Volume 15, issue 5 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Other MSP Journals
Khovanov homology is a skew Howe $2$–representation of categorified quantum $\mathfrak{sl}_m$

Aaron D Lauda, Hoel Queffelec and David E V Rose

Algebraic & Geometric Topology 15 (2015) 2517–2608
Bibliography
1 D Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337 MR1917056
2 D Bar-Natan, Khovanov's homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 MR2174270
3 J Bernstein, I Frenkel, M Khovanov, A categorification of the Temperley–Lieb algebra and Schur quotients of $U(\mathfrak{sl}_2)$ via projective and Zuckerman functors, Selecta Math. 5 (1999) 199 MR1714141
4 C Blanchet, An oriented model for Khovanov homology, J. Knot Theory Ramifications 19 (2010) 291 MR2647055
5 F Borceux, Handbook of categorical algebra, 1, Encyclopedia of Mathematics and its Applications 50, Cambridge Univ. Press (1994) MR1291599
6 J Brundan, C Stroppel, Highest weight categories arising from Khovanov's diagram algebra, III: Category $\mathcal O$, Represent. Theory 15 (2011) 170 MR2781018
7 C L Caprau, An sl(2) tangle homology and seamed cobordisms, PhD thesis, University of Iowa (2007) MR2710797
8 C L Caprau, $\mathrm sl(2)$ tangle homology with a parameter and singular cobordisms, Algebr. Geom. Topol. 8 (2008) 729 MR2443094
9 C Caprau, The universal $\mathfrak{{sl}}(2)$ cohomology via webs and foams, Topology Appl. 156 (2009) 1684 MR2521705
10 S Cautis, Clasp technology to knot homology via the affine Grassmannian, arXiv:1207.2074
11 S Cautis, Rigidity in higher representation theory, arXiv:1409.0827
12 S Cautis, J Kamnitzer, Knot homology via derived categories of coherent sheaves, I: The ${\mathfrak{sl}}(2)$–case, Duke Math. J. 142 (2008) 511 MR2411561
13 S Cautis, J Kamnitzer, Knot homology via derived categories of coherent sheaves, II: $\mathfrak{sl}_m$ case, Invent. Math. 174 (2008) 165 MR2430980
14 S Cautis, J Kamnitzer, Braiding via geometric Lie algebra actions, Compos. Math. 148 (2012) 464 MR2904194
15 S Cautis, J Kamnitzer, A Licata, Categorical geometric skew Howe duality, Invent. Math. 180 (2010) 111 MR2593278
16 S Cautis, J Kamnitzer, A Licata, Coherent sheaves and categorical $\mathfrak{sl}_2$ actions, Duke Math. J. 154 (2010) 135 MR2668555
17 S Cautis, J Kamnitzer, A Licata, Coherent sheaves on quiver varieties and categorification, Math. Ann. 357 (2013) 805 MR3118615
18 S Cautis, J Kamnitzer, A Licata, Derived equivalences for cotangent bundles of Grassmannians via categorical $\mathfrak{sl}_2$ actions, J. Reine Angew. Math. 675 (2013) 53 MR3021447
19 S Cautis, J Kamnitzer, S Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014) 351 MR3263166
20 S Cautis, A D Lauda, Implicit structure in $2$–representations of quantum groups, Selecta Math. 21 (2015) 201 MR3300416
21 J Chuang, R Rouquier, Derived equivalences for symmetric groups and $\mathfrak {sl}_2$–categorification, Ann. of Math. 167 (2008) 245 MR2373155
22 D Clark, S Morrison, K Walker, Fixing the functoriality of Khovanov homology, Geom. Topol. 13 (2009) 1499 MR2496052
23 B Cooper, V Krushkal, Categorification of the Jones–Wenzl projectors, Quantum Topol. 3 (2012) 139 MR2901969
24 T Dyckerhoff, D Murfet, The Kapustin–Li formula revisited, Adv. Math. 231 (2012) 1858 MR2964627
25 I Frenkel, M Khovanov, C Stroppel, A categorification of finite-dimensional irreducible representations of quantum $\mathfrak{sl}_2$ and their tensor products, Selecta Math. 12 (2006) 379 MR2305608
26 I Frenkel, C Stroppel, J Sussan, Categorifying fractional Euler characteristics, Jones–Wenzl projectors and $3j$–symbols, Quantum Topol. 3 (2012) 181 MR2901970
27 D Hill, J Sussan, The Khovanov–Lauda $2$–category and categorifications of a level two quantum $\mathfrak{sl}_n$ representation, Int. J. Math. Math. Sci. (2010) MR2669068
28 M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211 MR2113903
29 J Kamnitzer, P Tingley, The crystal commutor and Drinfeld's unitarized $R$–matrix, J. Algebraic Combin. 29 (2009) 315 MR2496310
30 A Kapustin, Y Li, Topological correlators in Landau–Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2003) 727 MR2039036
31 C Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer (1995) MR1321145
32 M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 MR1740682
33 M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665 MR1928174
34 M Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004) 1045 MR2100691
35 M Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358 (2006) 315 MR2171235
36 M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, I, Represent. Theory 13 (2009) 309 MR2525917
37 M Khovanov, A D Lauda, A categorification of quantum $\mathrm{sl}(n)$, Quantum Topol. 1 (2010) 1 MR2628852
38 M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, II, Trans. Amer. Math. Soc. 363 (2011) 2685 MR2763732
39 M Khovanov, A D Lauda, Erratum to: “A categorification of quantum $\mathrm{sl}(n)$”, Quantum Topol. 2 (2011) 97 MR2763088
40 M Khovanov, A D Lauda, M Mackaay, M Stošić, Extended graphical calculus for categorified quantum $\mathrm{sl}(2)$, Mem. Amer. Math. Soc. 1029 (2012) MR2963085
41 M Khovanov, L Rozansky, Topological Landau–Ginzburg models on the world-sheet foam, Adv. Theor. Math. Phys. 11 (2007) 233 MR2322554
42 M Khovanov, L Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 MR2391017
43 M Khovanov, L Rozansky, Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387 MR2421131
44 D Kim, Graphical calculus on representations of quantum Lie algebras, PhD thesis, University of California, Davis (2003) MR2704398
45 G Kuperberg, Spiders for rank $2$ Lie algebras, Comm. Math. Phys. 180 (1996) 109 MR1403861
46 A D Lauda, A categorification of quantum $\mathrm{sl}(2)$, Adv. Math. 225 (2010) 3327 MR2729010
47 A D Lauda, An introduction to diagrammatic algebra and categorified quantum $\mathfrak{sl}_2$, Bull. Inst. Math. Acad. Sin. 7 (2012) 165 MR3024893
48 G Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990) 447 MR1035415
49 G Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser (1993) MR1227098
50 M Mackaay, $\mathfrak{sl}(3)$–foams and the Khovanov–Lauda categorification of quantum sl(k), arXiv:0905.2059
51 M Mackaay, W Pan, D Tubbenhauer, The $\mathfrak{sl}_3$–web algebra, Math. Z. 277 (2014) 401 MR3205780
52 M Mackaay, M Stošić, P Vaz, $\mathfrak{sl}(N)$–link homology $(N\geq 4)$ using foams and the Kapustin–Li formula, Geom. Topol. 13 (2009) 1075 MR2491657
53 M Mackaay, M Stošić, P Vaz, A diagrammatic categorification of the $q$–Schur algebra, Quantum Topol. 4 (2013) 1 MR2998837
54 M Mackaay, P Vaz, The universal $\mathrm{sl}_3$–link homology, Algebr. Geom. Topol. 7 (2007) 1135 MR2336253
55 M Mackaay, P Vaz, The foam and the matrix factorization $\mathrm sl_3$ link homologies are equivalent, Algebr. Geom. Topol. 8 (2008) 309 MR2443231
56 C Manolescu, Link homology theories from symplectic geometry, Adv. Math. 211 (2007) 363 MR2313538
57 V Mazorchuk, C Stroppel, A combinatorial approach to functorial quantum $\mathfrak{sl}_k$ knot invariants, Amer. J. Math. 131 (2009) 1679 MR2567504
58 S E Morrison, A diagrammatic category for the representation theory of $U_q(\mathfrak{sl}_n)$, PhD thesis, University of California, Berkeley (2007) MR2710589
59 S Morrison, A Nieh, On Khovanov's cobordism theory for $\mathfrak{su}_3$ knot homology, J. Knot Theory Ramifications 17 (2008) 1121 MR2457839
60 H Murakami, T Ohtsuki, S Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. 44 (1998) 325 MR1659228
61 P S Ozsváth, J Rasmussen, Z Szabó, Odd Khovanov homology, Algebr. Geom. Topol. 13 (2013) 1465
62 H Queffelec, D Rose, The $\mf{sl}_n$ foam $2$–category: A combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, arXiv:1405.5920
63 D E V Rose, A categorification of quantum ${\mathfrak{sl}}_3$ projectors and the ${\mathfrak{sl}}_3$ Reshetikhin–Turaev invariant of tangles, Quantum Topol. 5 (2014) 1 MR3176309
64 R Rouquier, $q$–Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008) 119 MR2422270
65 L Rozansky, An infinite torus braid yields a categorified Jones–Wenzl projector, Fund. Math. 225 (2014) 305 MR3205575
66 P Seidel, I Smith, A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J. 134 (2006) 453 MR2254624
67 M Stošić, Indecomposable $1$–morphisms of $\dot{U}^+_3$ and the canonical basis of ${U}_q^+(sl_3)$, arXiv:1105.4458
68 C Stroppel, Categorification of the Temperley–Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126 (2005) 547 MR2120117
69 C Stroppel, Parabolic category $\mathcal O$, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math. 145 (2009) 954 MR2521250
70 C Stroppel, J Sussan, Categorified Jones–Wenzl projectors: A comparison, from: "Perspectives in representation theory", Contemp. Math. 610, Amer. Math. Soc. (2014) 333 MR3220633
71 J Sussan, Category O and sl(k) link invariants, PhD thesis, Yale University (2007) MR2710319
72 C Vafa, Topological Landau–Ginzburg models, Modern Phys. Lett. A 6 (1991) 337 MR1093562
73 P Vaz, The diagrammatic Soergel category and $\mathrm sl(2)$ and $\mathrm sl(3)$ foams, Int. J. Math. Math. Sci. (2010) MR2652384
74 B Webster, Knot invariants and higher representation theory, I: Diagrammatic and geometric categorification of tensor products, arXiv:1001.2020
75 B Webster, Knot invariants and higher representation theory, II: The categorification of quantum knot invariants, arXiv:1005.4559
76 B Webster, Canonical bases and higher representation theory, Compos. Math. 151 (2015) 121 MR3305310
77 H Wu, A colored $\mathfrak {sl}(N)$ homology for links in $S^3$, Dissertationes Math. $($Rozprawy Mat.$)$ 499 (2014) 1 MR3234803
78 Y Yonezawa, Matrix factorizations and intertwiners of the fundamental representations of quantum group ${U}_q (sl_n)$, arXiv:0806.4939
79 Y Yonezawa, Quantum $(\mathfrak{sl}_n,\wedge V_n)$ link invariant and matrix factorizations, Nagoya Math. J. 204 (2011) 69 MR2863366