Volume 15, issue 4 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Rectification of enriched $\infty$–categories

Rune Haugseng

Algebraic & Geometric Topology 15 (2015) 1931–1982
Bibliography
1 C Barwick, $(\infty, n)$–Cat as a closed model category, PhD thesis, University of Pennsylvania (2005)
2 C Barwick, On left and right model categories and left and right Bousfield localizations, Homology, Homotopy Appl. 12 (2010) 245 MR2771591
3 C Barwick, D M Kan, Partial model categories and their simplicial nerves, arXiv:1102.2512
4 C Barwick, D M Kan, Relative categories: Another model for the homotopy theory of homotopy theories, Indag. Math. 23 (2012) 42 MR2877401
5 C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories, arXiv:1112.0040
6 C Berger, I Moerdijk, On the homotopy theory of enriched categories, Q. J. Math. 64 (2013) 805 MR3094501
7 W G Dwyer, P S Hirschhorn, D M Kan, J H Smith, Homotopy limit functors on model categories and homotopical categories, Math. Surveys and Monographs 113, Amer. Math. Soc. (2004) MR2102294
8 W G Dwyer, D M Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980) 267 MR579087
9 W G Dwyer, D M Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980) 17 MR578563
10 W G Dwyer, D M Kan, Homotopy theory and simplicial groupoids, Nederl. Akad. Wetensch. Indag. Math. 46 (1984) 379 MR770723
11 W G Dwyer, D M Kan, J H Smith, Homotopy commutative diagrams and their realizations, J. Pure Appl. Algebra 57 (1989) 5 MR984042
12 W G Dwyer, J Spaliński, Homotopy theories and model categories, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 73 MR1361887
13 D Gepner, R Haugseng, Enriched $\infty$–categories via nonsymmetric $\infty$–operads, Adv. Math. 279 (2015) 575 MR3345192
14 D Gepner, R Haugseng, T Nikolaus, Lax colimits and free fibrations in $\infty$–categories, arXiv:1501.02161
15 Y Harpaz, M Prasma, The Grothendieck construction for model categories, Adv. Math. 281 (2015) 1306 MR3366868
16 R Haugseng, The higher Morita category of $E_n$–algebras, arXiv:1412.8459
17 V Hinich, Dwyer–Kan localization revisited, arXiv:1311.4128
18 A Hirschowitz, C Simpson, Descente pour les $n$–champs, arXiv:math/9807049
19 M Hovey, Model categories, Math. Surveys and Monographs 63, Amer. Math. Soc. (1999) MR1650134
20 M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 MR1695653
21 J Lurie, Higher topos theory, Annals of Math. Studies 170, Princeton Univ. Press (2009) MR2522659
22 J Lurie, $(\infty,2)$–categories and the Goodwillie calculus I (2009)
23 J Lurie, Higher algebra (2014)
24 M Makkai, R Paré, Accessible categories: The foundations of categorical model theory, Contemporary Math. 104, Amer. Math. Soc. (1989) MR1031717
25 F Muro, Homotopy theory of nonsymmetric operads, Algebr. Geom. Topol. 11 (2011) 1541 MR2821434
26 F Muro, Dwyer–Kan homotopy theory of enriched categories, J. Topol. 8 (2015) 377 MR3356766
27 R Pellissier, Catégories enrichies faibles, arXiv:math/0308246
28 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
29 A Roig, Model category structures in bifibred categories, J. Pure Appl. Algebra 95 (1994) 203 MR1293054
30 R Schwänzl, R Vogt, Homotopy homomorphisms and the hammock localization, Bol. Soc. Mat. Mexicana 37 (1992) 431 MR1317592
31 S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000) 491 MR1734325
32 C Simpson, Homotopy theory of higher categories, New Math. Monographs 19, Cambridge Univ. Press (2012) MR2883823
33 A E Stanculescu, Bifibrations and weak factorisation systems, Appl. Categ. Structures 20 (2012) 19 MR2886231
34 A E Stanculescu, Constructing model categories with prescribed fibrant objects, Theory Appl. Categ. 29 (2014) 635 MR3274498
35 Z Tamsamani, Sur des notions de $n$–catégorie et $n$–groupoïde non strictes via des ensembles multisimpliciaux, $K$–Theory 16 (1999) 51 MR1673923