Volume 15, issue 5 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
 
Other MSP Journals
Khovanov homology is a skew Howe $2$–representation of categorified quantum $\mathfrak{sl}_m$

Aaron D Lauda, Hoel Queffelec and David E V Rose

Algebraic & Geometric Topology 15 (2015) 2517–2608
Bibliography
1 D Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337 MR1917056
2 D Bar-Natan, Khovanov's homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 MR2174270
3 J Bernstein, I Frenkel, M Khovanov, A categorification of the Temperley–Lieb algebra and Schur quotients of $U(\mathfrak{sl}_2)$ via projective and Zuckerman functors, Selecta Math. 5 (1999) 199 MR1714141
4 C Blanchet, An oriented model for Khovanov homology, J. Knot Theory Ramifications 19 (2010) 291 MR2647055
5 F Borceux, Handbook of categorical algebra, 1, Encyclopedia of Mathematics and its Applications 50, Cambridge Univ. Press (1994) MR1291599
6 J Brundan, C Stroppel, Highest weight categories arising from Khovanov's diagram algebra, III: Category $\mathcal O$, Represent. Theory 15 (2011) 170 MR2781018
7 C L Caprau, An sl(2) tangle homology and seamed cobordisms, PhD thesis, University of Iowa (2007) MR2710797
8 C L Caprau, $\mathrm sl(2)$ tangle homology with a parameter and singular cobordisms, Algebr. Geom. Topol. 8 (2008) 729 MR2443094
9 C Caprau, The universal $\mathfrak{{sl}}(2)$ cohomology via webs and foams, Topology Appl. 156 (2009) 1684 MR2521705
10 S Cautis, Clasp technology to knot homology via the affine Grassmannian, arXiv:1207.2074
11 S Cautis, Rigidity in higher representation theory, arXiv:1409.0827
12 S Cautis, J Kamnitzer, Knot homology via derived categories of coherent sheaves, I: The ${\mathfrak{sl}}(2)$–case, Duke Math. J. 142 (2008) 511 MR2411561
13 S Cautis, J Kamnitzer, Knot homology via derived categories of coherent sheaves, II: $\mathfrak{sl}_m$ case, Invent. Math. 174 (2008) 165 MR2430980
14 S Cautis, J Kamnitzer, Braiding via geometric Lie algebra actions, Compos. Math. 148 (2012) 464 MR2904194
15 S Cautis, J Kamnitzer, A Licata, Categorical geometric skew Howe duality, Invent. Math. 180 (2010) 111 MR2593278
16 S Cautis, J Kamnitzer, A Licata, Coherent sheaves and categorical $\mathfrak{sl}_2$ actions, Duke Math. J. 154 (2010) 135 MR2668555
17 S Cautis, J Kamnitzer, A Licata, Coherent sheaves on quiver varieties and categorification, Math. Ann. 357 (2013) 805 MR3118615
18 S Cautis, J Kamnitzer, A Licata, Derived equivalences for cotangent bundles of Grassmannians via categorical $\mathfrak{sl}_2$ actions, J. Reine Angew. Math. 675 (2013) 53 MR3021447
19 S Cautis, J Kamnitzer, S Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014) 351 MR3263166
20 S Cautis, A D Lauda, Implicit structure in $2$–representations of quantum groups, Selecta Math. 21 (2015) 201 MR3300416
21 J Chuang, R Rouquier, Derived equivalences for symmetric groups and $\mathfrak {sl}_2$–categorification, Ann. of Math. 167 (2008) 245 MR2373155
22 D Clark, S Morrison, K Walker, Fixing the functoriality of Khovanov homology, Geom. Topol. 13 (2009) 1499 MR2496052
23 B Cooper, V Krushkal, Categorification of the Jones–Wenzl projectors, Quantum Topol. 3 (2012) 139 MR2901969
24 T Dyckerhoff, D Murfet, The Kapustin–Li formula revisited, Adv. Math. 231 (2012) 1858 MR2964627
25 I Frenkel, M Khovanov, C Stroppel, A categorification of finite-dimensional irreducible representations of quantum $\mathfrak{sl}_2$ and their tensor products, Selecta Math. 12 (2006) 379 MR2305608
26 I Frenkel, C Stroppel, J Sussan, Categorifying fractional Euler characteristics, Jones–Wenzl projectors and $3j$–symbols, Quantum Topol. 3 (2012) 181 MR2901970
27 D Hill, J Sussan, The Khovanov–Lauda $2$–category and categorifications of a level two quantum $\mathfrak{sl}_n$ representation, Int. J. Math. Math. Sci. (2010) MR2669068
28 M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211 MR2113903
29 J Kamnitzer, P Tingley, The crystal commutor and Drinfeld's unitarized $R$–matrix, J. Algebraic Combin. 29 (2009) 315 MR2496310
30 A Kapustin, Y Li, Topological correlators in Landau–Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2003) 727 MR2039036
31 C Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer (1995) MR1321145
32 M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 MR1740682
33 M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665 MR1928174
34 M Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004) 1045 MR2100691
35 M Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358 (2006) 315 MR2171235
36 M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, I, Represent. Theory 13 (2009) 309 MR2525917
37 M Khovanov, A D Lauda, A categorification of quantum $\mathrm{sl}(n)$, Quantum Topol. 1 (2010) 1 MR2628852
38 M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, II, Trans. Amer. Math. Soc. 363 (2011) 2685 MR2763732
39 M Khovanov, A D Lauda, Erratum to: “A categorification of quantum $\mathrm{sl}(n)$”, Quantum Topol. 2 (2011) 97 MR2763088
40 M Khovanov, A D Lauda, M Mackaay, M Stošić, Extended graphical calculus for categorified quantum $\mathrm{sl}(2)$, Mem. Amer. Math. Soc. 1029 (2012) MR2963085
41 M Khovanov, L Rozansky, Topological Landau–Ginzburg models on the world-sheet foam, Adv. Theor. Math. Phys. 11 (2007) 233 MR2322554
42 M Khovanov, L Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 MR2391017
43 M Khovanov, L Rozansky, Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387 MR2421131
44 D Kim, Graphical calculus on representations of quantum Lie algebras, PhD thesis, University of California, Davis (2003) MR2704398
45 G Kuperberg, Spiders for rank $2$ Lie algebras, Comm. Math. Phys. 180 (1996) 109 MR1403861
46 A D Lauda, A categorification of quantum $\mathrm{sl}(2)$, Adv. Math. 225 (2010) 3327 MR2729010
47 A D Lauda, An introduction to diagrammatic algebra and categorified quantum $\mathfrak{sl}_2$, Bull. Inst. Math. Acad. Sin. 7 (2012) 165 MR3024893
48 G Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990) 447 MR1035415
49 G Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser (1993) MR1227098
50 M Mackaay, $\mathfrak{sl}(3)$–foams and the Khovanov–Lauda categorification of quantum sl(k), arXiv:0905.2059
51 M Mackaay, W Pan, D Tubbenhauer, The $\mathfrak{sl}_3$–web algebra, Math. Z. 277 (2014) 401 MR3205780
52 M Mackaay, M Stošić, P Vaz, $\mathfrak{sl}(N)$–link homology $(N\geq 4)$ using foams and the Kapustin–Li formula, Geom. Topol. 13 (2009) 1075 MR2491657
53 M Mackaay, M Stošić, P Vaz, A diagrammatic categorification of the $q$–Schur algebra, Quantum Topol. 4 (2013) 1 MR2998837
54 M Mackaay, P Vaz, The universal $\mathrm{sl}_3$–link homology, Algebr. Geom. Topol. 7 (2007) 1135 MR2336253
55 M Mackaay, P Vaz, The foam and the matrix factorization $\mathrm sl_3$ link homologies are equivalent, Algebr. Geom. Topol. 8 (2008) 309 MR2443231
56 C Manolescu, Link homology theories from symplectic geometry, Adv. Math. 211 (2007) 363 MR2313538
57 V Mazorchuk, C Stroppel, A combinatorial approach to functorial quantum $\mathfrak{sl}_k$ knot invariants, Amer. J. Math. 131 (2009) 1679 MR2567504
58 S E Morrison, A diagrammatic category for the representation theory of $U_q(\mathfrak{sl}_n)$, PhD thesis, University of California, Berkeley (2007) MR2710589
59 S Morrison, A Nieh, On Khovanov's cobordism theory for $\mathfrak{su}_3$ knot homology, J. Knot Theory Ramifications 17 (2008) 1121 MR2457839
60 H Murakami, T Ohtsuki, S Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. 44 (1998) 325 MR1659228
61 P S Ozsváth, J Rasmussen, Z Szabó, Odd Khovanov homology, Algebr. Geom. Topol. 13 (2013) 1465
62 H Queffelec, D Rose, The $\mf{sl}_n$ foam $2$–category: A combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, arXiv:1405.5920
63 D E V Rose, A categorification of quantum ${\mathfrak{sl}}_3$ projectors and the ${\mathfrak{sl}}_3$ Reshetikhin–Turaev invariant of tangles, Quantum Topol. 5 (2014) 1 MR3176309
64 R Rouquier, $q$–Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008) 119 MR2422270
65 L Rozansky, An infinite torus braid yields a categorified Jones–Wenzl projector, Fund. Math. 225 (2014) 305 MR3205575
66 P Seidel, I Smith, A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J. 134 (2006) 453 MR2254624
67 M Stošić, Indecomposable $1$–morphisms of $\dot{U}^+_3$ and the canonical basis of ${U}_q^+(sl_3)$, arXiv:1105.4458
68 C Stroppel, Categorification of the Temperley–Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126 (2005) 547 MR2120117
69 C Stroppel, Parabolic category $\mathcal O$, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math. 145 (2009) 954 MR2521250
70 C Stroppel, J Sussan, Categorified Jones–Wenzl projectors: A comparison, from: "Perspectives in representation theory", Contemp. Math. 610, Amer. Math. Soc. (2014) 333 MR3220633
71 J Sussan, Category O and sl(k) link invariants, PhD thesis, Yale University (2007) MR2710319
72 C Vafa, Topological Landau–Ginzburg models, Modern Phys. Lett. A 6 (1991) 337 MR1093562
73 P Vaz, The diagrammatic Soergel category and $\mathrm sl(2)$ and $\mathrm sl(3)$ foams, Int. J. Math. Math. Sci. (2010) MR2652384
74 B Webster, Knot invariants and higher representation theory, I: Diagrammatic and geometric categorification of tensor products, arXiv:1001.2020
75 B Webster, Knot invariants and higher representation theory, II: The categorification of quantum knot invariants, arXiv:1005.4559
76 B Webster, Canonical bases and higher representation theory, Compos. Math. 151 (2015) 121 MR3305310
77 H Wu, A colored $\mathfrak {sl}(N)$ homology for links in $S^3$, Dissertationes Math. $($Rozprawy Mat.$)$ 499 (2014) 1 MR3234803
78 Y Yonezawa, Matrix factorizations and intertwiners of the fundamental representations of quantum group ${U}_q (sl_n)$, arXiv:0806.4939
79 Y Yonezawa, Quantum $(\mathfrak{sl}_n,\wedge V_n)$ link invariant and matrix factorizations, Nagoya Math. J. 204 (2011) 69 MR2863366