\�
� accumulates at wg .

Let now TW;0 be the homomorphic image of the internal system Ellis semigroup in the
face semigroup TW via the morphism of Proposition 6.4. Then it precisely consists of
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those cone types that have a nonempty associated subset Rnt of allowed translations.
From the definition of the plain face semigroup TW;� , a face type t is nontrivial if
and only if 0 lies in Rnt , which shows in particular that TW;0 contains the plain face
semigroup TW;� .

We will now write any Euclidean subset Rnt in a more suitable form. Obviously it is
sufficient to consider cone types of the homomorphic image TW;0 . Observe that for
any such cone type, the associated Euclidean subset of allowed translations is stable
under ��–translation.

Proposition 6.6 Let t2TW;0 , with hCtiDVt˚Dt being its direct sum decomposition
from Theorem 6.2. Then one has

Rnt D VtC�
�:

Proof For t 2 TW;0 and hCti D Vt ˚ Dt , denote by P V (resp. PD ) the skew
projection of hCti with range Vt and kernel Dt (resp. the skew projection with range
Dt and kernel Vt ). Then, from the particular form of the decomposition, one has
P V .hCti \�

�/D Vt\�
� and PD.hCti \�

�/DDt\�
� .

Let us show first that Rnt lies in hCtiC�
� : Any vector w 2Rnt admits some 
� in

.CtCw/\�
� , so that 
��w lies in Ct and thus in hCti. So does the vector w�
� ,

giving that w lies in hCtiC�
� .

Now we more precisely show that Rnt lies in VtC� : Given w 2Rnt , one may write
w Dw0C 
� with w0 2 hCti and 
 2 �� , w0 itself being in Rnt as this latter is stable
under ��–translation. It thus suffices to prove that w0 lies in Vt C � to conclude.
From the previous lemma, w0 is the limit point of a sequence .
�

k
/ of elements in

.CtCw
0/\�� , in turn included in hCti\�

� . Thus PD.
�
k
/ converges to PD.w0/ and

P V .
�
k
/ converges to P V .w0/. But as the sequence .PD.
�

k
// lies in the uniformly

discrete subset Dt\�
� of Dt , it must be eventually constant, equal to PD.w0/ for great

enough k . Hence PD.w0/ lies in �� , which gives w0DPW .w0/CPD.w0/2VtC�� ,
as desired.

We want to observe that the sequence eventually satisfies P V .
�
k
/D 
�

k
�PD.w0/ 2

.CtCw
0/\���PD.w0/, with PD.w0/2�� , and thus P V .
�

k
/2 .CtCP

V .w0//\�� .
Hence P V .
�

k
/�P V .w0/D P V .
�

k
�w0/ lies in both Vt and Ct eventually, which

ensures that the intersection Ct WD Ct\Vt is nonempty.

Now we show that Rnt contains VtC� : To that end it suffices from ��–invariance to
show that it contains Vt . First it is clear that the subset Ct is a (nonempty) open cone
of the space Vt , since is the intersection of Ct which is open in its own spanned space
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hCti with the subspace Vt . Let now w 2 Vt be given. Then Ct is open in Vt and is a
cone pointed at 0, so that CtCw is an open cone of Vt pointed at w . But from the
density of Vt\�� in Vt one can obtain w as an accumulation point of CtCw\�

�

and thus of .CtCw/\�
� , showing that w 2Rnt , as desired.

From the previous proposition one gets that any cone type t of TW;0 has the origin 0 as
allowed translation, and thus is an element of TW;� . This shows that the internal system
Ellis semigroup is isomorphic to a subsemigroup of the direct product Rn�TW;� , and
that its isomorphic image is of the form stated in Theorem 6.3, once we recall that Vt
is spanned by the plain cone Ct for any t 2 TW;� . This completes Step 2.

6.3.3 Step 3: The topology of convergence Let us first show the first countability
property of the internal system Ellis semigroup: From the injectivity of the mapping
associating to any transformation g the couple .wg ; tg/, one can deduce that g is
the only transformation in its fiber with respect to …� falling into the clopen subset
ŒCg Cwg �E of the Ellis semigroup. It follows by Lemma 5.3 that a neighborhood
basis of g is provided by the intersections

(17) ŒCg Cwg �E \ .…
�/�1.B.wg ; "//:

It is then clear that one can extract a countable subbasis of this family, completing the
argument. Now we wish to show the bicontinuity of the stated isomorphism, and to
that end we let .g�/ be a net of the Ellis semigroup with associated net .w�; t�/ in the
direct product Rn �TW;� , and g be some Ellis transformation with associated couple
.w; t/. Let us first state a useful lemma:

Lemma 6.7 There exists an "0>0 such that, for any t2TW;� and w 2Rnt DVtC�
� ,

we have
Ct.w; "/\�

�
D Ct.w; "/\�

�
8 0 < "6 "0:

Proof Clearly the cone Ct.w; "/ contains Ct.w; "/ for all " > 0. Conversely let
t 2 TW;� be chosen, with associated cone Ct in Rn and the direct sum decomposition
hCti D Vt˚Dt provided by Theorem 6.2. As Dt \�

� is uniformly discrete in Dt ,
with "t > 0 being some radius of discreteness, we must have

hCti \B.w; "t/\�
�
D .VtCw/\B.w; "t/\�

�

for any w 2 VtC�� . Hence by intersecting with CtCw we obtain

Ct.w; "t/\�
�
D .CtCw/\ .VtCw/\B.w; "t/\�

�
D Ct.w; "t/\�

�:

Finally, taking "0 to be the minimum over "t , t 2 TW;� , gives the statement.
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Then g� converges to g if and only if for any " > 0, which can be chosen less than
the constant "0 of Lemma 6.7, there is some net of positive real numbers .ı�/, which
can be chosen less than the constant "0 as well, such that one has for great enough �:

ŒCt� Cw��E \ .…
�/�1.B.w�; ı�//� ŒCtCw�E \ .…

�/�1.B.w; "//:

By Lemma 6.7, intersecting with �� leads for great enough � to

Ct�.w�; ı�/\�
�
� Ct.w; "/\�

�:

Now the affine space generated by Ct�.w�; ı�/ is precisely Vt� Cw� which contains,
since w� is an allowed translation for t� , a dense subset of elements of �� . The same
occurs about w with respect to t, and thus we get for great enough � the inclusions

Vt� Cw� � VtCw:

As Ct.w; "/ is a topologically regular open subset of Vt C w , its intersection with
Vt�Cw� forms an open topologically regular subset of this latter affine space, containing
Ct�.w�; ı�/\�

� . As Ct�.w�; ı�/ is a topologically regular open subset of Vt� Cw�
as well, taking closure an next interior in Vt� Cw� provides for great enough � that

Ct�.w�; ı�/� Ct.w; "/;

thus giving the ) part of the statement.

Conversely, let us suppose that for any ">0, which can be chosen less than the constant
"0 of Lemma 6.7, there is some net of positive real numbers .ı�/, which can be chosen
less than the constant "0 as well, such that one has Ct�.w�; ı�/� Ct.w; "/� CtCw

for great enough �. Now the first point is that the net .w�/ converges to w in Rn , and
so g� falls into the inverse image of any ball B.w; "/ for great enough �. Secondly,
any g� has a neighborhood of the form ŒCt� Cw��E \ .…

�/�1.B.w�; ı�//, which is
contained in the subset ŒCt�.w�; ı�/�E D ŒCt�.w�; ı�/�E and thus in ŒCtCw�E for
great enough �. Combining these two arguments we deduce from the neighborhood
basis formula (17) that g� converges to g in the internal system Ellis semigroup.

This completes the proof of Theorem 6.3.

7 Results on the hull Ellis semigroup and additional
algebraic features

We arrive at our main result, namely, the algebraic and topological description of
the Ellis semigroup for a hull X of almost canonical model sets together with its
Rd –action.
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7.1 The main result

By Theorem 3.6, any transformation g in the semigroup E.X;Rd / may be written as
zg � s , where g is a transformation in E.„� ; �/ and s a vector of Rd , and with g
uniquely defined up to an element of � . Thus we may associate to any transformation
gD zg�s the cone type of any underlying transformation g2E.„� ; �/, which we write
tg , thus providing a semigroup morphism from the hull Ellis semigroup E.X;Rd / to
the nontrivial face semigroup TW;� . We are now able to formulate the main result of
this work, which is completely deduced from Theorems 3.6 and 6.3:

Theorem 7.1 The mapping that associates to any transformation g the couple .zg; tg/
establishes an isomorphism between the Ellis semigroup E.X;Rd / and the subsemi-
group of the direct product ŒRnCd �† �TW;� given byG

t2TW;�

ŒhCti �Rd �† � ftg:

Moreover, this isomorphism becomes a homeomorphism when the above union is
equipped with the following convergence class: .z�; t�/! .z; t/ if and only if one can
write z� D Œw�; s��† and z D Œw; s�† such that

(1) s�! s in Rd ,

(2) 8" > 0; 9 ı� > 0 such that Ct�.w�; ı�/� Ct.w; "/ for large enough � in Rn .

Finally, the Ellis semigroup E.X;Rd / has a first countable topology, and the dynamical
system .X;Rd / is tame.

7.2 Additional algebraic features

7.2.1 Invertible Ellis transformations One can naturally ask whether there are
transformations in the hull Ellis semigroup that are invertible but not homeomorphisms
given by the Rd –action. It turns out that the answer is no: We have seen that any cone
type t 2 TW;� is idempotent, and thus an invertible transformation must correspond to
a couple of the form .z; o/, where o is the identity cone type in t 2 TW;� . Since the
cone with cone type o is precisely the trivial cone f0g, its associated plain cone Co is
nothing but f0g and Theorem 7.1 ensures that z must be an element of the form Œ0; s�†
in Œf0g �Rd �† . It follows that the underlying transformation is the homeomorphism
arising from translation by the vector s 2Rd .
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7.2.2 Range of Ellis transformations It is natural to define on the Ellis semigroup
E.X;Rd / a preorder by letting g6g0 whenever the range of the mapping g is contained
in that of g0 . By range we mean here the subset r.g/ WDX:g of the hull X. When one
considers idempotent transformations q and q0 then it is easy to show that q 6 q0 if
and only if one has q D q:q0 , thus turning this preorder into algebraic terms in this
particular setting. In the case of an almost canonical hull Ellis semigroup we are able
to describe this preorder in a quite elegant manner:

Proposition 7.2 For any transformations of E.X;Rd / we have the equivalence

g 6 g0 ” Cg 6 Cg0 :

The proposition above asserts that the range of g is contained into the range of g0 if
and only if the cone Cg0 is equal or a lower-dimensional facet of the cone Cg .

Proof Let g and g0 be chosen. Each are elements of a subgroup respectively given
by ŒhCtgi �Rd �† � ftgg and ŒhCtg0 i �Rd �† � ftg0g, and thus one can see that r.g/D
r.Œ0�†�ftgg/ and that r.g0/D r.Œ0�†�ftg0g/. From what have just been said it becomes
clear that g 6 g0 if and only if tg D tg:tg0 , which exactly means that the cone Cg0 is
equal to or a lower-dimensional facet of the cone Cg , or equivalently Cg 6 Cg0 .

7.2.3 Ideals The general theory of Ellis semigroups gives great importance to the
ideal theory of an Ellis semigroup. In the case of a almost canonical hull Ellis semigroup
it is easy to prove the proposition stated below, showing that the ideal theory of the
hull Ellis semigroup reduces to the ideal theory of the semigroup TW;� :

Proposition 7.3 Each right ideal M of the nontrivial face semigroup TW;� defines a
right ideal of the Ellis semigroup E.X;Rd / byG

t2M

ŒhCti �Rd �† � ftg

and conversely each right ideal of E.X;Rd / arises in this manner.

We can in particular easily identify the unique minimal ideal of E.X;Rd /: This latter
is isomorphic to the direct product ŒRnCd �†�M ch , where M ch is the family of cone
types associated with the chambers of the stratification defined by the collection of
hyperplanes used to construct the face semigroup TW .
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7.3 An explicit computation

We consider the hull Xoct associated to the real cut and project scheme and octagonal
window presented in 1.4. The associated family of linear hyperplanes parallel to faces
of the window (or its reversed set) is described, in the orthonormal basis .e�1 ; e

�
2 / of

the internal space R2int , as

H1 WD hv1i D hv2� v4i; H2 WD hv2i D hv1C v3i;

H3 WD hv3i D hv2C v4i; H4 WD hv4i D hv1� v3i;

where

v1 WD e
�
1 ; v2 WD .e

�
1 C e

�
2 /=
p
2; v3 WD e

�
2 ; v4 WD .e

�
2 � e

�
1 /=
p
2I

see Figure 4.

H1
C
�

H2C
�

H3
C �H4

C

�

Figure 4

L1

L2

L3

L4

L5

L6

L7

L8

C1

C2C3

C4

C5
C6 C7

C8

Figure 5

The stratification obtained from these hyperplanes is of the form in Figure 5. The
internal space R2int is partitioned into 17 different cones: the singleton f0g, eight
half-lines fL1; : : : ; L8g pointed at 0 though not containing it which we label Li ,
LiC4 � Hi for 1 6 i 6 4, and eight chambers fC1; : : : ; C8g, each consisting of an
1
8

th part of the space and being open cones pointed at 0.

Now the stabilizers Stab�.Hi / are dense in Hi for each index 1 6 i 6 4, and we
deduce that each cone of this stratification is nontrivial, and moreover equal to its
associated plain cone. Thus hCoi D f0g as usual, whereas hCtLi

i D hCtLiC4
i DHi for

each value 16 i 6 4, and hCtCi
i DR2 for each index 16 i 6 8.

Consequently, the hull Ellis semigroup E.Xoct;R2/ is in this case obtained as� 8G
iD1

ŒR4�Z4 � ftCi g

�
t

� 4G
iD1

ŒHi �R2�Z4 � ftLi ; tLiC4g

�
tR2:
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8 The Ellis action on the hull

8.1 A further look on cones

We saw in Section 5 that to any model set ƒ of the internal system can be associated
a cone Cƒ , that is, an open connected cone pointed at 0 with boundary delimited by
hyperplanes of a subfamily Hwƒ of HW . Moreover each such cone admits a unique
cone type cƒ with domain Hwƒ , and there can be only finitely many such cone types,
whose family is denoted C. Now if one look at some model set ƒ0 in the hull X then
it always can be written ƒ0 Dƒ� t , where ƒ lies in the internal system and t is a
vector of Rd . This presentation is unique up to a translation of both the model set ƒ
and the vector t by some 
 2 � . Thus one may without misunderstanding define the
cut type Hzƒ0 and the cone type cƒ0 with domain Hzƒ0 to be the ones associated
with ƒ 2„� in the decomposition ƒ0 D ƒ� t . We may then describe the hull, as
was already done by Le [19], as follows:

Theorem 8.1 The mapping associating to any model set ƒ the couple .zƒ; cƒ/
establishes a bijective correspondence between the hull X and

f.z; c/ 2 ŒRnCd �† �C j dom.c/D Hzg:

Proof From what has been just said it is sufficient to prove that the mapping associating
to any model set ƒ in „� the couple .wƒ; cƒ/ establishes a bijective correspondence
between the internal system „� and

f.w; c/ 2Rn �C j dom.c/D Hwg:

First from the very construction of the cone type cƒ associated with any ƒ 2„� this
association is well defined. By the arguments used in the proof of Proposition 5.1,
each model set ƒ 2 „� is the limit of a filter base (11) which only depends on the
couple .wƒ; cƒ/, and thus the association is one-to-one. Moreover this association
is onto: If .w; c/ is a couple with dom.c/ equal to Hw , then consider the family of
subsets ŒCcCw�„\…

�1.B.w; "// of the internal system. Each such set contains some
nonsingular model sets, and thus forms a filter base in „� . As … is a proper map this
filter base is eventually contained in a compact subset of the form …�1.B.w; "// and
thus admits an accumulation element ƒ. This latter must satisfies ….ƒ/D wƒ D w
and Cƒ D Cc on the other hand. But as the domains of c and cƒ are both equal to
the cut type of wƒ D w the couple .wƒ; cƒ/ is nothing but .w; c/, showing that the
association is onto.
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8.2 The Ellis action

We wish to use here the descriptions of the hull obtained in the above paragraph and
that of its Ellis semigroup performed in Theorem 7.1. To this end we define an action
of the nontrivial face semigroup TW;� on the family C of cone types introduced above:

For c 2 C and t 2 TW;� let us define a map HW ! f�;C;1g as

c:t.H/ WD

�
c.H/ if t.H/D 0,
t.H/ else.

This definition is not properly an action of TW;� on C as the resulting map may not
be a cone issuing from any model set of the hull X. However it allows us to recover
the Ellis action as follows:

Proposition 8.2 The Ellis action X�E.X;Rd /!X is obtained as

.z; c/:.z0; t/D .zC z0; c0/; where c0.H/ WD

�
c:t.H/ if H 2 HzCz0 ;

1 else.

8.3 An illustration of the Ellis action

In order to illustrate the Ellis action described as above, we focus here on the example
of the hull Xoct associated with the data given in Section 1.4. More precisely we
won’t describe the action of any transformation but rather the one of the idempotent
transformations (as the other part is only a shifting in the parametrization torus ŒR4�Z4 ).
Moreover it can be checked that the idempotent Ellis transformations are precisely
those Ellis transformations mapped onto 0 2 ŒR4�Z4 under �� , or equivalently, those
which preserve fibers in Xoct with respect to the parametrization map � . Here we
won’t describe the Ellis action of these idempotents at any model set, but rather on the
single fiber above 0 2 ŒR4�Z4 , any other fiber can be treated in the same manner.

First we need to know the cut type of 0: it is easily checked that H0 D HWoct D

fH1;H2;H3;H4g, so that the fiber above 0 in the hull consists of eight model sets
fƒC1 ; : : : ; ƒC8g, each associated with some cone which is in this particular case a
chamber among fC1; : : : ; C8g. Then we can compute the action of any of the 17
idempotent transformations Œ0�Z4 � ftg, t 2 TWoct :

The identity map, given by Œ0�Z4 �fog, preserves any of the eight model sets, whereas
any idempotent map Œ0�Z4 � ftCi g associated with the chamber Ci maps all of these
model sets onto a single one, namely ƒCi . For an idempotent map of the form
Œ0�Z4 � ftLi g, with Li some half line contained in the hyperplane Hi , each model
set with associated cone belonging to the side ˙ of Hi is mapped onto the unique
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model set whose cone belongs to the same side ˙ of Hi and has Li in its boundary.
Therefore these transformations have two distinct model sets of this fiber in their range,
namely these which have Li in the boundary of their associated cone.
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present article.
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