Volume 15, issue 5 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Restriction to finite-index subgroups as étale extensions in topology, KK–theory and geometry

Paul Balmer, Ivo Dell’Ambrogio and Beren Sanders

Algebraic & Geometric Topology 15 (2015) 3023–3045
Abstract

For equivariant stable homotopy theory, equivariant KK–theory and equivariant derived categories, we show how restriction to a subgroup of finite index yields a finite commutative separable extension, analogous to finite étale extensions in algebraic geometry.

Keywords
Restriction, equivariant triangulated categories, separable, étale
Mathematical Subject Classification 2010
Primary: 13B40, 18E30
Secondary: 55P91, 19K35, 14F05
References
Publication
Received: 11 November 2014
Revised: 9 February 2015
Accepted: 9 February 2015
Published: 10 December 2015
Authors
Paul Balmer
Mathematics Department
University of California, Los Angeles
Los Angeles, CA 90095-1555
USA
http://www.math.ucla.edu/~balmer
Ivo Dell’Ambrogio
Laboratoire de Mathématiques Paul Painlevé
Université de Lille 1
F-59665 Villeneuve-d’Ascq Cedex
France
http://math.univ-lille1.fr/~dellambr/
Beren Sanders
Centre for Symmetry and Deformation
Institut for Matematiske Fag
Universitetsparken 5
DK-2100 Copenhagen
Denmark
http://beren.blogs.ku.dk/