Volume 15, issue 4 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Rectification of enriched $\infty$–categories

Rune Haugseng

Algebraic & Geometric Topology 15 (2015) 1931–1982
Bibliography
1 C Barwick, $(\infty, n)$–Cat as a closed model category, PhD thesis, University of Pennsylvania (2005)
2 C Barwick, On left and right model categories and left and right Bousfield localizations, Homology, Homotopy Appl. 12 (2010) 245 MR2771591
3 C Barwick, D M Kan, Partial model categories and their simplicial nerves, arXiv:1102.2512
4 C Barwick, D M Kan, Relative categories: Another model for the homotopy theory of homotopy theories, Indag. Math. 23 (2012) 42 MR2877401
5 C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories, arXiv:1112.0040
6 C Berger, I Moerdijk, On the homotopy theory of enriched categories, Q. J. Math. 64 (2013) 805 MR3094501
7 W G Dwyer, P S Hirschhorn, D M Kan, J H Smith, Homotopy limit functors on model categories and homotopical categories, Math. Surveys and Monographs 113, Amer. Math. Soc. (2004) MR2102294
8 W G Dwyer, D M Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980) 267 MR579087
9 W G Dwyer, D M Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980) 17 MR578563
10 W G Dwyer, D M Kan, Homotopy theory and simplicial groupoids, Nederl. Akad. Wetensch. Indag. Math. 46 (1984) 379 MR770723
11 W G Dwyer, D M Kan, J H Smith, Homotopy commutative diagrams and their realizations, J. Pure Appl. Algebra 57 (1989) 5 MR984042
12 W G Dwyer, J Spaliński, Homotopy theories and model categories, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 73 MR1361887
13 D Gepner, R Haugseng, Enriched $\infty$–categories via nonsymmetric $\infty$–operads, Adv. Math. 279 (2015) 575 MR3345192
14 D Gepner, R Haugseng, T Nikolaus, Lax colimits and free fibrations in $\infty$–categories, arXiv:1501.02161
15 Y Harpaz, M Prasma, The Grothendieck construction for model categories, Adv. Math. 281 (2015) 1306 MR3366868
16 R Haugseng, The higher Morita category of $E_n$–algebras, arXiv:1412.8459
17 V Hinich, Dwyer–Kan localization revisited, arXiv:1311.4128
18 A Hirschowitz, C Simpson, Descente pour les $n$–champs, arXiv:math/9807049
19 M Hovey, Model categories, Math. Surveys and Monographs 63, Amer. Math. Soc. (1999) MR1650134
20 M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 MR1695653
21 J Lurie, Higher topos theory, Annals of Math. Studies 170, Princeton Univ. Press (2009) MR2522659
22 J Lurie, $(\infty,2)$–categories and the Goodwillie calculus I (2009)
23 J Lurie, Higher algebra (2014)
24 M Makkai, R Paré, Accessible categories: The foundations of categorical model theory, Contemporary Math. 104, Amer. Math. Soc. (1989) MR1031717
25 F Muro, Homotopy theory of nonsymmetric operads, Algebr. Geom. Topol. 11 (2011) 1541 MR2821434
26 F Muro, Dwyer–Kan homotopy theory of enriched categories, J. Topol. 8 (2015) 377 MR3356766
27 R Pellissier, Catégories enrichies faibles, arXiv:math/0308246
28 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
29 A Roig, Model category structures in bifibred categories, J. Pure Appl. Algebra 95 (1994) 203 MR1293054
30 R Schwänzl, R Vogt, Homotopy homomorphisms and the hammock localization, Bol. Soc. Mat. Mexicana 37 (1992) 431 MR1317592
31 S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000) 491 MR1734325
32 C Simpson, Homotopy theory of higher categories, New Math. Monographs 19, Cambridge Univ. Press (2012) MR2883823
33 A E Stanculescu, Bifibrations and weak factorisation systems, Appl. Categ. Structures 20 (2012) 19 MR2886231
34 A E Stanculescu, Constructing model categories with prescribed fibrant objects, Theory Appl. Categ. 29 (2014) 635 MR3274498
35 Z Tamsamani, Sur des notions de $n$–catégorie et $n$–groupoïde non strictes via des ensembles multisimpliciaux, $K$–Theory 16 (1999) 51 MR1673923