Volume 15, issue 5 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The Morava $K$–theory of $BO(q)$ and $MO(q)$

Nitu Kitchloo and W Stephen Wilson

Algebraic & Geometric Topology 15 (2015) 3047–3056
Abstract

We give an easy proof that the Morava K–theories for BO(q) and MO(q) are in even degrees. Although this is a known result, it had followed from a difficult proof that BP(BO(q)) was Landweber flat. Landweber flatness follows from the even Morava K–theory. We go further and compute an explicit description of K(n)(BO(q)) and K(n)(MO(q)) and reconcile it with the purely algebraic construct from Landweber flatness.

Keywords
Morava $K$—theory, BO, characteristic classes
Mathematical Subject Classification 2010
Primary: 55R45, 55N15
Secondary: 55N20, 55N22
References
Publication
Received: 12 November 2014
Revised: 2 February 2015
Accepted: 2 February 2015
Published: 10 December 2015
Authors
Nitu Kitchloo
Department of Mathematics
Johns Hopkins University
Baltimore, MD 21218
USA
W Stephen Wilson
Department of Mathematics
Johns Hopkins University
Baltimore, MD 21218
USA