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Universality of multiplicative infinite loop space machines

DAVID GEPNER

MORITZ GROTH

THOMAS NIKOLAUS

We establish a canonical and unique tensor product for commutative monoids and
groups in an 1–category C which generalizes the ordinary tensor product of abelian
groups. Using this tensor product we show that En –(semi)ring objects in C give rise
to En –ring spectrum objects in C . In the case that C is the 1–category of spaces
this produces a multiplicative infinite loop space machine which can be applied to the
algebraic K–theory of rings and ring spectra.

The main tool we use to establish these results is the theory of smashing localizations
of presentable 1–categories. In particular, we identify preadditive and additive
1–categories as the local objects for certain smashing localizations. A central
theme is the stability of algebraic structures under basechange; for example, we show
Ring.D˝C/'Ring.D/˝C . Lastly, we also consider these algebraic structures from
the perspective of Lawvere algebraic theories in 1–categories.

55P48; 55P43, 19D23

0 Introduction

The Grothendieck group K0.M / of a commutative monoid M , also known as the
group completion, is the universal abelian group which receives a monoid map from M .
It was a major insight of Quillen that higher algebraic K–groups can be defined as
the homotopy groups of a certain spectrum which admits a similar description: more
precisely, from the perspective of higher category theory, the algebraic K–theory
spectrum of a ring R can be understood as the group completion of the groupoid of
projective R–modules, viewed as a symmetric monoidal category with respect to the
coproduct.

When R is commutative, the algebraic K–groups inherit a multiplication which stems
from the tensor product of R–modules. Just as the K–groups arise as homotopy groups
of the K–theory spectrum, it is essential for computational and theoretical purposes
to understand the multiplication on these groups as coming from a highly structured
multiplication on the K–theory spectrum itself. Unfortunately it turned out to be hard
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3108 David Gepner, Moritz Groth and Thomas Nikolaus

to construct such a multiplication directly, partly because for a long time the proper
framework to deal with multiplicative structures on spectra was missing. Important
work on this question was pioneered by May [22], and the general theory of homotopy
coherent algebraic structures goes back at least to Boardman and Vogt [8], May [21],
and Segal [28].

It was first shown by May that the group completion functor from E1–spaces to spectra
preserves multiplicative structure [22]; see also the more recent accounts [23; 24;
25]. Since then, several authors have given alternative constructions of multiplicative
structure on K–theory spectra: most notably, Elmendorf and Mandell promote the
infinite loop space machine of Segal to a multifunctor in [12] and in [13] they extend
the K–theory functor from symmetric monoidal categories to symmetric multicategories
(aka coloured operads), and Baas, Dundas, Richter and Rognes show how to correct
the failure of the “phony multiplication” on the Grayson–Quillen S�1S –construction
in [2], as identified by Thomason [29].

All of these approaches are very carefully crafted and involve for example the intricacies
of specific pairs of operads or indexing categories. Here we take a different approach
to multiplicative infinite loop space theory, replacing the topological and combinatorial
constructions of specific machines by the use of universal properties. The main
advantage of our approach is that we get strong uniqueness results, which follow for
free from the universal properties. The price we pay is that we use the extensive
machinery of 1–categories and argue in the abstract, without the aid of concrete
models. Similar results for the case of Waldhausen K–theory, also using the language
of 1–categories, have been obtained by Barwick in a recent paper [3].

In this paper we choose to use the language of (presentable) 1–categories. But we
emphasize the fact that every combinatorial model category gives rise to a presentable
1–category, and that all presentable 1–categories arise in this way. Moreover the
study of presentable 1–categories is basically the same as the study of combinatorial
model categories, so that in principle all our results could also be formulated in the
setting of model categories.

Let us begin by mentioning one of our main results. Associated to an 1–category C
are the 1–categories C� of pointed objects in C , MonE1.C/ of commutative monoids
in C , GrpE1.C/ of commutative groups in C , and Sp.C/ of spectrum objects in C . For
these 1–categories we establish the following:

Theorem 5-1 Let C˝ be a closed symmetric monoidal structure on a presentable 1–
category C . The1–categories C� , MonE1.C/, GrpE1.C/, and Sp.C/ all admit closed
symmetric monoidal structures, which are uniquely determined by the requirement that

Algebraic & Geometric Topology, Volume 15 (2015)
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the respective free functors from C are symmetric monoidal. Moreover, each of the
following free functors also extends uniquely to a symmetric monoidal functor

C�!MonE1.C/! GrpE1.C/! Sp.C/:

Note that these symmetric monoidal structures allow us to talk about En –(semi)ring
objects and En –ring spectrum objects in C . Before we sketch the general ideas involved
in the proof, it is worth indicating what this theorem amounts to for specific choices
of C .

(i) If C is the ordinary category of sets, then the symmetric monoidal structures
of Theorem 5-1 recover for instance the tensor product of abelian monoids and
abelian groups. This also reestablishes the easy result that the group completion
functor K0 is symmetric monoidal.

(ii) In the case of the 2–category Cat of ordinary categories, functors, and natural
isomorphisms we obtain a symmetric monoidal structure on the 2–category of
symmetric monoidal categories SymMonCat. The symmetric monoidal structure
on SymMonCat'MonE1.Cat/ has been the subject of confusion in the past
due to the fact that SymMonCat only has the desired symmetric monoidal
structure when considered as a 2–category and not as a 1–category. In this case,
En –(semi)ring objects are En –(semi)ring categories (sometimes also called
rig categories), important examples of which are given by the bipermutative
categories of May [23]. We also obtain higher categorical analogues of this
picture using Catn and Cat1 .1

(iii) Finally, and most importantly for this paper, we consider Theorem 5-1 in the
special case of the 1–category S of spaces (which can be obtained from the
model category of spaces or simplicial sets). That way we get canonical monoidal
structures on E1–spaces and grouplike E1–spaces. The resulting En –algebras
are En –(semi)ring spaces; more precisely, they are an 1–categorical analogue
of the En –(semi)ring spaces of May; see, for example, May [25]. Moreover,
we obtain unique multiplicative structures on the group completion functor
MonE1.S/! GrpE1.S/ and the delooping functor GrpE1.S/! Sp which
assigns a spectrum to a grouplike E1–space. In particular, the spectrum asso-
ciated to an En –(semi)ring space is an En –ring spectrum, which amounts to
multiplicative infinite loop space theory.

These facts can be assembled together in Section 8 to obtain a new description of the
multiplicative structure on the algebraic K–theory functor KW SymMonCat!Sp and its

1Interestingly, we have equivalences GrpE1.Catn/'GrpE1.Gpdn/ and Sp.Catn/' Sp.Gpdn/ , and
the latter is trivial unless nD1 ; more generally, Sp.C/ is trivial for any n–category C if n is finite.

Algebraic & Geometric Topology, Volume 15 (2015)



3110 David Gepner, Moritz Groth and Thomas Nikolaus

1–categorical variant KW SymMonCat1! Sp. In particular, the algebraic K–theory
of an En –semiring (1–)category is canonically an En –ring spectrum. By a recognition
principle for En –semiring (1–)categories, this applies to many examples of interest.
More precisely, we show in Theorem 8-8 that these semiring 1–categories can be
obtained from En –monoidal 1–categories with coproducts such that the monoidal
structure preserves coproducts in each variable separately. For instance ordinary closed
monoidal, braided monoidal, or symmetric monoidal categories admit the structure of
En –semiring categories for nD 1; 2;1, respectively in which the addition is given
by the coproduct and the multiplication is given by the tensor product. More specific
examples are given by (1–)categories of modules over ordinary commutative rings or
En –ring spectra.2

One central idea to prove Theorem 5-1 as stated above, which is also of independent
interest, is to identify the assignments

(0-1) C 7! C�; C 7!MonE1.C/; C 7! GrpE1.C/; C 7! Sp.C/

as universal constructions. The first and the last case have already been thoroughly
discussed by Lurie [20], where it is shown that, in the world of presentable 1–
categories, C� is the free pointed 1–category on C and Sp.C/ is the free stable
1–category on C . We extend this picture by introducing preadditive and additive 1–
categories; see also Toën and Vezzosi [30] and Joyal [15]. These notions are obtained
by imposing additional exactness conditions on pointed 1–categories, just as is done
in the case of ordinary categories. In fact, a presentable 1–category C is (pre)additive
if and only if its homotopy category Ho.C/ is (pre)additive in the sense of ordinary
category theory. We show that, again in the framework of presentable 1–categories,
MonE1.C/ is the free preadditive 1–category on C and that GrpE1.C/ is the free
additive 1–category on C (Corollary 4-9).

As an application of this description as free categories one can deduce the existence
and uniqueness of the functors

C! C�!MonE1.C/! GrpE1.C/! Sp.C�/

from the fact that every stable 1–category is additive, every additive 1–category
is preadditive and every preadditive 1–category is pointed. More abstractly, the
assignments (0-1) give rise to endofunctors of the 1–category PrL of presentable
1–categories and left adjoint functors. The aforementioned universal properties are
equivalent to the observation that these endofunctors are localizations (in the sense

2But note that the 1–category of modules for an En –ring spectrum is only an En�1 –semiring
1–category.

Algebraic & Geometric Topology, Volume 15 (2015)
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of Bousfield) of PrL with local objects the pointed, preadditive, additive, and stable
presentable 1–categories, respectively.

A second main theme of the paper is the stability of algebraic structures under base-
change. For example we show that we have equivalences

MonE1.C˝D/'MonE1.C/˝D; RingEn
.C˝D/' RingEn

.C/˝D;

where ˝ denotes the tensor product on PrL as constructed by Lurie [20] (Corollary 4-7
and Proposition 7-7). Such basechange properties are satisfied by many endofunctors of
PrL which arise when considering algebraic structures of certain kinds, eg C 7!AlgT .C/
for a Lawvere algebraic theory T . We give a brief account of algebraic theories in
Appendix B.

A key insight here is to consider endofunctors of PrL which satisfy both properties:
namely, they are simultaneously localizations and satisfy basechange. In keeping with
the terminology of stable homotopy theory we refer to such functors as smashing
localizations of PrL . The endofunctors .�/�;MonE1;GrpE1 and Sp from (0-1) are
the main examples treated in this paper. Then the proof of Theorem 5-1 follows as
a special case of the general theory of smashing localizations LW PrL ! PrL . For
example we prove that if C 2 PrL is closed symmetric monoidal, then the 1–category
LC admits a unique closed symmetric monoidal structure such that the localization
map C!LC is a symmetric monoidal functor (Proposition 3-9).

Organization of the paper In Section 1, we recall the definition of the 1–category
of monoid and group objects in an 1–category. They form the generic examples
of (pre)additive 1–categories which we introduce in Section 2. In Section 3, we
study smashing localizations of PrL , which turns out to be the central notion needed
to deduce many of the subsequent results in this paper. We then show, in Section 4,
that the formation of commutative monoids and groups in presentable 1–categories
are examples of smashing localizations of PrL , and we identify these localizations
with the free (pre)additive 1–category functor. This leads to the existence of the
canonical symmetric monoidal structures described in Section 5, and the next Section 6
is devoted to studying the functoriality of these structures. Then in Section 7 we consider
1–categories of (semi)ring objects in a closed symmetric monoidal presentable 1–
category; these are used in Section 8 to show that the algebraic K–theory of an En –
semiring 1–category is an En –ring spectrum. Finally, in Appendix A we show a
relation of functors with comonoids, and in Appendix B we consider monoid, group,
and ring objects from the perspective of Lawvere algebraic theories.

Algebraic & Geometric Topology, Volume 15 (2015)
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Conventions We freely use the language of 1–categories throughout this paper. In
particular, we adopt the notational conventions of Lurie [19; 20] and provide more
specific references where necessary.

Acknowledgements We would like to thank Ulrich Bunke for suggesting that we
work out these results in the setting of 1–categories and for carefully reading a
previous draft. We’d also like to thank Peter May, Tony Elmendorf and Mike Mandell
for helpful comments and discussions. Finally, we are grateful to an anonymous referee
for a number of useful suggestions.

1 1–categories of commutative monoids and groups

Given an1–category C with finite products, we may form the1–category MonE1.C/
of E1–monoids in C . By definition, an E1–monoid M2C is a functor M W N.Fin�/!
C such that the morphisms M.hni/!M.h1i/ induced by the inert maps �i W hni! h1i

exhibit M.hni/ as an n–fold power of M.h1i/ in C ; see [20, 2.1.1.8, 2.4.2.1, 2.4.2.2]
for details. In the terminology of [28], M is called a special � –object of C . In
what follows we will sometimes abuse notation and also use the same name for the
underlying object of such an E1–monoid. Given an E1–monoid M , we obtain a
(coherently associative and commutative) multiplication map

mW M �M !M;

uniquely determined up to a contractible space of choices.

We use the term MonE1.C/ to denote the 1–category of E1–monoids in C with
respect to the cartesian product. If C is an 1–category equipped with a symmetric
monoidal structure which is not necessarily the cartesian product, we write AlgE1.C/
for the 1–category of E1–algebras in C ; if the symmetric monoidal structure on C
happens to be the cartesian product, then we have an equivalence Mod.C/' Alg.C/.

Proposition 1-1 Let C be an 1–category with finite products and let M be an
E1–monoid in C . Then the following conditions are equivalent:

(i) The E1–monoid M admits an inversion map, ie, there is a map i W M !M

such that the composition

M
�
�!M �M

id�i
�!M �M

m
�!M

is homotopic to the constant functor at the unit.

Algebraic & Geometric Topology, Volume 15 (2015)
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(ii) The commutative monoid object of Ho.C/ underlying the E1–monoid M is a
group object.

(iii) The shear map sW M �M !M �M , defined as the projection pr1W M �M !

M on the first factor and the multiplication mW M �M !M on the second
factor, is an equivalence.

(iv) The special � –object M W N.Fin�/! C is very special (again in the terminology
of [28]).

Proof This follows immediately from the fact that C!N.Ho.C// is conservative and
preserves products.

Definition 1-2 Let C be an 1–category with finite products. An object M 2

MonE1.C/ is called an E1–group in C if it satisfies the equivalent conditions of
Proposition 1-1. We write GrpE1.C/ for the full subcategory of MonE1.C/ consisting
of the E1–groups.

Remark 1-3 There are similar equivalent characterizations as in the proposition for
En –monoids, n � 1. In fact, they can be applied more generally to algebras for
monochromatic 1–operads O equipped with a morphism E1!O . In this case, these
characterizations serve as a definition of O–groups. Since an ordinary monoid having
right-inverses is a group, we can use the fact that every morphism in Ho.C/ lifts to a
morphism in C to conclude that also the characterizations (i) and (iii) are equivalent to
their respective two-sided variants, but in characterization (iv) one must instead use
(very) special simplicial objects in C .

Remark 1-4 Recall [20, Remark 5.2.6.9] that an En –monoid object M of an 1–
topos C is said to be grouplike if (the sheaf) �0M is a group object. In more general
situations, such as for instance C D Cat1 , the correct �0 is unclear, and in any case
the resulting notion of “grouplike monoid” may not agree with that of “group”.

Remark 1-5 In our definition of a group object we force the inversion morphism to
be an actual morphism of the underlying objects in C . In many situations, however,
there is a natural inversion which is naturally only an anti-morphism. For example,
this is the case in a tensor category with tensor inverses, or in the category of Poisson
Lie groups. This suggests that there should be a notion of group object with such an
anti-inversion morphism. It would be interesting to study such a notion, though we
will not need this.

Algebraic & Geometric Topology, Volume 15 (2015)
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Given two 1–categories C and D with finite products, we write Fun….C;D/ for
the 1–category of finite product preserving functors from C to D . If C and D are
complete, we write FunR.C;D/ for the1–category of limit preserving functors. In this
situation, the 1–category FunR.C;D/ is also complete and limits in FunR.C;D/ are
formed pointwise in D . This follows from the corresponding statement for Fun.C;D/
and from the fact that such a pointwise limit of functors is again limit preserving.

Lemma 1-6 If C and D are 1–categories with finite products, then Fun….C;D/ also
has finite products and we have canonical equivalences

MonE1.Fun….C;D//' Fun….C;MonE1.D//;

GrpE1.Fun….C;D//' Fun….C;GrpE1.D//:

If C and D are complete, then so is FunR.C;D/, and we have canonical equivalences

MonE1.FunR.C;D//' FunR.C;MonE1.D//;

GrpE1.FunR.C;D//' FunR.C;GrpE1.D//:

Proof We only give the proof of the second case, as the first one is entirely analo-
gous. As recalled above, an E1–monoid in an 1–category E is given by a functor
M W N.Fin�/! E satisfying the usual Segal condition, ie, the inert maps hni ! h1i
exhibit M.hni/ as the n–fold power of M.h1i/. We denote the full subcategory
spanned by such functors by

Fun�.N.Fin�/; E/� Fun.N.Fin�/; E/:

Using this notation, we obtain a fully faithful inclusion

MonE1.FunR.C;D//' Fun�.N.Fin�/;FunR.C;D//

� Fun.N.Fin�/;Fun.C;D//' Fun.N.Fin�/� C;D/

whose essential image consists of those functors F such that F.�;C /W N.Fin�/! D
is special for all C 2 C and such that F.hni;�/W C! D preserves limits for all hni 2
N.Fin�/. This follows from the fact that limits in FunR.C;D/ are formed pointwise,
as remarked above. In a similar vein, we obtain a fully faithful inclusion

FunR.C;MonE1.D//' FunR.C;Fun�.N.Fin�/;D//

� Fun.C;Fun.N.Fin�/;D//

' Fun.C �N.Fin�/;D/' Fun.N.Fin�/� C;D/

with the same essential image, concluding the proof for the case of monoids. The proof
for the case of groups works exactly the same. In fact, using characterization (4) of
Proposition 1-1, it suffices to replace special � –objects by very special � –objects.

Algebraic & Geometric Topology, Volume 15 (2015)
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2 Preadditive and additive 1–categories

An 1–category is preadditive if finite coproducts and products exist and are equivalent.
More precisely, we have the following definition.

Definition 2-1 An 1–category C is preadditive if it is pointed, admits finite co-
products and finite products, and the canonical morphism C1 tC2! C1 �C2 is an
equivalence for all objects C1;C2 2 C . In this case any such object will be denoted by
C1˚C2 and will be referred to as a biproduct of C1 and C2 .

Let us collect a few immediate examples and closure properties of preadditive 1–
categories.

Example 2-2 An ordinary category C is preadditive if and only if N.C/ is a preadditive
1–category. Products and opposites of preadditive 1–categories are preadditive.
Clearly any 1–category equivalent to a preadditive one is again preadditive. Finally,
if C is a preadditive 1–category and K is any simplicial set, then Fun.K; C/ is
preadditive. This follows immediately from the fact that (co)limits in functor categories
are calculated pointwise [19, Corollary 5.1.2.3].

We will obtain more examples of preadditive 1–categories from the following propo-
sition, which gives a connection to Section 1.

Proposition 2-3 Let C be an 1–category with finite coproducts and products. Then
the following are equivalent:

(i) The 1–category C is preadditive.

(ii) The homotopy category Ho.C/ is preadditive.

(iii) The 1–operad Ct! N.Fin�/ as constructed in [20, Construction 2.4.3.1] is
cartesian [20, Definition 2.4.0.1].

(iv) The forgetful functor MonE1.C/! C is an equivalence.

Moreover, MonE1.C/ is preadditive if C has finite products.

Proof Let us begin by proving that the first two statements are equivalent. The
direction (i))(ii) follows from the fact that the functor  W C! N.Ho.C// preserves
finite (co)products. For the converse direction, let us recall that a morphism in C is
an equivalence if and only if  sends it to an isomorphism. Now, by our assumption
on Ho.C/, the canonical map C1 tC2! C1 �C2 in C is mapped to an isomorphism
under  and is hence an equivalence.

Algebraic & Geometric Topology, Volume 15 (2015)
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To show (i) ) (iii) we only need to check that the symmetric monoidal structure
Ct ! N.Fin�/ exhibits finite tensor products (in this case the disjoint union) as
products. But this follows directly from (i).

Now assume (iii) holds. Then by [20, Corollary 2.4.1.8] there exists an equivalence of
symmetric monoidal structures Ct ' C� . Thus we get an induced equivalence

MonE1.C/' AlgE1.C
�/' AlgE1.C

t/

compatible with the forgetful functors to C . But for the latter symmetric monoidal
structure the forgetful functor AlgE1.C

t/! C always induces an equivalence, as
shown in [20, Corollary 2.4.3.10].

Finally, assume (iv) holds. Then in order to show that C is preadditive it suffices to
show that MonE1.C/ is preadditive. To see that MonE1.C/ is preadditive we note
that limits in MonE1.C/ are formed as the limits of the underlying objects of C . In
particular, the underlying object of the product in MonE1.C/ is given by the product
of the underlying objects. Coproducts are more complicated, but it is shown in [20,
Proposition 3.2.4.7] that the underlying object of the coproduct is formed by the tensor
product of the underlying objects, ie, by the product of the underlying objects in our
case. Thus, the underlying object of the coproduct and the product are equivalent.
But, by assumption, MonE1.C/! C is fully faithful, so that we already have such an
equivalence in MonE1.C/. This implies (i) and concludes the proof.

Corollary 2-4 Let C and D be 1–categories with finite products and suppose that
either C or D is preadditive. Then the 1–category Fun….C;D/ is preadditive.

Proof If D is preadditive, then Fun.C;D/ is also preadditive, and clearly Fun….C;D/�
Fun.C;D/ is stable under products. In particular, given two product preserving functors
f;gW C! D , the pointwise product f � gW C! D again lies in Fun….C;D/. Since
(co)limits in Fun.C;D/ are calculated pointwise [19, Corollary 5.1.2.3], we can use
the preadditivity of D to conclude that f �g is also the coproduct f tg of f and g

in Fun.C;D/, and hence, a posteriori, also the coproduct in Fun….C;D/. A similar
reasoning yields a zero object in Fun….C;D/, and we conclude that Fun….C;D/ is
preadditive.

The case in which C is preadditive is slightly more involved. Recall that a product
preserving functor f W C ! D induces a functor MonE1.C/! MonE1.D/ (simply
by composing a special � –object in C with f ). Since products in 1–categories of
E1–monoids are calculated in the underlying 1–categories, this induced functor
preserves products. Thus, we obtain a functor

Fun….C;D/! Fun….MonE1.C/;MonE1.D//:
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By Proposition 2-3 we know that MonE1.D/ is preadditive. The first part of this proof
implies the same for Fun….MonE1.C/;MonE1.D//, and hence we are done if we can
show that the above functor is an equivalence. A functor in the reverse direction is given
by composition with the equivalence C 'MonE1.C/ (use Proposition 2-3 again) and
with MonE1.D/!D . It is easy to check that the resulting endofunctor of Fun….C;D/
is equivalent to the identity, as is also the case for the other composition.

Corollary 2-5 Let C be an1–category with finite products and let D be a preadditive
1–category.

(i) The 1–category MonE1.C/ is preadditive.

(ii) The forgetful functor MonE1.MonE1.C//!MonE1.C/ is an equivalence.

(iii) There is an equivalence Fun….D;MonE1.C//' Fun….D; C/.

Proof The first assertion is a consequence of the proof of Proposition 2-3. The second
follows immediately from that same proposition, while the last statement is implied
by Lemma 1-6 and the observation that Fun….D; C/ is preadditive whenever D is as
guaranteed by Corollary 2-4.

We now establish basically the analogous results for additive 1–categories. As it
is very similar to the case of preadditive 1–categories, we leave out some of the
details. Parallel to ordinary category theory, we introduce additive 1–categories by
imposing an additional exactness condition on preadditive 1–categories. Let C be a
preadditive 1–category and let A be an object of C . We know from Proposition 2-3
that A can be canonically endowed with the structure of an E1–monoid, and it is
shown in [20, Section 2.4.3] that this structure is given by the fold map rW A˚A!A.
The shear map

sW A˚A!A˚A

is the projection pr1W A˚A!A on the first factor and the fold map rW A˚A!A

on the second.

Definition 2-6 A preadditive 1–category C is additive if, for every object A 2 C ,
the shear map sW A˚A

�
�!A˚A is an equivalence.

Examples 2-7 An ordinary category C is additive if and only if N.C/ is an additive
1–category. Products and opposites of additive 1–categories are additive. If C is an
additive 1–category, then any 1–category equivalent to C is additive 1–category,
and any functor 1–category Fun.K; C/ is additive.
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The connection to E1–groups and hence to Section 1 is provided by the following
analog of Proposition 2-3.

Proposition 2-8 For an 1–category C with finite products and coproducts, the fol-
lowing are equivalent:

(i) The 1–category C is additive.

(ii) The homotopy category Ho.C/ is additive.

(iii) The forgetful functor GrpE1.C/! C is an equivalence.

Moreover, if C is an 1–category with finite products, then GrpE1.C/ is additive.

Proof The proof of the equivalence of (i) and (iii) parallels the proof of Proposition 2-3.
To see that (i) implies (iii) we note that by Proposition 2-3 we have an equivalence
AlgE1.C

t/'MonE1.C/! C . But it is shown in [20, Section 2.4.3] that an inverse
to this equivalence endows an object A 2 C with the algebra structure given by the
fold map rW A˚A!A. Now, the statement that such an algebra object is grouplike
is equivalent to the shear map being an equivalence. Thus, invoking (i), we obtain an
equivalence MonE1.C/ ' GrpE1.C/, which gives (iii). Conversely, to see that (iii)
implies (i), we need to show that GrpE1.C/ is additive. Preadditivity is clear and
additivity follows from the characterization of groups given in Proposition 1-1.

Corollary 2-9 Let C and D be 1–categories with finite products and suppose that
either C or D is additive. Then the 1–category Fun….C;D/ is additive.

Corollary 2-10 Let C be an 1–category with finite products and let D be an additive
1–category.

(i) The 1–category GrpE1.C/ is additive.

(ii) The forgetful functor GrpE1.GrpE1.C//! GrpE1.C/ is an equivalence.

(iii) There is an equivalence Fun….D;GrpE1.C//' Fun….D; C/.

Remark 2-11 Corollaries 2-5 and 2-10 basically state that MonE1.�/ and GrpE1.�/

are colocalizations of the1–category of1–categories with finite products and product
preserving functors. Much of the remainder of the paper makes use of this observation,
although we prefer to phrase things slightly differently: namely, MonE1.�/ and
GrpE1.�/ also induce colocalizations of PrR , which in turn (using the anti-equivalence
between PrL and PrR ) induce localizations of PrL . We have opted to state our results in
term of localizations as we think they are slightly more intuitive from this perspective.
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3 Smashing localizations

So far we have discussed 1–categories with finite products. We now turn our attention
to presentable1–categories. The primary purpose of this section is to review the notion
of smashing localizations, which we then specialize to PrL;˝ in order to deduce some
important consequences which will play an essential role throughout the remainder of
the paper.

Let C be an 1–category. Recall that a localization of C is functor LW C! D which
admits a fully faithful right adjoint RW D! C . If LW C! D is a localization, then D
is equivalent (via the fully faithful right adjoint) to a full subcategory LC of C , called
the subcategory of local objects. For this reason we typically identify localizations
with reflective subcategories (ie, full subcategories such that the inclusion admits a
left adjoint). We will also sometimes write L for the endofunctor of C obtained as
the composite of LW C ! D followed by the fully faithful right adjoint RW D! C .
Given such a localization, a map X ! Y is a local equivalence if LX !LY is an
equivalence.

Lemma 3-1 Let C be an 1–category and M W C! C an endofunctor equipped with
a natural transformation �W id!M . Then M is equivalent to the composite R ıL of
a localization LW C! D if and only if, for every object X of C , the two obvious maps
M.X /!M.M.X // are equivalences.

Proof This is condition (3) of [19, Proposition 5.2.7.4].

If C has a symmetric monoidal structure C˝ , then it is sometimes the case that a
localization of C is given by smashing with a fixed object I of C . In keeping with the
terminology used in stable homotopy theory, we make the following definition.

Definition 3-2 Let C˝ be a symmetric monoidal 1–category. We say that a local-
ization LW C ! C is smashing if it is of the form L ' .�/˝ I for some object I

of C .

Recall [20, Definition 4.8.2.1] that an idempotent object in C˝ is an object I together
with a morphism from the tensor unit such that the two obvious maps I ! I ˝ I

are equivalences. It follows that the endofunctor of C given by tensoring with I

is a localization [20, Proposition 4.8.2.4]. Conversely for a smashing localization
L' .�/˝ I the object I is necessarily an idempotent commutative algebra object
of C . In other words, showing that the functor .�/˝ I is a localization is the same as
endowing I with the structure of an idempotent commutative algebra object of C . This
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provides a one-to-one correspondence between smashing localizations and idempotent
commutative algebra objects.

There are two obvious key features of smashing localizations: first, they preserve
colimits (provided the tensor structure is compatible with colimits, which is always
the case if it is closed), and second, they are symmetric monoidal in the sense of the
following definition.

Definition 3-3 Let C˝ be a symmetric monoidal 1–category equipped with a local-
ization LW C! D of the underlying 1–category C . Then L is compatible with the
symmetric monoidal structure (or simply symmetric monoidal) if, whenever X ! Y is
a local equivalence, then so is X ˝Z! Y ˝Z for any object Z of C .

Given such a localization, the subcategory D'LC of local objects inherits a symmetric
monoidal structure from that of C . This is the content of the following lemma which
also justifies the terminology symmetric monoidal localization. Identifying D with the
full subcategory LC of local objects, let R˝W D˝ � C˝ be the inclusion of the full
subcategory consisting of those objects X1˚ � � �˚Xn such that each Xi is in D .

Lemma 3-4 Let C˝ be a symmetric monoidal1–category equipped with a symmetric
monoidal localization LW C! D . Then there is a symmetric monoidal structure D˝

on D such that L extends to a symmetric monoidal functor L˝W C˝! D˝ and such
that the right adjoint R˝W D˝! C˝ is lax symmetric monoidal.

Proof This is a special case of [20, Proposition 2.2.1.9].

Remark 3-5 If C˝ is a closed symmetric monoidal 1–category equipped with a
symmetric monoidal localization LW C! C . Then L is compatible with the closed
structure in the sense that, for every pair of objects C and D of C , the localization
C !LC induces an equivalence

DLC
'DC

whenever D is local. This follows immediately from the definition.

Lemma 3-6 Let C˝ be a symmetric monoidal1–category equipped with a symmetric
monoidal localization LW C!D , and let RW D! C denote the right adjoint of L. Then
there is an induced localization L0W AlgE1.C/! AlgE1.D/ such that the diagram

AlgE1.C/
L0
//

��

AlgE1.D/

��

C L
// D
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commutes. Moreover, given A 2AlgE1.C/, there exists a unique commutative algebra
structure on RLA such that unit map A!RLA extends to a morphism of commutative
algebras.

Proof By Lemma 3-4 above, we obtain maps L0W AlgE1.C/ ! AlgE1.D/ and
R0W AlgE1.D/!AlgE1.C/ by composing sections E1! C˝ with L˝ and sections
E1 ! D˝ with R˝ , respectively. In a similar fashion we also obtain unit and
counit transformations such that the counit is an equivalence. It follows that L0 is a
localization.

For the second assertion, we know already that R0L0A comes with a canonical com-
mutative algebra map �0W A! R0L0A, the adjunction unit evaluated at A, and that
this map extends the adjunction unit �W A ! RLA of the underlying objects. If
�00W A! R0B is a second such map of commutative algebras, then the universality
of �0 implies that �00 factors essentially uniquely as

� ı �0W A!R0L0A!R0B:

Since the underlying map of � is an identity, if follows that � itself is an equivalence
since AlgE1.C/ ! C is conservative. We can now conclude since the space of
reflections of a fixed object in a full subcategory is contractible if non-empty.

Remark 3-7 The second part of the lemma implies that RLA can be turned into an
E1–algebra such that the unit map A!RLA can be enhanced to a morphism of E1–
algebras. Moreover, the space of such enhancements is contractible. In particular, if
RLA is endowed with two different E1–algebra structures, then the identity morphism
of the underlying objects in D can be essentially uniquely turned into an equivalence
of these two E1–algebras compatible with the localizations. We will apply this in
Section 5 to smashing localizations on PrL .

Now we specialize to the case of the (very large) 1–category PrL of presentable
1–categories and colimit-preserving functors. We will write C , D , etc for objects
of PrL . Recall that PrL admits a closed symmetric monoidal structure which is uniquely
characterized as follows: given presentable1–categories C and D , their tensor product
C˝D corepresents the functor PrL! cCat1 which sends E to

FunL;L.C �D; E/� Fun.C �D; E/;

the full subcategory consisting of those functors F W C �D! E which preserve col-
imits separately in each variable. The unit of this monoidal structure on PrL is the
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1–category S of spaces, as follows from the fact that FunL.S; C/ ' C [20, Exam-
ple 6.3.1.19]. Moreover, by [20, Proposition 4.8.1.16] this tensor product admits the
description

C˝D' FunR.Cop;D/:

Recall that FunL.C;D/ is presentable ([19, Propositon 5.5.3.8]). It is immediate from
the definition of C˝D as a corepresenting object that the symmetric monoidal structure
on PrL is closed, with right adjoint to C˝.�/W PrL!PrL given by FunL.C;�/W PrL!

PrL . Lastly, the (possibly large) mapping spaces in PrL are given by the formula

MapPrL.C;D/' FunL.C;D/� ;

the maximal subgroupoid. This description will be applied in Section 4 to our context
of monoids and groups.

Proposition 3-8 Let LW PrL! PrL be a smashing localization or, more generally, a
symmetric monoidal localization, and let C and D be presentable 1–categories such
that D is in the essential image of L.

(i) The map FunL.LC;D/! FunL.C;D/ induced by the localization C!LC is an
equivalence.

(ii) If L is smashing, then the localization of the (very large) 1–category PrL of
presentable 1–categories and colimit-preserving functors is equivalent to the
1–category of modules over LS 2 AlgE1.PrL/:

LPrL
'ModLS.PrL/:

(iii) Given a second symmetric monoidal localization L0W PrL ! PrL such that
L0PrL �LPrL , then the canonical morphism LC!L0C induces an equivalence
FunL.L0C;D/! FunL.LC;D/ for every L0–local D .

Proof The first statement follows from Remark 3-5 and the second from [20, Propo-
sition 4.8.2.10]. Finally, the third one follows immediately from the first and the
two-out-of-three property of equivalences.

Let us now consider a presentable 1–category endowed with a closed symmetric
monoidal structure C˝ . In this context the closedness is equivalent to the fact that the
monoidal structure preserves colimits separately in each variable, ie, C˝ is essentially
just a commutative algebra object in PrL [20, Remark 4.8.1.9].

Proposition 3-9 Let LW PrL ! PrL be a smashing localization or, more generally,
a symmetric monoidal localization. Let C˝ and D˝ be closed symmetric monoidal
presentable 1–categories.
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(i) The 1–category LC admits a unique closed symmetric monoidal structure such
that the localization map C!LC is a symmetric monoidal functor.

(ii) The map FunL;˝.LC;D/! FunL;˝.C;D/ induced by the localization C!LC
is an equivalence whenever D is L–local.

(iii) Given a second symmetric monoidal localization L0W PrL ! PrL such that
L0PrL � LPrL , the induced morphism LC ! L0C admits a unique symmet-
ric monoidal structure. In particular, for every L0–local D the induced map
FunL;˝.L0C;D/! FunL;˝.LC;D/ is an equivalence.

Proof Statement (i) follows from Lemma 3-6, which induces an equivalence

FunL;˝.LC;DK /! FunL;˝.C;DK /

on underlying 1–groupoids for any simplicial set K such that DK is local. Then (ii)
follows from the fact that AlgE1.PrL/ is cotensored over Cat1 in such a way that
DK is local whenever D is local; indeed, the cotensor DK is given by the internal
mapping object FunL.P.K/;D/, and this is a local object since .�/˝P.K/ preserves
local equivalences by assumption. Finally, (iii) is obtained by the same argument as
(i) after replacing PrL with LPrL , which has an induced closed symmetric monoidal
structure, LW PrL! PrL with the functor LPrL! LPrL induced by the composite
PrL!L0PrL�LPrL , and C with LC , which also inherits a closed symmetric monoidal
structure.

We shall see in the next section that formation of 1–categories of commutative
monoid and group objects in a presentable 1–category C are instances of smashing
localizations of PrL . For the moment, it is worth mentioning that there are other
well-known examples of smashing localizations of PrL . The most obvious one is the
functor which associates to a presentable 1–category C its 1–category C� of pointed
objects; the fact that this is a smashing localization follows from the formula

C� ' C˝S�

and the fact that S� is an idempotent object of PrL [20, Proposition 4.8.2.11]. An
important feature of S� is that it is symmetric monoidal under the smash product, which
is uniquely characterized by the requirement that the unit map S! S� is symmetric
monoidal. A further example of a smashing localization which is central to this paper is
the passage from a presentable 1–category C to the 1–category Sp.C/ of spectrum
objects in C [20, Proposition 4.8.2.18].
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4 Commutative monoids and groups as smashing
localizations

In this section we show that the passage to 1–categories of commutative monoids or
groups are instances of smashing localizations of PrL .

Proposition 4-1 Given a presentable 1–category C , then also the 1–categories
MonE1.C/ and GrpE1.C/ are presentable.

Proof By definition the 1–categories MonE1.C/ and GrpE1.C/ are full subcate-
gories of the presentable 1–category Fun.N.Fin�/; C/. Therefore, it suffices to show
that the monoids and groups, respectively, are precisely the S –local objects for a small
collection S of morphisms in Fun.N.Fin�/; C/ [19, Proposition 5.5.4.15]. We will
give the details for the case of monoids and leave the case of groups to the reader.

In order to define S we first note that the evaluation functors

evhniW Fun.N.Fin�/; C/! C

admit left adjoints FhniW C!Fun.N.Fin�/; C/. Now, M 2Fun.N.Fin�/; C/ belongs to
MonE1.C/ if for every n 2N the morphism M.hni/!

Q
M.h1i/ is an equivalence

in C , and this is the case if and only if for every C 2 C the morphism

(4-2) MapC.C;M.hni//!
Y

MapC.C;M.h1i//

is an equivalence of spaces. Since C is accessible it suffices to check this for ob-
jects in C� , the essentially small subcategory of �–compact objects for some regular
cardinal � . Now we use the equivalences

MapC.C;M.hni//'MapFun.N.Fin�/;C/.Fhni.C /;M /;Y
MapC.C;M.h1i//'MapFun.N.Fin�/;C/

�G
Fh1i.C /;M

�
and see that the morphism (4-2) is induced by a morphism �n;C W

F
n Fh1i.C / !

Fhni.C / in Fun.N.Fin�/; C/. Thus we may take S to consist of the �n;C , where C

ranges over any small collections of objects of C which contains a representative of
each equivalence class of object in C� .

Remark 4-3 The proof for groups is similar, though we have to add more maps to
the set S to account for the very special condition. This tells us in particular that
GrpE1.C/ is a reflective subcategory of MonE1.C/.
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Corollary 4-4 Let C be a presentable 1–category. Then there are functors

C!MonE1.C/! GrpE1.C/;

which are left adjoint to the respective forgetful functors.

Proof Since limits in MonE1.C/ and GrpE1.C/ are computed as the limits of the
underlying objects, this follows from the adjoint functor theorem.

Remark 4-5 Let C be a presentable 1–category. The functor

MonE1.C/! GrpE1.C/;

left adjoint to the forgetful functor GrpE1.C/!MonE1.C/, is called the group com-
pletion. Thus, in the framework of 1–categories, the group completion MonE1.C/!
GrpE1.C/ has the expected universal property, defining a left adjoint to the forgetful
functor GrpE1.C/!MonE1.C/.

The following theorem, while straightforward to prove, is central.

Theorem 4-6 The assignments C 7!MonE1.C/ and C 7! GrpE1.C/ refine to smash-
ing localizations of PrL . Thus, we have, in particular, equivalences of 1–categories

MonE1.C/' C˝MonE1.S/ and GrpE1.C/' C˝GrpE1.S/:

The local objects are precisely the preadditive presentable 1–categories and the addi-
tive presentable 1–categories, respectively.

Proof The description of the tensor product of presentable 1–categories together
with Lemma 1-6 gives us the chain of equivalences

C˝MonE1.D/' FunR.Cop;MonE1.D//'MonE1.FunR.Cop;D//

'MonE1.C˝D/:

In particular, we have MonE1.C/ ' C ˝ MonE1.S/. The fact that MonE1 is a
localization follows from Corollary 2-5. The local objects are precisely the presentable
1–categories C for which the canonical functor is an equivalence MonE1.C/ ' C ,
hence by Proposition 2-3 precisely the preadditive 1–categories. The case of groups
is established along the same lines.

As a consequence we obtain the following result.

Algebraic & Geometric Topology, Volume 15 (2015)



3126 David Gepner, Moritz Groth and Thomas Nikolaus

Corollary 4-7 Let C and D be presentable 1–category. Then there are canonical
equivalences

C˝MonE1.D/'MonE1.C˝D/'MonE1.C/˝D;
C˝GrpE1.D/' GrpE1.C˝D/' GrpE1.C/˝D:

Let us denote the full subcategories of PrL spanned by the preadditive and additive
1–categories respectively by

PrL
Pre � PrL and PrL

Add � PrL:

Then Proposition 3-8 specializes to the following two corollaries.

Corollary 4-8 The forgetful functors

ModMonE1.S/.PrL/! PrL and ModGrpE1.S/.PrL/! PrL

induce equivalences of 1–categories

ModMonE1.S/.PrL/' PrL
Pre and ModGrpE1.S/.PrL/' PrL

Add:

Corollary 4-9 Let C and D be presentable 1–categories.

(i) If D is preadditive then the free E1–monoid functor C!MonE1.C/ induces
an equivalence of 1–categories

FunL.MonE1.C/;D/
'
�! FunL.C;D/;

exhibiting MonE1.C/ as the free preadditive presentable 1–category generated
by C . In particular, we have canonical equivalences

FunL.MonE1.S/;D/
'
�! FunL.S;D/ '�! D;u

exhibiting MonE1.S/ as the free preadditive presentable 1–category on one
generator.

(ii) If D is additive then the free E1–group functor C ! GrpE1.C/ induces an
equivalence of 1–categories

FunL.GrpE1.C/;D/
'
�! FunL.C;D/;

exhibiting GrpE1.C/ as the free additive presentable 1–category generated
by C . In particular, the free E1–group functor S! GrpE1.S/ induces canon-
ical equivalences

FunL.GrpE1.S/;D/
'
�! FunL.S;D/ '�! D;

exhibiting GrpE1.S/ as the free additive, presentable 1–category on one gen-
erator.
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The results of this section give us a refined picture of the stabilization process of
presentable 1–categories as we describe it in the next corollary (we will obtain a
further monoidal refinement in Corollary 5-5). In [20, Chapter 1] it is shown that the
stabilization of a presentable 1–category C is given by the 1–category Sp.C/ of
spectrum objects in C , which is to say the limit

Sp.C/' limfC�
�
 � C�

�
 � C�

�
 � � � � g;

taken in the1–category of (not necessarily small)1–categories, or equivalently in the
1–category PrR of presentable1–categories by [19, Theorem 5.5.3.18]. Alternatively,
Sp.C/ is equivalent to the 1–category of reduced excisive functors

Sp.C/' Exc�.Sfin
� ; C/I

see [20, Section 1.4.2] for details. Recall from [20, Proposition 1.4.4.4] that for such
a C the 1–category Sp.C/ is related to C by the suspension spectrum adjunction
.†1C ; �

1
� /W C � Sp.C/.

Corollary 4-10 The stabilization of presentable 1–categories PrL! PrL
St factors as

a composition of adjunctions

PrL � PrL
Pt � PrL

Pre � PrL
Add � PrL

St:

In particular, if C is a presentable 1–category, then †1C W C ! Sp.C/ factors as a
composition of left adjoints

†1C W C! C�!MonE1.C/! GrpE1.C/! Sp.C/;

each of which is uniquely determined by the fact that it commutes with the correspond-
ing free functors from C .

Proof This follows from Corollary 4-9 and the corresponding corollary for the functor
.�/CW C! C� together with the facts that Sp.C/ is additive [20, Corollary 1.4.2.17
and Remark 1.1.3.5], GrpE1.C/ is preadditive (even additive by Corollary 2-10), and
MonE1.C/ is pointed (in fact, preadditive by Corollary 2-5). For the second statement,
it suffices to use Proposition 3-8.

5 Canonical symmetric monoidal structures

Let us now assume that C is a presentable 1–category endowed with a closed sym-
metric monoidal structure C˝ . In this section we specialize the general results from
Section 3 (or more specifically Proposition 3-9) to the localizations .�/� , MonE1.�/,
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GrpE1.�/, and Sp.�/. The two cases of C� and Sp.C/ are already essentially covered
in [20, Section 4.8.2], but since these results are not stated explicitly, we include them
here for the sake of completeness.

Theorem 5-1 Let C˝ be a closed symmetric monoidal structure on a presentable 1–
category C . The1–categories C� , MonE1.C/, GrpE1.C/, and Sp.C/ all admit closed
symmetric monoidal structures, which are uniquely determined by the requirement that
the respective free functors from C are symmetric monoidal. Moreover, each of the
functors

C�!MonE1.C/! GrpE1.C/! Sp.C/

uniquely extends to a symmetric monoidal functor.

Proof This follows directly from the fact that the localizations are smashing using
Proposition 3-9.

From now on, when considered as symmetric monoidal 1–categories, these 1–
categories are always endowed with the canonical monoidal structures of the theorem.

Warning 5-2 The reader should not confuse the two symmetric monoidal structures
on C that are used in the above construction. The first one is the cartesian structure C�

which is used to define the 1–category MonE1.C/ of E1–monoids. The second one
is the closed symmetric monoidal structure C˝ which induces a monoidal structure on
MonE1.C/ as described in the theorem. In applications, these two monoidal structures
on C often agree, which amounts to assuming that C is cartesian closed. This is the
case in the most important examples, namely 1–topoi (such as S ) and Cat1 .

Example 5-3 (i) The (nerve of the) category Set of sets is a cartesian closed
presentable 1–category, and GrpE1.Set/ is just the (nerve of the) category Ab
of abelian groups. The free functor Set! Ab can then of course be turned into
a symmetric monoidal functor with respect to the cartesian product on Set and
the usual tensor product on Ab. Thus, in this very special case, the theorem
reproduces the classical tensor product of abelian groups.

(ii) The 1–category S of spaces is a cartesian closed presentable 1–category. The
1–category MonE1.S/ of E1–spaces hence comes with a canonical closed
symmetric monoidal structure, as does the 1–category GrpE1.S/ of grouplike
E1–spaces. Since the latter 1–category is equivalent to the 1–category of
connective spectra [20, Remark 5.2.6.26], the canonical symmetric monoidal
structure on GrpE1.S/ agrees with the smash product of connective spectra.
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(iii) Let Cat denote the cartesian closed presentable 1–category of small ordinary
categories (this is actually a 2–category, in the sense of [19, Section 2.3.4]). Thus,
the 1–category SymMonCat ' MonE1.Cat/ of small symmetric monoidal
categories admits a canonical closed symmetric monoidal structure such that
the free functor Cat! SymMonCat can be promoted to a symmetric monoidal
functor in a unique way. This structure on SymMonCat has been explicitly
constructed and discussed in the literature; see [14] and the more explicit [26].
In fact, this tensor product is slightly subtle since, at least to the knowledge
of the authors, it can not be realized as a symmetric monoidal structure on the
1–category of small categories (as opposed to the 2–category Cat).

(iv) The 1–category Cat1 of small 1–categories is a cartesian closed presentable
1–category. Thus, as an 1–categorical variant of the previous example, we
obtain a canonical closed symmetric monoidal structure on the 1–category
SymMonCat1 of small symmetric monoidal 1–categories.

We have already seen that, for presentable1–categories C , the passage to commutative
monoids and commutative groups has a universal property (Corollary 4-9). In the case of
closed symmetric monoidal presentable1–categories we now obtain a refined universal
property for the symmetric monoidal structures of Theorem 5-1. For convenience,
we also collect the analogous results for the passage to pointed objects and spectrum
objects.

Proposition 5-4 Suppose C and D are closed symmetric monoidal presentable 1–
categories.

(i) If D is pointed then the symmetric monoidal functor C! C� induces an equiva-
lence of 1–categories

FunL;˝.C�;D/! FunL;˝.C;D/:

(ii) If D is preadditive then the symmetric monoidal functor C!MonE1.C/ induces
an equivalence of 1–categories

FunL;˝.MonE1.C/;D/! FunL;˝.C;D/:

(iii) If D is additive then the symmetric monoidal functor C!GrpE1.C/ induces an
equivalence of 1–categories

FunL;˝.GrpE1.C/;D/! FunL;˝.C;D/:

(iv) If D is stable then the symmetric monoidal functor C ! Sp.C/ induces an
equivalence of 1–categories

FunL;˝.Sp.C/;D/! FunL;˝.C;D/:
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Proof This follows immediately from the second statement of Proposition 3-9.

Here is the monoidal refinement of the stabilization process which is now an immediate
consequence of the third statement of Proposition 3-9.

Corollary 5-5 (i) Let C and D be closed symmetric monoidal presentable 1–
categories and let us consider a symmetric monoidal left adjoint F W C! D . In
the following commutative diagram, each of the functors induced by F admits a
symmetric monoidal structure:

C

��

// C�

��

// MonE1.C/

��

// GrpE1.C/

��

// Sp.C/

��

D // D� // MonE1.D/ // GrpE1.D/ // Sp.D�/

Moreover, these symmetric monoidal structures are uniquely characterized by
the fact that the functors commute with the free functors from C .

(ii) The stabilization of presentable 1–categories PrL! PrL
St admits a symmetric

monoidal refinement PrL;˝! PrL;˝
St which factors as a composition of adjunc-

tions
PrL;˝� PrL;˝

Pt � PrL;˝
Pre � PrL;˝

Add � PrL;˝
St :

Remark 5-6 (i) One can use the theory of � –objects in C to obtain a more
concrete description of the tensor product on MonE1.C/ and GrpE1.C/ as the
convolution product; see [20, Corollary 4.8.1.12] for the case in which C is the
1–category of spaces.

(ii) The uniqueness of the symmetric monoidal structures can be used to compare our
results to existing ones. Every simplicial combinatorial, monoidal model category
leads to a presentable, closed symmetric monoidal 1–category. Thus for the
monoidal model category of � –spaces as discussed in [27] it follows immediately
that the symmetric monoidal structure on the underlying 1–category has to
agree with our structure. The same applies to the model structure on � –objects
in any nice model category, for example in presheaves as discussed in [4].

6 More functoriality

In Section 4 we saw that for presentable 1–categories the passages to commutative
monoids and groups are smashing localizations and hence, in particular, define functors

MonE1.�/;GrpE1.�/W PrL
! PrL:
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But this passage allows for more functoriality. In fact, a product-preserving functor
F W C! D induces functors

F W MonE1.C/!MonE1.D/ and F W GrpE1.C/! GrpE1.D/

simply by post-composing the respective (very) special � –objects with F . The main
goal of this section is to establish Corollary 6-6, which states that under certain mild
assumptions these extensions themselves are lax symmetric monoidal with respect to the
canonical symmetric monoidal structures established in Theorem 5-1. This corollary
will be needed in our applications to algebraic K–theory in Section 8. We begin
by comparing these two potentially different functorialities of the assignments C 7!
MonE1.C/ and C 7! GrpE1.C/.

Lemma 6-1 Let LW C ! D be a functor of presentable 1–categories with right
adjoint RW D! C .

(i) If LW C! D is product-preserving and if products in C and D commute with
countable colimits, then the functors

MonE1.L/W MonE1.C/!MonE1.D/ and LW MonE1.C/!MonE1.D/

described above are equivalent.

(ii) The canonical extension RW MonE1.D/! MonE1.C/ is right adjoint to the
functor MonE1.L/.

The corresponding two statements for E1–groups hold as well.

Proof For the first claim we must show that if L preserves products then the two
functors agree. This follows if we can show that L is a left adjoint and the diagram

(6-2)

CFr
L

//

��

D

Fr
��

MonE1.C/�L // MonE1.D/

commutes in bCat1 . To see that L is left adjoint we observe that it commutes
with sifted colimits, as they are detected by the forgetful functors MonE1.C/! C
and MonE1.D/! D , and also that it commutes with coproducts, as coproducts in
MonE1.C/ and MonE1.D/ are given by the tensor product which is preserved by L.
To conclude this part of the proof it suffices to show that there is an equivalence FrıL'
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LıFr. For this, we consider the mate of the equivalence LıU 'U ıLW MonE1.C/!D ,
ie, we form the following pasting with the respective adjunction morphisms:

C Fr
//

D
,,

MonE1.C/

U
��

L
// MonE1.D/

U
��

D

��

C
L

//

@H

D
Fr

//

CK
'

MonE1.D/

CK

In order to show that the resulting transformation

Fr ıL! Fr ıL ıU ıFr' Fr ıU ıL ıFr!L ıFr

is an equivalence, it is enough to check that this is the case after applying the forgetful
functor U W MonE1.D/! D . But this follows from the explicit description of the free
functors as

Fr.C /'
G
n

C n=†n

(see [20, Example 3.1.3.14]) and by unraveling the definitions of L and the adjunction
morphisms.

To prove the second statement we first remark that R has a left adjoint since it preserves
all limits and filtered colimits which are formed in the underlying 1–category. More-
over, any such left adjoint has to make diagram (6-2) commute since this is the case
for the corresponding diagram of right adjoints. By the above, this left adjoint has to
coincide with MonE1.L/. The proof for the case of groups is completely parallel.

This lemma can be applied to adjunctions between cartesian closed presentable 1–
categories.

Lemma 6-3 Let C and D be closed symmetric monoidal presentable 1–categories,
let LW C! D be a symmetric monoidal left adjoint functor and let RW D! C be right
adjoint to L.

(i) The functors RW MonE1.D/ ! MonE1.C/ and RW GrpE1.D/ ! GrpE1.C/
have canonical lax symmetric monoidal structures.

(ii) If C and D are cartesian closed, then the canonical extensions LW MonE1.C/!
MonE1.D/ and LW GrpE1.C/!GrpE1.D/ both admit structures of symmetric
monoidal functors which are determined up to a contractible space of choices by
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the fact that the following diagrams commute.

C //

L

��

MonE1.C/

L

��

C //

L

��

GrpE1.C/

L

��

D // MonE1.D/ D // GrpE1.D/

Proof Corollary 5-5 tells us that MonE1.L/ is canonically symmetric monoidal,
and the right adjoint of a symmetric monoidal functor always inherits a canonical lax
symmetric monoidal structure [20, Corollary 7.3.2.7]. Together with Lemma 6-1 this
establishes the first part. The second part is an immediate consequence of Corollary 5-5
and Lemma 6-1, and again the case of groups is entirely analogous.

Lemma 6-4 Suppose F W C ! D is an accessible functor between presentable 1–
categories.

(i) We can factor F ' L ıR where R is a right adjoint and L is a left adjoint
functor.

(ii) If C and D are closed symmetric monoidal, then the factorization can be chosen
such that L and the left adjoint to R are symmetric monoidal (this means of
course that the intermediate 1–category is symmetric monoidal as well). In
particular, R itself is lax symmetric monoidal.

(iii) If F preserves products and D is cartesian closed, then L can be chosen to
preserve products.

Proof Choose � sufficiently large such that both C and D are �–compactly generated
and F preserves �–filtered colimits. Then the restricted Yoneda embedding RW C!
P.C�/ preserves limits and �–filtered colimits, and therefore admits a left adjoint.
Similarly, the functor LW P.C�/ ! D induced (under colimits) by the composite
C�! C! D preserves all colimits, and therefore admits a right adjoint. Since F is
equivalent to the composite L ıR, this completes the proof of the first claim.

Now, if in addition C and D are closed symmetric monoidal, then it follows from
the universal property of the convolution product [20, Proposition 4.8.1.10] that L

is symmetric monoidal and also that the left adjoint P.C�/! C of R is symmetric
monoidal, completing the proof of the second claim (the fact that R is lax symmetric
monoidal again follows from [20, Corollary 7.3.2.7]).

Finally, if F preserves products, then L preserves products of representables C� , and
if D is cartesian closed then products commute with colimits in both variables. Hence
L preserves products.
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Proposition 6-5 Suppose C and D are closed symmetric monoidal presentable 1–
categories and let F W C! D be product-preserving, symmetric monoidal, and accessi-
ble. If D is also cartesian closed then the functors F W MonE1.C/!MonE1.D/ and
F W GrpE1.C/! GrpE1.D/ admit lax symmetric monoidal structures.

Proof Factor F according to Lemma 6-4 and apply Lemma 6-3.

Corollary 6-6 Let C and D be cartesian closed presentable 1–categories and let
F W C ! D be product-preserving and accessible. Then the canonical extensions
F W MonE1.C/ ! MonE1.D/ and F W GrpE1.C/ ! GrpE1.D/ are lax symmetric
monoidal.

7 1–categories of semirings and rings

In this section we will use the results of Section 5 to define and study semiring (aka
rig) and ring objects in suitable 1–categories. We know by Theorem 5-1 that given
a closed symmetric monoidal presentable 1–category C , there are canonical closed
symmetric monoidal structures on MonE1.C/ and GrpE1.C/ which will respectively
be denoted by

Mon˝E1E1
.C/ and Grp˝E1E1

.C/:

Definition 7-1 Let C be a closed symmetric monoidal presentable 1–category and
let O be an 1–operad. The 1–category RigO.C/ of O–semirings in C and the
1–category RingO.C/ of O–rings in C are respectively defined as the 1–categories
of O–algebras

RigO.C/ WD AlgO.Mon˝E1E1
.C// and RingO.C/ WD AlgO.Grp˝E1E1

.C//:

In the case of ordinary categories and the associative or commutative operad, the
alternative terminology rig objects is also used for what we call semiring objects, hence
the notation. We will be mainly interested in the case of OD En for nD 1; 2; : : : ;1.
In the case nD 1, RingE1

.C/ is the 1–category of associative rings in C and, in the
case n D1, RingE1.C/ is the 1–category of commutative rings in C . Similarly,
there are 1–categories of associative or commutative semirings in C .

Let us take up again the examples of Section 5.

Example 7-2 (i) In the special case of the cartesian closed presentable1–category
Set of sets, our notion of associative or commutative (semi)ring object coincides
with the corresponding classical notion.
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(ii) Since the1–category S of spaces is cartesian closed and presentable, we obtain,
for each 1–operad O , the 1–category RigO.S/ of O -rig spaces and the 1–
category RingO.S/ of O -ring spaces. For the special case of the operads ODEn

for nD 1; : : : ;1, the point-set analogue of these spaces were intensively studied
by May and others using carefully chosen pairs of operads; see the recent articles
[25; 23; 24] and the many references therein.

(iii) In the case of the cartesian closed presentable 1–category Cat of ordinary
small categories, we obtain the 1–category RigOCat of O-rig categories and
the 1–category RingOCat of O-ring categories. Coherences for lax semiring
categories have been studied by Laplaza [16; 17]; note that, in our case, all
coherence morphisms must be invertible. It should be possible to obtain a precise
comparison of our notion with these more classical ones, but we bypass this via
a recognition principle (Corollary 8-9) for semiring 1–categories which allows
us to work directly with the examples of interest to us, without having to check
coherences for distributors.

(iv) An 1–categorical version of the previous example is obtained by considering
the cartesian closed presentable 1–category Cat1 . Associated to it there is
the 1–category RigOCat1 of O -semiring 1–categories and the 1–category
RingOCat1 of O-ring 1–categories.

Remark 7-3 For a general closed symmetric monoidal presentable 1–category C
there are two potentially different symmetric monoidal structures playing a role in
the notion of an O–(semi)ring object. Thus it may be useful to provide an informal
description of the structure given by an E1–semiring object in C . It consists of an
object R 2 C together with an addition map CW R �R! R and a multiplication
map �W R˝R!R such that both maps are coherently associative and commutative.
Moreover, the multiplication has to distribute over the addition in a homotopy coherent
fashion. In the case of an ordinary category with the Cartesian monoidal structure, our
notion reduces to the usual one.

As in the case of commutative monoids and commutative groups, Theorem 5-1 also
guarantees that the 1–category Sp.C/ of spectrum objects associated to a closed
symmetric monoidal presentable 1–category C has a canonical closed symmetric
monoidal structure Sp˝.C/. This allows us to make the following definition.

Definition 7-4 Let C be a closed symmetric monoidal presentable 1–category and
let O be an 1–operad. The 1–category RingSpO.C/ of O–ring spectrum objects
in C is defined as

RingSpO.C/ WD AlgO.Sp˝.C//:
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Theorem 7-5 Let C be a closed symmetric monoidal presentable 1–category and
let O be an 1–operad. Then the group completion functor MonE1.C/! GrpE1.C/
and the associated spectrum functor GrpE1.C/! Sp.C/ refine to functors

RigO.C/! RingO.C/ and RingO.C/! RingSpO.C/;

called the ring completion and the associated ring spectrum functor, respectively.

Proof This is clear since the group completion MonE1.C/!GrpE1.C/ and also the
associated spectrum functor GrpE1.C/! Sp.C/ are symmetric monoidal as shown in
Theorem 5-1.

Example 7-6 (i) In the special case of the 1–category Set of sets this reduces to
the usual ring completion of associative or commutative semirings.

(ii) From an1–operad O , we get an associated ring completion functor RigO.S/!
RingO.S/ from O–rig spaces to O–ring spaces and an associated ring spectrum
functor RingO.S/! RingSpO.S/ from O–ring spaces to O–ring spectra. The
latter 1–category will also be written RingSpO .

(iii) Let us again consider the cartesian closed presentable 1–category Cat of ordi-
nary small categories. Then for each 1–operad O , we obtain a ring completion
functor RigOCat! RingOCat from O–rig categories to O–ring categories.

(iv) Again, we immediately obtain an1–categorical refinement of the previous exam-
ple. For each 1–operad O , we obtain a ring completion functor RigOCat1!
RingOCat1 from O–rig1–categories to O–ring1–categories. Using explicit
models, a similar construction was obtained by Baas, Dundas, Richter and
Rognes [2].

Theorem 7-5 shows that semirings can be used to produce highly structured ring spectra.
Unfortunately, the definition of a semiring object is a bit indirect, so in practice it is
often difficult to write down explicit examples of such objects. Theorem 8-8 provides
a natural class of semirings in the case of the cartesian closed 1–category C D Cat1 .
Moreover, this is the class that is of most interest in applications to algebraic K–theory,
as we discuss in Section 8.

We conclude this section with a base-change result (similar to Corollary 4-7) which
sheds some light on the definition of semiring and ring object. This result will also be
needed in Appendix B where we show En –(semi)rings to be algebraic.

Proposition 7-7 Let C be a cartesian closed presentable 1–category and O an 1–
operad. Then we have equivalences

RigO.C/' C˝RigO.S/ and RingO.C/' C˝RingO.S/:
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Proof We show more generally that, for D any closed symmetric monoidal presentable
1–category, there exists a canonical equivalence

(7-8) AlgO.D/˝ C! AlgO.D˝ C/:

Then, taking D to be MonE1.S/, using Theorem 4-6, we obtain the desired chain of
equivalences

RigO.C/' AlgO.MonE1.C//' AlgO.MonE1.S/˝ C/

' AlgO.MonE1.S//˝ C ' RigO.S/˝ C:

In the case of rings we get an analogous chain of equivalences.

To show (7-8), first consider the case in which C D P.C0/ is the 1–category of
presheaves of spaces on a (small) 1–category C0 . In this case, we have that D˝ C '
Fun.Cop

0
;D/, so that

AlgO.D/˝ C ' Fun.Cop
0
;AlgO.D//' AlgO.Fun.Cop

0
;D//' AlgO.D˝ C/:

A general cartesian closed presentable 1–category C is a full symmetric monoidal
subcategory of some P.C0/, say for C0 the full subcategory of �–compact objects in
C for a sufficiently large regular cardinal � . Since D˝ C ' FunR.Cop;D/, we see that
D˝ C is a full symmetric monoidal subcategory of D˝P.C0/, and similarly with D
replaced by AlgO.D/. Thus it suffices to show that AlgO.D/˝ C and AlgO.D˝ C/
define equivalent full subcategories of AlgO.D/˝P.C0/' AlgO.D˝P.C0//.

If O is monochromatic (ie if there exists an essentially surjective functor �0!O˝
h1i

),
then an object of AlgO.D˝P.C0// lies in the full subcategory AlgO.D˝ C/ if and
only if the projection to D ˝ P.C0/ factors through D ˝ C . For arbitrary O , an
object of AlgO.D˝P.C0// lies in the full subcategory AlgO.D˝ C/ precisely when
the restriction along any full monochromatic suboperad O0! O satisfies this same
condition. As the analogous results for AlgO.D/˝ C hold by the same argument,
we see that AlgO.D/˝ C and AlgO.D˝ C/ define equivalent full subcategories of
AlgO.D/˝P.C0/' AlgO.D˝P.C0//.

8 Multiplicative infinite loop space theory

In this section we apply the results of the previous section to some specific 1–
categories; namely, we consider the 1–categories S of spaces, the 1–category
Cat of ordinary categories (really a 2–category, but we regard it as an 1–category),

Algebraic & Geometric Topology, Volume 15 (2015)



3138 David Gepner, Moritz Groth and Thomas Nikolaus

and the 1–category Cat1 of 1–categories. Let us emphasize that, as a special case
of Theorem 7-5, the group completion and the associated spectrum functor

MonE1.S/! GrpE1.S/! Sp

refine to functors

RigO.S/! RingO.S/! RingSpO:

This gives us not only a way of obtaining (highly structured) ring spectra, but it also
allows us to identify certain spectra as ring spectra.

Recall that the group completion functor MonE1.S/! GrpE1.S/! Sp plays an
important role in algebraic K–theory. The input data for algebraic K–theory is often
a symmetric monoidal category M; as a primary example, we have the category
MD ProjR of finitely generated projective modules over a ring R, which is symmet-
ric monoidal under the direct sum ˚ (which is the coproduct). In any case, given
such a category M, we form the subcategory of isomorphisms M� and pass to the
geometric realization jM� j. That way we obtain an E1–space jM� j, ie, an object
of MonE1.S/. The algebraic K–theory spectrum K.M/ is then defined to be the
spectrum associated to the group completion of jM� j; see eg [28]. In other words,
(direct sum) algebraic K–theory is defined as the composition

(8-1) KW SymMonCat
.�/�

�! SymMonCat
j�j
�!MonE1.S/! GrpE1.S/! Sp:

It is a result of May [22], with refinements by Elmendorf and Mandell [12] and Bass,
Dundas, Richter and Rognes [2], that this functor respects multiplicative structures, in
the appropriate sense. Our methods give an even more refined result.

Proposition 8-2 The algebraic K–theory functor KW SymMonCat! Sp is lax sym-
metric monoidal. In particular, it induces a functor RigOCat ! RingSpO for any
1–operad O .

Proof The last two functors in the composition (8-1) are symmetric monoidal by
Theorem 5-1. The remaining two functors .�/� W SymMonCat! SymMonCat and
j�jW SymMonCat!MonE1.S/ are the canonical extensions of the product preserving
functors .�/� W Cat! Cat and j � jW Cat! S respectively. Since these latter functors
are accessible, Corollary 6-6 implies that their canonical extensions are lax symmetric
monoidal, concluding the proof.
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We now have the tools necessary to establish corresponding results in the1–categorical
case. Note that the composition of the first two functors in (8-1) is the same as the
composition of the nerve SymMonCat ! SymMonCat1 followed by the functor
.�/� W SymMonCat1!MonE1.S/, which sends a symmetric monoidal 1–category
to its maximal subgroupoid, and of course is again symmetric monoidal. This allows
us to recover the algebraic K–theory of a symmetric monoidal category M by an
application of the following 1–categorical version of algebraic K–theory to the nerve
of M.

Definition 8-3 Let M be a symmetric monoidal 1–category. The algebraic K–
theory spectrum K.M/ is the spectrum associated to the group completion of M� .
Thus, the algebraic K–theory functor is defined as the composition

(8-4) KW SymMonCat1
.�/�

�! MonE1.S/ �! GrpE1.S/ �! Sp:

Remark 8-5 Strictly speaking, this is the direct sum K–theory, since it does not
take into account a potential exactness (or Waldhausen) structure on the symmetric
monoidal 1–categories in question. Nevertheless, in many cases of interest, eg that
of a connective ring spectrum R, the algebraic K–theory of R, defined in terms of
Waldhausen’s S� construction applied to the stable 1–category of R–modules (which
agrees with the K–theory of any suitable model category of R–modules; see [6] for
details), is computed as the direct sum K–theory of the symmetric monoidal1–category
ProjR of finitely generated projective R–modules [20, Definition 7.2.2.4].

For more sophisticated versions of K–theory, the situation is slightly more complicated
but entirely analogous. In [7] it is shown that the algebraic K–theory KW Catperf

1 !Sp of
small idempotent-complete stable 1–categories is a lax symmetric monoidal functor,
as is the nonconnective version; the methods employed to do so are similar to the ones
used in the present paper, in that K is shown to be the tensor unit in a symmetric
monoidal 1–category of all additive (respectively, localizing) functors Catperf

1 ! Sp,
so that the commutative algebra structure ultimately relies on the existence of an
idempotent object in an appropriate symmetric monoidal 1–category. The case of
general Waldhausen 1–categories is treated in [3], where it is shown that the algebraic
K–theory KW Wald1 ! Sp of Waldhausen 1–categories is again a lax symmetric
monoidal functor.

As already mentioned, the 1–categorical algebraic K–theory

KW SymMonCat1! Sp
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applied to nerves of ordinary symmetric monoidal categories recovers the 1–categorical
algebraic K–theory KW SymMonCat! Sp. Note, however, that the inclusion of sym-
metric monoidal 1–categories into symmetric monoidal 1–categories given by the
nerve functor does not commute with the tensor products. In fact, the tensor product
N.C/˝N.D/ of the nerves of two symmetric monoidal 1–categories C , D need not
again be (the nerve of) a symmetric monoidal 1–category; rather, one can show that
N.C˝D/ is the 1–categorical truncation of N.C/˝N.D/.

Theorem 8-6 The algebraic K–theory functor KW SymMonCat1! Sp is lax sym-
metric monoidal. In particular, it refines to a functor RigO.Cat1/! RingSpO for any
1–operad O .

Proof The proof is almost the same as in the 1–categorical case. The last two functors
in the defining composition (8-4) are symmetric monoidal by Theorem 5-1. The
remaining functor .�/� W SymMonCat1!MonE1.S/ is the canonical extension of
the accessible, product preserving functors .�/� W Cat1 ! S . Thus, Corollary 6-6
implies that this canonical extension is lax symmetric monoidal as intended.

Remark 8-7 The K–theory functor is defined as the composition (8-4) of lax sym-
metric monoidal functors. We know that the last two of these (namely, the group
completion and the associated spectrum functor) are actually symmetric monoidal.
Thus, one might wonder whether also the first functor (and hence the K–theory functor)
is symmetric monoidal as well. This is not the case, as the following counterexample
shows.

We begin by recalling from [20, Remark 2.1.3.10] that the 1–category MonE0
.Cat1/

is equivalent to .Cat1/�0= . Thus, an object in MonE0
.Cat1/ is just an1–category C

together with a chosen object x 2 C . The fact that an ordinary monoid gives rise to
a category with one object (which is hence distinguished) admits the following 1–
categorical variant. There is a functor

BW MonE1
.S/!MonE0

.Cat1/

which is left adjoint to the functor which sends xW �0 ! C to the endomorphism
monoid EndC.x/ of the distinguished object. Similarly, there is a functor

BW MonE1.S/!MonE1.Cat1/

which is left adjoint to the functor which sends a symmetric monoidal 1–category to
the E1–monoid of endomorphisms of the monoidal unit (we are also using the fact
that En˝E1 ' E1 for nD 0; 1).
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Now, let F D Fr.�0/ denote the free symmetric monoidal 1–category on the point,
which is to say the nerve of the groupoid of finite sets and isomorphisms. We claim
that, for any symmetric monoidal 1–groupoid C ,

.BF/˝ C ' BC:

This is clearly true if C D F , and the general formula follows by the observation that
both sides commute with colimits in the C variable and the fact that every symmetric
monoidal 1–groupoid is an iterated colimit of F . But the groupoid core .BF/� is
trivial. Thus, K.BF/˝K.C/D 0 for every C . On the other hand, taking C D Z, we
have that .BC/� ' BC , so K.BC/'†HZ, the suspension of the Eilenberg–MacLane
spectrum.

We have the following recognition principle for semiring 1–categories.

Theorem 8-8 Let C be an En –monoidal 1–category with coproducts such that the
monoidal product

˝W C � C! C

preserves coproducts separately in each variable. Then .C;t;˝/ is canonically an
object of RigEn

.Cat1/.

Proof Let Cat†1 be the 1–category of 1–categories which admit finite coproducts
and coproduct preserving functor. There is a fully faithful functor

Cat†1! SymMonCat1

given by considering an 1–category with coproducts as a cocartesian symmetric
monoidal 1–category; see [20, Variant 2.4.3.12]. We want to show that this functor
naturally extends to a lax symmetric monoidal functor, essentially by the construction
of the tensor product on Cat†1 of [20, Corollary 4.8.1.4] . From this the claim follows,
since an En –algebra in Cat†1 is the same as an En –monoidal 1–category such that
the tensor product preserves finite coproducts in each variable separately.

The first thing we want to observe is that the 1–category Cat†1 is preadditive. To see
this, note that Cat†1 has finite coproducts and products, because Cat†1 is presentable;
this follows from [20, Lemma 4.8.4.2] by taking K to be the collection of finite
sets. It remains to check that the product C �D , which is calculated as the product in
Ho.Cat1/, satisfies the universal property of the coproduct in Ho.Cat†1/. Given a third
1–category with finite coproducts E , we note that any pair of coproduct preserving
functors f W C! E and gW D! E extends to the coproduct preserving functor

C �D
f�g
�! E � E

t
�! E :
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Moreover, this extension is unique up to homotopy, because .c; d/Š .c;∅/t .∅; d/
for any .c; d/ 2 C �D .

Using [20, Proposition 4.8.1.10] again, the inclusion functor i W Cat†1!Cat1 admits a
left adjoint L which is symmetric monoidal. By Proposition 5-4 the functor L extends
to a left adjoint functor

L0W SymMonCat1 'MonE1.Cat1/!MonE1.Cat†1/' Cat†1:

The right adjoint of this functor can be described as the functor

MonE1.i/W Cat†1 'MonE1.Cat†1/!MonE1.Cat1/:

We can now conclude that MonE1.i/ is lax symmetric monoidal since it is right adjoint
to a symmetric monoidal functor. It remains to show that MonE1.i/ is the desired
functor. This is obvious.

Corollary 8-9 If C is an ordinary monoidal category with coproducts such that ˝W C�
C! C preserves coproducts in each variable separately, then .C;t;˝/ is canonically
an object of RigE1

.Cat/ � RigE1
.Cat1/. If C is moreover braided or symmetric

monoidal then .C;t;˝/ is an object of RigE2
.Cat/ or RigE1.Cat/ respectively.

Proof We only need the identification of the En –monoids in Cat with the respective
monoidal categories. This has been given in [20, Example 5.1.2.4].

Corollary 8-10 Let C be an En –monoidal1–category with coproducts such that ˝W
C � C! C preserves coproducts in each variable separately. Then the largest Kan com-
plex C� inside of C together with t and ˝ is an object of RigEn

.S/� RigEn
.Cat1/.

Proof The functor .�/� W Cat1! S � Cat1 preserves products and is accessible.
Thus we can apply Corollary 6-6 to deduce that the induced functor MonE1.Cat1/!
MonE1.Cat1/ is lax symmetric monoidal. But this implies that we obtain a further
functor RigEn

.Cat1/!RigEn
.Cat1/ which preserves the underlying object of Cat1 .

Now apply this functor to the semiring 1–category of Theorem 8-8.

Example 8-11 (i) For an ordinary commutative ring R, let ModR denote the
(ordinary) category of R–modules. Then ModR and the 1–groupoid Mod�R ,
equipped with the operations ˚ and ˝R , form E1–semiring categories. The
same applies to the category of sheaves on schemes and other variants.
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(ii) For an En –ring spectrum R, the 1–category ModR of (left) R–modules is a
En�1 –monoidal 1–category by [20, Section 4.8 or Proposition 7.1.2.6]. Since
the tensor product preserves coproducts in each variable we conclude that ModR ,
together with the coproduct ˚ and tensor product ˝R , is an En�1 –semiring
1–category.

Now we want to apply this to identify certain spectra as E1–ring spectra. For a con-
nective EnC1 –ring spectrum R the 1–category ProjR of finitely generated projective
R–modules is an En –semiring. The K–theory spectrum K.R/ can then be defined
as K.ProjR/. This definition is actually equivalent to the definition using Waldhausen
categories: for the variant which uses finitely generated free R–modules in place of
projective, this is shown in [11, Chapter VI.7], and for the general case this follows
from [5, Section 4].

Corollary 8-12 For a connective EnC1 –ring spectrum R, the algebraic K–theory
spectrum K.R/ of R is an En –ring spectrum.

We also have the following proposition, which states roughly that group completion of
monoidal 1–categories not only inverts objects, but arrows as well. It also shows why
it is necessary to discard all non-invertible morphisms before group completion.

Proposition 8-13 The underlying 1–category of an E1–group object of Cat1 is
an 1–groupoid. More precisely, the group completion functor MonE1.Cat1/ !
GrpE1.Cat1/ factors through the groupoid completion

MonE1.Cat1/!MonE1.S/! GrpE1.S/! GrpE1.Cat1/

and induces an equivalence GrpE1.S/' GrpE1.Cat1/.

Proof Let C be an E1–group object of Cat1 . Then the underlying 1–category of
C is an 1–groupoid precisely if its homotopy category Ho.C/ is a groupoid. Thus it
suffices to show that Ho.C/ is a groupoid. But since Ho.C/ is a group object in Cat,
this reduces the proof of the proposition to ordinary categories C .

A group object C in categories is a symmetric monoidal category .C;˝/ together with an
inversion functor I W C! C as in to Proposition 1-1. We clearly have I2' id. As a first
step we show that all endomorphisms of the tensor unit 1 in C are automorphisms. This
follows from the Eckman–Hilton argument since homC.1; 1/ carries two commuting
monoid structures (composition and tensoring), and as one of these is a group structure
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the other must also be as well. It follows that all endomorphisms in C are automorphisms
by the identification

I.x/˝�W homC.x;x/Š homC.1; 1/:

Finally, to show that C is a groupoid, it now suffices to show that for every morphisms
f W x! y in C there is a morphism gW y! x in C . By tensoring with I.y/ we see
that we may assume that y D 1. Then we have I.f /W I.x/! 1, and therefore, using
the usual identifications, g WD I.f /˝xW 1! x .

Remark 8-14 Proposition 8-13 is closely related to our comment in Remark 1-5. More
precisely, the reason that group completion produces groupoids lies in our definition of
group objects. We could have alternatively stipulated that a symmetric monoidal 1–
category C (considered as an object in MonE1.Cat1/) is a group if every object of C is
tensor invertible (or even just dualizable). Let us denote the 1–category of symmetric
monoidal categories satisfying this weaker group condition by Grp�E1.Cat1/. Then
we have strict inclusions

GrpE1.Cat1/� Grp�E1.Cat1/�MonE1.Cat1/

of reflective subcategories. The reflection from MonE1.Cat1/ to Grp�E1.Cat1/ is
closely related to Quillen’s S�1S construction.

Appendix A: Comonoids

In this short section we establish additional universal mapping properties for MonE1.S/
and GrpE1.S/ respectively. This gives a characterization of these1–categories among
all presentable 1–categories and not only among the (pre)additive ones. We write
FunRAd.C;D/ for the 1–category of right adjoint functors from C to D , which is a
full subcategory of Fun.C;D/.

Lemma A-1 If C and D are presentable, then we have canonical equivalences

MonE1.FunRAd.C;D//' FunRAd.C;MonE1.D//;

GrpE1.FunRAd.C;D//' FunRAd.C;GrpE1.D//:

Proof We note that right adjoint functors between presentable 1–categories can be
described as accessible functors that preserve limits. Then the proof works exactly the
same as the proof of Lemma 1-6.
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Definition A-2 Let C be an 1–category with finite coproducts. We define the 1–
categories of comonoids and cogroups in C to be the respective 1–categories

coMonE1.C/DMonE1.C
op/op and coGrpE1.C/D GrpE1.C

op/op:

Remark A-3 The comonoids as defined above are comonoids for the coproduct as
tensor product. This is a structure which is often rather trivial. For example in the
1–category S of spaces (or in the ordinary category of sets) there is exactly one
comonoid in the sense above, namely the empty set ∅.

Proposition A-4 Let C and D be presentable 1–categories. Then there are natural
equivalences

FunL.MonE1.C/;D/' coMonE1.FunL.C;D//

FunL.GrpE1.C/;D/' coGrpE1.FunL.C;D//:

In particular, for a presentable 1–category D we have natural equivalences

FunL.MonE1.S/;D/' coMonE1.D/ and FunL.GrpE1.S/;D/' coGrpE1.D/:

Proof Let us recall that given two 1–categories E and F , there is an equivalence
of categories FunL.E ;F/ and FunRAd.F ; E/op [19, Proposition 5.2.6.2]. The adjoint
functor theorem [19, Corollary 5.5.2.9] together with Lemma 1-6 then yields the
following chain of equivalences:

FunL.MonE1.C/;D/' FunRAd.D;MonE1.C//
op

'MonE1.FunRAd.D; C//op

'MonE1.FunL.C;D/op/op

D coMonE1.FunL.C;D//:

In the special case of C D S we can use the universal property of 1–categories of
presheaves [19, Theorem 5.1.5.6] to extend the above chain of equivalences by

coMonE1.FunL.S;D//' coMonE1.D/:

This settles the case of monoids and the case of groups works the same.

Appendix B: Algebraic theories and monadic functors

In this section we give a short discussion of Lawvere algebraic theories in1–categories
and show that our examples are algebraic. For other treatments of 1–categorical
algebraic theories; see [9; 10], [15, Section 32] and [19, Section 5.5.8]. We write Fin
for the category of finite sets.
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Definition B-1 An algebraic theory is an 1–category T with finite products and a
distinguished object 1T , such that the unique product-preserving functor N.Fin/op!T
which sends the singleton to 1T is essentially surjective. A morphism of algebraic
theories is a functor which preserves products and the distinguished object. We write
Th� .Cat…1/� for the 1–category of theories and morphisms thereof.

This is the obvious generalization of algebraic theories, as defined by Lawvere [18], to
1–categories.

Definition B-2 Let C be an 1–category with finite products. An algebra in C for an
algebraic theory T is a finite product preserving functor T ! C . We write AlgT .C/
for the 1–category of algebras of T in C , ie, for the full subcategory of Fun.T ; C/
spanned by the algebras.

The notation AlgT .C/ should not be confused with the definition of algebra for an
1–operad used previously in the paper. If C is a presentable 1–category and T a
theory, then AlgT .C/ is again presentable. This follows since AlgT .C/ is an accessible
localization of the presentable 1–category Fun.T ; C/ (the proof is similar to that of
Proposition 4-1 which takes care of the case of commutative monoids). Applying the
adjoint functor theorem we also get that the forgetful functor AlgT .C/! C , ie the
evaluation at the distinguished object 1T , has a left adjoint.

Proposition B-3 Let C be a presentable 1–category and T a theory. Then we have
an equivalence

AlgT .C/' C˝AlgT .S/:

Proof The same proof as for Lemma 1-6 shows that we have an equivalence

AlgT .FunR.Cop;S//' FunR.Cop;AlgT .S//:

This then implies the claim since we have C˝D' FunR.Cop;D/ for any presentable
1–category D .

A monad on an1–category C is an algebra M in the monoidal1–category Fun.C; C/
of endofunctors; see [20, Chapter 4.7] for details. Any such monad M 2Alg.Fun.C; C//
admits an 1–category of modules which we denote AlgM .C/. This 1–category
comes equipped with a forgetful functor AlgM .C/! C which is a right adjoint (again,
this 1–category should not be confused with the 1–category of algebras for an
1–operad). Thus, given an arbitrary right adjoint functor U W D! C , it is natural
to ask whether this functor is equivalent to the forgetful functor from modules over
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a monad on C . In this case the corresponding monad is uniquely determined as the
composition M D U ıF , where F is a left adjoint of U . The functors U for which
this is the case are called monadic.

The Barr–Beck theorem (also called Beck’s monadicity theorem) gives necessary
and sufficient conditions for a functor U to be monadic. The conditions are that U

is conservative (ie, reflects equivalences) and that U preserves U –split geometric
realizations [20, Theorem 4.7.4.5]. We will not need to discuss here what U –split
means exactly since in our cases all geometric realizations will be preserved.

Proposition B-4 Let C be a presentable 1–category and let T be a theory. Then the
forgetful functor AlgT .C/! C is monadic and preserves sifted colimits.

Proof We will show that the evaluation Fun….T ; C/!C is conservative and preserves
sifted colimits. The result then follows immediately from the monadicity theorem. That
the functor is conservative is clear, so it remains to check the sifted colimit condition.
But the inclusion of the finite product preserving functors

Fun….T ; C/! Fun.T ; C/

preserves sifted colimits by (4) of [19, Proposition 5.5.8.10], and as colimits in functor
1–categories are computed pointwise the evaluation Fun.T ; C/! C also preserves
sifted colimits.

We will obtain a converse to the previous proposition in the case of the 1–category of
spaces; namely, in this case we will identify algebraic theories with certain monads.
To this end, note that an arbitrary monadic functor U W AlgM .S/! S defines a theory
TM by

TM WD .Algff
M .S//op;

where Algff
M .S/� AlgM .S/ is the full subcategory spanned by the free M –algebras

on finite sets (which we abusively refer to as finite free algebras, and should not to be
confused with more general free algebras on finite or finitely presented spaces). There
is a canonical functor

RW AlgM .S/! AlgTM
.S/

from modules for M to models to the associated theory TM , which is just the restriction
of the Yoneda embedding to the full subcategory Algff

M .S/.

Definition B-5 A monadic functor U W AlgM .S/ ! S is called algebraic if the
restricted Yoneda embedding RW AlgM .S/! AlgTM

.S/ is an equivalence of 1–
categories over S . We also say that a monad M on spaces is algebraic if the associated
forgetful functor U W AlgM .S/! S is algebraic.
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The main result of this section is Theorem B-7, which provides necessary and sufficient
conditions for a monadic functor to spaces to be algebraic. As preparation, we first
collect the following result, a straightforward generalization of a well-known result in
ordinary category theory.

Proposition B-6 Let C be a presentable 1–category and let M W C! C be a monad
which commutes with �–filtered colimits for some infinite regular cardinal � . Then
AlgM .C/ is a presentable 1–category.

Proof To begin with let us choose a regular cardinal � such that C is �–compactly
generated and M commutes with �–filtered colimits. Let C� � C and AlgM .C/� �
AlgM .C/ be the respective full subcategories spanned by the �–compact objects. We
claim that there is an equivalence Ind�.AlgM .C/�/ ' AlgM .C/. Since AlgM .C/
admits �–filtered colimits, the inclusion AlgM .C/� � AlgM .C/ induces a functor

�W Ind�.AlgM .C/�/! AlgM .C/

which we want to show is an equivalence. The fully faithfulness of � is a special case
of the following: if D is an 1–category with �–filtered colimits, then the inclusion
D� � D of the �–compact objects induces a fully faithful functor Ind�.D�/! D .
Thus it remains to show that � is essentially surjective.

Because M commutes with �–filtered colimits, we see that, if X 2 C� , then FX 2

AlgM .C/� , where F W C ! AlgM .C/ denotes a left adjoint to the forgetful functor
AlgM .C/! C . Since the forgetful functor AlgM .C/! C is conservative and C is
�–compactly generated, a map f W A! B of M –modules is an equivalence if and
only if

mapAlgM .C/.FX;A/!mapAlgM .C/.FX;B/

is an equivalence for all X 2 C� . We apply this criterion to the map colimA02AlgM .C/�
=A

A0!A; whose domain is a �–filtered colimit, in order to obtain the essential surjectivity
of � . We first show that, for any X 2 C� , the induced map

colimAlgM .C/�
=A
�0map.FX;A0/! �0map.FX;A/

is an isomorphism. Indeed, it is surjective because any (homotopy class of the) map
FX ! A is the image of the identity map FX ! A0 for A0 D FX , which is by
construction a �–compact object of AlgM .C/. Similarly, injectivity follows because
given any two maps f;gW FX ! A0 , the fact that AlgM .C/�=A is �–filtered implies
that there exists an A00!A which coequalizes f and g . Replacing X by K˝X for
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some finite simplicial set K , and noting that K˝X is a �–compact object of C since
K is finite, we obtain an isomorphism

�0map.K; colim map.FX;A0//Š �0map.K;map.FX;A//:

It follows that colim map.FX;A0/ ! map.FX;A/ is a homotopy equivalence, as
desired.

Theorem B-7 A monadic functor U W AlgM .S/ ! S is algebraic if and only if it
preserves sifted colimits.

Proof This is a necessary condition since the forgetful functor AlgTM
.S/ ! S

preserves sifted colimits (see Proposition B-4). Thus, suppose that U preserves sifted
colimits; we must show that R is an equivalence. Note that AlgM .S/ is presentable
by Proposition B-6, and AlgTM

.S/ is presentable as an accessible localization of the
presentable 1–category Fun.T ;S/. Because Algff

M .S/� AlgM .S/ is a subcategory
of compact projective objects, R preserves sifted colimits, and clearly R also preserves
small limits. Thus R admits a left adjoint L.

We now check that the adjunction counit LR! id is an equivalence. Since R is
conservative, as both the projections down to S are conservative, this will also imply
that the unit id!RL is an equivalence. Observe that both functors commute with
sifted colimits and spaces is freely generated under sifted colimits by the finite sets
hni, it is enough to check the counit equivalence on objects of the form Fhni. Now,
RFhni D bF hni, the functor represented by bF hni, so we must show that we have an
equivalence LbF hni ! Fhni. Let A 2 AlgM .S/ and consider the map

map.Fhni;A/!map.L OFhni;A/:

The left-hand side can be identified with map.Fhni;A/ ' U.A/n . Similarly, the
right-hand side is

map.LbF hni;A/'map.bF hni;RA/'map.bF h1i;RA/n ' U.A/n

where we used in the last step that R is compatible with the forgetful functors to S .

Finally, we wish to apply the results of this section to the study of semirings and rings
in 1–categories. We begin by showing that semirings and rings are algebraic over
spaces.

Proposition B-8 The functors RigEn
.S/! S and RingEn

.S/! S are monadic and
algebraic over S .
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Proof We claim that the functors RigEn
.S/!MonE1.S/! S and RingEn

.S/!
GrpE1.S/! S all preserve sifted colimits and reflect equivalences. Then the monadic-
ity follows from the Barr–Beck theorem [20, Theorem 4.7.4.5], and the algebraicity
from Theorem B-7.

To see that this claim is true note that three of the four functors, namely RigEn
.S/!

MonE1.S/, MonE1.S/! S , and RingEn
.S/! GrpE1.S/, are forgetful functors

from 1–categories of algebras over an 1–operad. These forgetful functors are
always conservative and for suitable monoidal structures they also preserve sifted
colimits [20, Corollary 3.2.3.2]. Thus we only have to establish the same properties for
GrpE1.S/! S . It is easy to see that this functor is conservative since GrpE1.S/ is
a full subcategory of MonE1.S/ and the given functor factors over the conservative
functor MonE1.S/! S . It remains to show that GrpE1.S/!MonE1.S/ preserves
sifted colimits. But for an E1–monoid in the 1–category of spaces being a group
object is equivalent to being grouplike. Thus, via the left adjoint functor �0 it reduces
to the statement that the sifted colimit of groups formed in the category of monoids is
again a group. And this result is a special case of [1, Proposition 9.3].

Definition B-9 We denote the algebraic theory corresponding to the functor

RigEn
.S/! S

by TEn–Rig and call it the theory of En –semirings. Accordingly we denote the algebraic
theory corresponding to the functor RingEn

.S/! S by TEn–Ring and call it the theory
of En –rings.

Proposition B-10 Let C be a cartesian closed, presentable 1–category. Then we
have equivalences

RigEn
.C/' AlgTEn–Rig

.C/ and RingEn
.C/' AlgTEn–Ring

.C/:

Proof For C D S the 1–category of spaces the statement is true by definition of
TEn–Rig and TEn–Ring . The general case follows from the base change formulas given
in Propositions 7-7 and B-3.

Remark B-11 (i) Theories of E1–semirings and rings have also been constructed
in [9] by the use of spans and distributive laws. These two approaches do agree.

(ii) The theory approach of semirings and rings gives a way of defining ring objects
in a much broader generality. One only needs an 1–category C with finite
products. In this way we can drop the assumption that C is presentable and
cartesian closed. However in this case semiring and ring objects do not admit a
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nice description in terms of a tensor product on monoids. It is also impossible to
apply this to different tensor products than the cartesian one.

(iii) We showed in Corollary 6-6 that an accessible, product preserving functor
F W C! D between cartesian closed symmetric monoidal categories extends to
a lax symmetric monoidal functor MonE1.C/!MonE1.D/. This means that
F extends to functors RigEn

.C/! RigEn
.D/ and RingEn

.C/! RingEn
.D/.

Therefore we may drop the assumption that F is accessible and conclude that any
product preserving functor C! D extends to functors RigEn

.C/! RigEn
.D/

and RingEn
.C/! RingEn

.D/.
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Floer homology and splicing knot complements

EAMAN EFTEKHARY

We obtain a formula for the Heegaard Floer homology (hat theory) of the three-
manifold Y .K1;K2/ obtained by splicing the complements of the knots Ki � Yi ,
i D 1; 2 , in terms of the knot Floer homology of K1 and K2 . We also present a
few applications. If hi

n denotes the rank of the Heegaard Floer group bHFK for the
knot obtained by n–surgery over Ki , we show that the rank of cHF.Y .K1;K2// is
bounded below by

j.h1
1� h1

1/.h
2
1� h2

1/� .h
1
0� h1

1/.h
2
0� h2

1/j:

We also show that if splicing the complement of a knot K � Y with the trefoil com-
plements gives a homology sphere L–space, then K is trivial and Y is a homology
sphere L–space.

57M27; 57R58

1 Introduction

Heegaard Floer homology, introduced by Ozsváth and Szabó [12], has been the source
of powerful techniques for the study of objects in low-dimensional topology. It is
interesting to investigate whether Heegaard Floer homology can distinguish the standard
sphere from other homology spheres. Since the Heegaard Floer groups of the connected
sum of two homology spheres are obtained as the tensor product of the Heegaard Floer
groups associated with the two pieces, the question is reduced to determining prime
homology spheres with trivial Heegaard Floer groups. The Poincaré homology sphere
†.2; 3; 5/ with either orientation is the unique known example of a non-trivial prime
homology sphere Y with �HF.Y IZ/DZ. A conjecture of Ozsváth and Szabó predicts
that this is in fact the only possible example.

In this paper we study the Heegaard Floer groups of a homology sphere Y which
contains an incompressible torus. We may use the incompressible torus to decompose Y ,
fill out the torus boundary of each of the two pieces by gluing a solid torus, and obtain
two new homology spheres, Y1 and Y2 . By requiring Y1 and Y2 to be homology
spheres the gluing of the solid tori is determined; the decomposition determines a knot
Ki in Yi , i D 1; 2, and Y D Y .K1;K2/ is obtained by splicing the complements of
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K1 and K2 in Y1 and Y2 , respectively. A formula is obtained for �HF.Y IF/ in terms
of the knot Floer objects associated with K1 � Y1 and K2 � Y2 , where F denotes the
field Z=2Z with two elements.

The more precise statement of the splicing formula obtained in this paper is as follows.
Let K � Y denote a null-homologous knot inside a three-manifold Y . For every
n 2 Z [ f1g let Yn D Yn.K/ denote the three-manifold obtained by performing
n–surgery on K and let Kn � Yn denote the knot in Yn which is the core of the
neighbourhood replaced for nd.K/�Y in constructing Yn . Denote the homology group
bHFK.Yn;KnIF/ by Hn.K/ and its dimension as a vector space over F by hn.K/.

In particular, H1.K/ D bHFK.Y;KIF/ and H0.K/ D bHFL.Y;KIF/ are the knot
Floer homology and the longitude Floer homology of K , respectively (see Ozsváth
and Szabó [11] and Eftekhary [2]).

Choose a Heegaard diagram

H D .†; ˛D f˛1; : : : ; ˛gg; y̌ D fˇ1; : : : ; ˇg�1g/

for the knot complement Y nK , and let �� denote an oriented longitude which has
framing coefficient � 2 Z[f1g. One can choose the curves �� (which are disjoint
from the curves in y̌) so that the pairs .�0; �1/, .�1; �1/ and .�0; �1/ have single
intersection points in the Heegaard diagram. For � 2 f0; 1;1g set

ˇ� D fˇ
�

1; : : : ; ˇ
�

g�1; ��g;

where ˇ�i is an isotopic copy of the curve ˇi . The pictures on the left-hand side and the
right-hand side of Figure 1 illustrate two possible general arrangements for the curves
�0 , �1 and �1 . In Figure 1 and other figures in this paper, the surface orientation is
chosen opposite from the standard orientation of the page in order to stay compatible
with the orientation convention of [12].

The two Heegaard quadruples

.†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ and .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/

obtained in this way then correspond to the exact triangles

(1)

H0.K/

f1.K / $$

H1.K/
f1.K /

oo

H1.K/

f0.K /

::

and

H0

f1.K / ""

H1.K/
f1.K /

oo

H1.K/
f0.K /

::
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�1

�0

�1

v

w

u

�1

�1

u

w

�0

v

˛ s ˛ s

u v

w

v

w

u

Figure 1: The curves �0 (orange), �1 (pink) and �1 (green) and the punc-
tures are chosen following one of the above two patterns. The punctures u , v
and w are used to define f0 , f1 and f1 , while u , v and w are used to define
f0 , f1 and f1 .

respectively. The ranks of both f�.K/ and f�.K/ are equal to

a�.K/D
1
2
.h0.K/C h1.K/C h1.K/� 2h�.K//; � 2 f0; 1;1g:

The exactness of the above two triangles imply that the induced maps

Coker.f0.K// �! Ker.f1.K// and Coker.f0.K// �! Ker.f1.K//

by f1.K/ and f1.K/ are isomorphisms. Both the domain and the target of the afore-
mentioned isomorphisms are of dimension a1.K/. Take �.K/W H0.K/!H1.K/
(resp. �.K/W H0.K/! H1.K/) to be an arbitrary extension of the inverse of the
isomorphism induced by f1.K/ (resp. f1.K/), so that the ranks of both �.K/ and
�.K/ are equal to a1.K/.

Suppose that a pair of knots K1 and K2 is given. For every ?; � 2 f0; 1;1g and
i D 1; 2, set Hi

�
DH�.Ki/, H?;�DH1

?˝H2
�

, fi
�
D f�.Ki/, fi�D f�.Ki/, � i D �.Ki/

and � i D �.Ki/. Consider the chain complex .�.K1;K2/; d�/ constructed as follows.
The F–module �.K1;K2/ is the direct sum of the modules which appear on the
vertices of the cube illustrated in Figure 2.

Each directed edge (including the dashed edges) in the aforementioned diagram deter-
mines a homomorphism from �.K1;K2/ to itself, which is trivial on all summands
except for the one which corresponds to its start point. The map takes the summand
corresponding to its start point to the summand corresponding to its endpoint by the
homomorphism which labels the directed edge. The differential d� of the complex
�.K1;K2/ is defined to be the sum of the homomorphisms which correspond to the

Algebraic & Geometric Topology, Volume 15 (2015)
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H1;1 H1;1

H1;1

H1;1

H1;0

H0;1

H0;0

H1;1

f11˝ I

f11˝ I

I
˝
f 2
1

I
˝
f 2
1

f1 0
f1 1
˝

f2 0
f2 1
C
�

1
˝
�

2
C
�

1
˝
�

2

I ˝ f20

I ˝ f2
0

f 1
0 ˝

I

f 1
0 ˝

I

f1 1
˝

f2 0 f1 0
˝

f2 1

I

f1 1
˝
�

2

�
1 ˝

f21

f 1
0 ˝ � 2

�
1
˝
f 20

Figure 2: The above cube determines the chain complex �.K1;K2/ and its
differential d�

directed edges of the cube in Figure 2. One should of course make sure that d�ıd�D0.
However, this follows quickly from the exactness of the triangle in (1).

Theorem 1.1 With the above notation fixed, the Heegaard Floer homology of the
three-manifold Y .K1;K2/ obtained by splicing the knot complements Y1 nK1 and
Y2 nK2 is given by

�HF.Y .K1;K2/IF/'H�.�.K1;K2/; d�/:

We use the combinatorial description of Heegaard Floer homology by Sarkar and Wang
[16], which is also adapted for knots in S3 by Manolescu, Ozsváth and Sarkar [8] and
Manolescu, Ozsváth, Szabó and Thurston [9]. These combinatorial descriptions help
us avoid several technical issues that arise when one glues holomorphic curves.

Algebraic & Geometric Topology, Volume 15 (2015)
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For the knots K1 � Y1 and K2 � Y2 as above, define

�.K1;K2/ WD .h
1
1� h1

1/.h
2
1� h2

1/� .h
1
0� h1

1/.h
2
0� h2

1/:

As a corollary of Theorem 1.1 we prove the following:

Corollary 1.2 For Y D Y .K1;K2/ as above we have

rnk. �HF.Y IF//�maxfj�.K1;K2/j; j�.K1;K2/jg;

where Ki � Yi D �Yi denotes the mirror of Ki in the three-manifold Yi D �Yi

for i D 1; 2.

When one of the two knots is the trefoil, the formula is simplified significantly. In
particular, we prove the following corollary in Section 6:

Corollary 1.3 Let R denote the right-handed trefoil. With the above notation fixed,

rnk
� �HF.Y .R;K//

�
� h0.K/Ch1.K/;

rnk
� �HF.Y .R;K//

�
� 4 maxfh0.K/; h1.K/; h1.K/g�.h0.K/Ch1.K/C2h1.K//:

Moreover, if K is non-trivial, Y .R;K/ is not an L–space.

It is shown by Hedden and Levine [5] that splicing non-trivial knots inside homology
sphere L–spaces never produces an L–space. Meanwhile, the knot K in Corollary 1.3
lives in an arbitrary homology sphere. In this regard, Corollary 1.3 goes beyond the
result of Hedden and Levine.

Remark 1.4 The splicing formula of Theorem 1.1 is different from the splicing
formula from the original arXiv version of the paper. The results of a few other papers
of the author are based on the splicing formula of this paper. The results of [3] remain
unchanged, since the formula (17) presented in Section 5.1 which is used in [3] remains
unchanged. The proof of the main theorem of [4] no longer goes through. Fixing the
argument requires developing some technology, including a description of the bordered
Floer homology for a knot complement only in terms of the knot chain complex
associated with the knot. The modifications will appear in an upcoming revision of [4].
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2 Graphs of chain complexes

2.1 Oriented graphs and chain complexes

Let G denote an oriented graph without oriented loops, which consists of a set V .G/

of vertices and a set
E.G/� V .G/�V .G/

of directed edges. For every eD .v1; v2/2E.G/ we let vs.e/Dv2 and vt .e/Dv1 . The
edge e is thus oriented from its starting vertex vs.e/ towards its terminal vertex vt .e/.
The condition that G does not contain any oriented loops implies that there is no
sequence e1; : : : ; ek 2E.G/ with the property

vt .ei/D vs.eiC1/; i D 1; : : : ; k � 1; and vt .ek/D vs.e1/:

Definition 2.1 Let G denote an oriented graph without any oriented loops, as above.
A collection f.Cv; dv/gv2V .G/ of chain complexes, together with the chain maps

ffeW Cvs.e/! Cvt .e/ j e 2E.G/g

is called a graph of complexes if, for every v1 , v2 2 V .G/,

(2)
X

e1;e22E.G/
vs.e1/Dv1; vt .e2/Dv2

vt .e1/Dvs.e2/

fe2
ıfe1

D 0:

Associated with a graph of complexes as above, write CG D
L
v2V .G/ Cv and define

the differential dG W CG! CG as follows. For c 2 Cv � CG , let

dG.c/D
X

w2V .G/

dG;w.c/;

where dG;w.c/ 2 Cw is defined by

dG;w.c/D

8<:
dv.c/ if w D v;
fe.c/ if there exists e 2E.G/ with vs.e/D v and vt .e/D w;

0 otherwise.

Definition 2.2 The chain complex .CG ; dG/ is called the chain complex associated
with the graph G of chain complexes.

The condition (2) implies that dG ıdG D 0, ie that .CG ; dG/ is a chain complex, since
each fe is a chain map. The chain complex .CG ; dG/ is usually represented by drawing

Algebraic & Geometric Topology, Volume 15 (2015)
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the oriented graph G , labelling each vertex v 2 V .G/ by the chain complex .Cv; dv/
(or simply by Cv if there is no confusion) and labelling each oriented edge e by the
chain map fe .

Let G denote an oriented graph without any loops. It is then possible to label the
vertices of G by 1; 2; : : : ; n so that for each e 2 E.G/ we have vs.e/ < vt .e/ (as
numbers in f1; : : : ; ng). Correspondingly, the chain complexes associated with the
vertices of G may be labelled .C1; d1/; : : : ; .Cn; dn/. Let H denote the graph with
vertices 1; : : : ; n and edges

E.H /D f.i; j / j i; j 2 f1; : : : ; ng and i > j g:

For e 2 E.H / let ge D fe if e 2 E.G/ and ge D 0 otherwise. Associated with
fCigi2V .H / and fgege2E.H / we thus find the complex .CH ; dH /, which is identified
with .CG ; dG/. In other words, we may always assume that the underlying graph in a
graph of complexes is the complete oriented graph H . The condition (2) in this case is
equivalent to X

i>k>j

g.i;k/ ıg.k;j/ D 0 for all i; j 2 f1; : : : ; ng:

2.2 Replacing chain complexes with their homology

When the ring of coefficients is F D Z=2Z we would like to replace each complex
.Ci ; di/ in .CH ; dH / with .H�.Ci ; di/; 0/, at the expense of modifying the chain maps
fgege2E.H / so that the homology of the chain complex associated with the graph of
chain complexes remains intact. Let us begin with a lemma.

Lemma 2.3 Suppose that a chain complex .C; dC / is decomposed, as a vector space
over F , as C ' A˚ A˚ B for some vector spaces A and B . Suppose that the
differential dC of C has the following block form in this decomposition:

dC D

0@ 0 IA f1

0 0 f2

g1 g2 h

1A
Then dB D hCg2f1W B! B is a differential and H�.C; dC /DH�.B; dB/.

Proof Since dC is a differential, f1g2 D 0 and the matrix

P D

0@ I 0 0

0 I f1

g2 0 I

1A

Algebraic & Geometric Topology, Volume 15 (2015)
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is thus its own inverse. Since d2
C
D 0 we get

P

0@ 0 IA f1

0 0 f2

g1 g2 h

1AP D

0@0 IA 0

0 0 0

0 0 hCg2f1

1A:
This completes the proof of the lemma.

We refer to the procedure which changes the chain complex .C; dC / to the chain com-
plex .B; dB/ as the cancellation of the two subspaces A˚0˚0'A and 0˚A˚0'A

of C against each other.

The differential di of Ci may be used to decompose Ci as A1
i ˚Hi ˚A2

i , where A1
i

and A2
i are two copies of the same F–module Ai , so that di takes the form

di D

0@0 0 IAi

0 0 0

0 0 0

1A; i D 1; : : : ; n:

Note that Hi DH�.Ci ; di/ is in fact the homology of the complex Ci . In particular,
Hi �Ker.di W Ci! Ci/. Since dvt .e/ ıge D ge ıdvs.e/ , in this basis the matrix block
presentation of ge is of the form

ge D

0@Me Pe Ne

0 Ge Qe

0 0 Me

1A for all e 2E.H /:

Initially, the block presentation for dH is of the form

dH D

0BBBBB@
d1 0 0 : : : 0

g.2;1/ d2 0 : : : 0

g.3;1/ g.3;2/ d3 : : : 0
:::

:::
:::

: : :
:::

g.n;1/ g.n;2/ g.n;3/ : : : dn

1CCCCCA:
Replacing the above 3� 3 block presentations for g.i;j/ and di , the homomorphism
dH takes a 3n� 3n block presentation, where n of the block entries are the identity
matrices corresponding to d1; : : : ; dn . Lemma 2.3 may be used inductively to cancel
A1

i against A2
i for i D 1; : : : ; n and modify the remaining blocks correspondingly.

Straightforward linear algebra implies the following lemma:

Lemma 2.4 Fix the above notation and for i; j 2 f1; : : : ; ng let

h.i;j/ DG.i;j/C
X
`�1

X
i>k1>k2>���>k`>j

Q.i;k1/N.k1;k2/ � � �N.k`�1;k`/P.k`;j/:

Algebraic & Geometric Topology, Volume 15 (2015)
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Then the homology of the chain complex associated with H that has complexes
f.Ci ; di/g

n
iD1

and chain maps fgege2E.H / is isomorphic to the homology of the chain
complex associated with H that has complexes f.Hi ; 0/g

n
iD1

and homomorphisms
fhege2E.H / .

For ` D 1 set k D k1 . For hj 2 Ker.G.k;j/W Hj ! Hk/, P.k;j/.hj / D dk.ak/

for some ak 2 Ak . The element ak may of course be modified by adding to ak an
element hk 2Hk . From here, Q.i;k/P.k;j/.hj / is equal to g.i;k/.ak/ up to the addition
of an element in g.i;k/.Hk/. In particular, we find a natural well-defined map

�.i>k>j/W Ker.G.k;j// �! Coker.G.i;k//

and Q.i;k/P.k;j/ is an extension of �.i>k>j/ to a homomorphism from Hj to Hk . It
is however important to note that simultaneous replacement of the maps Q.i;k/P.k;j/
with arbitrary extensions of �.i > k > j / in Lemma 2.3 is not a priori possible.

In this paper, we will face situations where each complex Ci is of the form C 1
i ˝C 2

i and
each chain map g.i;j/W Cj !Ci is of the form g1

.i;j/
˝g2

.i;j/
, where g1

.i;j/
W C 1

j !C 1
i

and g2
.i;j/W C

2
j ! C 2

i are chain maps. In this situation, we may choose the decomposi-
tions C r

i DAr
i ˚H r

i ˚Ar
i for r D 1; 2. Subsequently, note that

Hi DH 1
i ˝H 2

i and Ai D .A
1
i ˝A2

i /˚ .A
1
i ˝H 2

i /˚ .H
1
i ˝A2

i /˚ .A
1
i ˝A2

i /:

Moreover, corresponding to gr
.i;j/

we obtain the blocks M r
.i;j/

, N r
.i;j/

, P r
.i;j/

, Qr
.i;j/

and Gr
.i;j/

for r D 1; 2.

We close this section with a pair of simple lemmas addressing this situation.

Lemma 2.5 In the situation above,

Q.i;k/P.k;j/ DQ1
.i;k/P

1
.k;j/˝Q2

.i;k/P
2
.k;j/CQ1

.i;k/P
1
.k;j/˝G2

.i;k/G
2
.k;j/

CG1
.i;k/G

1
.k;j/˝Q2

.i;k/P
2
.k;j/:

Proof Choose hj 2Hj DH 1
j ˝H 2

j . The image of hj under g.k;j/ is in

.A1
k ˚H 1

k ˚ 0/˝ .A2
k ˚H 2

k ˚ 0/� Ck :

In particular, we find

P.k;j/.hj / 2 .A
1
k ˝A2

k/˚ .A
1
k ˝H 2

k /˚ .H
1
k ˝A2

k/˚ 0�Ak :

For hj D h1
j ˝ h2

j the corresponding decomposition of P.k;j/.hj / is of the form�
P1
.k;j/.h

1
j /˝P2

.k;j/.h
2
j /;P

1
.k;j/.h

1
j /˝G2

.k;j/.h
2
j /;G

1
.k;j/.h

1
j /˝P2

.k;j/.h
2
j /; 0

�
:
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Note that Q.i;k/P.k;j/.hj / is the Hj DH 1
j ˝H 2

j –component of g.i;k/P.k;j/.hj /. The
components in the above presentation are thus mapped by Q.i;k/P.k;j/ to

Q1
.i;k/P

1
.k;j/.h

1
j /˝Q2

.i;k/P
2
.k;j/.h

2
j /; Q1

.i;k/P
1
.k;j/.h

1
j /˝G2

.i;k/G
2
.k;j/.h

2
j /;

G1
.i;k/G

1
.k;j/.h

1
j /˝Q2

.i;k/P
2
.k;j/.h

2
j / and 0;

respectively. This completes the proof of the lemma.

An interesting particular case of the above lemma is when one of the chain maps g1
.i;k/

or g1
.k;j/

is the identity, where we find

g1
.i;k/ D Id D) Q.i;k/P.k;j/G

1
.k;j/˝Q2

.i;k/P
2
.k;j/;

g1
.k;j/ D Id D) Q.i;k/P.k;j/ DG1

.i;k/˝Q2
.i;k/P

2
.k;j/;

respectively.

Lemma 2.6 With the above notation fixed, if i > k > l > j and g1
.i;k/

and g2
.l;j/

are
both the identity map, we find

Q.i;k/N.k;l/P.l;i/ D .Q
1
.k;l/P

1
.l;j//˝ .Q

2
.i;k/P

2
.k;l//:

Proof Following the proof of Lemma 2.5, for hj D h1
j ˝ h2

j 2H 1
j ˝H 2

j one finds

P.l;j/.hj /D .0;P.l;j/.h
1
j /˝ h2

j ; 0/ 2Al :

The image of this element of Al under g1
.k;l/
˝g2

.k;l/
is precisely

g1
.k;l/P

1
.l;j/.h

1
j /˝g2

.k;l/.h
2
j /� C 1

j ˝ .H
2

j ˚A2
j /:

On the other hand, the domain of C.i;k/ (where it is non-zero) is the subset

0˚ 0˚ .H 1
k ˝A2

k/˚ 0�Ak :

In other words, only the component of g1
.k;l /

P1
.l;j /

.h1
j /˝g2

.k;l /
.h2

j / which lands in
H 2

k ˝A2
k survives under the map Q.i;k / . The aforementioned component is precisely

Q1
.k;l/P

1
.l;j /.h

1
j /˝P2

.k;l/.h
2
j / and the image of this element under Q.i;k / is precisely

Q1
.k;l /

P1
.l;j /

.h1
j /˝Q2

.i;k /
P2

.k;l /
.h2

j /. This completes the proof of the lemma.
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3 A pair of exact triangles

3.1 The chain maps

Let K � Y denote a null-homologous knot and fix a Heegaard diagram

yH D .†; ˛D f˛1; : : : ; ˛gg; y̌ D fˇ1; : : : ; ˇg�1g/

for the knot complement Y nK . Set ˇ�D fˇ�1; : : : ; ˇ
�

g�1
; ��g, where ˇ�i is an isotopic

copy of the curve ˇi and �� is chosen so that the Heegaard triple .†;˛;ˇ�/ corresponds
to the three-manifold obtained from Y by �–surgery on the knot K . Choose the curves
�0 , �1 and �1 so that each pair of them has a unique transverse intersection point.
The orientation on K induces an orientation on the three curves �0 , �1 and �1 .

We assume that the intersection pattern of �0 , �1 and �1 is one of the two patterns
illustrated in Figure 1. This gives the Heegaard quadruples

H D .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ and H D .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/:

Note that there is an identification �CF.†;˛;ˇ�Iu; v; w/D �CF.†;˛;ˇ�Iu; v; w/ for
� 2 f0; 1;1g. Moreover, for �; ? 2 f0; 1;1g the complexes �CF.†;ˇ�;ˇ?Iu; v; w/
and �CF.†;ˇ�;ˇ?Iu; v; w/ are identical and the corresponding homology group is�HF.#g�1

.S1 �S2//. The top generator ‚D‚�;? in this Heegaard Floer homology
group may be used to define two holomorphic triangle maps (see Ozsváth and Szabó [12]
for more details on the definition of holomorphic triangle maps).

Definition 3.1 Associated with the Heegaard triples

H� DH nˇ� and H � DH nˇ�;

define the maps

�.H0/; �.H 0/W �CF.†;˛;ˇ1Iu; v; w/ �! �CF.†;˛;ˇ1Iu; v; w/;

�.H1/; �.H 1/W �CF.†;˛;ˇ1Iu; v; w/ �! �CF.†;˛;ˇ0Iu; v; w/;

�.H1/; �.H1/W �CF.†;˛;ˇ0Iu; v; w/ �! �CF.†;˛;ˇ1Iu; v; w/

to be the holomorphic triangle maps corresponding to the triply punctured Heegaard
triples H0 , H 0 , H1 , H 1 , H1 and H1 , respectively, defined using the top gen-
erators ‚�;? . Denote the induced maps in homology by ��.H�/ and ��.H �/ and
set

f�.K/ WD ��.H�/ and f�.K/ WD ��.H �/ for � 2 f0; 1;1g:

Algebraic & Geometric Topology, Volume 15 (2015)



3166 Eaman Eftekhary

3.2 Behaviour under Heegaard moves

The group �HF.†;˛;ˇ�Iu; v; w/, denoted by H�.K/, is independent of the particular
Heegaard diagram used for the definition. We have thus defined the maps

f0.K/; f0.K/W H1.K/!H1.K/ and f1.K/; f1.K/W H0.K/!H1.K/:

The definition of the map f0.K/ depends on a Heegaard triple .†;˛;ˇ1;ˇ1Iu; v; w/

associated with the knot K . Changing H to another Heegaard triple changes H1.K/

and H1.K/ by an isomorphism which is determined by the corresponding Heegaard
moves that change one Heegaard diagram to the other. We would now like to show that
the corresponding change in the triangle maps f0.H / and f0.H / respects the above
isomorphisms. This justifies using the names f0.K/ and f0.K/ for the above two
homomorphisms. The same statement would be true for f�.K/ and f�.K/.

Let f�g D f0; 1;1gn f�; ?g. Suppose that two marked Heegaard triples

H� D .†;˛;ˇ�;ˇ?;u; v; w/ and H 0� D .†
0;˛0;ˇ 0

�
;ˇ 0?;u

0; v0; w0/

correspond to the same knot K � Y for a pair .�; ?/ 2 f.1; 1/; .1; 0/g. Similarly, one
may consider the Heegaard diagrams H� and H 0� . Suppose furthermore that the maps

{�W �HF.†;˛;ˇ�Iu; v; w/ �! �HF.†0;˛0;ˇ 0
�
Iu0; v0; w0/;

{?W �HF.†;˛;ˇ?Iu; v; w/ �! �HF.†0;˛0;ˇ 0?Iu
0; v0; w0/

are the isomorphisms of the corresponding Heegaard Floer homology groups associated
with the Heegaard moves (and the change of almost complex structure) changing one
Heegaard diagram to the other.

Theorem 3.2 With the above notation fixed,

f�.H�/ ı {� D {? ı f�.H
0
�/ and f�.H�/ ı {� D {? ı f�.H

0
�/:

Proof The proof consists of some standard steps in Heegaard Floer theory, which are
sketched below for the Heegaard moves.

Note that the first Heegaard triple may be changed to the second Heegaard triple by a
sequence of Heegaard moves, supported in the complement of the marked points, of
the following types:

� Changing the almost complex structure on the surface †.

� Isotopies of the curves in ˛ which are supported away from a neighbourhood U

of ��\�? containing the marked points u, v and w , so that the curves in each
collection remain disjoint.
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� Handle slides among the curves in ˛ supported away from U .

� Simultaneous handle slides among ˇ� n f��g and ˇ? n f�?g supported away
from U .

� Stabilization and destabilization of the Heegaard triple away from U .

The independence of the induced map in homology from the choice of the path of almost
complex structures follows the corresponding argument of Ozsváth and Stipsicz [10].
Corresponding to each one of the above Heegaard moves, we obtain a holomorphic
square map in the level of chain complexes, comprising of a chain homotopy map
between the compositions of the chain maps we are interested in. More precisely,
performing an isotopy or a handle slide in ˛ would result in a new set of simple closed
curves, which may be denoted by ˛0 , by slight abuse of notation. The punctured
Heegaard 4–tuple

.†;˛;˛0;ˇ�;ˇ?Iu; v; w/

determines a homomorphism

ŷ W �CF.†;˛;˛0Iu; v; w/˝ �CF.†;˛0;ˇ�Iu; v; w/˝ �CF.†;ˇ�;ˇ?Iu; v; w/

�! �CF.†;˛;ˇ?Iu; v; w/;

which is defined by counting holomorphic squares with Maslov index �1. Using the
top closed elements in the complexes �CF.†;˛;˛0Iu; v; w/ and �CF.†;ˇ�;ˇ?Iu; v; w/,
we obtain a corresponding map

ˆW �CF.†;˛0;ˇ�Iu; v; w/ �! �CF.†;˛;ˇ?Iu; v; w/:

Let us denote the differentials of the chain complexes

�CF.†;˛0;ˇ�Iu; v; w/ and �CF.†;˛;ˇ?Iu; v; w/

by d˛0;ˇ� and d˛;ˇ?
, respectively. The Heegaard triples .†;˛;˛0;ˇ�/, .†;˛;˛0;ˇ?/

determine chain equivalences

{.˛;˛0;ˇ�/W �CF.†;˛0;ˇ�Iu; v; w/ �! �CF.†;˛;ˇ�Iu; v; w/;

{.˛;˛0;ˇ?/W �CF.†;˛0;ˇ?Iu; v; w/ �! �CF.†;˛;ˇ?Iu; v; w/:

Moreover, we obtain holomorphic triangle maps associated with the Heegaard triples
.†;˛;ˇ�;ˇ?/ and .†;˛0;ˇ�;ˇ?/, which are denoted by

�.˛;ˇ�;ˇ?/W �CF.†;˛;ˇ�Iu; v; w/ �! �CF.†;˛;ˇ?Iu; v; w/;

�.˛0;ˇ�;ˇ?/W �CF.†;˛0;ˇ�Iu; v; w/ �! �CF.†;˛0;ˇ?Iu; v; w/:
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Considering different types of degenerations for a square of Maslov index 0, we obtain
the relation

d˛ˇ?
ıˆCˆ ı d˛0ˇ� D {.˛;˛0;ˇ?/ ı�.˛;ˇ�;ˇ?/C�.˛

0;ˇ�;ˇ?/ ı {.˛;˛0;ˇ�/:

The induced relation in homology gives the claim for the invariance of ��.H�/ under
handle slides in ˛ . The corresponding argument for ��.H�/ is done by changing the
marked points.

The invariance under handle slides among the ˇ–curves is proved similarly, and we
only highlight the important modifications. Let ˇ 0

�
and ˇ 0? be obtained from ˇ� and ˇ?

by handle slides which correspond to a handle slide in y̌. We thus have the following
square of chain maps:

�CF.†;˛;ˇ�Iu; v; w/
�.˛;ˇ�;ˇ?/

//

{�.˛;ˇ�;ˇ
0
�/

��

�.˛;ˇ�;ˇ
0
?/

))

�CF.†;˛;ˇ?Iu; v; w/

{�.˛;ˇ?;ˇ
0
?/

���CF.†;˛;ˇ 0
�
Iu; v; w/

�.˛;ˇ 0�;ˇ
0
?/
// �CF.†;˛;ˇ 0?Iu; v; w/;

while the quadruples .†;˛;ˇ�;ˇ 0�;ˇ
0
?Iu; v; w/ and .†;˛;ˇ�;ˇ?;ˇ 0?Iu; v; w/ deter-

mine a pair of holomorphic square maps

ˆ1; ˆ2W
�CF.˛;ˇ�Iu; v; w/ �! �CF.˛;ˇ 0?Iu; v; w/:

Considering different possible degenerations of holomorphic squares of Maslov index 0

gives the relations

d˛ˇ0? ıˆ1Cˆ1 ı d˛ˇ� D �.˛;ˇ
0
�
;ˇ 0?/ ı {.˛;ˇ�;ˇ

0
�
/C�.˛;ˇ�;ˇ

0
?/;

d˛ˇ0? ıˆ2Cˆ2 ı d˛ˇ� D {.˛;ˇ?;ˇ
0
?/ ı�.˛;ˇ�;ˇ?/C�.˛;ˇ�;ˇ

0
?/:

If we set ˆDˆ1Cˆ2 we thus find

d˛ˇ0? ıˆCˆ ı d˛ˇ� D �.˛;ˇ
0
�
;ˇ 0?/ ı {.˛;ˇ�;ˇ

0
�
/C {.˛;ˇ?;ˇ

0
?/ ı�.˛;ˇ�;ˇ?/;

which completes the proof of the invariance under handle slides of the ˇ–curves
for ��.H�/. The argument for �.H�/ is completely similar.

The proof of the invariance under stabilization and destabilization follows the general
argument of [10] as well.

Remark 3.3 This theorem should be compared with the naturality theorem of Ozsváth
and Stipsicz [10].
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Lemma 3.4 With the above notation fixed, the triangles

(3)

H0.K/

f0.K / $$

H1.K/
f1.K /

oo

H1.K/

f1.K /

::

and

H0

f0.K / ""

H1.K/
f1.K /

oo

H1.K/
f1.K /

::

are both exact.

Proof The more general forms of exact triangles associated with pointed Heegaard
diagrams are discussed by Alishahi and Eftekhary [1, Section 9], using a generalization
of Lemma 4.4 of Ozsváth and Szabó [13]. The arguments are rather standard and
are omitted from the paper. The only remark is that if the intersection pattern of
�0 , �1 and �1 follows the left-hand side of Figure 1, the contributing holomorphic
triangles for .†;ˇ0;ˇ1;ˇ1Iu; v; w/ come in cancelling pairs, allowing us to follow
the standard arguments. For the Heegaard triple .†;ˇ0;ˇ1;ˇ1Iu; v; w/, however,
there is a unique contributing triangle class, which corresponds to the small triangle
bounded between the three curves, which implies that the corresponding triangle map
takes ‚0;1˝‚1;1 to ‚0;1 . Nevertheless, the position of the punctures in this case
implies that the map �.˛;ˇ0;ˇ1Iu; v; w/ that is defined using ‚0;1 is trivial (unlike
�.˛;ˇ1;ˇ0Iu; v; w/). From here, the rest of the argument is standard.

By exactness of the triangles in (3), Ker.f1.K// is isomorphic to Coker.f0.K// while
Ker.f1.K// is isomorphic to Coker.f0.K//. Furthermore, the first isomorphism is
induced by the natural chain map f1.K/ while the second isomorphism is induced
by f1.K/. Let �.K/W H0.K/ ! H1.K/ denote a map which has the same rank
as f1.K/ and induces the inverse of the isomorphism

f1.K/W Ker.f1.K// �! Coker.f1.K//;

while �.K/W H0.K/!H1.K/ denotes a map which has the same rank as f1.K/ and
induces the inverse of the isomorphism

f1.K/W Ker.f1.K// �! Coker.f1.K//:

The choice of the maps �.K/ and �.K/ are of course not unique. If

�1 D �.˛;ˇ0;ˇ1Iu; v; w/ and �0 D �.˛;ˇ1;ˇ1Iu; v; w/

denote the triangle maps associated with the punctured Heegaard triples

.†;˛;ˇ0;ˇ1Iu; v; w/ and .†;˛;ˇ1;ˇ1Iu; v; w/;
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as above, the map �.K/ is in fact the correction term, in the sense of Lemma 2.4,
associated with the sequence (or, in fact, graph of complexes)

�CF.†;˛;ˇ0Iu; v; w/
�1
��! �CF.†;˛;ˇ1Iu; v; w/

�0
�! �CF.†;˛;ˇ1Iu; v; w/:

Similarly, �.K/ corresponds to the sequence

�CF.†;˛;ˇ0Iu; v; w/
�1
��! �CF.†;˛;ˇ1Iu; v; w/

�0
�! �CF.†;˛;ˇ1Iu; v; w/;

where

�1 D �.˛;ˇ0;ˇ1Iu; v; w/ and �0 D �.˛;ˇ1;ˇ1Iu; v; w/:

3.3 Some properties of the maps f�.K / and f�.K /

Our first observation is that changing the orientation of the knot K and, correspondingly
that of K1 and K0 , corresponds to changing the markings u, v , w with u, v , w
in Figure 1. Suppose that .†;˛;ˇI z1; z2/ represents K� , meaning that an oriented
longitude for K� is constructed from gluing an oriented arc on † from z1 to z2 in
the complement of ˛ and an oriented arc on † from z2 to z1 in the complement
of ˇ . Then .†;˛;ˇI z2; z1/ is a Heegaard diagram for �K� (the knot K� with the
reverse orientation) while .�†;ˇ;˛I z2; z1/ is a Heegaard diagram for K� . The chain
complexes associated with the above three Heegaard diagrams are identical. Heegaard
moves give chain homotopy equivalences

��.K/W �CF.†;˛;ˇI z1; z2/ �! �CF.�†;ˇ;˛I z2; z1/D �CF.†;˛;ˇI z1; z2/:

These chain homotopy equivalences induce the involutions

��.K/W H�.K/ �!H�.K/; � 2 f0; 1;1g:

In terms of these isomorphisms,

(4)

f0.K/D �1.K/ ı f0.K/ ı �1.K/;

f1.K/D �0.K/ ı f1.K/ ı �1.K/;

f1.K/D �1.K/ ı f1.K/ ı �0.K/:

Note however, that the equality �.K/ D �1.K/�.K/�0.K/ is only satisfied for the
induced maps from Ker.f1.K// to Coker.f0.K//.
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The exactness of the sequences in (3) implies that, in appropriate decompositions

(5)

H0.K/D
H0.K/

Ker.f1.K//
˚Ker.f1.K//DWA1.K/˚A1.K/;

H1.K/D
H1.K/

Ker.f0.K//
˚Ker.f0.K//DWA0.K/˚A1.K/;

H1.K/D
H1.K/

Ker.f1.K//
˚Ker.f1.K//DWA1.K/˚A0.K/;

we have

f�.K/D

�
0 0

Ia�.K / 0

�
;

where a�.K/ denotes the rank of A�.K/ for every � 2 f0; 1;1g. In this basis we may
present the matrices ��.K/ as

��.K/D

�
A�.K/ B�.K/

C�.K/ D�.K/

�
; � 2 f0; 1;1g:

The map B0.K/ corresponds to the induced map

�0.K/W Ker.f1.K// �!
H0.K/

Ker.f1.K//
:

The decomposition H0.K/DA1.K/˚A1.K/ may be modified using a change of
basis of the form PX D

�
I
�X

0
I

�
, which does not change the block presentations of the

maps f1.K/ and f1.K/. In the new basis, �0.K/ has the following presentation:

�0.K/D

�
I 0

�X I

��
A0.K/ B0.K/

C0.K/ D0.K/

��
I 0

�X I

�
D

�
A0.K/�B0.K/X B0.K/

? �XB0.K/CD0.K/

�
If B0.K/ is injective we may thus assume that D0.K/D0, while if B0.K/ is surjective
we may assume that A0.K/D 0. With similar reasoning, if B�.K/ is injective we may
assume that D�.K/D 0, while if B�.K/ is surjective we may assume that A�.K/D 0.

In the above decompositions for H�.K/, the map �.K/ WH0.K/!H1.K/ takes the
form

�.K/D

�
X I

Z Y

�
;

since the induced map from A1.K/�H0.K/ to A1.K/�H1.K/ is the inverse of
the map induced by f1.K/, ie the identity. Moreover, since the rank of �.K/ is the
same as the rank of f1.K/, we conclude that Z D YX . Applying the change of basis
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PY on H0.K/ and the corresponding change of basis PX on H1.K/, �.K/ takes
the form �

I 0

�Y I

��
X I

YX Y

��
I 0

�X I

�
D

�
0 I

0 0

�
:

It is thus possible to choose the above decompositions so that �.K/D
�

0
0

I
0

�
. If this is

the case, the 2� 2 presentation of �1.K/�.K/�0.K/ will be of the form

�1.K/�.K/�0.K/D

�
M I

Q P

�
and, since the ranks of �.K/ and �.K/ are the same, we find QD PM .

3.4 Relative Spinc structures

The vector spaces H1.K/ and H1.K/ are naturally decomposed by relative Spinc

classes in

Spinc.Y;K/D Spinc.Y1.K/;K1/D Z;

where the identification with Z is made using the first Chern class (divided by 2).
Similarly, the relative Spinc classes corresponding to K0 are identified with 1

2
CZ.

Thus,

H�.K/D
M
i2Z

H�.K; i/; � 2 f1;1g; and H0.K/D
M

j2 1
2
CZ

H0.K; j /:

Note that ��.K/ takes H�.K; i/ isomorphically to H�.K;�i/ for � D 0; 1;1.

Let H0 D .†;˛;ˇ1;ˇ1Iu; v; w/ be a Heegaard triple used for defining f0.K/. If
x 2 T˛ \Tˇ1

and y 2 T˛ \Tˇ1 are two generators connected by a triangle class
� 2 �2.x; ‚1;1;y/ with nu.�/ D nw.�/ D 0 (as observed in the surgery exact
sequences of [14]), then c1.su;w.x//D c1.su;v.y//. This observation, together with (4)
imply that the maps f0.K/ and f0.K/ are decomposed as

f0.K/D
M
i2Z

f0.K; i/; f0.K; i/W H1.K; i/ �!H1.K; i/;

f0.K/D
M
i2Z

f0.K; i/; f0.K; i/W H1.K; i/ �!H1.K; i/:

The map f1.K/W H0.K/! H1.K/ drops the Spinc grading by 1
2

, while the map
f1.K/W H1.K/ ! H0.K/ increases the Spinc grading by 1

2
. The corresponding
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decompositions are thus

f1.K/D
M
i2Z

f1.K; i/; f1.K; i/W H0

�
K; i � 1

2

�
�!H1.K; i/;

f1.K/D
M
i2Z

f1.K; i/; f1.K; i/W H0

�
K; i C 1

2

�
�!H1.K; i/:

In particular, for a knot K of genus g the maps f1.K;g/ and f1.K;�g/ are trivial,
since H0

�
K;gC 1

2

�
DH0

�
K;�g� 1

2

�
D 0 by [2, Theorem 3.2]. Moreover,

f1.K/D
M
i2Z

f1.K; i/; f1.K; i/W H1.K; i/ �!H0

�
K; i � 1

2

�
;

f1.K/D
M
i2Z

f1.K; i/; f1.K; i/W H1.K; i/ �!H0

�
K; i C 1

2

�
:

Let us now assume that .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ is one of the Heegaard quadruples
illustrated in Figure 1. If we drop the marked point u (resp. the marked point w ) from
the Heegaard diagram, associated with either of the two resulting punctured Heegaard
quadruples we obtain a triangle of chain maps:

�CF.†;˛;ˇ1I v;w/

�.˛;ˇ1;ˇ0Iv;w/ ))

�CF.†;˛;ˇ1I v;w/
�.˛;ˇ1;ˇ1Iv;w/

oo

�CF.†;˛;ˇ0I v;w/

�.˛;ˇ0;ˇ1Iv;w/

55

�CF.†;˛;ˇ1Iu; v/

�.˛;ˇ1;ˇ1Iu;v/ ))

�CF.†;˛;ˇ0Iu; v/
�.˛;ˇ0;ˇ1Iu;v/

oo

�CF.†;˛;ˇ1Iu; v/
�.˛;ˇ1;ˇ0Iu;v/

55

The domain of any holomorphic triangle which contributes to �.˛;ˇ1;ˇ1I v;w/ has
coefficient 1 precisely at one of the base points u and u, and coefficient 0 at the other
one. In other words,

�.˛;ˇ1;ˇ1I v;w/D �.˛;ˇ1;ˇ1Iu; v; w/C�.˛;ˇ1;ˇ1Iu; v; w/

D �.˛;ˇ1;ˇ1Iu; v; w/C�.˛;ˇ1;ˇ1Iu; v; w/:

A similar argument implies that

�.˛;ˇ0;ˇ1Iu; v/D �.˛;ˇ0;ˇ1Iu; v; w/C�.˛;ˇ0;ˇ1Iu; v; w/:
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We thus obtain the following two exact triangles, respectively:

(6)

H1.K/

%%

H1.K/
f0Cf0

oo

�HF.Y0.K//

99
H1.K/

##

H0.K/
f1Cf1

oo

�HF.Y /

;;

where f� D f�.K/ and f� D f�.K/. The exact triangles in (3) and (6) may be used to
deduce the following conclusions regarding the ranks of the chain maps:

(7)
rnk.f�.K//D rnk.f�.K//D 1

2
.h1.K/C h1.K/C h0.K/� 2h�.K//;

rnk.f�.K/C f�.K//D
1
2
.h1.K/C h1.K/C h0.K/�y�.K/� h�.K//;

where h�.K/ denotes the rank of H�.K/ and y�.K/ denotes the rank of �HF.Y�.K//.

4 Combinatorial presentation of the exact triangles

4.1 Heegaard diagrams for knot complements

The aim of this subsection is to construct Heegaard diagrams of particular type asso-
ciated with a knot K inside a three-manifold Y , so that the chain complexes C�.K/

and the chain maps f�.K/ and f�.K/ may all be described combinatorially.

Let us assume that a framed longitude y� for K is given as a simple closed curve on the
torus boundary of Y n nd.K/. Together with the meridian y� of the knot K , y� gives a
parametrization of the boundary of Y n nd.K/. It also determines the three-manifold
Yy�.K/ obtained by surgery on K . The curves y� and y� thus give Y n nd.K/ the
structure of a bordered three-manifold. As such, we remind the reader that a nice
Heegaard diagram

.†; ˛D f˛1; : : : ; ˛gg; y̌ D fˇ1; : : : ; ˇg�1g; �; �I z/

for the bordered three-manifold determined by .Y;K/ and y� consists of a surface †
of genus g , a g–tuple of disjoint simple closed curves ˛, a .g�1/–tuple of disjoint
simple closed curves y̌, a pair of simple closed curves � and � disjoint from y̌ which
intersect in a single transverse point, and a marked point z in the complement of all
curves in †. The data satisfies the following conditions:

� The diagram .†;˛; y̌/ corresponds to Y n nd.K/, while .†;˛; y̌ [ f�g/ and
.†;˛; y̌ [ f�g/ correspond to the three-manifolds Y and Yy�.K/, respectively.
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� All domains in † n .˛[ y̌[ f�; �g/ are either bigons, triangles or rectangles,
except for the domain Dz containing the marked point z , which is a .2NC1/–
gon for some integer N . In particular, Dz contains the single intersection point
of � and � as a corner.

� Every curve ˇi 2
y̌ contains at least one of the 2N C 1 edges of Dz .

Nice Heegaard diagrams exist by Lipshitz, Ozsváth and Thurston [6, Proposition 8.2].
However, two remarks are necessary here. First, note that in the aforementioned
proposition the roles of the ˛– and ˇ–curves is the opposite of our convention. In
particular, the curves � and � are ˛–curves in [6]. The second point is that the third
condition above is a priori not guaranteed by [6, Proposition 8.2]. However, if ˇi

does not contain any of the edges of Dz , all neighbouring regions of ˇi would be
bigons or rectangles. Since ˇi is homotopically non-trivial, a computation of the
Euler characteristic for the neighbourhood of ˇi (the union of all regions which are
neighbours of ˇi/ implies that all neighbouring regions of ˇi are rectangles. However,
this in turn implies that, for some j ¤ i , ǰ is parallel (and thus homologous) to ˇi , a
contradiction. Thus, the third condition is also guaranteed by [6, Proposition 8.2].

The picture on the top of Figure 3 describes a surface �†1 of genus 4. The opposite
edges of the rectangle are identified and the pairs of yellow and red circles are also
glued together (using a horizontal reflection). The pair of green circles is identified
using a vertical reflection. The solid red curves are labelled � and �, which meet in a
single transverse point O . The green domains glue together and form a disk D on �†1 .
We set †1 D

�†1 n Int.D/. The dashed blue curves in †1 correspond to the ˇ–curves,
while the solid black curves correspond to the ˛–curves. The ˛– and ˇ–curves may
have boundary in @D .

Lemma 4.1 Let K be a knot inside a three-manifold Y together with an arbitrary fram-
ing. Then there is a nice Heegaard diagram .†;˛; y̌ [ f�; �g; z/ for the corresponding
bordered three-manifold with the following properties:

� †D†1q@†1D@†2
†2 , where �†1 is the surface of genus 4 illustrated in Figure 3

and †2 is a surface with one boundary component.

� The arcs in ˛\†1 are identified with the solid black curves in Figure 3, while
the arcs in y̌ \†1 are identified with the dashed blue curves in Figure 3.

� The curves � and � correspond to the bold red curves on †1 .

� The domains on †1 which contain the bold markings belong to the connected
component Dz in † n .˛[ y̌[�[�/ which contains z .
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�

�

WA X D

EYB

C

O

Z

�

�

�0 D ���

�

double destablization

Figure 3: Special Heegaard diagrams for knot complements are the union
of the genus-4 surface †1 with boundary illustrated as the white part of
the figure on top with another surface with boundary. The curves � and �
are illustrated as bold red curves, while ˛ \†1 and y̌ \†1 are denoted
by black curves and dashed blue curves, respectively. The intersection of �
and � is denoted by O and some of the intersection points in ˛\ .�[�/ are
labelled (by A , B , C , D , E , X , Y , Z and W ). Double destablization and
a change in the framing (equivalently, in the parametrization of the boundary
torus) gives the two Heegaard diagrams on the bottom of the figure.
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Proof Destabilization on †1 gives the equivalent Heegaard diagram, which locally
looks like the surface on the lower left part of Figure 3. Changing � to �0 D �� �
in the aforementioned diagram corresponds to changing the parametrization of the
boundary. It is thus enough to show that every bordered three-manifold with torus
boundary admits a nice Heegaard diagram which locally looks like the lower right side
of Figure 3, so that every domain which meets the green region is either a bigon, a
rectangle or contains the puncture. If this is the case, every domain in the Heegaard
diagram illustrated on the upper side of Figure 3 is either a bigon, a triangle, a rectangle
or contains the puncture. In other words, the diagram on the upper side of Figure 3 is
nice.

Start with a nice bordered Heegaard diagram for Y nnd.K/ with parametrization given
by �0 and �, which exists by [6, Proposition 8.2]. Denote the intersection point of
�0 and � by O . Three of the four quadrants around O are triangles, while the last
quadrant contains the marked point z . There is thus some curve ˛i in ˛ which cuts
�0 in the points D and A close to O and the curve � in X and W (close to O ),
so that the picture around O on † is the one illustrated in part (a) of Figure 4. We
may assume for simplicity that i D g . The three triangles are thus ŒDOX �, ŒXOA�

and ŒAOW �. There is a path  disjoint from ˇ0[f�
0; �g which starts from the interior

of the triangle ŒAOW � and ends at the marked point z and passes only through the
rectangles. One may add a 1–handle to † with attaching circles placed at the endpoints
of  . The core of this 1–handle may be added to ˛ as the curve ˛gC1 and the arc 
may be completed to a simple closed curve ˇg by attaching its endpoints with an arc
going over the 1–handle. This gives a stabilization of the previous Heegaard diagram.
We may then handle slide ˛gC1 over ˛g to obtain the Heegaard diagram illustrated in
part (b) of Figure 4.

Next, we may add a 1–handle to the Heegaard diagram with attaching circles placed
in the middle of the arcs ŒOX � and ŒOW �. Denote the arc connecting the above two
midpoints by ı . The curve �0 will be renamed ˇgC1 , the core of this handle will
be replaced for �0 , the curve � will be modified by deleting the arc ı from it and
replacing a corresponding arc which travels over the 1–handle, and, finally, the arc ı
is completed to a simple closed curve ˛gC2 using the 1–handle. The new Heegaard
diagram is illustrated in part (c) of Figure 4. This new Heegaard diagram corresponds
to the same bordered three-manifold.

Next, we attach another 1–handle to the Heegaard diagram. The attaching circles are
placed on � on the two sides of the arc bounded between the intersection of ˛gC1

and � and the intersection of �0 and �. The aforementioned arc may be completed (by
adding to it a segment which travels over the 1–handle) to a simple closed curve, which
will be replaced for �. The remainder of (the old) � may also be completed (again by
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�0�

�0
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W
O

˛g



�0

�
�

�0

�

�0

�0

(a) (b) (c)

(d) (e) (f)

Figure 4: The ˛–curves are denoted by solid black lines, the ˇ–curves are
the dashed blue lines, and the curves �0 and � are denoted by bold red lines.
Dz is the domain containing bold circles. (a) In a nice Heegaard diagram,
three of the quadrants around O D�0\� are triangles. Use an arc  disjoint
from y̌ [ f�0; �g to connect the triangle ŒAOW � to z . The closest ˛–curve
to O is ˛g . (b) Attach a handle at the endpoints of  , complete  to a
ˇ–curve and slide the core of the handle over ˛g to produce a new ˛–curve.
(c) Attach a handle on � at the two sides of O (the attaching circles are
painted yellow). Rename �0 to ˇgC1 and replace the core of the handle for
�0 . Push � above the handle and complete the segment on �0 containing O

to ˛gC2 . (d) Attach a handle on � at the points illustrated by purple circles.
The arcs on � connecting the purple attaching circles to the yellow attaching
circles may be completed to a closed curve, which will be replaced for � . The
complement of these two arcs on initial � may be completed to a ˇ–curve.
The core of the 1–handle slides over ˛g to produce the new ˛–curve. Finally,
a finger move modifies ˛gC2 . (e)–(f) Re-draw the subsurface of genus 2

around the intersection of �0 and � which was shaded in part (d).

adding to it a segment which travels over the 1–handle) to a simple closed curve, which
will be denoted by ˇgC2 . One may slide the core of the new 1–handle over ˛gC1

to obtain ˛gC3 . Finally, we apply a finger move isotopy to ˛gC2 to create a pair of
intersection points between ˛gC2 and ˇgC2 . The new Heegaard diagram (which still
corresponds to the same bordered three-manifold) is illustrated in part (d) of Figure 4
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and a subset of the diagram which lives on a subsurface of genus 2 is re-drawn in
part (e) of the same picture, where a 7–gon and a pair of pentagons are painted orange,
green and purple, respectively. One may then identify the aforementioned subsurface
of genus 2 with the surface illustrated in part (f). To illustrate the correspondence, the
domains corresponding to the 7–gon and the two pentagons are painted in the new
picture with the relevant colour. This completes the proof of the lemma.

Definition 4.2 For every knot K � Y and every framing � for K , the Heegaard
diagrams of the type constructed in Lemma 4.1 are called special Heegaard diagrams.

4.2 A combinatorial description of f�.K / and f�.K /

Suppose that .Y;K/ denotes a knot K inside a homology sphere Y . Let us assume
that

.†; ˛D f˛1; : : : ; ˛gg; y̌ D fˇ1; : : : ; ˇg�1g; �; �; z/

is a special Heegaard diagram for the bordered three-manifold determined by a zero-
framed longitude for K inside Y . The picture around the intersection point O of the
simple closed curves � and � is illustrated on the top of Figure 3.

We introduce three auxiliary curves, denoted by �1 , �0 and �1 , respectively, as in
the Heegaard diagram illustrated in Figure 5. The Heegaard diagrams

H� D .†;˛; y̌ [ f��gIu; v; w/ and H � D .†;˛; y̌ [ f��gIu; v; w/

are (triply punctured) diagrams that correspond to the knot K��Y�.K/ for �2f0; 1;1g
(note that two of the three punctures are placed in the same connected component
of † n .˛[ y̌ [ ��/ for � 2 f0; 1;1g). The above claim is checked by computing
the intersection numbers of each �� with the simple closed curves � and �, since
the curves are disjoint from y̌. Each pair of these three curves intersect each other
exactly once. Each of the three diagrams H� , H � , � 2 f0; 1;1g, is a nice Heegaard
diagram and they determine the chain complexes C� D �CF.H�/D �CF.H �/. Denote
the differential of the complex C� by d� for � 2 f0; 1;1g. The chain maps f�.K/ and
f�.K/ have a simple combinatorial description, which is discussed in the remainder of
this section.

Fix the labelling of the intersection points of �0 , �1 , �1 , ˇg�1 and ˇg�2 with the
curves in ˛ as in Figure 5. Let

fP0g D �1\�1; fP1g D �0\�1 and fP1g D �0\�1:

The Heegaard triple

.†;˛; y̌ [ f�1g; y̌ [ f�1gIu; v; w/
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Figure 5: The curves in ˛ are denoted by solid black lines while the curves
in y̌ are denoted by dashed blue lines. Three simple closed curves �0 , �1

and �1 are denoted by bold red, purple and green lines, respectively. Six
marked points u , v , w , u , v and w are introduced close to the intersection
points of these three curves. The intersection points on ˇg�1 , �1 and �1

are labelled. Associated with i � 3 there is a pentagon with vertices at P0 ,
r3 , p2 , pi and qi . For i D 3 the pentagon is shaded orange in the picture.

determines a combinatorial triangle map Nf0W C1 ! C1 as follows. Let ˇg�1 be
the ˇ–curve which contains the intersection points p1;p2; : : : ;pn in Figure 5. Let
x D .x1; : : : ;xg/ be a generator of C1 with xi 2 ˛�.i/ \ ˇi for some � 2 Sg ,
i D 1; : : : ;g� 1, and xg 2 �1 . Define

Nf0.x/ WD

�
.x1; : : : ;xg�1; si/ if xg D ri ; i D 1; 2;

0 otherwise.
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Similarly, the Heegaard triple

.†;˛; y̌ [ f�1g; y̌ [ f�1gIu; v; w/

determines a combinatorial triangle map f0W C1! C1 defined by

f0.x/ WD

8<:
.x1; : : : ;xg�2;p2; qi/ if .xg�1;xg/D .pi ; r3/; i � 3;

.x1; : : : ;xg�2;p1; qi/ if .xg�1;xg/D .pi ; r2/; i � 3;

0 otherwise.

The Heegaard triples

.†;˛; y̌ [ f�0g; y̌ [ f�1gIu; v; w/ and .†;˛; y̌ [ f�0g; y̌ [ f�1gIu; v; w/;

correspond to the combinatorial triangle maps f1 , Nf1W C0! C1 . For a generator
x D .x1; : : : ;xg/, these two maps are defined by setting

Nf1.x/D

�
.x1; : : : ;xg�1; r1/ if xg D t0;

0 otherwise,

f1.x/D

�
.x1; : : : ;xg�2;p3; r3/ if .xg�1;xg/D .p2; t1/;

0 otherwise.

Lemma 4.3 With the above notation fixed, f0 ıf1 D Nf0 ı
Nf1 D 0.

Proof This is trivial from the combinatorial definitions of f0 , Nf0 , f1 and Nf1 .

Let

† n .˛[ y̌[�0[�1/D

� Na
iD1

Di

�
[Du[Dv [Dw;

where D� are the regions in the complement of these curves, with Du , Dv and Dw

the regions containing the marked points u, v and w , respectively. We set

ˇ0
i D ˇi ; i D 1; : : : ;g� 1; and ˇ D fˇ1; : : : ; ˇgg D

y̌[ f�0g:

The construction of the Heegaard diagram implies the following properties:

� The regions D2; : : : ;DN are rectangles or bigons, while D1 is a pentagon.

� One of the corners of the pentagon D1 is the unique intersection point P D

P1 D �0\�1 , and the three punctures u, v and w are placed on three of the
quadrants around P (other than the quadrant corresponding to D1 ).

� All the neighbours of D1 (the regions having an edge in common with D1 ) are
punctured.

� Each ˇ–curve is adjacent to at least one of the punctured domains.
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Figure 6: The region around the pentagon D1 is illustrated on the left-hand
side. The punctured domains are marked by solid circles inside them. The
curves in ˇ D ˇ0 ,  D ˇ1 and ˛ have colours orange, pink and black,
respectively. The pentagon is changed to a hexagon in the new Heegaard
diagram, which is coloured red. The initial pentagon is the union of the
hexagon D1 with the triangle R1 . The right-hand side illustrates the labelling
near the intersection of ˇi with its Hamiltonian isotope i .

The edges of the pentagon are five arcs: two of them are on �0 and �1 , two of them
are on the ˛–curves and one of them is on a ˇ–curve, which is assumed to be ˇ1 .
The ˛–curve which cuts �0 in a corner of the pentagon is assumed to be ˛1 and the
other one is assumed to be ˛2 . Denote the vertices of the pentagon by P DQ1 , Q2 ,
Q3 , Q8 and Q6 in counter-clockwise order, so that Q1 is the intersection point of
�0 and �1 , Q2 is on the intersection of ˛1 with �0 , and Q6 is the intersection point
of �1 with ˛2 .

For i D 2; : : : ;g� 1, let ˇ1
i D i be a parallel copy of ˇi which is drawn very close

to ˇi and is slightly pushed to one of the punctured domains adjacent to ˇi by a finger
move, so that a pair of intersection points (denoted by Xi and Yi ) is created between
these two curves (see the right-hand side picture in Figure 6). Let us assume that
the small positively oriented disk connecting these two intersection points (with ˇi

on the left and i on the right) goes from Xi to Yi . In order to define 1 , choose a
parallel copy of ˇ1 and push it slightly over the intersection point of ˇ1 with ˛1 to
obtain 1 , so that a pair of cancelling intersection points X1 and Y1 is created between
1 and ˇ1 on the two sides of the intersection point Q3 of ˛1 and ˇ1 , and so that 1

slightly enters the punctured domain next to the ˇ–edge of the pentagon. The local
picture around D1 looks like Figure 6, where this procedure is pictured. Let g be the
curve �1 and set ˇ1 D  D f1; : : : ; gg.
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Figure 7: The region around the hexagon D1 is illustrated. The labelling
of the intersection points in the Heegaard diagram, as well as the labelling
of some of the connected components in the complement of the curves, is
illustrated. The curves in ˇ1 , ˇ1 and ˛ have colours pink, green and black,
respectively.

In order to construct ˇ1i for i D 2; : : : ;g � 1, choose a parallel copy of  i D ˇ1
i

and, as this parallel copy enters the bigon Ti , push it into the neighbouring punctured
domain by a finger move. The curve ˇ1

1
is constructed as illustrated in Figure 7. We

set
ˇ1 D fˇ

1
1 ; : : : ; ˇ

1
g�1; �1g:

Lemma 4.4 The punctured Heegaard diagrams

.†;˛;ˇ?;ˇ�Iu; v; w/ and .†;˛;ˇ?;ˇ�Iu; v; w/

for .?; �/ 2 f.0; 1/; .1;1/g do not contain any non-trivial, positive, triply periodic
domains.
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Proof Let D denote a positive, triply periodic domain in the Heegaard diagram
.†;˛;ˇ1;ˇ1Iu; v; w/. Thus,

@DD
gX

iD1

ai˛i C

g�1X
iD1

biˇ
1
i C

g�1X
iD1

ciˇ
1
i C b�1C c�1:

Let Di denote the doubly periodic domain with @Di D ˇ
1
i �ˇ

1
i for i D 1; : : : ;g� 1.

Setting D0 D D�
Pg�1

iD1
biDi , we find

@D0 D
gX

iD1

ai˛i C

g�1X
iD1

.ci � bi/ˇ
1
i C b�1C c�1:

Since the left-hand side is trivial in H1.Y n nd.K/IZ/, so is the right-hand side.
This implies that c D�b . Let D0 denote the triply periodic domain in the punctured
Heegaard triple .†;ˇ0;ˇ1;ˇ1Iu; v; w/ with @D0D�1��0��1 . For D00DD0�bD0

we thus obtain

@D00 D
gX

iD1

ai˛i C

g�1X
iD1

.ci � bi/ˇ
1
i C b�0:

In other words, D00 is a doubly periodic domain for the nice (and hence weakly
admissible) Heegaard diagram

.†;˛;ˇ1[f�0g n f�1gIu; v; w/:

The coefficients of D00 and all Di , i D 1; : : : ;g� 1, over the small triangle bounded
between �0 , �1 and �1 is zero. In other words, the coefficient of

DD D00C bD0C

g�1X
iD1

biDi

over this small triangle is b , which should thus be non-negative. Choosing this triangle
sufficiently small we may thus assume that the total area of bD0 is negative unless bD0.

One may choose the area form on the surface † so that all doubly periodic domains
for the punctured Heegaard diagram .†;˛;ˇ1 [ f�0g n f�1gIu; v; w/ and all Di ,
i D 1; : : : ;g� 1, have zero total area. However, this implies that the total area of D is
the same as the total area of bD0 , which is at most zero. Since D is a positive domain,
we conclude D D 0. This completes the proof for the triple .†;˛;ˇ1;ˇ1Iu; v; w/.
The proof for the other triples is completely similar.

The Heegaard diagrams

.†;˛;ˇ�Iu; v; w/ and .†;˛;ˇ�Iu; v; w/
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are nice so, by Sarkar and Wang [16], the differentials of the complexes�CF.†;˛;ˇ�Iu; v; w/ and �CF.†;˛;ˇ�Iu; v; w/

are given by counts of bigons and rectangles.

Theorem 4.5 Under the above identification of the chain complexes .C�; d�/,

f0 D �.†;˛;ˇ1;ˇ1Iu; v; w/; Nf0 D �.†;˛;ˇ1;ˇ1Iu; v; w/;

f1 D �.†;˛;ˇ0;ˇ1Iu; v; w/; Nf1 D �.†;˛;ˇ0;ˇ1Iu; v; w/:

4.3 Proof of Theorem 4.5

A similar discussion is carried over in [3] (and in particular Theorem 2.3 from that paper).
We repeat the proof, in most parts with more details, to keep the paper easier to read.

Proof We start by proving the statement for Nf1 . Note that the top generator ‚ of
the Heegaard Floer homology group �HF.#g�1

S1 �S2/ coming from the Heegaard
diagram .†;ˇ;Iu; v; w/ is the generator fP;X1; : : : ;Xg�1g.

Let x D .x1; : : : ;xg/ and y D .y1; : : : ;yg/ be generators with xi 2 ˛�.i/ \ ˇi

and yi 2 ˛�.i/\ i , with � , � 2 Sg . Let �W D! Symg.†/ be the homotopy class of
a triangle in �2.x; ‚;y/, with Maslov index zero, so that it supports a holomorphic
representative and remains disjoint from the punctures.

There are two types of domain in the complement † n .˛[ˇ [/ of the curves, the
large domains and the small domains. The small domains are those created between
the parallel pairs of curves i and ˇi (i D 1; : : : ;g�1), and their area may be chosen
arbitrarily small by choosing i close enough to ˇi . The large domains are the rest of the
domains, which are in correspondence with the domains D� , � 2 fu; v; w; 1; : : : ;N g,
introduced above. We abuse the notation and still denote these new regions by D� .

Let us assume that the small bigon connecting Xi to Yi is denoted by Ti and the region
having the small interval ŒXi ;Yi � on ˇi in common with Ti is Di , i D 2; : : : ;g� 1.
Then there are two triangles with corners Xi and Yi that have an edge in common
with Di , which will be denoted by Ri and Li , respectively. For i D 1, instead of
these three regions we have four triangles with one corner being X1 or Y1 , which will
be denoted by R1 , T1 , S1 and L1 , respectively (as they appear while we travel on
ˇ1 from X1 to Y1 ; see Figure 6). We are implicitly assuming that the regions Di for
i D 1; : : : ;g�1 (as described above) are different, while it may happen that this is not
the case. However, the argument we give below remains true in general and only needs
notational corrections.
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Let DD D.�/ denote the domain (ie the 2–chain on †) associated with the triangle
class �. Let di � 0 denote the coefficient of Di in D . Similarly, denote the coefficients
of Ti , Ri and Li by ti , ri and li , respectively. The coefficient of S1 will be denoted
by s1 . Of course, there are other regions which may appear in D with positive
coefficient, but all such regions are bigons or rectangles. Since P appears in ‚ and
three of the corners around P are punctured, the coefficient d1 is equal to 1.

Let P D Q1;Q2; : : : ;Q6 denote the corners of D1 (now a hexagon) in counter-
clockwise order (so Q4 D X1 ). Since two opposite quadrants around each one of
Q2 and Q6 are punctured, we have xg D Q2 and yg D Q6 . Thus, Q3 is not one
of x1; : : : ;xg and Q5 is not one of y1; : : : ;yg . Considering the local coefficients
around Q3 , we conclude that t1 D 1C s1 . If Q7 is the third corner of T1 (other
than Q3 and Q4 ), in order for D to be a non-negative domain we need x1 DQ7 and
the 4 local coefficients around Q7 are forced to be t1 D 1C s1 , s1 , 0 and 0 in the
counter-clockwise order. Two opposite quadrants around Y1 have zero coefficients
in D . Since Y1 does not appear in ‚, this implies that s1 D l1 D 0 (thus t1 D 1).
Similarly, considering the local coefficients around p1 we conclude r1 D 1. Since
Q5 is not among y1; : : : ;yg , the local coefficients around Q5 are 1, r1 D 1, 0 and 0

in the counter-clockwise order. Let Q8 be the third corner of R1 other than Q4

and Q5 . Since two opposite corners around Q8 have zero coefficient and r1 D 1, we
have x1DQ8 . Thus DDD0CD1DD0C.R1CD1CT1/, where D0 is a non-negative
2–chain which is disjoint from D1 and D1 is a hexagon with five acute angles and one
obtuse angle and with vertices fP;yg;x1;X1;y1;xgg. The contribution of D1 to the
index of � is zero, by Sarkar’s formula [15].

By Sarkar’s formula for the index of triangles [15],

(8) �.�/D e.D/C�x.D/C�y.D/C b.D/:c.D/� 1
2
g:

Here e.D/ is the Euler measure of the domain D , b.D/ is the part of @D on the ˇ–
curves, and c.D/ is the part of @D on the  –curves. Furthermore, �x.D/ and �y.D/
denote the local contributions of the intersection points included in x and y , respec-
tively, to the corners of D . We refer to [15] for more detailed definitions. Separat-
ing D1 — which has Maslov index 0 — from D we obtain the equality

�.�/D e.Ds/C e.Dl/C�x.D0/C�y.D0/C b.D0/:c.D0/� 1
2
.g� 2/:

Here Ds denotes the part of D0 which uses the regions Di , Ri , Ti and Li for
i D 2; : : : ;g� 1 and Dl D D0�Ds . Clearly, e.Dl/� 0 and

Ds D

g�1X
iD2

.diDi C tiTi C riRi C liLi/:
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Considering the local coefficients around Xi and Yi , we conclude ri D li C 1 and
di D ti C li . Having in mind that Ti are bigons, Ri and Li are triangles and Di are
hexagons, this implies the following computation:

(9) e.Ds/D

g�1X
iD2

..ti C li/e.Di/C tie.Ti/C .li C 1/e.Ri/C lie.Li//

D

g�1X
iD2

�
.ti C li/

�
�

1
2

�
C ti

�
1
2

�
C .li C 1/

�
1
4

�
C li

�
1
4

��
D

1
4
.g� 2/:

The 1–chain b.D0/ is a union of 1–chains on ˇi ; i D 2; : : : ;g�1, denoted by bi.D0/.
Similarly we have c.D0/D

Pg�1
iD2

ci.D0/. It is clear that bi.D0/ and cj .D0/ are disjoint
unless i D j . In this latter case, the only possible geometric intersections are at Xi

and Yi , where the intersection numbers are .li C 1
2
/.ti �

1
2
/ and �li ti , respectively.

Thus,

(10) b.D0/:c.D0/D
g�1X
iD2

��
li C

1
2

��
ti �

1
2

�
� li ti

�
D�

1
4
.g� 2/C 1

2

g�1X
iD2

.ti � li/:

Let us now consider the coefficients around the intersection points xi and yi for
i D 2; : : : ;g� 1. Since xi is on ˇi , there are non-negative integers ai , bi , ci and ei

such that the local coefficients around xi are ai , bi , bi C li C 1 and ai C li , and the
local coefficients around yi are ci , ei , ei C ti � 1 and ci C ti . Thus,

(11) �x.D0/C�y.D0/D 1
2

g�1X
iD2

..ai C bi C ci C ei/C .li C ti//:

Combining (9), (10) and (11) and replacing for the terms in the definition of �.�/, we
obtain

0D �.�/D e.Ds/C e.Dl/C�x.D0/C�y.D0/C b.D0/:c.D0/� 1
2
.g� 2/

D e.Dl/�
1
2
.g� 2/C 1

2

g�1X
iD2

.ai C bi C ci C ei C 2ti/

�
1
2

g�1X
iD2

.ai C bi C ci C .ei C ti � 1/C ti/:

Note that ei C ti � 1 is the coefficient of one of the domains around yi and is thus
non-negative. The above inequality thus implies that ai D bi D ci D ti D 0 and ei D 1

for i D 2; : : : ;g�1. Thus, the coefficients on the two sides of i either agree or differ
by 1, and the coefficients on the two sides of ˇi differ either by li or by li C 1. If we
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start from yi , where on the left (or right) side of yi the coefficients on the two sides of
i are zero, and travel on the ˛ curve intersecting i (ie orthogonal to i ) until we get
to an intersection point with ˇi , as we pass ˇi the coefficient changes either to �li or
to �li � 1. Since the latter is negative, the former happens and li D 0. It is easy to see
from here that xi and yi are the corresponding intersection points of ˇi and i with
the same ˛–curve and that the domain D0 is a union of obvious triangles which are
disjoint from each other.

We conclude that the domain of � is the disjoint union of g� 2 simple triangles with
a hexagon with five acute angles and one obtuse angle. It is quite well known that
the moduli space corresponding to this homotopy class contributes 1 to the triangle
map for a generic path of almost complex structures. These are thus the only holo-
morphic triangles which contribute to the chain map Nf1 defined using the Heegaard
triple .†;˛;ˇ;Iu; v; w/. Under the obvious identification of �CF.†;˛;Iu; v; w/
with �CF.†;˛;ˇ1Iu; v; w/, this is just the map which replaces the pair fQ2;Q8g

with fQ6;Q7g. This completes the proof of Theorem 4.5 for Nf1 .

The proofs of the other three claims are completely similar. In fact, the proofs of the
statement of the theorem for Nf0 and f1 are even easier, since the domains which
are not punctured in the corresponding Heegaard triple are all bigons, rectangles or
triangles. We thus only need to use the second part of the above argument in these two
cases (and the study of the neighbourhood of the hexagon is not needed). The proof
of the claim for f0 requires some more serious modification, which will be outlined
below.

Note that the Heegaard triples .†;˛;ˇ1;ˇ1Iu; v; w/ and

.†;˛;ˇ 0 D y̌[ f�1g;
0
D fˇ11 ; 2; : : : ; g�1; �1gIu; v; w/

may be identified using a diffeomorphism of the surface †. It is thus enough to show
that f0 D �.†;˛;ˇ

0; 0Iu; v; w/. This allows us to keep the same labelling for the
points Xi , Yi , i D 2; : : : ;g� 2. For the intersection points on  0

1
D ˇ1

1
and ˇ1 as

well as some of the intersection points on �1 and �1 , we use the labelling of Figure 7.
We abuse the notation and denote the two intersection points between ˇ1 and  0

1
by

X1 and Y1 . Moreover, some of the regions in the neighbourhood of X1 and Y1 are
labelled: again by abuse of notation, we denote these regions by D1 , R1 , L1 , S1

and T1 (see Figure 7). Let us use di , ri , si , ti and li to denote the coefficients of
the domains Di , Ri , Si , Ti and Li in the 2–chain D associated with a holomorphic
triangle connecting x D .x1; : : : ;xg/, y D .y1; : : : ;yg/ and ‚ that contributes to
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�.†;˛;ˇ 0; 0Iu; v; w/. We assume that, for some elements � , � 2 Sg ,

xi 2

�
ˇi \˛�.i/ if i D 1; : : : ;g� 1;

�1\˛�.g/ if i D g;

yi 2

8<:
i \˛�.i/ if i D 2; : : : ;g� 1;

 0
1
\˛�.1/ if i D 1;

�0\˛�.g/ if i D g:

The examination of the coefficients in Figure 7 implies the following:

� We have d1 D r1 D t1 D 1 and s1 D l1 D 0.

� Either xg D r2 and y1 D t1 , or xg D r3 and y1 D t2 .

� There are j , k 2 f3; 4; : : : ; ng such that yg D qk and x1 D pj .

Let us write DD DsCDl , where

Ds WD s1S1C

g�1X
iD1

.diDi C tiTi C riRi C liLi/ and Dl WD D�Ds:

Considering the local coefficients at Xi and Yi , we find ri D li C 1 and di D ti C li .
Applying the index formula in (8) we obtain

(12) 0D e.D/C�x.D/C�y.D/Cb.D/:c.D/� 1
2
g

D
�
e.Dl/C

�
�

1
2
C

1
4
C

1
4

�
C

1
4
.g�2/

�
C�x.D/C�y.D/Cb.D/:c.D/� 1

2
g

� �x.D/C�y.D/Cb.D/:c.D/� 1
4
.gC2/:

The 1–chains b.D/ and c.D/ may be written as

b.D/D
gX

iD1

bi.D/ and c.D/D
gX

iD1

ci.D/

as before. Note that b1.D/ is the arc on ˇ1 from X1 to pj , while c1.D/ is the arc
from one of t1 or t2 to X1 . Moreover, bg.D/ is the arc on �1 from Q to one of r2

or r3 , while cg.D/ is the arc on �1 from qi to Q. Thus,

(13) b.D/:c.D/D
�
�

1
4
C

1
4

�
C

g�1X
iD2

��
liC

1
2

��
ti�

1
2

�
�li ti

�
D�

1
4
.g�2/C 1

2

g�1X
iD2

.ti�li/:

Let us now assume that the local coefficients around xi are ai , bi , bi C li C 1 and
ai C li , while the local coefficients around yi are ci , ei , ei C ti � 1 and ci C ti for
iD2; : : : ;g�1. The corresponding local coefficients around x1 , y1 , xg and yg would
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be .a1; b1; b1C1; a1/, .c1; e1; e1; c1C1/, .0; 0; 1; 0/ and .0; 0; 0; 1/, respectively, for
some non-negative integers ai , bi , ci and ei , i D 1; : : : ;g� 1. Thus,

(14) �x.D/C�y.D/D 1
2
C

1
2

g�1X
iD1

..ai C bi C ci C ei/C .li C ti//

If we combine (12), (13) and (14), we find

0��1
2
gC

�
1
2

�
C

1
2

g�1X
iD1

.aiCbiCciCeiC2ti/D
1
2

g�1X
iD1

.aiCbiCciC.eiCti�1/Cti/:

As in the proof of the theorem for Nf1 , this implies that ai D bi D ci D ti D 0, while
ei D 1 for i D 1; : : : ;g� 1. It is easy to see from here that j D k and complete the
proof as before.

4.4 The maps �.K / and �.K /

Let H� denote the homology of the chain complex C� for � 2 f1; 1; 0g. If we choose
a representative a 2 C0 of a class

Œa� 2 Ker..f1/�/�H0;

there exists some b 2 C1 such that f1.a/D d1.b/. Then d1.f0.b//D f0.d1.b//D

f0.f1.a// D 0, so f0.b/ is closed and represents a class in H1 . If we replace b

with another element b0 D b C�b such that d1.b
0/ D f1.a/, �b is closed (ie it

represents an element in H1 ). The difference f0.b
0/�f0.b/D f0.�b/ is an element

in Im..f0/�/. Thus, the class

�.Œa�/D Œf0.b/� 2 Coker..f0/�/

is well defined. This gives a homomorphism

� D �.K/W Ker..f1/�/ �! Coker..f0/�/:

Similarly, we define the map � D �.K/W Ker.. Nf1/�/! Coker.. Nf0/�/ from

Nf1W C0 �!C1 and Nf0W C1 �! C1:

Proposition 4.6 The maps

�.K/W Ker.f1.K//�!Coker.f0.K// and �.K/W Ker.f1.K//�!Coker.f0.K//
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are the inverses of the maps induced by f1.K/, f1.K/W H1.K/!H0.K/ which sit
in the exact sequences:

H0.K/

f1.K / $$

H1.K/
f1.K /

oo

H1.K/

f0.K /

::

and

H0.K/

f1.K / $$

H1.K/
f1.K /

oo

H1.K/
f0.K /

::

Proof For this purpose, let us assume that the Heegaard diagram

.†;˛; y̌; f�0; �1; �1gIu; v; w;u; v; w/

is constructed from a special Heegaard diagram as before. Let ˇ� for � 2 f0; 1;1g
denote the set ˇ�D fˇ�1; : : : ; ˇ

�

g�1
; ��g constructed before. Let us furthermore assume

that ˇ 0
1

is a set of g simple closed curves, where the first g � 1 of them are small
Hamiltonian isotopes of the first g� 1 curves in ˇ1 (with two transverse intersection
points with the corresponding simple closed curve in ˇ1 ) while the last (gth ) curve
is denoted by �0

1
. We assume that �0

1
is a Hamiltonian isotope of �1 , which is very

close to the juxtaposition of the curves �0 and �1 .

Consider the two Heegaard quadruples

H D .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ and H 0 D .†;˛;ˇ0;ˇ
0
1;ˇ1Iu; v; w/:

Let us denote the triangle maps associated with the first Heegaard diagram by

f0.H /D �.H nˇ0/W C1.KIH / �! C1.KIH /;

f1.H /D �.H nˇ1/W C0.KIH / �! C1.KIH /;

while the triangle maps associated with the Heegaard quadruple H 0 are denoted by

f0.H
0/D �.H 0 nˇ0/W C1.KIH

0/ �! C1.KIH
0/D C1.KIH /;

f1.H
0/D �.H 0 nˇ1/W C0.KIH

0/D C0.KIH / �! C1.KIH
0/:

The holomorphic triangle map f1.H / D f1.H
0/W C1.KIH /! C0.KIH / may be

defined using the Heegaard triple .†;˛;ˇ1;ˇ0Iu; v; w/. Count of the holomorphic
rectangles in H and H 0 , respectively, that avoid the punctures u, v and w gives the
homomorphisms

ˆ1W C0.KIH / �! C1.KIH / and ˆ01W C0.KIH / �! C1.KIH /

such that

d1 ıˆ1Cˆ1 ıd0 D f0.H /ı f1.H / and d1 ıˆ
0
1Cˆ

0
1 ıd0 D f0.H

0/ı f1.H
0/:
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The interesting observation is that both ˆ1 and ˆ0
1

vanish when the Heegaard diagram
is chosen as above. The reason for the first vanishing result is that there are no positive
squares connecting the four intersection points

x 2 T˛ \Tˇ0
; ‚0;1 2 Tˇ0

\Tˇ1
; ‚1;1 2 Tˇ1

\Tˇ1 and y 2 Tˇ1 \T˛:

In fact, nu.�/D nw.�/D 1 for every square class � 2 �C
2
.x; ‚0;1; ‚1;1;y/. Thus,

two opposite quarters around the intersection point r1 have zero coefficient, while one
other quadrant has coefficient 1. Since r1 is not among the intersection points in any
of x , y , ‚0;1 and ‚1;1 , the coefficient of the last quadrant around r1 is �1 and the
contribution of � is thus trivial. A similar argument implies that ˆ0

1
is zero.

For � 2 f0; 1;1g, the Heegaard triple H� D .†;˛;ˇ
0
�
;ˇ�Iu; v; w/ gives

{� D {.H�/W C�.KIH
0/ �! C�.KIH /:

The homomorphisms {0 and {1 are the identity maps of C0.KIH / and C1.KIH /,
respectively. The Heegaard quadruple

.†;˛;ˇ0;ˇ
0
1;ˇ1Iu; v; w/

determines a holomorphic square map

‰1W C0.KIH / �! C1.KIH /:

Considering different possible degenerations of a holomorphic square of Maslov index
zero, one finds the relation

(15) d1 ı‰1C‰1 ı d0 D {1 ı f1.H
0/C f1.H /:

Finally, one may consider the Heegaard 5–tuple

.†;˛;ˇ0;ˇ
0
1;ˇ1;ˇ1Iu; v; w/;

which may be used to construct a pentagon map QW C0.KIH /! C1.KIH /. Con-
sidering all possible degenerations of a holomorphic pentagon of Maslov index �1,
one obtains the relation

(16) d1 ıQCQ ı d0 D‰0 ı f1.H
0/C f0.H / ı‰1;

where ‰0W C1.KIH
0/! C1.KIH / is the holomorphic square map associated with

.†;˛;ˇ 0
1
;ˇ1;ˇ1Iu; v; w/. The reason for the above equality is that the contributing

holomorphic squares in the Heegaard quadruple .†;ˇ0;ˇ
0
1
;ˇ1;ˇ1Iu; v; w/ come in

cancelling pairs, while there is a single contributing holomorphic triangle corresponding
to each of the Heegaard triples

.†;ˇ 01;ˇ1;ˇ1Iu; v; w/ and .†;ˇ0;ˇ
0
1;ˇ1Iu; v; w/:
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�0
0

�0
1�1

�1�1

�00

�0
1�1

‚11
‚11

‚01

‚11‚11‚01

‚01

‚01

Figure 8: The domains for a cancelling pair of contributing squares connect-
ing ‚01 , ‚1;1 , ‚1;1 and ‚0;1

Figure 8 illustrates the domain for a cancelling pair of contributing squares. Moreover,
the maps ˆ1 and ˆ0

1
, which may potentially contribute, are trivial.

Our choice of �0
1

and the fact that the Heegaard diagram is nice imply that we have a
short exact sequence

0 �! C0.KIH /
f1.H

0/
�����! C1.KIH

0/
f0.H

0/
����! C1.KIH / �! 0:

Correspondingly, an isomorphism � 0W Ker.f1.K// ! Coker.f0.K// may be con-
structed. Choose some closed element a 2 C0.KIH / and let f1.H 0/.a/D d 0

1
.b0/ for

some b0 2 C1.KIH
0/. By (15),

f1.H /.a/D .{1 ı f1.H
0/C d1 ı‰1/.a/D d1.{1.b

0/C‰1.a//DW d1.b/:

Using (15) and (16) we compute

f0.H /.b/D f0.H /.{1.b
0/C‰1.a//

D f0.H
0/.b0/C.d1ı‰0C‰0ıd

0
1/.b

0/C.f0.H /ı‰1/.a/ by (15)

D f0.H
0/.b0/Cd1ı‰0.b

0/C.‰0ıf1.H
0/Cf0.H /ı‰1/.a/

D f0.H
0/.b0/Cd1.Q.a/C‰0.b

0// by (16):

This means that the maps �.K/ and � 0 , as maps from Ker.f1.K// to Coker.f0.K//,
are the same. However, the map � 0 is the inverse of the connecting homomorphism
ıW Coker.f0.K//! Ker.f1.K// resulting from the short exact sequence

0 �! C0.KIH /
f1.H

0/
�����! C1.KIH

0/
f0.H

0/
����! C1.KIH / �! 0:
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The above observations imply the claim for �.K/. The proof for the map �.K/ is
similarly reduced to showing the triviality of the holomorphic square map corresponding
to the Heegaard quadruple .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/.

The domain of every contributing holomorphic square corresponding to the afore-
mentioned punctured Heegaard diagram has coefficient zero at u, v , w and w , and
coefficient 1 at u and v . This implies that two opposite quadrants around r3 have
coefficient zero, while a third quadrant has coefficient 1. Since r3 cannot be among
the intersection points on the vertices of the square, the fourth quadrant around r3 has
coefficient �1. This contradiction gives the triviality of the holomorphic square map
corresponding to .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ and completes the proof.

5 Gluing the knot complements

5.1 Extracting a chain complex for splicing

Given two Heegaard diagrams for the complements of the knots K1 and K2 , one may
construct a Heegaard diagram for Y .K1;K2/ as follows, similar to the construction of
Eftekhary [2]. Let

Hi D .†i ;˛
i ; y̌i [f�i ; �ig/

denote the Heegaard diagram for Ki with Heegaard surface †i , and with �i the
meridian for Ki and �i a zero-framed longitude for it which cuts �i in a single point Oi .
Then the Heegaard diagram for the three-manifold Y DY .K1;K2/ obtained by splicing
the complement of K1� Y1 and the complement of K2� Y2 is constructed as follows.
Attach a 1–handle to †1[†2 , with attaching circles placed at the intersections O1

and O2 . Use four parallel segments on this 1–handle to connect the four intersections
of �1[�1 with one of the attaching circles to the four intersections of �2[�2 with
the other attaching circle, so that intersection points on �1 are joined to the intersection
points on �2 . The union of the remaining parts from �1 and �2 with two of the
four parallel line segments gives a simple closed curve on †, which will be denoted
by �1 #�2 . The simple closed curve �1 #�2 is constructed in a similar way. Let

˛D ˛1
[˛2 and ˇ D y̌1[ y̌2[f�1 #�2; �1 #�2g:

The resulting Heegaard diagram H D .†;˛;ˇ/ is a Heegaard diagram for the three-
manifold obtained by splicing the two knot complements.

If the initial Heegaard diagrams Hi are special (see Definition 4.2) one may assume
that the Heegaard diagram H will have one bad region and the rest of the regions are
either bigons or rectangles. Thus, the combinatorial algorithm of Sarkar and Wang [16]
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�1#�2

�1#�2

�1#�2

�1#�2

W1

A1B1C1

X1Y1Z1

D1E1 W2

A2 B2 C2

X2 Y2 Z2

D2 E2

Figure 9: The cylinder illustrates a neighbourhood of the 1–handle used for
attaching the two Heegaard diagrams. The union of the domains of the disks
intersecting the 1–handle and contributing to the differential is shaded yellow.

may be used to compute its (hat) Heegaard Floer homology with F coefficients. Let z

denote a marked point which is placed in the aforementioned bad region. The marked
point z corresponds to the marked points zi 2 †i , i D 1; 2. We may also choose a
second marked point z0i for the Heegaard diagram Hi which is placed next to Oi and
in the quadrant opposite to the quadrant containing zi .

Define the chain complexes M i and Li associated with Ki � Yi using the Heegaard
diagrams

.†i ;˛
i ; y̌i [f�igI zi ; z

0
i/ and .†i ;˛

i ; y̌i [f�igI zi ; z
0
i/;

respectively. Note that the generators of the complex C associated with the Heegaard
diagram H are in correspondence, either with the generators of M DM 1˝M 2 or
the generators of LDL1˝L2 , ie the F–module C may be identified with M ˚L.
Denote the differential of M by dM and the differential of L by dL . The domain
of every disk which contributes to the differential of C is then a rectangle or a bigon
in the diagram. Such a disk may either stay in one of the †i or intersect both †1

and †2 . The disks that stay in one of the †i correspond to the differentials dM and
dL of the complexes M and L. Only a few rectangles can intersect both †i and miss
the marked point z (see Figure 9), while no bigons can intersect both †1 and †2 .
Because of the way the bad region (the region containing the marked point) enters the
neighbourhood of the 1–handle, the rectangles which intersect both †1 and †2 stay
in the neighbourhood of the 1–handle. The contribution of such rectangles may be
described after introducing some extra notation.

The assumption on the Heegaard diagrams H1 and H2 from Lemma 4.1 implies that
the local picture around Oi looks like the genus-4 surface illustrated on the top of
Figure 3. Denote the intersection points on Hi which correspond to A, B , C , D , E ,
X , Y , Z and W by Ai , Bi , Ci , Di , Ei , Xi , Yi , Zi and Wi , respectively.
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The generators of M i˚Li are the tuples xD .x1; : : : ;xgi
/ such that, for a permutation

� W f1; : : : ;gig ! f1; : : : ;gig, we have xj 2 ˛�.j/ \ ǰ for j D 1; : : : ;gi � 1 and
xgi
2 ˛�.gi /\.�i[�i/. The complex M i is generated by those x such that xgi

2�i ,
and the complex Li is generated by the gi –tuples xD .x1; : : : ;xgi

/ with xgi
2�i . The

homology of the complex M i is the knot Floer homology bHFK.Ki/ and the homology
of the complex Li is the longitude Floer homology bHFL.Ki/. The homomorphisms
ˆi W M i!Li over x D .x1; : : : ;xgi

/ 2M i are defined by

ˆi.x/D

8̂̂̂<̂
ˆ̂:
.x1; : : : ;xgi�1;Xi/ if xgi

DAi ;

.x1; : : : ;xgi�1;Yi/ if xgi
D Bi ;

.x1; : : : ;xgi�1;Zi/ if xgi
D Ci ;

0 otherwise.

The corresponding contributing triangles are ŒAiOiXi �, ŒBiOiYi � and ŒCiOiZi �. The
map ˆ thus corresponds to the changes xgi

! ygi
which are one of the following:

Ai ! Xi , Bi ! Yi or Ci ! Zi . Similarly, the homomorphisms ‰i
1
W Li ! M i

correspond to the triangles ŒWiOiAi � and, over xD .x1; : : : ;xgi
/2Li , are defined by

‰i
1.x/D

�
.x1; : : : ;xgi�1;Ai/ if xgi

DWi ;

0 otherwise.

Define the maps ‰i
2

, ‰i
3
W Li!M i , where ‰i

2
corresponds to the changes Xi!Di

and Yi!Ei , and ‰i
3

corresponds to Wi!Di . Thus the triangles contributing to ‰i
2

are ŒXiOiDi � and ŒYiOiEi �, while the only triangle contributing to ‰i
3

is

ŒWiOiDi �D ŒWiOiAi �[ ŒAiOiXi �[ ŒXiOiDi �:

The contribution of the rectangles which intersect both †1 and †2 to the differential
of the complex C DM ˚L may thus be described by the maps

ˆDˆ1
˝ˆ2

W L1
˝L2

�!M 1
˝M 2;

‰1 D‰
1
1˝‰

2
2

‰2 D‰
1
2˝‰

2
1

‰3 D‰
1
3˝‰

2
3

9>=>;W M 1
˝M 2

�!L1
˝L2:

In other words, the differential of the complex C DM ˚L is the homomorphism

d D dC D

 
dM ˆP3
iD1‰i dL

!
:

Proposition 5.1 The complexes M i and Li are identified with the mapping cones of
Nf i
1 D

Nf1.Ki/ and f i
0
D f0.Ki/, respectively. More precisely, the F–module M i is

isomorphic to the direct sum of C1.Ki/ and C0.Ki/, while Li is isomorphic to the
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direct sum of C1.Ki/ and C1.Ki/. Moreover, the differentials dM i and dLi of M i

and Li are identified as

dLi
.c1; c1/D .d

i
1.c1/; d

i
1.c1/Cf

i
0 .c1// for all .c1; c1/ 2 C1.Ki/˚C1.Ki/;

dMi
.c0; c1/D .d

i
0.c0/; d

i
1.c1/C Nf

i
1.c0// for all .c0; c1/ 2 C0.Ki/˚C1.Ki/:

Proof We sketch the proof of the claim for Li . The corresponding claim for M i is
proved in a completely similar way. Consider the labelling of the intersection points
of the ˛–curves with the curves �1.Ki/, �1.Ki/ and �.Ki/ as in Figure 5. The
intersection points with the ˛–curves on �1.Ki/ are r1 , r2 and r3 . The intersection
points with the ˛–curves on �1.Ki/ are s1; s2; : : : ; sn; q3; q4; : : : ; qn and the inter-
section points with the ˛–curves on �.Ki/ are S1;S2; : : : ;Sn;Q3;Q4; : : : ;Qn and
R1;R2;R3 . Define the F–module isomorphism

Ii W C1.Ki/˚C1.Ki/ �!Li ; Ii.x D .x1; : : : ;xgi
// WD .x1; : : : ;xgi�1; Ii.xgi

//;

where Ii changes the letter in the labelling of an intersection point to a capital letter
(so Ii.rj /DRj , Ii.sj /D Sj and Ii.qj /DQj ). Straightforward combinatorics may
be used to verify dLi .Ii.x// D Ii.d

i
1.x// for every generator x of C1.Ki/ and

dLi .Ii.x//D Ii.d
i
1
.x//C Ii.f

i
0
.x// for every generator x of C1.Ki/.

Under the identification of M i with the mapping cone of Nf i
1 and the identification

of Li with the mapping cone of f i
0

, the map ˆ has a simple description: it is
the map that takes C1.Ki/ in the mapping cone of f0W C1.Ki/! C1.Ki/ to the
complex C1.Ki/ in the mapping cone of Nf i

1W C0.Ki/ ! C1.Ki/ via the identity
map of C1.Ki/. Furthermore, the map f i

1 from C0.Ki/ in M i to C1.Ki/ in Li is
identified with the triangle map ‰i

1
. The induced map Nf i

0
from the copy of C1.Ki/

in M to the copy of C1.Ki/ in Li is the triangle map ‰i
2

. The map ‰i
3

is ob-
tained from the composition map Nf i

0
ı f i
1W C0.Ki/! C1.Ki/. Set C i

�
D C�.Ki/.

If we replace the mapping cone of f i
0
W C i

1
! C i

1 for Li , replace the mapping
cone Nf i

1W C
i
0
! C i

1
for M i , and also replace ˆi and ‰i

j with the appropriate
descriptions in terms of Nf i

0
and f i

1 , we obtain an alternative description of the
complex C .

The cube �D�.f i
�
; Nf i
�
j �D0;1; iD1; 2/ associated with the knots K1 and K2 , the

corresponding complexes C i
�

, i D 1; 2, � 2f0; 1;1g, and the maps f i
0

, Nf i
0
W C i

1
!C i

1

and f i
1 , Nf i

1W C
i
0
! C i

1
is the chain complex .�; d�/ associated with the graph of
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complexes represented by the following cube:

(17)

C 1
1˝C 2

1 C 1
1˝C 2

1

I˝f 2
0

oo

C 1
1
˝C 2
1

f 1
0
˝I

ee

C 1
1
˝C 2

1

I˝f 2
0

oo

f 1
0
˝Iee

I

��

C 1
0
˝C 2

0

Nf 1
0
f 1
1˝

Nf 2
0
f 2
1

OO

Nf 1
1˝I

//

I˝ Nf 2
1

%%

C 1
1
˝C 2

0

I˝ Nf 2
1

%%

Nf 1
0
˝f 2
1

OO

C 1
0
˝C 2

1

f 1
1˝

Nf 2
0

OO

Nf 1
1˝I

// C 1
1
˝C 2

1

Proposition 5.2 With the above notation fixed, the complex .C; d/ is identified, as a
chain complex, with the cube�

�D�.f i
�
; Nf i
�
j � D 0;1; i D 1; 2/; d�

�
:

5.2 The linear algebra of the cubes

Let Hi
�

denote the homology of the chain complex .C i
�
; d i
�
/ for i D 1; 2, � 2 f0; 1;1g.

Set H�;? DH1
�
˝H2

? for �; ? 2 f0; 1;1g. Abusing the notation, the map induced on
homology by f i

�
will also be denoted fi

�
and the map induced on homology by Nf i

�

will be denoted fi
�
.

Following the discussion of Section 5.3, we may choose appropriate decompositions
C i
�
DAi

�
˚Hi

�
˚Ai

�
such that the differential d i

�
takes the form

d i
�
D

0@0 0 I

0 0 0

0 0 0

1A:
Correspondingly, we find the matrices G.f i

�
/ D .f i

�
/� and G. Nf i

�
/ D . Nf i

�
/� , which

will be denoted by fi
�

and fi
�
, as well as the matrices

M.f i
�
/; M. Nf i

�
/; P .f i

�
/; P . Nf i

�
/; Q.f i

�
/; Q. Nf i

�
/; N.f i

�
/ and N. Nf i

�
/:

The maps Q.fi
0
/P .fi1/ and Q.fi

0
/P .fi1/ from Hi

0
to Hi

1 extend the homomorphisms

� i
W Ker.fi1/ �! Coker.fi0/ and � i

W Ker.fi1/ �! Coker.fi0/;
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associated with the knot Ki � Yi . These extensions are still denoted by � i and � i ,
respectively.

Lemma 2.4 implies that the homology of .�; d�/ is isomorphic to the homology of
the chain complex .H; dH/ associated with the graph of chain complexes determined
by the cube of Figure 2.

Proposition 5.3 Let .H; dH/ denote the complex obtained from the cube .�; d�/ by
applying Lemma 2.4. Then .H; dH/ is identified with the complex shown in Figure 2
provided that the maps � i D �.Ki/ and � i D �.Ki/ are given as above.

Proof If Lemma 2.4 is applied, we obtain the same oriented graph (ie the same new
edges) and the same complexes on the vertices. The directed edge from H0;0 to H1;1
is labelled by the map

f10f
1
1˝f

2
0f

2
1CQ.f 1

0 ˝I/N.f 1
1˝

Nf 2
0 /P .I˝

Nf 2
1/CQ.I˝f 2

0 /N.
Nf 1
0 ˝f

2
1/P .

Nf 1
1˝I/;

which is, by Lemma 2.6, equal to

f10f
1
1˝ f20f

2
1C �

1
˝ �2

C �1
˝ �2:

The map corresponding to the dashed edge from H0;0 to H1;1 is, by Lemma 2.5,

Q.f 1
1˝

Nf 2
0 /P .I ˝

Nf 2
1/D f11˝ .Q.

Nf 2
0 /P .

Nf 2
1//D f11˝ �

2:

The maps corresponding to the rest of dashed directed edges may be computed in a
completely similar way. This completes the proof of Proposition 5.3.

Remark 5.4 (1) Note that Y .K1;K2/ D Y .�K1;�K2/. One may assume that
f�.�K/D f�.K/ and f�.�K/D f�.K/, implying that �HF.Y .�K1;�K2// is isomor-
phic to the homology of the complex determined by the oriented graph in Figure 2,
where all barred maps change to the corresponding unbarred maps and all unbarred
maps change to the corresponding barred maps.

(2) Proposition 5.3 is still weaker than Theorem 1.1, since the extensions of � i

and � i to maps from Hi
0

to Hi
1 are not arbitrary yet. In fact, without freedom in

choosing these two extensions (which will be proved by the end of the current section)
Theorem 1.1 stays bound to the information from the corresponding nice Heegaard
diagram and has much less significance.
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5.3 Simplifications of the splicing formula

We now apply Lemma 2.3 to the splicing formula of Proposition 5.3 and make some
cancellations. The first cancellation comes from setting C DH , ADH1;1 and

B D .H1;1˚H1;1˚H1;1/˚ .H0;1˚H1;0˚H0;0/D E1˚E2:

We thus have �HF.Y /DH�.B; dB/, where

dB D

0BBBBBBB@

0 f1
0
˝ I I ˝ f2

0
�1˝ f2

0
f1
0
˝ �2 �

0 0 0 ˆ I ˝ .f2
0
ı f21/ f11˝ �

2

0 0 0 .f1
0
ı f11/˝ I ‰ �1˝ f21

0 0 0 0 0 I ˝ f21
0 0 0 0 0 f11˝ I

0 0 0 0 0 0

1CCCCCCCA
with � D .f1

0
ı f11/˝ .f

2
0
ı f21/C �

1˝ �2C �1˝ �1 , ˆ D f11˝ f2
0
C f11˝ f2

0
and

‰ D f1
0
˝ f21C f1

0
˝ f21 .

The dimension of the F–vector space H�.B; dB/ only depends on the rank of the
kernel and the cokernel of the matrix dB . Define a pair of matrices M1 and M2 to be
equivalent if Ker.M1/' Ker.M2/ and Coker.M1/' Coker.M2/. For a matrix M ,
let

{.M / WD Ker.M /˚Coker.M / and i.M / WD rnk.{.M //:

If M1 and M2 are equivalent matrices then {.M1/' {.M2/ and i.M1/D i.M2/.

We make a change of basis for E2 which is given by the matrix0@�0.K1/˝ �1.K2/ 0 0

0 �1.K1/˝ �0.K2/ 0

0 0 �0.K1/˝ �0.K2/

1A:
The matrix dB is thus equivalent to the matrix

d 0B D

0BBBBBBB@

0 f1
0
˝ I I ˝ f2

0
�1�1

0
˝ �2
1f2

0
�1
1f1

0
˝ �2�2

0
�

0 0 0 ˆ �1
1
˝ f2

0
�2

1
f21 f11�

1
0
˝ �2�2

0

0 0 0 f1
0
�1

1
f11˝ �

1
1

‰ �1�1
0
˝ f21�

2
0

0 0 0 0 0 I ˝ f21
0 0 0 0 0 f11˝ I

0 0 0 0 0 0

1CCCCCCCA
:
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with
ˆD �1

1 f
1
1˝ f20�

2
1 C f11�

1
0 ˝ �

2
1f20;

‰ D f10�
1
1 ˝ �

2
1 f

2
1C �

1
1f10˝ f21�

2
0 ;

� D �1
1f10f

1
1˝ �

2
1f20f

2
1C �

1�1
0 ˝ �

2�2
0 C �

1�1
0 ˝ �

2�2
0 :

Let us use the decompositions of (5) for K1 and K2 to obtain a 24 � 24 block
decomposition of d 0

B
. Moreover, following the discussion at the end of Section 3.3 we

may assume that, in the corresponding decompositions,

� i
D

�
0 I

0 0

�
and � i

1�
i� i

0 D

�
M i I

P iM i P i

�
:

Each entry in the above 6�6 decomposition for d 0B corresponds to a 4�4 submatrix of
the aforementioned 24�24 decomposition. For instance, the .1; 4/ entry �1�1

0
˝�2
1f2

0

corresponds to�
0 I

0 0

��
A1

0
B1

0

C 1
0

D1
0

�
˝

�
A2
1 B2

1

C 2
1 D2

1

��
0 0

I 0

�
D

�
C 1

0
D1

0

0 0

�
˝

�
B2
1 0

D2
1 0

�

D

0BB@
C 1

0
˝B2

1 0 D1
0
˝B2

1 0

C 1
0
˝D2

1 0 D1
0
˝D2

1 0

0 0 0 0

0 0 0 0

1CCA:
For another instance, the .3; 5/ entry corresponds to0BB@

0 0 0 0

0 0 0 0

A1
1
˝B2

1
0 B1

1
˝B2

1
0

A1
1
˝D2

1
0 B1

1
˝D2

1
0

1CCAC
0BB@

0 0 0 0

B1
1˝A2

0
B1
1˝B2

0
0 0

0 0 0 0

D1
1˝A2

0
D1
1˝B2

0
0 0

1CCA:

D

0BB@
0 0 0 0

B1
1˝A2

0
B1
1˝B2

0
0 0

A1
1
˝B2

1
0 B1

1
˝B2

1
0

A1
1
˝D2

1
CD1

1˝A2
0

D1
1˝B2

0
B1

1
˝D2

1
0

1CCA:
The aforementioned 24� 24 decomposition includes identity matrices as the entries
determined by the following block coordinates:

.2; 9/; .3; 5/; .4; 6/; .14; 21/; .16; 23/ and .20; 22/:

We use the above six identity matrices for cancellation to obtain an equivalent matrix
d D

�
0
0

D
0

�
over B1˚B2 , where A�? DA�.K1/˝A?.K2/ and
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B1 DA11˚A11˚A10˚A11˚A01˚A00;

B2 DA10˚A10˚A11˚A01˚A01˚A11:

Rearrange the rows and the columns of the matrix D so that D corresponds to the
rows 11, 7, 8, 10, 12, 1 and the columns 19, 13, 15, 17, 18, 24 in the above 24�24

decomposition to obtain the matrix0BBBBBBBB@

B1
1
˝B2

1
B1

1
˝A2

1
0 A1

1
˝B2

1
0 0

0 A1
0˝B2

1 B1
0˝B2

1 0 0 B1
0˝.A

2
1CB2

1P 2/

D1
1
˝B2

1
D1

1
˝A2

1
CA1

0
˝D2

1 B1
0
˝D2

1 C 1
1
˝B2

1
0 B1

0
˝.C 2

1CD2
1P 2/

0 0 0 B1
1˝A2

0
B1
1˝B2

0
.A1
1CB1

1P 1/˝B2
0

B1
1˝D2

1 B1
1˝C 2

1 0 D1
1˝A2

0CA1
1˝D2

1 D1
1˝B2

0 .C
1
1CD1

1P 1/˝B2
0

0 C 1
0˝B2

1 D1
0˝B2

1 B1
1˝C 2

0 B1
1˝D2

0 �

1CCCCCCCCA
with � D B1

1B1
1
B1

0
˝B2

1B2
1
B2

0
C .A1

1CB1
1P1/˝D2

0
CD1

0
˝ .A2

1CB2
1P2/.

This matrix is in turn equivalent to the matrix DDD.K1;K2/ below, which is obtained
by adding I ˝P2 times the third column and P1˝ I times the fifth column to the
last column of the above matrix:

DD

0BBBBBBBB@

B1
1
˝B2

1
C 1

1
˝A2

1
0 A1

1
˝B2

1
0 0

0 A1
0˝B2

1 B1
0˝B2

1 0 0 B1
0
˝A2
1

D1
1˝B2

1 D1
1˝A2

1CA1
0˝D2

1 B1
0˝D2

1 C 1
1˝B2

1 0 B1
0˝C 2

1

0 0 0 B1
1˝A2

0
B1
1˝B2

0
A1
1˝B2

0

B1
1
˝D2

1
B1

1
˝C 2

1
0 D1

1˝A2
0
CA1

1
˝D2

1
D1
1˝B2

0
C 1
1˝B2

0

0 C 1
0˝B2

1 D1
0˝B2

1 B1
1˝C 2

0 B1
1˝D2

0 ‰

1CCCCCCCCA
;

where ‰ D A1
1 ˝ D2

0
C D1

0
˝ A2

1 C X 1 ˝ X 2 and X i D X.Ki/ D Bi
1Bi

1
Bi

0

for i D 1; 2.

Combining Proposition 5.3 with the above observations, we find:

Proposition 5.5 Let Ki�Yi , iD1; 2, denote null-homologous knots and Y .K1;K2/

denote the three-manifold obtained by splicing the complement of K1 with the comple-
ment of K2 . With the above definition of D.K1;K2/,�HF.Y .K1;K2/;F/' {.D.K1;K2//:

Corollary 5.6 The splicing formula of Proposition 5.3 is independent of the choice of
extensions � i and � i .

Proof The fact that the matrices P i and M i do not appear in the matrix D.K1;K2/

implies that the choice of the extensions � i , � i W Hi
0
!Hi

1 does not change the rank
of the homology group in the splicing formula of Proposition 5.3 or Theorem 1.1.
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With the above corollary in place, the proof of Theorem 1.1 is now complete.

Definition 5.7 For a pair of knots Ki � Yi , i D 1; 2, define

�.K1;K2/ WD .h1.K1/� h1.K1//.h1.K2/� h1.K2//

� .h1.K1/� h0.K1//.h1.K2/� h0.K2//:

Note that �.K1;K2/ is in fact the difference between the ranks of B1 D B1.K1;K2/

and B2DB2.K1;K2/. In the corresponding Z=2Z–grading on B1˚B2 , �.K1;K2/ is
thus the Euler characteristic of the chain complex .B1˚B2; d/.

Corollary 5.8 With the above notation fixed,

rnk
� �HF.Y .K1;K2//

�
� j�.K1;K2/j:

Proof It is enough to note that

�.K1;K2/D rnk
�
Ker.D.K1;K2//

�
� rnk

�
Coker.D.K1;K2//

�
:

Consider the matrices

PL D

0BBBBBBB@

I ˝A2
1

0 0 0 I ˝B2
1

0

0 I ˝A2
1 I ˝B2

1 0 0 0

0 I ˝C 2
1 I ˝D2

1 0 0 0

0 0 0 I ˝A2
0

0 I ˝B2
0

I ˝C 2
1

0 0 0 I ˝D2
1

0

0 0 0 I ˝C 2
0

0 I ˝D2
0

1CCCCCCCA
;

PR D

0BBBBBBB@

D1
1
˝ I 0 0 C 1

1
˝ I 0 0

0 A1
0
˝ I B1

0
˝ I 0 0 0

0 C 1
0
˝ I D1

0
˝ I 0 0 0

B1
1
˝ I 0 0 A1

1
˝ I 0 0

0 0 0 0 D1
1˝ I C 1

1˝ I

0 0 0 0 B1
1˝ I A1

1˝ I

1CCCCCCCA
:

Since P2
R
DP2

L
D Id, both PR and PL are invertible and D.K1;K2/ is equivalent to

D0.K1;K2/D PLD.K1;K2/PR . The matrix D0.K1;K2/ has the block presentation0BBBBBBBB@

D1
1B1

1
˝B2

1
A2

0
B1

1
A1

0
˝I B1

1
B1

0
˝I D1

1A1
1
˝B2

1
A2

0
I˝B2

1
B2

0
0

I˝B2
1B2

1
D1

1
A1

0
˝B2
1A2

1
D1

1
B1

0
˝B2
1A2

1
0 B1

0
B1
1˝I B1

0
A1
1˝I

I˝D2
1B2

1 ‰1 D1
1B1

0˝D2
1A2

1
0 0 0

B1
1B1

1˝I 0 I˝B2
0B2
1 B1

1A1
1˝I �1 �2

D1
1B1

1
˝D2

1
A2

0
0 0 ‰2 I˝D2

1
B2

0
0

0 0 I˝D2
0
B2
1 0 �3 �4

1CCCCCCCCA
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with

‰1 D I˝ICD1
1A1

0˝D2
1A2

1; �1 DD1
0B1
1˝B2

0A2
1CX 1B1

1˝B2
0X 2;

‰2 D I˝ICD1
1A1

1˝D2
1A2

0; �2 DD1
0A1
1˝B2

0A2
1CX 1A1

1˝B2
0X 2;

�3 DD1
0B1
1˝D2

0A2
1CX 1B1

1˝D2
0X 2;

�4 D I˝ICD1
0A1
1˝D2

0A2
1CX 1A1

1˝D2
0X 2;

and is easier to use in actual computations. Note that

{.D0.K1;K2//' {.D.K1;K2//' �HF.Y .K1;K2/;F/:

6 Splicing with the trefoil

6.1 The maps f� and f� for the trefoils

Let us now consider the case of the right-handed trefoil, which will be denoted by R.
Thus, h1.R/D h1.R/D 3 and h0.R/D 4. Moreover, y1.R/D y1.R/D 1, while
y0.R/D2 (see Eftekhary [3, Section 5]). Since H�.R; i/DF for �D1;1, iD0;˙1,
the maps �1.R/ and �1.R/ are forced and we only need to determine �0.R/.

The decompositions of H1.R/DH1.R/D F3 according to relative Spinc classes
give

H1.R/D ha; b; ciF and H1.R/D ha
0; b0; c0iF ;

where a, a0 are generators in relative Spinc class �1, b , b0 are generators in relative
Spinc class 0 and c , c0 are generators in relative Spinc class C1. The homomorphisms
f0.R/ and f0.R/ have the following block forms in the corresponding basis:

(18) f0.R/D

0@˛ 0 0

0 ˇ 0

0 0 

1A and f0.R/D

0@ 0 0

0 ˇ 0

0 0 ˛

1A :
From (7) we know that the ranks of f0.R/ and f0.R/ are equal to 1, ie precisely
one of ˛ , ˇ and  is equal to 1 and the other two are zero. Moreover, the rank of
f0.R/C f0.R/ is 2, ie precisely two of ˛C  , ˛C  , 2ˇ are non-zero. Since the
coefficient ring is F , 2b is automatically zero. Thus, ˛ D 1 and ˇ D  D 0, or  D 1

and ˛ D ˇ D 0.

The generator a of H1.R/ is not in the image of f1.R/, since f1.R;�1/ is trivial.
Hence a is not in the kernel of f0.R;�1/. Thus, from the above two possibilities the
former is the case, ie in (18) we get ˛ D 1 and ˇ D  D 0.
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The rank of f1.R/ is equal to 2 according to (7). Moreover, ha; biF is already in the
image of f0.R/. Thus, f0.R/ is surjective onto H1.R;�1/˚H1.R; 0/. Let us use a
basis a00 , b00 for H0

�
R;�1

2

�
which contains some pre-image a00 of a under f1 and

an element b00 in the kernel of f1 . Use the dual basis �0.b
00/, �0.a

00/ for H0

�
R; 1

2

�
.

The basis fa00; b00; �0.b
00/; �0.a

00/g for H0.R/ is thus invariant under �0 D �0.R/.
Correspondingly, we get

(19) f1.R/D

0@1 0 0 0

0 0 x y

0 0 0 0

1A and f1.R/D

0@0 0 0 0

y x 0 0

0 0 0 1

1A:
If xD0 then yD1, since the rank of f1.R/ is equal to 2. The rank of f1.R/Cf1.R/
is then equal to 2; on the other hand, (7) implies that this rank is 3, a contradiction.
The contradiction implies that x D 1. Replacing a00 with a00 � yb00 , we obtain the
presentation of f1.R/ and f1.R/ in a new basis for H0.R/ (which is still invariant
under the involution �0.R/) corresponding to the values x D 1 and y D 0 in (19).
From here, by taking into account the fact that the map �.R/ increases the Spinc

grading by 1
2

while �.R/ decreases the Spinc grading by 1
2

,

(20) �.R/D

0@0 0 0 0

1 0 0 0

0 0 1 0

1A and �.R/D

0@0 1 0 0

0 0 0 1

0 0 0 0

1A:
The above computations imply that a0.R/D 1 while a1.R/D a1.R/D 2. Moreover,
we may take

(21)

A0.R/DD0.R/D

�
0 0

0 0

�
; B0.R/D C0.R/D

�
0 1

1 0

�
;

A1.R/DD1.R/D .0/; D1.R/DA1.R/D

�
0 0

0 1

�
;

C1.R/D B1.R/D BT
1 .R/D C T

1.R/D

�
1

0

�
:

For the left-handed trefoil, a similar argument may be used for the computation, which is
sketched below. The rank of f0.L/ is 2 and the rank of f1.L/ is 3. The latter implies
that the rank of f1.L; 1/ is 1, the rank of f1.L; 0/ is 2 and the rank of f1.L;�1/ is
zero. Correspondingly, the ranks of f0.L; 1/, f0.L; 0/ and f0.L;�1/ are equal to 0, 1

and 1, respectively. If the images of f1.L; 0/ and f1.L; 0/ are identical, the maps
f0.L; 0/ and f0.L; 0/ are forced to be identical, since H1.L; 0/ is 1–dimensional.
In particular, f0.L; 0/C f0.L; 0/ is trivial. Hence the rank of f0.L/C f0.L/ is at
most 2, which is in contradiction with y0.L/ D 2. The 2–dimensional subspaces
Im.f1.L; 0// and Im.f1.L; 0// of H1.L; 0/ are thus different. From here, their
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intersection is 1–dimensional and is generated by some �1.L/–invariant element
f1.b/ with b 2H0

�
L;�1

2

�
.

Let a 2H0

�
L; 1

2

�
denote the unique non-trivial vector in the kernel of f1.L/. Let us

first assume that b D �0.a/. Complete a to a basis .a; c/ for H0

�
L; 1

2

�
. Then

fa; c; �0.a/; �0.c/g

is an ordered basis for H0.L/. Correspondingly, we obtain the basis˚
f1.c/; f1.c/; f1.�0.a//; f1.�0.c//; �1.f1.c//

	
for H1.L/ and the matrices f1.L/ and f1.L/ take the following forms, respectively:

f1.L/D

0BBBB@
0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1CCCCA and f1.L/D

0BBBB@
0 0 0 0

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 1

1CCCCA :
In particular, the matrix

f1.L/C f1.L/D

0BBBB@
0 1 0 0

0 1 0 0

1 0 1 0

0 0 0 1

0 0 0 1

1CCCCA
is a matrix of rank 3, while we should have

rnk.f1.L/C f1.L//D
1
2
.h0.L/C h1.L/�y1.L//D 4:

This contradiction implies that b is different from �0.a/, so we may take .�0.a/; b/ as
a basis for H0

�
L; 1

2

�
. Correspondingly, we obtain the basis˚

�0.a/; b; �0.b/; a
	

for H0.L/. As a basis for H1.L; 0/ we obtain the three vectors f1.a/, f1.a/

and f1.b/. This basis is completed to the (ordered) basis for H1.L/˚
f1.a/; f1.b/; f1.b/; f1.a/; �1.f1.b//

	
:

Finally, we choose the following basis for H1.L/:˚
f0.f1.b//; f0.f1.a//; �1.f0.f1.b///

	
:
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In these bases, we may compute

f1.L/D

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1CCA and f0.L/D

0@0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1A :
Moreover, after re-ordering the elements of the above bases, we find the presentations

D0.L/DA1.L/D 0; A1.L/D

�
0 0

0 0

�
; B1.L/D C T

1 .L/D

�
1 0 0

0 0 1

�
;

A0.L/D

0@0 0 0

0 0 1

0 1 0

1A; D1.L/D

0@0 0 0

0 1 0

0 0 0

1A; D1.L/D

�
1 0

0 0

�
;

B0.L/D C T
0 .L/D

0@1

0

0

1A and B1.L/D C T
1.L/D

�
0 1

�
:

6.2 Splicing a knot complement with the complement of a trefoil

For a knot K � Y , let Y .R;K/ denote the three-manifold obtained by splicing the
complement of K � Y with the complements of the right-handed trefoil. We study
the rank rr .K/ of �HF.Y .R;K// in this subsection. With the notation of Section 5.3,
rr .K/D i.D0.R;K//. Replacing the block forms of (21) in D0.R;K/, we find

D0.R;K/D

0BBBBBBBBBBBBBBB@

0 0 0 0 0 I 0 B1B0 0 0

B1B1 0 0 0 0 0 0 0 0 I

0 B1B1 0 0 B1A1 0 0 I 0 0

D1B1 0 I 0 0 0 0 0 0 0

0 D1B1 0 I D1A1 0 0 0 0 0

I 0 0 0 B0B1 0 0 0 0 B0X

0 0 0 0 0 B0B1 0 0 0 0

0 0 0 0 0 0 I D1B0 0 0

0 0 0 0 D0B1 0 0 0 I D0X

0 0 0 0 0 D0B1 0 0 0 I

1CCCCCCCCCCCCCCCA
;

where A� D A�.K/, B� D B�.K/, C� D C�.K/, D� D D�.K/ and X D X.K/

for � 2 f0; 1;1g. Doing a series of cancellations that correspond to the identity
matrices which appear as the

.1; 6/; .3; 8/; .4; 3/; .5; 4/; .6; 1/; .8; 7/; .9; 9/ and .10; 10/
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entries in the above block presentation, we obtain the equivalent matrix

(22) Rr .K/ WD

�
0 B0XB1

XB1B1 XB1A1CD0XB1

�
:

Corollary 6.1 For a knot K � Y , let Y .R;K/ denote the three-manifold obtained by
splicing the complement of K and the complement of the trefoil. Then

(23) �HF.Y .R;K//D {.Rr .K//:

Proof The claim follows immediately from the above discussion.

For the trefoils, our computations imply that

X.R/B1.R/DX.L/B1.L/D 0 D) Rr .R/DRr .L/D 0

D) j �HF.Y .R;R//j D 7; j �HF.Y .R;L//j D 9:

The above computations agree with the computations of Hedden and Levine [5].

Corollary 6.2 For every knot K in a homology sphere Y we have

j �HF.Y .R;K//j � .a0.K/C a1.K/C 2a1.K//� 4 minfa0.K/; a1.K/; a1.K/g

D 4 maxfh0.K/; h1.K/; h1.K/g� .h0.K/C h1.K/C 2h1.K//:

Moreover, if Y .R;K/ is a homology sphere L–space, K is trivial and Y is a homology
sphere L–space.

Proof Let M DM.K/DX.K/B1.K/ and note that

rnk.Rr .K//D rnk
�

0 B0.K/M

MB1.K/ MA1.K/CD0.K/M

�
� rnk

�
MB1.K/ MA1.K/

�
C rnk

�
B0.K/M

D0.K/M

�
D 2 rnk.M /

� 2 rnk.X.K//:

For every knot K � Y as above note that the rank of X DX.K/ is at most equal to
the minimum of the sizes of the matrices B0.K/, B1.K/ and B1.K/, which is

minfa0.K/; a1.K/; a1.K/g:

Since Rr .K/ is of size h0.K/� h1.K/ D .a1.K/C a1.K//� .a0.K/C a1.K//,
this proves the first part of the corollary.
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Let us assume that rnk
� �HF.Y .R;K//

�
D 1. From here we find

.a0.K/C a1.K/C 2a1.K//� 4 minfa0.K/; a1.K/; a1.K/g

D .a0.K/C a1.K/C 2a1.K//� 4 rnk.M /D 1:

Since a1.K/ and a1.K/ have the same parity while the parity of a0.K/ is different
from the parity of both a1.K/ and a1.K/, one can easily conclude that a0.K/�1D

a1.K/D a1.K/. Let a denote the common value a1.K/D a1.K/. Then the rank
of M is a and both B0.K/ and X.K/ are invertible. We may thus assume that
A0.K/DD0.K/D 0. Since

rnk.f1.K/C f1.K//D rnk
�

B1.K/A0.K/ B1.K/B0.K/

I CD1.K/A0.K/ D1.K/B0.K/

�
D 2a;

the three-manifold Y is an L–space. Since splicing K with the trefoil is also a
homology sphere L–space, we conclude that K is trivial, by [5, Theorem 1].

Appendix: Bordered Floer homology for knot complements

The first draft of this paper appeared while the theory of bordered Floer homology
was being developed. With bordered Floer homology conventions widely known to
the Heegaard Floer community, the referee recommended the inclusion of an appendix
which addresses the contribution of this paper within the realm of bordered Floer
homology.

Let K � Y denote a null-homologous knot inside the three-manifold Y and let
H D .†;˛; y̌[f�;�gI z/ denote a special Heegaard diagram for K , as constructed in
Lemma 4.1. In particular, H is a nice Heegaard diagram for the bordered three-manifold
YK determined by K � Y in the sense of Lipshitz, Ozsváth and Thurston [6]. The
bordered Floer complex bCFD.YK / may then be constructed from the chain complexes
M DM.K/ and LDL.K/ (which are described in Proposition 5.1 as the mapping
cones of f1.K/W C0.K/! C1.K/ and f0.K/W C1.K/! C1.K/, respectively) and
the chain maps ˆDˆ.K/W L!M and ‰i D‰i.K/W M !L, i D 1; 2; 3.

More precisely and following the notation of [7, Section 4.2], the idempotents {0 and {1
and the chords �1 , �2 , �3 , �12 D �1�2 , �23 D �2�3 and �123 D �1�2�3 form an
F–basis for the differential graded algebra associated with the torus boundary:

A.T 2; 0/D

�
{0 �

�1

%%

�3

66
� {1

�2
oo

� ı
.�2�1 D �3�2 D 0/:
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The module bCFD.YK / is generated (over A.T 2; 0/) by the generators of M and L.
For a generator x of L we have

(24) I.x/D {0 and @.x/D dL.x/C �1‰1.x/C �3‰2.x/C �123‰3.x/;

while for a generator y of M we have

(25) I.y/D {1 and @.y/D dM .y/C �2ˆ.y/:

The splicing formula of (17) is then just the gluing formula for bordered Floer homology,
ie [6, Theorem 1.3]. A related discussion is carried over in [6, Section 8].

Definition A.1 The chain complexes .C�.K/; d�/, � 2 f0; 1;1g, and the chain maps
f�.K/, Nf�.K/, � 2 f0;1g, are called admissible data associated with the knot K if
they satisfy the following conditions:

� The homology of the complex .C�.K/; d�/ is H�.K/.

� The maps induced by f�.K/ and Nf�.K/ in homology (under the identification of
the homology of .C�.K/; d�/ with H�.K/) are f�.K/ and f�.K/, respectively.

� We have f0.K/ ıf1.K/D Nf0.K/ ı Nf1.K/D 0.

� The corresponding maps

�.K/W Ker.f1.K// �! Coker.f0.K//;

�.K/W Ker.f1.K// �! Coker.f0.K//

are isomorphisms and are the inverses of the maps induced by f1.K/ and f1.K/,
respectively.

The proof of Theorem 1.1 implies that .C i
�
; d i
�
/ and the chain maps f i

�
, Nf i
�

for
� 2 f0;1g and i D 1; 2 in (17) may be replaced by other admissible data corresponding
to the knots K1 and K2 . orrespondingly, the bordered Floer complex associated with
any knot K � Y may be constructed from admissible data associated with K . More
precisely, we have the following proposition:

Proposition A.2 Suppose that the chain complexes .C�.K/; d�/, � 2 f0; 1;1g, and
the chain maps f� D f�.K/, Nf� D Nf�.K/, � 2 f0;1g, are admissible data associated
with the knot K � Y and set

M.K/D C0.K/˚C1.K/; L.K/D C1.K/˚C1.K/:
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The bordered Floer complex bCFD.YK / may then be constructed as the left module over
the differential graded algebra A.T 2; 0/ which is generated by {0:L.K/ and {1:M.K/,
and equipped with the differential @W bCFD.YK /! bCFD.YK / defined by

(26) @
�

x

y

�

D

8̂<̂
:
� d0.x/
Nf1.x/Cd1.y/

�
C �2:

� 0

x

�
if
�

x

y

�
2M.K/;� d1.x/

f0.x/Cd1.y/

�
C

� �1f1.x/

�3
Nf0.y/C�1�2�3

Nf0.f1.x//

�
if
�

x

y

�
2L.K/:

In particular, let the F–modules A� D A�.K/, � 2 f0; 1;1g, and the matrices
A�DA�.K/, B�DB�.K/, C�DC�.K/ and D�DD�.K/ be defined as in Section 3.3.
Set

.C0.K/; d0/D .A1˚A1; 0/; .C1.K/; d1/D .A1˚A0; 0/;

C1.K/DA1˚A0˚A1˚A1 and d1 D

0BB@
0 0 0 0

0 0 0 0

0 0 0 0

IA1
0 0 0

1CCA:
Correspondingly, define

f1.K/D

0BB@
0 0

0 0

I 0

0 I

1CCA; f0.K/D

�
I 0 0 0

0 I 0 0

�
and �1.K/D

0BB@
0 0 0 0

0 A1 B1 0

0 C1 D1 0

0 0 0 0

1CCA
and set Nf1.K/D �1.K/f1.K/�0.K/ and Nf0.K/D �1.K/f0.K/�1.K/. The data
associated with K consisting of .C�.K/; d�/ and f�.K/, Nf�.K/, � 2 f0;1g is then
admissible.

Corresponding to the above admissible data and associated with K � Y , we may
construct the bordered Floer complex for K via

M.K/D C0.K/˚C1.K/DA1˚A1˚A1˚A0˚A1˚A1;

L.K/D C1.K/˚C1.K/DA1˚A0˚A1˚A1˚A1˚A0;

dM D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

B1A0 B1B0 0 0 0 0

D1A0 D1B0 I 0 0 0

0 0 0 0 0 0

1CCCCCCCA
; dL D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

I 0 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

1CCCCCCCA
;
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ˆ.K/D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

1CCCCCCCA
; ‰1.K/D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1CCCCCCCA
;

‰2.K/D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 B1A1 B1B1 0

0 0 0 D1A1 D1B1 0

1CCCCCCCA
and ‰3.K/D‰2.K/ˆ.K/‰1.K/

as the left module over the differential graded algebra A.T 2; 0/ generated by {0:L

and {1:M and equipped with the differential @W bCFD.YK /! bCFD.YK / defined by
the equations (24) and (25).

Remark A.3 Simultaneous computation of the matrices ��.K/D
�

A�
C�

B�
D�

�
is a priori

quite difficult, as we observed in the case of trefoils in Section 6. This makes the
above description of the bordered Floer homology hard to use even for knots K � Y

where we have complete understanding of the Heegaard Floer complex associated
with K . However, it is possible to construct admissible data associated with K � Y

completely in terms of the filtered chain complex CF1.Y;KIF/, as will be discussed
in the revision of [4].
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Higher Hochschild cohomology of
the Lubin–Tate ring spectrum

GEOFFROY HOREL

We construct a spectral sequence computing factorization homology of an Ed –algebra
in spectra using as an input an algebraic version of higher Hochschild homology due
to Pirashvili. This induces a full computation of higher Hochschild cohomology when
the algebra is étale. As an application, we compute higher Hochschild cohomology
of the Lubin–Tate ring spectrum.

55P43; 16E40, 55P48

This paper is devoted to higher Hochschild cohomology. Given E an E1–ring
spectrum, the Hochschild cohomology of an associative algebra A in ModE with
coefficients in a bimodule M is the derived homomorphisms object in the category of
A–A–bimodules with source A and target M . Higher Hochschild cohomology is the
generalization of this construction when A is an Ed –algebra instead of an associative
algebra. In this case, we need to replace the notion of bimodule by the notion of
operadic Ed –module and the definition becomes

HHEd .AjE;M/DRHom
ModEd

A

.A;M/;

where HomModEd
A

denotes the homomorphism object in the category of operadic
Ed –modules over A.

For practical reasons, we use a different but equivalent definition of higher Hochschild
cohomology inspired by factorization homology. For A an Ed –algebra in ModE and V
a d–dimensional framed manifold, there is a spectrum

R
V A called the factorization

homology of A over V . This construction is functorial with respect to maps of
Ed –algebras and with respect to embeddings of framed d–manifolds. Moreover,
V 7!

R
V A is a symmetric monoidal functor. This implies that

R
Sd�1�RA is an

E1–algebra in spectra. This E1–algebra serves as a universal enveloping algebra for the
category of operadic Ed –modules over A. More precisely, we prove in Proposition 3.19
the identity

HHEd .AjE;M/'RHomS
d�1�Œ0;1�

A .A;M/;
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3216 Geoffroy Horel

where the right-hand side is an explicit construction given by a homotopy limit of a
certain functor over the poset of disks on the manifold Sd�1� Œ0; 1�. In Corollary 3.15,
we prove an equivalence

RHomS
d�1�Œ0;1�

A .A;M/'RHomŒ0;1�R
Sd�1�.0;1/

A
.A;M/;

where the right-hand side is a suitable generalization of the homomorphisms between
left modules over an E1– (as opposed to associative) algebra. Thus, we reduce the
computation of higher Hochschild cohomology to the computation of the derived
homomorphisms between two left modules over an E1–algebra.

With this last description, we see that, in order to make explicit computations of higher
Hochschild cohomology, the first step is to compute

R
Sd�1�RA with its E1–structure.

In Section 5, we construct a spectral sequence that computes the factorization homology
of an Ed –algebra over any framed manifold:

Proposition 5.4 Let A be an Ed –algebra in ModE , let M be a framed d–manifold
and let K be a homology theory with a Z=2–equivariant Künneth isomorphism. There
is a spectral sequence

E2s;t D HHMs;t .K�A/D)KsCt

�Z
M

A

�
:

Let us say a few words about the E2–page. Given a commutative ring k , Pirashvili
defines a functor .X;A/ 7!HHX .A/, where X is a simplicial set, A is a commutative
algebra in k–modules and HHX .A/ is a chain complex of k–modules. When X DS1 ,
this object is quasi-isomorphic to ordinary Hochschild homology. Our spectral sequence
computing factorization homology is given by Pirashvili’s higher Hochschild homology
on the E2–page.

In Section 6, we make an explicit computation in the case of the Lubin–Tate spectrum
(also known as Morava E–theory) En . Using the étaleness of the algebra .Kn/�En ,
we can prove that for any Ed –structure on En that induces the correct multiplication
on Kn–homology, the unit map

En!

Z
Sd�1�R

En

is a Kn–homology equivalence. Using the fact that En is Kn–local, this implies the
following theorem:

Proposition 6.4 The map HHEd .En/!En is a weak equivalence.

In Section 7, we prove an étale base-change theorem for étale algebras:
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Theorem 7.9 Let T be a commutative algebra in ModE that is (K–locally) étale
as an Ed –algebra. That is to say that the Ed –version of the cotangent complex of
E defined in Definition 2.7 of Francis [6] is (K–locally) contractible. Then, for any
(K–local) Ed –algebra A over T , the base-change map

HHEd .AjE/ �!
� HHEd .AjT /

is an equivalence.

In particular, this result combined with our computation implies that for any Kn–local
Ed –algebra A over En , the base-change map

HHEd .AjEn/! HHEd .AjS/

is a weak equivalence.

The full strength of the results proved in this paper is unnecessary in the case of En
since it is known to be a commutative ring spectrum. However, we think that the
method presented here could be used in other contexts, where one has to deal with
Ed –algebras that are not commutative.

Conventions

We denote by S the category of simplicial sets with its usual model structure. We
use boldface letters to denote categories. We use calligraphic letters like A to denote
operads. All our categories and operads are enriched in S . Note that given a topological
operad or category, we can turn it into a simplicially enriched operad or category by
applying the functor Sing to each mapping space. We allow ourselves to do this
operation implicitly.

We denote by ModE the simplicial category of modules over a commutative symmetric
ring spectrum E . This category is symmetric monoidal for the relative tensor product
over E . Moreover, it has two model structures: the positive model structure, denoted
by ModCE , and the absolute model structure, denoted by ModE . We refer the reader to
Section 1 for more details. We often write C instead of ModE in the sections where
the results do not depend a lot on the symmetric monoidal model category.
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1 Review of operads and factorization homology

We recall a few notations. We denote by Fin the category whose objects are the
nonnegative integers and with

Fin.m; n/D Set.f1; : : : ; mg; f1; : : : ; ng/:

We abuse notation and write n for the finite set f1; : : : ; ng.

To an operad M with one color, we can assign its PROP M . This is a category whose
set of objects coincides with the set of objects of Fin and with

M .m; n/D
G

f 2Fin.m;n/

Y
i2n

M.f �1.i//:

Note that Fin is the PROP associated to the commutative operad. The construction of
the associated PROP is a functor from operads to categories. In particular, the unique
map M! Com induces a map M ! Fin.

An M–algebra A in a simplicially enriched symmetric monoidal category C induces
a symmetric monoidal simplicial functor M ! C that we also denote by A.

Let E be a commutative ring in symmetric spectra. We denote by ModCE the category of
modules over E equipped with the positive model structure (constructed in Schwede [17,
Theorem III.3.2] under the name projective positive stable model structure). The
category ModCE is a closed symmetric monoidal model category for the smash product
over E (denoted by �˝E �). It is also a simplicial model category. Moreover, the two
structures are compatible in the sense that the tensor of simplicial sets and E–modules

�˝�W S �ModCE !ModCE
sending .X;M/ to .E ^†1

C
X/˝E M is a Quillen left bifunctor.

There is another model structure on ModE called the absolute model structure and
that we denote by ModE (its construction can also be found in [17, Thorem III.3.2]).
Its weak equivalences are the same as in the positive model structure but there are more
cofibrations. In particular, the important fact for us is that the unit E is cofibrant in the
absolute model structure but not in the positive model structure. The model category
ModE is also a closed symmetric monoidal simplicial model category. The advantage
of the positive model structure is that the smash product is much better behaved. In
particular, the following theorem would be false for the absolute model structure:

Theorem 1.1 The category ModCE is a closed symmetric monoidal cofibrantly gener-
ated simplicial model category satisfying the following properties:
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� For any operad M in S , the category ModCE ŒM� of M–algebras in ModCE has
a model category structure where weak equivalences and fibrations are created
by the forgetful functor ModCE ŒM�! .ModCE /

Col.M/ .

� If ˛W M!N is a is a map of operads, the adjunction

˛ŠW ModCE ŒM��ModCE ŒN� W˛
�

is a Quillen adjunction. It is, moreover, a Quillen equivalence if ˛ is a weak
equivalence.

� The forgetful functor ModCE ŒM�! .ModE /Col.M/ sends cofibrant objects to
cofibrant objects.

Proof See Theorems 3.4.1 and 3.4.3 of Pavlov and Scholbach [14].

Remark 1.2 All the operads that we consider in this work have a finite number of
colors. The only kind of weak equivalences we will have to consider are maps that
induce a bijection on the set of colors and induce weak equivalences on each space of
operations.

The little disk operad

There is a topological category whose objects are d–manifolds without boundary and
with space of maps between M and N given by Emb.M;N /, the topological space
of smooth embeddings with the weak C 1 topology.

Definition 1.3 A framed d–manifold is a pair .M; �M / where M is a d–manifold
and �M is a smooth section of the GL.d/–principal bundle Fr.TM/.

If M and N are two framed d–manifolds, we define a space of framed embeddings,
denoted by Embf .M;N / as in Definition V.8.3 of Andrade [1]. We now recall this
construction. First, given a diagram

Y

v
��

X
u
// Z

in the category of topological spaces over a fixed topological space W , we define its ho-
motopy pullback as in [1, Chapter V.9] to be the space of triples .y; p; z/2X�ZŒ0;1��Y
such that p.0/ D u.x/, p.1/ D v.y/ and such that the image of p in W Œ0;1� is a
constant path. It can be shown that this is indeed a model for the homotopy pullback in
the model category Top=W .
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Definition 1.4 Let M and N be two framed d–dimensional manifolds. The topo-
logical space of framed embeddings from M to N , denoted by Embf .M;N /, is
given by the following homotopy pullback in the category of topological spaces over
Map.M;N /:

Embf .M;N / //

��

Map.M;N /

��
Emb.M;N / // MapGL.d/.Fr.TM/;Fr.TN//

The right-hand side map is obtained as the composite

Map.M;N /!MapGL.d/.M �GL.d/;N �GL.d//ŠMapGL.d/.Fr.TM/;Fr.TN//;

where the first map is obtained by taking the product with GL.d/ and the second
map comes from the identifications Fr.TM/ŠM �GL.d/ and Fr.TN/ŠN �GL.d/
induced by our choice of framing on M and N .

Andrade explains in [1, Definition V.10.1] that there are well-defined composition maps

Embf .M;N /�Embf .N; P /! Embf .M;P /

allowing the construction of a topological category f Mand .

We denote by D the open disk of dimension d .

Proposition 1.5 The evaluation at the center of the disks induces a weak equivalence

Embf .D
tp;M/! Conf.p;M/:

Proof See [1, Proposition V.4.5] or Proposition 6.6 of Horel [10].

Definition 1.6 The little d–disk operad Ed is the one-color operad whose nth space is

Ed .n/D Embf .D
tn;D/

and whose composition is induced by composition of embeddings. We denote by Ed
the PROP of the operad Ed .

Remark 1.7 This model of the little d–disk operad was introduced by Andrade [1].
Using Proposition 1.5, it is not hard to show that this definition is weakly equivalent to
any other definition of the little d–disk operad.
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Factorization homology

From now on, until we say otherwise, we denote by .CC;˝; I/ the symmetric monoidal
category ModE with its positive model structure and by C the same category equipped
with the absolute model structure. We do this partly to simplify the notations but
mostly to emphasize that our arguments hold in greater generality modulo a few easy
modifications.

Definition 1.8 Let A be a cofibrant object of CCŒEd �. We define the factorization
homology with coefficients in A by the coendZ

M

A WD Embf .�;M/˝Ed A:

This functor sends weak equivalences between cofibrant algebras to weak equivalences.

Proposition 1.9 The functor M 7!
R
M A is a simplicial and symmetric monoidal

functor from the category f Mand to the category C .

Proof See [10, Definition 7.3] and the paragraph following it.

Let M be an object of f Mand . Let D.M/ be the poset of subsets of M that
are diffeomorphic to a disjoint union of disks. Let us choose for each object V of
D.M/ a framed diffeomorphism V ŠDtn for some uniquely determined n. Each
inclusion V � V 0 in D.M/ induces a morphism Dtn!Dtn

0

in Ed by composing
with the chosen parametrization. Therefore, each choice of parametrization induces
a functor D.M/! Ed . Up to homotopy this choice is unique, since the space of
automorphisms of D in Ed is contractible.

In the following we assume that we have one of these functors ıW D.M/!Ed . We
fix a cofibrant algebra AW Ed ! C .

Proposition 1.10 There is a weak equivalence

hocolimV 2D.M/A.ıV /'

Z
M

A:

Proof See [10, Corollary 7.7].
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2 Modules over Ed –algebras

We define the notion of an S� –shaped module. These are modules over Ed –algebras
that are studied in detail in Horel [11].

Definition 2.1 A d–framing of a closed .d�1/–manifold S is a trivialization of the
d–dimensional bundle TS˚R, where R is a trivial line bundle.

For M a d–manifold with boundary and m a point of @M , we say that a vector
u 2 TmM is pointing inward if it is not in Tm@M and there is a curve  W Œ0; 1/!M

whose derivative at 0 is u.

Definition 2.2 Let S be a closed .d�1/–manifold. An S–manifold is a d–manifold
with boundary M together with the data of

� a diffeomorphism f W S ! @M ,

� a non-vanishing section � of the restriction of the vector bundle TM on @M
which is such that �.m/ is pointing inward for any m in @M .

Definition 2.3 Let � be a d–framing of S . Let i W T @M ! TMj@M be the obvious
inclusion. A framed S� –manifold is an S–manifold .M; f; �/ with the data of a
framing of TM such that the composite

TS˚R
Tf˚R
���!T .@M/˚R

i˚�
���!TMj@M

sends � to the given framing on the right-hand side.

For E!M a d–dimensional vector bundle, we denote by Fr.E/ the GL.d/–bundle
over M whose fiber over m is the space of bases of the vector space Em . Note that a
trivialization of E is exactly the data of a section of Fr.E/.

For .M; f; �/ and .M; g;  / two framed S� –manifolds, we denote by

MapS�GL.d/.Fr.TM/;Fr.TN//

the space of morphisms of GL.d/–bundles whose underlying map M ! N sends
the boundary to the boundary and whose restriction to the boundary is fiberwise the
identity (via the identification of both boundaries with S and of both tangent bundles
with TS˚R).
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Definition 2.4 Let .M; f; �/ and .M; g;  / be two framed S� –manifolds. Let
MapS .M;N / be the topological space of maps between M and N that commute with
the maps f W S !M and gW S !N . Similarly, let EmbS .M;N / be the topological
space of embeddings that commute with the maps from S . The topological space
of framed embeddings from M to N , denoted by EmbS�

f
.M;N /, is the following

homotopy pullback taken in the category of topological spaces over MapS .M;N /:

EmbS�
f
.M;N / //

��

MapS .M;N /

��

EmbS .M;N / // MapS�GL.d/.Fr.TM/;Fr.TN//

Recall that a right module over an operad M is an S –enriched functor M op! S . We
denote by ModM the category of right modules over M.

Definition 2.5 Let .S; �/ be a d–framed .d�1/–manifold. We define a right Ed –
module S� by the formula

S� .n/D EmbS�
f

�
Dtn t .S � Œ0; 1//; S � Œ0; 1/

�
:

Recall, that there is a symmetric monoidal structure on ModEd . If F and G are two
objects of ModEd , we can view them as contravariant functors on the groupoid † of
finite sets and bijections. Then their tensor product is the left Kan extension of the
functor

.n;m/ 7! F.n/�G.m/

along the functor †op �†op!†op sending a pair of finite sets to their disjoint union.

Construction 2.6 We give S� the structure of an associative algebra in ModEd . Let
� be an element of S� .m/ and  be an element of S� .n/. Let  S be the restriction
of  to S � Œ0; 1/. We define  �� to be the element of S� .mCn/ whose restriction
to S � Œ0; 1/tDtm is  S ı� and whose restriction to Dtn is  jDtn .

The operation
���W S� .n/�S� .m/! S� .nCm/

makes S� into an associative algebra in the symmetric monoidal category of right
Ed –modules.
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Definition 2.7 The colored operad S�Mod has two colors a and m. Its only non-
empty spaces of operations are

S�Mod.a; : : : ; a„ ƒ‚ …
n

I a/D Ed .n/ and S�Mod.a; : : : ; a„ ƒ‚ …
n

; mIm/D S� .n/:

The composition involves the operad structure on Ed , the right Ed –module structure
on S� and the associative algebra structure on S� .

Again, .CC;˝; I/ denotes the symmetric monoidal model category ModCE and C

denotes the same category but with its absolute model structure. An algebra in C over
S�Mod consists of a pair of objects .A;M/ where A is an Ed –algebra and M is
equipped with an action of A of the form

EmbS�
f
.S � Œ0; 1/tDtn; S � Œ0; 1//˝M ˝A˝n!M:

Definition 2.8 Let A be an Ed –algebra in C . We define the category of S� –shaped
modules over A, denoted by S�ModA , to be the category whose objects are S�Mod–
algebras whose restriction to the color a is the Ed –algebra A and whose morphisms
are morphisms of S�Mod–algebra inducing the identity map on A.

Remark 2.9 More generally, for any operad O, and any right module P over O, the
above construction gives a notion of modules over O–algebras. This construction is
studied in detail in [11, Section 3].

Proposition 2.10 Let A be an Ed –algebra in C . The coend

U
S�
A D S� ˝Ed A

inherits an associative algebra structure from the one on S� and there is an equivalence
of categories between the category of left modules over U S�A and the category S�ModA .

Proof See [11, Proposition 3.9].

This proposition lets us put a model structure on S�ModA in which the weak equiva-
lences and fibrations are the maps that are sent to weak equivalences and fibrations by
the forgetful functor S�ModA! C . Moreover, since C is a closed symmetric model
category, the model category S�ModA is a C –enriched model category.

Example 2.11 The unit sphere inclusion Sd�1 ! Rd has a trivial normal bundle.
This induces a d–framing on Sd�1 , which we denote by � . On the other hand we

Algebraic & Geometric Topology, Volume 15 (2015)



Higher Hochschild cohomology of the Lubin–Tate ring spectrum 3225

have the notion of an operadic module over an Ed –algebra A. This is an object M
of C with multiplication maps

Ed .nC 1/!MapC .A
˝n
˝M;M/

that are compatible with the Ed –structure on A in a suitable way (see Definition 1.1
of Berger and Moerdijk [5]). We denote the category of such modules by ModEd

A . The
two notions are related by the following theorem:

Theorem 2.12 For a cofibrant Ed –algebra A, there is a Quillen equivalence

S�ModA�ModEd
A :

Moreover, the right adjoint of this equivalence commutes with the forgetful functor of
both categories to C .

Proof This is done in [11, Proposition 4.12]. The second claim follows from the fact
that this equivalence is induced by a weak equivalence of associative algebras

U
Sd�1�

A ! U
Ed Œ1�
A ;

where U Ed Œ1�
A is the enveloping algebra of ModEd

A (ie it is an associative algebra such
that there is an equivalence of categories Mod

U
Ed Œ1�

A

'ModEd
A ).

Let S be a closed .d�1/–manifold and let � be a d–framing of S . There is a map
S� ! Embf .�; S � .0; 1// sending an embedding S � Œ0; 1/tDtn! S � Œ0; 1/ to
its restriction to Dtn .

Proposition 2.13 The map S� ! Embf .�; S � .0; 1// is a weak equivalence of right
Ed –modules.

Proof This follows from [11, Proposition A.3]

Corollary 2.14 For a cofibrant Ed –algebra A, there is a weak equivalence

U
S�
A �!�

Z
S�.0;1/

A:

Proof By the previous proposition, there is a weak equivalence of right Ed –modules

S� �!
� Embf .�; S � .0; 1//:

We prove in [10, Proposition 2.8] that, for A cofibrant, the functor �˝Ed A preserves
all weak equivalences of right Ed –modules.
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If A is an Ed –algebra, then the object
R
S�.0;1/A is an E1–algebra. Indeed, any

embedding .0; 1/tn ! .0; 1/ induces an embedding .0; 1/ � Stn ! .0; 1/ � S by
taking the product with S . Applying

R
�
A to this last embedding, we get maps

Embf ..0; 1/tn; .0; 1//!MapC

��Z
S�.0;1/

A

�̋ n

;

Z
S�.0;1/

A

�
:

We would like to say that the weak equivalence of the previous proposition is an
equivalence of E1–algebras, but it is not one on the nose. However, we show in the
next proposition that this is a map of S� –shaped modules.

Proposition 2.15 There is an S� –shaped module structure on
R
S�.0;1/A such that

the map

U
S�
A !

Z
S�.0;1/

A

is a weak equivalence of S� –shaped modules.

Proof Let us describe the S� –shaped module structure on
R
S�.0;1/A. Let � be

a point in EmbS�
f
.S � Œ0; 1/ tDtn; S � Œ0; 1//. By forgetting about the boundary,

� defines a point in Embf .S � .0; 1/tDtn; S � .0; 1// that induces a map�Z
S�.0;1/

A

�
˝A˝n!

Z
S�.0;1/

A:

Letting � vary, this gives
R
S�.0;1/A the structure of an S� –shaped module. Moreover,

the map U S�A !
R
S�.0;1/A is a map of S� –shaped modules. Since we already know

that it is a weak equivalence, we are done.

3 Higher Hochschild cohomology

In this section, we construct a geometric model for higher Hochschild cohomology.
We still denote by .C ;˝; I/ the symmetric monoidal model category ModE . Our
construction remains valid in other contexts (spaces, chain complexes, simplicial
modules) modulo a few obvious modifications. We denote by Hom the inner Hom in
the category C . This functor is uniquely determined by the fact that we have a natural
isomorphism

C .X ˝Y;Z/Š C .X;Hom.Y;Z//:

For any associative R algebra in C , the C –enrichment of C induces to a C –
enrichment of ModR . We denote by HomR the homomorphisms object in ModR .
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Let A be an Ed –algebra that we assume to be cofibrant. Our goal is to construct a
functor

RHomS�Œ0;1�A W S�Modop
A �S�ModA! C

that is weakly equivalent to RHomS�ModA.�;�/ WD RHom
U
S�
A

.�;�/ but which is
closer to the factorization homology philosophy.

For .S; �/ a d–framed .d�1/–manifold, we denote by �� the d–framing on S

obtained by pulling back � along the isomorphism of the vector bundle TS˚R that is
the identity on the first summand and multiplication by �1 on the second summand.

In particular, S � Œ0; 1/ is naturally an S� –manifold and S �.0; 1� is an S�� –manifold.

Definition 3.1 We denote by DiskS�tS��
d

the topological category whose objects are
the S� tS�� –manifolds of the form S � Œ0; 1/tDtn tS � .0; 1� with n in Z�0 and
whose morphisms are given by the spaces EmbS�tS��

f
.

Construction 3.2 We define a functor

F.M;A;N /W .DiskS�tS��
d

/op
! C :

Its value on S � Œ0; 1/tDtn tS � .�1; 0� is Hom.M ˝A˝n; N /.

Notice that any map in .S� t S�� /Mod can be decomposed as a disjoint union of
embeddings of the following three types:

� S � Œ0; 1/tDtk! S � Œ0; 1/.
� Dtl !D (where l is possibly zero).
� Dtm tS � .0; 1�! S � .0; 1�.

Let � be an embedding S � Œ0; 1/tDtntS � .0; 1�! S � Œ0; 1/tDtmtS � .0; 1�

and let
� D �C t 1 t � � � t r t��

be its decomposition with �C of the first type, �� of the third type and  i of the
second type for each i . We need to extract from this data a map

Hom.M ˝A˝m; N /! Hom.M ˝A˝n; N /:

The action of �C and of the  i are constructed in an obvious way from the Ed –structure
of A and the S� –shaped module structure on M . The only non-trivial part is the action
of �� . We can hence assume that �D idS�Œ0;1/tDtpt�� , where �� is an embedding
Dtn tS � .0; 1�! S � .0; 1�. We want to construct

Hom.M ˝A˝p; N /! Hom.M ˝A˝p˝A˝n; N /:
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First, observe that there is a diffeomorphism S � Œ0; 1/! S � .0; 1� sending .s; t/
to .s; 1� t /. This diffeomorphism sends the framing � on S � Œ0; 1/ to the framing
�� on S � .0; 1�. Similarly, reflexion about the hyperplane xd D 0 induces a diffeo-
morphism D!D . Conjugating by this diffeomorphism, the embedding �� induces
an embedding

z��W S � Œ0; 1/tD
tn
! S � Œ0; 1/:

In fact, this construction induces a homeomorphism

EmbS��
f

.S � .0; 1�tDtn; S � .0; 1�/! EmbS�
f
.S � Œ0; 1/tDtn; S � Œ0; 1//:

Now, notice that Hom.M ˝A˝p; N / has the structure of an S� –shaped A module
induced from the one on N . Thus, the map z�� induces a map

Hom.M ˝A˝p; N /˝A˝n! Hom.M ˝A˝p; N /:

This map is adjoint to a map

Hom.M ˝A˝p; N /! Hom.M ˝A˝p˝A˝n; N /;

which we define to be the action of � .

Remark 3.3 In order to be homotopically meaningful, we need a derived version
of F.M;A;N /. We claim that the homotopy type of F.M;A;N / only depends on
the homotopy type of M , A and N as long as A is a cofibrant Ed –algebra, M is
a cofibrant object of S�ModA and N is a fibrant object of S�ModA . Indeed, these
conditions imply that

� the object M is cofibrant in C , because the forgetful functor S�ModA! C

preserves cofibrations,

� A is cofibrant in C ,

� M is cofibrant in C ,

� N is fibrant in C .

This implies that for all k , Hom.M ˝A˝k; N /'RHom.M ˝A˝k; N /.

We denote by hom the functor S op �C ! C sending .X; C / to Hom.X ˝ I; C /.
Equivalently, this is the cotensor of C with S induced from the simplicial structure.
For A a small simplicial category, F a functor from A to S and G a functor from A

to C , we denote by homA.F;G/ the endZ
A

hom.F.�/; G.�//:
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We denote by RhomA.F;G/ the derived functor obtained by taking a cofibrant re-
placement of the source and a fibrant replacement of the target in the projective model
structure of functors on A .

Definition 3.4 We define RHomS�Œ0;1�A .M;N / to be the homotopy end

Rhom
.DiskS�tS��

d
/op

�
EmbS�tS��

f
.�; S � Œ0; 1�/;F.QM;A;RN/

�
;

where QM !M is a cofibrant replacement in S�ModA and N ! RN is a fibrant
replacement.

We can now formulate the main theorem of this section.

Theorem 3.5 There is a weak equivalence

RHomS�Œ0;1�A .M;N /'RHomS�ModA.M;N /:

The rest of this section is devoted to the proof of this theorem. The reader willing to
accept this result can safely skip the proof and move directly to the last subsection of
this section.

Case of E1–algebras

The one-point space is a 0–manifold. This manifold has two 1–framings, which we
call the negative and positive framing. By definition, a 1–framing of the point is the
data of a basis of R as a R–vector space. The positive framing is the one given by 1
and the negative framing is the one given by �1. Thus, by Definition 2.5, we get two
right modules over E1 . We denote by R the one corresponding to the negative framing
and L the one corresponding to the positive framing.

Definition 3.6 A left module over an E1–algebra A is an object of the category
LModA . Similarly, a right module over A is an object of RModA .

More explicitly, an object of LModA is an object of C , M together with multiplication
maps

A˝n˝M !M

for each embedding Œ0; 1/t .0; 1/tn! Œ0; 1/ These maps are moreover supposed to
satisfy a unitality and associativity condition.

We denote by Disk�C1 the one-dimensional version of the category DiskS�tS�� defined
in Definition 3.1. As a particular case of Definition 3.4, given a cofibrant E1–algebra A
and two left modules M and N , we can define HomŒ0;1�A .M;N / and this is given by
natural transformations between contravariants functors on Disk�C1 .
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Definition 3.7 The category of non-commutative intervals, denoted by Ass�C , is a
skeleton of the category whose objects are finite sets containing f�;Cg and whose
morphisms are maps of finite sets f preserving � and C together with the extra data
of a linear ordering of each fiber which is such that � (resp. C) is the smallest (resp.
largest) element in the fiber over � (resp. C).

Note that the functor �0 , sending a disjoint union of intervals to the set of connected
components, is an equivalence of topological categories from Disk�C1 to Ass�C . In
fact, we could have defined Ass�C as the homotopy category of Disk�C1 .

Let A be an associative algebra and M and N be left modules over it. We define
F.M;A;N / to be the obvious functor .Ass�C/op! C sending f�; 1; : : : ; n;Cg to
Hom.A˝n˝M;N/. The functoriality is defined analogously to Construction 3.2.

Recall that �op can be described as a skeleton of the category whose objects are linearly
ordered sets with at least two elements and morphisms are order-preserving morphisms
that preserve the minimal and maximal element.

With this description, there is an obvious functor �op ! Ass�C sending a totally
ordered set with minimal element � and maximal element C to the underlying finite
set and sending an order-preserving map to the underlying map with the data of the
induced linear ordering of each fiber.

Recall that given a triple .M;A;N / consisting of an associative algebra A and two
left modules M and N , we can form the cobar construction C �.M;A;N /. It is a
cosimplicial object of C whose value at Œn� is Hom.A˝n˝M;N/. It is classical that
if A and M are cofibrant and N is fibrant, then C �.M;A;N / is Reedy fibrant and its
totalization is a model for the derived Hom RHomModA.M;N /.

Proposition 3.8 Let A be an associative algebra and let M and N be left modules
over it. The composition of F.M;A;N / with the functor �! .Ass�C/op is the cobar
construction C �.M;A;N /

Proof This is a straightforward computation.

We denote by P W .Ass�C/op ! S the left Kan extension of the cosimplicial space
that is levelwise a point along the map �! .Ass�C/op . Concretely, P sends a finite
set with two distinguished elements � and C to the set of linear orderings of that set
whose smallest element is � and largest element is C, seen as a discrete space.

Corollary 3.9 Let A be a cofibrant associative algebra and let M and N be left
modules over it. Then

RHomA.M;N /'RhomAss�C.P; F.M;A;N //:
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Proof Assume that M is cofibrant and N is fibrant. If they are not, we take an
appropriate replacement. The left-hand side is

Tot
�
Œn�! C n.M;A;N /D Hom.M ˝A˝n; N /

�
:

According to the cofibrancy/fibrancy assumption, this cosimplicial functor is Reedy
fibrant, therefore the totalization coincides with the homotopy limit. Hence we have

RHomA.M;N /'Rhom�.�; C �.M;A;N //'RhomAss�C.P; F.M;A;N //:

Proposition 3.10 Let A be a cofibrant associative algebra and let M and N be left
modules over it. Then there is a weak equivalence

RHomŒ0;1�A .M;N / �!� RHomA.M;N /:

Proof Again, we can assume that M is cofibrant and N is fibrant. By the previous
corollary, the right-hand side is the derived end

RhomAss�C.P; F.M;A;N //;

which can be computed as the totalization of the Reedy fibrant cosimplicial object

C �.P;Ass�C; F .M;A;N //:

Similarly, the left-hand side is the totalization of the Reedy fibrant cosimplicial object

C �
�
Emb�C.�; Œ0; 1�/;Disk�C;F.M;A;N /

�
:

There is an obvious map of cosimplicial objects

C �
�
Emb�C.�; Œ0; 1�/;Disk�C;F.M;A;N /

�
! C �.P;Ass�C; F .M;A;N //;

which is degreewise a weak equivalence. Therefore, there is a weak equivalence
between the totalizations

RHomŒ0;1�A .M;N / �!� RHomA.M;N /:

If A is an E1–algebra, it can be seen as an object of LModA as follows. The map

A˝A˝n! A;

corresponding to an embedding

�W Œ0; 1/t .0; 1/tn! Œ0; 1/

is defined to be the multiplication map A˝nC1! A corresponding to the restriction
of � to its interior.
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We denote by .A;Am/ the LMod–algebra consisting of A acting on itself in the above
way.

Corollary 3.11 Let A be a cofibrant E1–algebra and N a left module. Then

RHomŒ0;1�A .Am; N /'N:

Proof The pair .A;N / forms an algebra over LMod . The operad LMod is weakly
equivalent to the operad LMod parameterizing strictly associative algebras and left
modules. This implies that we can find a pair .A0; N 0/ consisting of an associative
algebra and a left module together with a weak equivalence of LMod–algebra

.A;N / �!� .A0; N 0/:

Using the previous proposition, we have

RHomŒ0;1�A .Am; N /'RHomA0.A0; N 0/'N 0 'N:

Let D.Œ0; 1�/ be the poset of open sets of Œ0; 1� that are diffeomorphic to

Œ0; 1/t .0; 1/tn t .0; 1�

for some n. Let us choose a functor

ıW D.Œ0; 1�/! Disk�C

by picking a diffeomorphism of each object of D.Œ0; 1�/ with an object of Disk�C .

Proposition 3.12 There is a weak equivalence

RHomŒ0;1�A .M;N /' holimU2D.Œ0;1�/opF.M;A;N /.ıU /:

Proof We can assume that M is cofibrant and N is fibrant. First, by [10, Lemma 7.8],
we have a weak equivalence

EmbS
0

f .�; Œ0; 1�/' hocolimU2D.Œ0;1�/EmbS
0

f .�; U /:

It follows that there is an equivalence

RHomŒ0;1�A .M;N /' holimU2D.Œ0;1�/opRHomıUA .M;N /:

Then we notice, using the Yoneda lemma, that U 7! RHomıUA .M;N / is weakly
equivalent as a functor to U 7! F.M;A;N /.ıU /.
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Comparison with the actual homomorphisms

In this subsection, A is a cofibrant Ed –algebra. We will compare RHomS�Œ0;1�A .M;N /

with RHomS�ModA.M;N /.

Construction 3.13 Let M be an S� –shaped module over an Ed –algebra A. We
give M the structure of a left module over the E1–algebra

R
S�.0;1/A. Let

.0; 1/tn t Œ0; 1/! Œ0; 1/

be a framed embedding. We can take the product with S and get an embedding
in f ManS�

d
,

.S � .0; 1//tn tS � Œ0; 1/! S � Œ0; 1/:

Evaluating
R
�
.M;A/ over this embedding, we find a map�Z

S�.0;1/

A

�̋ n

˝M !M:

All these maps give M the structure of a left
�R
S�.0;1/A

�
–module.

Proposition 3.14 Let M and N be two S� –shaped modules over A. There is a weak
equivalence

RHomS�Œ0;1�A .M;N /' holimU2D.Œ0;1�/opF

�
M;

Z
S�.0;1/

A;N

�
.S �U/;

where M and N are given the structure of left
�R
S�.0;1/A

�
–modules using the previous

construction.

Proof This is a variant of Proposition 3.12. We first prove that

RHomS�Œ0;1�A .M;N /' holimU2D.Œ0;1�/opRHomS�UA .M;N /:

This follows from the equivalence

hocolimU2D.Œ0;1�/EmbS�tS��
f

.�; S �U/' EmbS�tS��
f

.�; S � Œ0; 1�/

in the category Fun..DiskS�tS�� /op;S /. Then, using the Yoneda lemma, we see that
the functor

U 7!RHomS�UA .M;N /

is weakly equivalent to

U 7! F

�
M;

Z
S�.0;1/

A;N

�
.U /:
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Corollary 3.15 There is a weak equivalence

RHomŒ0;1�R
S�.0;1/A

.M;N /'RHomS�Œ0;1�A .M;N /:

Proof Both sides are weakly equivalent to

holimU2D.Œ0;1�/opF

�
M;

Z
S�.0;1/

A;N

�
.S �U/;

one side by the previous proposition and the other by Proposition 3.12.

Proof of Theorem 3.5 We fix A and a fibrant S� –shaped module N and we let
M vary. We want to compare two contravariant functors from S�ModA to C . Both
functors preserve weak equivalences between cofibrant objects and turn homotopy
colimits into homotopy limits; therefore, it suffices to check that both functors are
weakly equivalent on the generator of the category of S� –shaped modules. In other
words, it is enough to prove that

RHomS�Œ0;1�A .U
S�
A ; N /'RHomS�ModA.U

S�
A ; N /:

The right-hand side of the above equation can be rewritten as RHom
U
S�
A

.U
S�
A ; N /,

which is trivially weakly equivalent to N .

We know from Proposition 2.15 that, as S� –shaped modules, there is a weak equivalence

U
S�
A !

Z
S�.0;1/

AI

therefore, it is enough to prove that there is a weak equivalence

RHomS�Œ0;1�A

�Z
S�.0;1/

A;N

�
'N:

According to Corollary 3.15, it is equivalent to prove that there is a weak equivalence

RHomŒ0;1�R
S�Œ0;1�A

�Z
S�.0;1/

A;N

�
'N:

This follows directly from Corollary 3.11.

A generalization

We can generalize Definition 3.4. In [11, Construction 6.9], given the data of a framed
bordism W between d–framed manifolds of dimension d�1, S� and T� , we construct
a left Quillen functor

PW W S�ModA! T�ModA:
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The best way to think of this functor is as follows. Factorization homology of A over W
is a U S�A -U T�A –bimodule. Thus, tensoring with it induces a left Quillen functor

S�ModA! T�ModA:

Construction 3.16 Let W be bordism from S� to T� . Let M be an S� –shaped mod-
ule over A and let N be a T� –shaped module. We can construct a functor F.M;A;N /
as in Construction 3.2 from .DiskS�tT�� /op to C that sends S�Œ0; 1/tDtntT�.0; 1�
to Hom.A˝n˝M;N/. We define RHomWA .M;N / to be the homotopy end

RHomWA .M;N /DRhom.DiskS�tT�� /op.EmbS�tT��
f

.�; W /;F.M;A;N //:

This construction has the following nice interpretation:

Theorem 3.17 Let W be a bordism from S� to T� . There is a weak equivalence

RHomWA .M;N /'RHomT�Œ0;1�A .LPW .M/;N /:

Proof The proof is very analogous to the proof of Theorem 3.5.

We can now introduce our definition of higher Hochschild cohomology.

Definition 3.18 Let A be a cofibrant Ed –algebra in C and let M be an Sd�1� –shaped
module over A. The Ed –Hochschild cohomology of A with coefficients in M is
defined as

HHEd .A;M/DRHomSd�1� ModA.A;M/:

We now compare this definition to a more traditional definition. Let A be a cofibrant
Ed –algebra and let M be an object of ModEd

A . By Theorem 2.12, we can see M as
an Sd�1� –shaped module over A.

Proposition 3.19 For A a cofibrant Ed –algebra and M an object of ModEd
A , we have

a weak equivalence

RHom
ModEd

A

.A;M/'RHomS�ModA.A;M/:

Proof By Theorem 2.12, we have a Quillen equivalence

uŠW S
d�1
� ModA�ModEd

A Wu
�:

Therefore, we have a weak equivalence LuŠu
�A!A in ModEd

A . This gives us a weak
equivalence

RHom
ModEd

A

.A;M/!RHom
ModEd

A

.LuŠu
�A;M/'RHomS�ModA.u

�A;u�M/:
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Thus, our definition of HHEd .A;M/ coincides with the more traditional definition
that we gave in the first paragraph of the introduction. According to Theorem 3.5,
we have a weak equivalence HHEd .A;M/'RHomS

d�1�Œ0;1�
A .A;M/. As usual, we

write HHEd .A/ for HHEd .A;A/.

Proposition 3.20 Let D be the closed unit ball in Rd seen as a bordism from the
empty manifold to Sd�1� . There is a weak equivalence

HHEd .A;M/'RHomDA .I;M/:

Proof I , the unit of C , is an object of ¿ModA (note that ¿ModA is equivalent to
the category C ) and LPD.I/ is weakly equivalent to A. Then it suffices to apply
Theorem 3.17.

This has the following surprising consequence:

Corollary 3.21 The group DiffS
d�1

f .D/ acts on HHEd .A;M/.

Remark 3.22 The group DiffS
d�1

f .D/ is weakly equivalent to the homotopy fiber of
the inclusion

DiffS
d�1

.D/! ImmS
d�1

.D;D/;

where the Sd�1 superscript means that we are restricting to the diffeomorphisms
or immersions which are the identity outside on Sd�1 D @D . In fact, the action
of DiffS

d�1

f .D/ factors through the inverse limit of the embedding calculus tower
computing this group. Since we are in the codimension-0 case, the embedding calculus
tower should not be expected to converge. Even if it does not converge, it is an
interesting mathematical object. In particular, using the work of Arone and Turchin [3]
and Willwacher [19, Theorem 1.2], we get an action of the Grothendieck–Teichmüller
Lie algebra grt on the E2–Hochschild cohomology of an algebra over HQ. We hope
to study this action further in future work.

4 Higher Hochschild homology

Let R be a commutative graded ring. We denote by Ch�0.R/ the category of non-
negatively graded chain complexes. This has a model category structure in which the
weak equivalences are the quasi-isomorphisms, the cofibrations are the degreewise
monomorphisms with degreewise projective cokernel and the fibrations are the epimor-
phisms. In particular, any object is fibrant and the cofibrant objects are the degreewise
projective chain complexes.
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The model category Ch�0.R/ is cofibrantly generated. Thus, we have the projective
model category structure on functors Fin!Ch�0.R/, in which weak equivalences and
fibrations are objectwise. The following definition is due to Pirashvili [15, Introduction,
page 151] (see also Definition 2 of Ginot, Tradler and Zeinalian [8]).

Definition 4.1 Let A be a degreewise projective commutative algebra in Ch�0.R/
and let X be a simplicial set. We denote by HHX .AjR/ the homotopy coend

Map.�; X/˝L
FinA:

Remark 4.2 In practice, we can take HHX .AjR/ to be the realization of the simplicial
object

B�.Map.�; X/;Fin; A/:

This construction preserves quasi-isomorphism between degreewise projective com-
mutative algebras. In the following, HHX .AjR/ will be taken to be this explicit
model.

This construction also sends a weak equivalence X �!� Y to a weak equivalence

HHX .AjR/ �!� HHY .AjR/:

Proposition 4.3 Let A be a degreewise projective commutative algebra in Ch�0.R/;
then the functor X 7! HHX .AjR/ lifts to a functor from S to the category of commu-
tative algebras in Ch�0.R/.

Proof The category Fun.Finop;S / equipped with the convolution tensor product is a
symmetric monoidal model category (see [13, Proposition 2.2.15]). It is easy to check
that there is an isomorphism

Map.�; X/˝Map.�; Y /ŠMap.�; X tY /:

Moreover, since AW Fin!Ch�0.R/ is a commutative algebra for the convolution ten-
sor product, the object HHX .AjR/ is a symmetric monoidal functor in the X variable.
To conclude, it suffices to observe that any simplicial set is a commutative monoid
with respect to the disjoint union in a unique way and that this structure is preserved
by maps in S . Therefore, HHX .AjR/ is a commutative algebra functorially in X .

Proposition 4.4 Let A be a degreewise projective commutative algebra in Ch�0.R/.
Let

X //

��

Z

��
Y // P
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be a homotopy pushout in the category of simplicial sets. Then there is a weak
equivalence

HHP .AjR/'
ˇ̌
B�
�
HHY .AjR/;HHX .AjR/;HHZ.AjR/

�ˇ̌
:

Proof First, notice that the maps X ! Z and X ! Y induce commutative alge-
bra maps HHX .AjR/! HHY .AjR/ and HHX .AjR/! HHZ.AjR/. In particular,
HHZ.AjR/ and HHY .AjR/ are modules over HHX .AjR/. This explains the bar
construction in the statement of the proposition.

We can explicitly construct P as the realization of the simplicial space

Œp� 7! Y tXtp tZ;

where the face maps are induced by the codiagonals and the maps X! Y and X!Z

and the degeneracies are induced by the maps from the empty simplicial set to X , Y
and Z .

For a finite set S , and any simplicial space U� , there is an isomorphism

jU S
�
j Š jU�j

S :

Therefore, there is a weak equivalence of functors on Fin,

Map.�; P /'
ˇ̌
B�
�
Map.�; Y /;Map.�; X/;Map.�; Z/

�ˇ̌
;

where the bar construction on the right-hand side is in the category Fun.Fin;S / with
the convolution tensor product.

We can form the following bisimplicial object in Ch�0.R/:

B�
�
B�.Map.�; Y /;Map.�; X/;Map.�; Z//;Fin; A

�
:

By the previous observation, if we realize first with respect to the inner simplicial
variable and then the outer one, we find something equivalent to HHP .AjR/. If we
first realize with respect to the outer variable, we find

B�
�
HHY .AjR/;HHX .AjR/;HHZ.AjR/

�
:

The two realizations are equivalent. This concludes the proof.

Corollary 4.5 Let A be a degreewise projective commutative algebra in Ch�0.R/,
then HHS

1

.A/ is quasi-isomorphic to the Hochschild chains on A.
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Proof We can write S1 as the homotopy pushout of:

S0

��

// pt

pt

If S is a finite set HHS .A/D A˝S with the obvious commutative algebra structure.
In particular, the previous theorem gives

HHS
1

.A/' jB�.A;A˝A;A/j:

Since AD Aop , the right-hand side is quasi-isomorphic to A˝L
A˝Aop A.

5 The spectral sequence

We construct a spectral sequence converging to factorization homology. Its E2–page is
identified with higher Hochschild homology. For R a Z–graded ring, we denote by
GrModR the category of Z–graded left R–modules.

Definition 5.1 Let I be a small discrete category and let F W I ! GrModR be a
functor landing in the category of graded modules over R . We define the homology
of I with coefficients in F to be the homology groups of the homotopy colimit of F
seen as a functor concentrated in homological degree 0 from I to Ch�0.GrModR/.

We write HR� .I ; F / for the homology of I with coefficients in F .

Note that since we consider graded modules, the chain complexes are graded chain
complexes. This means that each homology group is graded. We denote by HRs;t .I ; F /
the degree-t part of the sth homology group. The index s lives in Z�0 and the index t
lives in Z. There is an explicit model for this homology. We construct the simplicial
object of GrModR whose p–simplices are

Bp.R; I ; F /D
M

i0!���!ip

F.i0/:

We can form the normalized chain complex associated to this simplicial object in
GrModR and we get a non-negatively graded chain complex in GrModR . Its homol-
ogy groups are the homology groups of I with coefficients in F .

Recall that if E is an associative algebra in symmetric spectra, then E�D ��.E/ is an
associative ring in graded abelian groups and, if M is a left E–module, then ��.M/

is an object of GrModE� .
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Proposition 5.2 Let F W I ! ModE be a functor from a discrete category to the
category of left modules over an associative algebra in symmetric spectra E . There is a
spectral sequence of E�–modules

E2s;t Š HE�s;t .I ; ��.F //D) �sCt .hocolimIF /:

Proof The homotopy colimit can be computed by taking an objectwise cofibrant
replacement of F and then the realization of the bar construction

hocolimIF ' jB�.�; I ;QF.�//j:

We can then use the standard spectral sequence associated to a simplicial object

Now assume that E is commutative. Let A be an Ed –algebra in ModE . Let M
be a framed d–manifold and let D.M/ be the poset of open sets of M that are
diffeomorphic to a disjoint union of copies of D . We know from Proposition 1.10 that
the factorization homology of A over M can be computed as the homotopy colimit of
the composition

D.M/
ı
�!Ed

A
�!ModE :

Hence, we are in a situation where we can apply the previous proposition. We get a
spectral sequence of E�–modules

HE�s;t .D.M/; ��.A ı ı//D) �sCt

�Z
M

A

�
:

We want to exploit the fact that A is a monoidal functor to obtain a more explicit model
for the left-hand side in some cases.

From now on, K denotes an associative algebra in spectra whose associated homology
theory has a Z=2–equivariant Künneth isomorphism. That is, we assume that the
obvious map

K�.X/˝K� K�.Y /!K�.X ^Y /

is an isomorphism of functors of the pair .X; Y / that is equivariant with respect to the
obvious Z=2–action on both sides. Examples of such ring spectra are the Eilenberg–
MacLane spectra Hk for any field k and K.n/, the Morava K–theory of height n at
odd primes.

We just smash the simplicial object computing hocolimD.M/A.ı�/ with K in each
degree and take the associated spectral sequence. We then get a spectral sequence of
K�.E/–modules

HK�E� .D.M/;K�.A ı ı//D)K�

�Z
M

A

�
:

Now we want to identify K�.A ı ı/ as a functor on D.M/.
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Proposition 5.3 If d D1, K�.A/ is an associative algebra in K�E–modules. If d >1,
K�.A/ is a commutative algebra in the category of K�E–modules.

Proof An E1 algebra in ModE is in particular an associative algebra in Ho.ModE /
and an Ed –algebra with d > 1 is a commutative algebra in Ho.ModE /. The result
then follows from the fact that the functor

K�W Ho.ModE /!GrModK�E
is symmetric monoidal.

Now, we focus on the case where d > 1. We have an obvious functor ˛W D.M/!Fin
that sends a configuration of disks on M to its set of connected components. In
particular, we can consider the functor

D.M/
˛
�!Fin K�.A/

���!GrModK�E ;

where the second map is induced by the commutative algebra structure on K�.A/ that
we have constructed in the previous proposition. It is clear that this functor coincides
with the functor obtained by applying K� to the composite

D.M/
ı
�!Ed

A
�!ModE :

From this, we deduce the following proposition:

Proposition 5.4 There is an isomorphism

HK�E� .D.M/;K�.A ı ı//Š HHSing.M/
� .K�AjK�E/:

In particular, there is a spectral sequence

HHSing.M/
s .K�AjK�E/t D)KsCt

�Z
M

A

�
:

Proof The first claim immediately implies the second.

In order to prove the first claim, we observe that we have weak equivalences

�˝
L
D.M/K�.A ı ı/' L˛Š �˝

L
FinK�.A/;

where � denotes the constant functor with value �.

We have L˛Š � .S/D hocolimU2D.M/Fin.S; �0.U //. By [11, Proposition 5.3], this
contravariant functor on Fin coincides up to weak equivalences with S 7! Sing.M/S .

Remark 5.5 The spectral sequence above still exists if K does not have a Künneth
isomorphism as long as K�A is flat as a K�–module. We leave the details to the
interested reader.
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Multiplicative structure

Let us start with the general homotopy colimit spectral sequence.

Proposition 5.6 Let F W I !ModE and GW J !ModE be functors. We have the
equivalence

hocolimI�JF ˝E G ' .hocolimIF /˝E .hocolimJG/:

Proof Assume F and G are objectwise cofibrant. The right-hand side is the homotopy
colimit over �op ��op of

B�.�; I ; F /˝B�.�;J ; G/:

The diagonal of this bisimplicial object is exactly

B�.�; I �J ; F ˝E G/:

Since �op!�op ��op is homotopy cofinal, we are done.

We denote by Er��.I ; F / and Er��.J ; G/ the spectral sequence computing the homotopy
colimit of F W I !ModE and GW J !ModE . Then there is a pairing of spectral
sequences of E�–modules

Er��.I ; F /˝E� Er��.J ; G/! Er��.I �J ; F ˝E G/:

Let us specialize to the case of factorization homology. We consider an Ed –algebra
A in ModE , a homology theory with Z=2–equivariant Künneth isomorphism K and
a framed manifold M of dimension d . We denote by Er��.M;A;K/ the spectral
sequence of the previous section.

Proposition 5.7 Let M and N be two framed d–manifolds. There is a pairing of
spectral sequences

Er��.M;A;K/˝K�E Er��.N;A;K/! Er��.M tN;A;K/:

Proof We observe that D.M tN/ŠD.M/�D.N / and that A˝E A as a functor
on D.M/�D.N / is equivalent to A as a functor on D.M tN/. Then the pairing of
spectral sequences of the previous paragraph reduces exactly to the desired result.

The topological category f Mand of framed d–manifolds and framed embeddings has
a symmetric monoidal structure given by the disjoint union operation. This induces
a symmetric monoidal structure on the ordinary category �0f Mand which is the
category obtained by applying �0 to each mapping space of f Mand . We say that
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a framed d–manifold is an associative algebra up to isotopy if it has the structure of
an associative algebra in �0f Mand . Examples of manifolds with such a structure
are obtained by starting with a d–framed .d�1/–manifold N and then constructing
the framed d–manifold M DN � .�1; 1/. This manifold M has the structure of an
E1–algebra in f Mand . In particular, it is an associative algebra up to isotopy.

There is a similar story in S . This category has a symmetric monoidal structure with
respect to the coproduct t. Any object has a unique commutative algebra structure
given by the codiagonal X tX !X . In particular, if M is an associative algebra up
to isotopy, this structure reduces to the canonical multiplication on Sing.M/.

Proposition 5.8 Let M be a framed manifold of dimension d � 2 with the structure
of an associative algebra up to isotopy. Let A be an Ed –algebra. The spectral sequence
Er��.M;A;K/ has a commutative multiplicative structure converging to the associative
algebra structure on K�

R
M A. On the E2–page, the multiplication is induced by the

unique commutative algebra structure on Sing.M/ in the category .S ;t/. Moreover,
this structure is functorial with respect to embeddings of d–manifolds M ! M 0

preserving the multiplication up to isotopy.

Proof According to the previous proposition there is a multiplicative structure on the
spectral sequence converging to the associative algebra structure on K�

R
M A.

It is easy to see that the multiplication on the E2–page is what is stated in the proposition.
Since Sing.M/ is commutative, the multiplication on the E2–page is commutative.
The homology of a commutative differential graded algebra is a commutative algebra,
therefore the multiplication is commutative on each page.

The functoriality is clear.

Now we want to construct an edge homomorphism. Let S be a .d�1/–manifold with a
d–framing � . Let � be a framed embedding of Rd�1�R into S �R commuting with
the projection to R. Applying factorization homology, we get a map of E1–algebras

u� W AŠ

Z
Rd�1�R

A!

Z
S�R

A:

On the other hand, for any point x of S �R we get a morphism of commutative
algebras over K�E ,

ux W K�.A/Š HHpt.K�AjK�E/! HHSing.S/.K�AjK�E/:
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Proposition 5.9 For any framed embedding �W Rd�1 �R! S �R, there is an edge
homomorphism

K�A! Er0;�.S �R; A;K/:

On the E2–page it is identified with the K�E–algebra homomorphism

u�.0;0/W K�.A/! HHpt.K�AjK�E/! HHSing.S/.K�AjK�E/

and it converges to the K�E–algebra homomorphism

K�.u�/W K�A!K�

Z
N�R

A:

Proof The spectral sequence computing K�
R

Rd�1�RA has its E2–page K�A con-
centrated on the 0th column. For degree reasons, it degenerates. Then the result follows
directly from the functoriality of the spectral sequence applied to the map � .

Note that the edge homomorphism only depends on the connected component of the
image of � . In the case of the sphere Sd�1�R with the framing � , we have a stronger
result:

Lemma 5.10 For any framed embedding �W Rd�1 �R! .Sd�1 �R/� commuting
with the projection to R, the map

u� W A!

Z
Sd�1�R

A

has a section in the homotopy category of ModE .

Proof There is an embedding

Sd�1 �R!Rd

sending .�; x/ to ex� . This embedding preserves the framing up to isotopy. Moreover,
since Embf .Rd ;Rd / is contractible, the composite

Rd
�
�!Sd�1 �R!Rd

is isotopic to the identity. We can apply
R
�
A to this sequence of morphisms of framed

manifolds and we obtain the desired section.

Although we will not need it, this has the following immediate corollary:

Corollary 5.11 The image of the edge homomorphism in Er��..S
d�1 �R/� ; A;K/

consists of permanent cycles.
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Remark 5.12 Our geometric description of higher Hochschild cohomology (Definition
3.4) can be used to construct a similar spectral sequence calculating K�HHEd .A/ whose
E2–page is a cohomological version of the higher Hochschild cohomology defined by
Ginot [7]. However, this spectral sequence does not always converge.

6 Computations

Proposition 6.1 Let A� be a degreewise projective commutative graded algebra over
a commutative graded ring R� . Assume that A� is a filtered colimit of étale algebras
over R� . Then, for all d � 1, the unit map

A�! HHS
d

.A�jR�/

is a quasi-isomorphism of commutative R�–algebras.

Proof We proceed by induction on d . For d D 1, HHS
1

.A�jR�/ is quasi-isomorphic
to the ordinary Hochschild homology HH.A�jR�/ by Corollary 4.5. If A� is étale,
the result is well known (see for instance [18, Étale descent theorem, page 368]). If A�
is a filtered colimit of étale algebras, the result follows from the fact that Hochschild
homology commutes with filtered colimits.

Now assume that A� ! HHS
d�1

.A�jR�/ is a quasi-isomorphism of commutative
algebras. The sphere Sd is part of the following homotopy pushout diagram:

Sd�1 //

��

pt

��

pt // Sd

Applying Proposition 4.4, we find

HHS
d

.A�jR/' jB�.A�;HHS
d�1

.A�jR�/; A�/j:

The quasi-isomorphism A�! HHS
d�1

.A�jR�/ induces a degreewise quasi-isomor-
phism between Reedy cofibrant simplicial objects:

B�.A�; A�; A�/! B�.A�;HHS
d�1

.A�jR�/; A�/:

This induces a quasi-isomorphism between their realizations,

A� ' HHS
d

.A�jR�/:
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Corollary 6.2 Let A be an Ed –algebra in C such that K�.A/ is a filtered colimits of
étale algebras over K� ; then the unit map

A!

Z
Sd�1�R

A

is a K–local equivalence.

Proof The K–homology of this map can be computed as the edge homomorphism
of the spectral sequence E2.Sd�1 �R; A;K/. By the previous proposition, the edge
homomorphism is an isomorphism on the E2–page. Therefore, the spectral sequence
collapses at the E2–page for degree reasons.

Let us fix a prime p . We denote by En the Lubin–Tate ring spectrum of height n at p
and by Kn the 2–periodic Morava K–theory of height n. Recall that

.En/� ŠW .Fpn/ŒŒu1; : : : ; un�1��Œu
˙1�; jui j D 0; juj D 2;

.Kn/� Š Fpn Œu
˙1�D .En/�=.p; u1; : : : ; un�1/:

The spectrum En is known to have a unique E1–structure inducing the correct multi-
plication on homotopy groups (this is a theorem of Hopkins and Miller; see [16]) and
a unique commutative structure (see [9, Corollary 7.6]). As far as we know, there is
no published proof that the space of Ed –structure for d � 2 is contractible, although
evidence suggests that this is the case. The ring spectrum Kn has a Z=2–equivariant
Künneth isomorphism if p is odd. If pD 2, the equivariance is not satisfied in general
but it is true if we restrict .Kn/� to spectra whose Kn–homology is concentrated in
even degree, like En . Our argument works at p D 2 modulo this minor modification.

Corollary 6.3 For any positive integer n and any Ed –algebra structure on En induc-
ing the correct multiplication on homotopy groups, the unit map

En!

Z
Sd�1�R

En

induces an isomorphism in Kn–homology.

Proof By [12, Corollary 4.10], for any such Ed –structure on E we have

.Kn/�.En/Š C.�; .Kn/�/:

Here the right-hand side denotes the set of continuous maps � ! .Kn/� , where �
is the Morava stabilizer group with its profinite topology and .Kn/� is given the
discrete topology. By definition of a profinite group, the group � is an inverse limit
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� D limU�=U taken over the filtered poset of open finite index subgroups U of � .
Thus, we have

C.�; .Kn/�/D colimUC.�=U; .Kn/�/:

This expresses .Kn/�En as a filtered colimit of étale algebras over .Kn/� . Using
Corollary 6.2, we get the desired result.

Proposition 6.4 With the same notations, the map HHEd .En/!En is an equivalence.

Proof We have
HHEd .En/'RHomR

Sd�1�REn
.En; En/:

This can be computed as the end

homDisk�C

�
EmbS

0

.�; Œ0; 1�/;F

�
En;

Z
Sd�1�R

En; En

��
:

The spectrum En is K.n/–local; therefore, Hom.�; En/ sends K.n/–equivalences to
equivalences. This implies that

F

�
En;

Z
Sd�1�R

En; En

�
' F.En; En; En/:

Therefore, we have
HHEd .En/'RHomEn.En; En/:

We can prove a variant of the previous result. Let E.n/DBP=.vnC1; vnC2; : : : /Œv�1n �

be the Johnson–Wilson spectrum and let K.n/ be the vn periodic Morava K–theory
with K.n/� DE.n/=.p; v1; : : : ; vn�1/D FpŒv˙1n �. Let yE.n/ be LK.n/E.n/.

Proposition 6.5 For any Ed –algebra structure on yE.n/ inducing the correct multipli-
cation on homotopy groups, the action map

HHEd .
yE.n//! yE.n/

is a weak equivalence.

Proof The proof is exactly the same once we know that K.n/� yE.n/ is the commutative
ring

K.n/� yE.n/D C.�;K.n/�/;

where � is again the Morava stabilizer group.
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7 Étale base change for Hochschild cohomology

In this section we put the previous result in the wider context of derived algebraic
geometry over Ed –algebras. This section is inspired by Francis [6].

We let .C ;˝; I/ denote the category ModE but the arguments hold more generally.
Note however that we need C to be stable in this section.

There is a “polar coordinate” embedding Sd�1� .0; 1/!D sending .�; r/ to er�1� .

Definition 7.1 Let A be an Ed –algebra in C . The cotangent complex LA of A is
defined to be the n–fold desuspension of the cofiber of the mapZ

Sd�1�R
A!

Z
Rd
AŠ A

induced by the polar coordinate embedding.

Proposition 7.2 This coincides with the cotangent complex of A defined by Francis.

Proof Both sides of the map commute with homotopy colimits of Ed –algebras;
therefore, it suffices to check the claim for free Ed –algebras. Let AD FEd .V /. Using
[4, Proposition 5.5], we see thatZ

Sd�1�.0;1/

FEd .V /'
_
i�0

Conf.i; Sd�1 � .0; 1//˝†i V
˝i

and, similarly, Z
D

FEd .V /'
_
i�0

Conf.i;D/˝†i V
˝i :

On the other hand, it is proved in [6, Theorem 2.26] that there is a cofiber sequenceZ
Sd�1�.0;1/

A! A! LAŒn�:

Moreover, the proof of [6, Theorem 2.26] is based on an explicit computation in the
free case and an inspection of this proof shows that the first map in the above cofiber
sequence coincides with the polar embedding map.

Remark 7.3 The above definition is a bit ad hoc. Francis actually defines in [6,
Definition 2.10] the cotangent complex as the object representing the Ed –derivations.
That is, we have a weak equivalence

RHomSd�1� ModA.LA;M/'RHomC ŒEd �=A.A;A˚M/ WD Der.A;M/:

The fact that the two definitions coincide is [6, Theorem 2.26].
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Definition 7.4 We say that an Ed –algebra A is étale if LA is contractible. More
generally, given an object Z in C , we say that A is Z–locally étale if Z ˝LA is
contractible.

We say that a map X ! Y in C is a Z–local weak equivalence if the induced map
X ˝LZ! Y ˝LZ is a weak equivalence.

An equivalent formulation of the previous definition is that A is (Z–locally) étale if
the unit map A!

R
Sd�1�.0;1/A is a (Z–local) equivalence. Indeed we have shown in

Lemma 5.10 that the unit map is a section of
R
Sd�1�.0;1/A! A.

Proposition 7.5 If A is a commutative algebra and is (Z–locally) étale as an Ed –
algebra, then it is (Z–locally) étale as an EdC1–algebra.

Proof We have proved in [11, Theorem 5.8] that, for A a commutative algebra,R
M A is equivalent to Sing.M/˝ A (ie the tensor in the category of commutative

algebras in ModE ). Then the proof is the same as the proof of Proposition 6.1.

Remark 7.6 More generally, using the excision property for factorization homology
(see [4, Lemma 3.18]), we can prove that if A is EdC1 and is (Z–locally) étale as an
Ed –algebra, it is (Z–locally) étale as an EdC1–algebra.

Remark 7.7 If A is a commutative algebra, then A is étale as an E2–algebra if and
only if it is formally THH–étale (ie if the map A ! THH.A/ is an equivalence).
Indeed, for commutative algebras (and in fact for E3–algebras), THH.A/ coincides
with

R
S1�RA. Note that this is not true for E2–algebras, as the product framing on

S1 �R is not connected to the �–framing in the space of framings of S1 �R.

Recall that an object U of C is said to be Z–local if, for all Z–local weak equivalences
X ! Y , the induced map

RHom.Y; U /!RHom.X;U /

is a weak equivalence in C .

Lemma 7.8 Let uW R! S be a map of cofibrant associative algebras in C that is
a Z–local weak equivalence and let M and N be two left modules over S with N
Z–local in C . Then the map

RHomModS .M;N /!RHomModR.u
�M;u�N/

is a weak equivalence.

Algebraic & Geometric Topology, Volume 15 (2015)



3250 Geoffroy Horel

Proof The left-hand side can be computed as the homotopy limit of the cobar con-
struction

Œn� 7! Hom.S˝n˝M;N/:

Similarly, the left-hand side can be computed as the homotopy limit of

Œn� 7! Hom.R˝n˝M;N/:

Since R! S is a Z–local weak equivalence, so is R˝n˝M ! S˝n˝M for each n.
Thus, since N is Z–local, the two cosimplicial objects are weakly equivalent. This
implies that they have weakly equivalent homotopy limits.

We can now state and prove the main theorem of this section.

Theorem 7.9 Let T be a commutative algebra in C that is (Z–locally) étale as an
Ed –algebra over I . Then, for any Ed –algebra A over T (that is Z–local as an object
of C ), the base-change map

HHEd .A/! HHEd .AjT /

is a weak equivalence.

Proof We write AjT whenever we want to emphasize the fact that we are viewing A
as an Ed –algebra over T .

By Proposition 2.11 of Francis [6], there is cofiber sequence

uŠLT ! LA! LAjT ;

where uW T ! A is the unit map and uŠ is the corresponding functor

uŠW S
d�1
� ModT ! Sd�1� ModA:

By hypothesis, LT is (Z–locally) contractible; therefore, LA! LAjT is a (Z–local)
equivalence. We have a base-change map of cofiber sequences:

†d�1LA

��

//
R
Sd�1�.0;1/A

��

// A

id
��

// †dLA

��

†d�1LAjT //
R
Sd�1�.0;1/AjT

// A // †dLAjT

This implies that
R
Sd�1�.0;1/A!

R
Sd�1�.0;1/AjT is a (Z–local) equivalence.
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We can form the commutative diagram

U
Sd�1�

A

��

//
R
Sd�1�.0;1/A

��
U
Sd�1�

AjT
//
R
Sd�1�.0;1/AjT;

where the horizontal maps are the maps of Corollary 2.14. These maps are weak
equivalences by Corollary 2.14. Thus, the map U S

d�1
�

A ! U
Sd�1�

AjT
is a (Z–local) weak

equivalence of associative algebras. The theorem follows from this fact and the previous
lemma.

Remark 7.10 The computation of Section 6 implies that S ! En is K.n/–locally
an étale morphism of Ed –algebras for all d . Therefore, given a K.n/–local En–
algebra A, we can compute its (higher) Hochschild cohomology over En or over S
without affecting the result. This fact is used by Angeltveit [2, Theorem 6.9] in the
case of ordinary Hochschild cohomology.
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Fixed-point free circle actions on 4–manifolds

WEIMIN CHEN

This paper is concerned with fixed-point free S1–actions (smooth or locally linear)
on orientable 4–manifolds. We show that the fundamental group plays a predominant
role in the equivariant classification of such 4–manifolds. In particular, it is shown
that for any finitely presented group with infinite center there are at most finitely many
distinct smooth (resp. topological) 4–manifolds which support a fixed-point free
smooth (resp. locally linear) S1–action and realize the given group as the fundamental
group. A similar statement holds for the number of equivalence classes of fixed-
point free S1–actions under some further conditions on the fundamental group. The
connection between the classification of the S1–manifolds and the fundamental group
is given by a certain decomposition, called a fiber-sum decomposition, of the S1–
manifolds. More concretely, each fiber-sum decomposition naturally gives rise to a
Z–splitting of the fundamental group. There are two technical results in this paper
which play a central role in our considerations. One states that the Z–splitting is a
canonical JSJ decomposition of the fundamental group in the sense of Rips and Sela.
Another asserts that if the fundamental group has infinite center, then the homotopy
class of principal orbits of any fixed-point free S1–action on the 4–manifold must be
infinite, unless the 4–manifold is the mapping torus of a periodic diffeomorphism of
some elliptic 3–manifold.

57S15; 57M07, 57M50

1 Introduction

Locally linear S1–actions on oriented 4–manifolds were classified by Fintushel up
to orientation-preserving equivariant homeomorphisms (for smooth S1–actions the
classification is up to orientation-preserving equivariant diffeomorphisms); see [16; 17;
18]. One associates to each locally linear S1–action a legally weighted 3–manifold,
which is the orbit space decorated with certain orbit-type data and a characteristic class
of the S1–action. The equivariant classification of the S1–four-manifolds is then given
by the isomorphism classes of the corresponding legally weighted 3–manifolds.

An important technique for studying locally linear S1–actions on 4–manifolds is a
replacement trick due to Pao [35]. Pao’s trick allows one to trade a certain weighted
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circle in a legally weighted 3–manifold for a pair of fixed points, or to have the
weighted circle deleted and a 3–ball removed from the legally weighted 3–manifold.
(In particular, Pao’s replacement trick applies only to locally linear S1–actions with
a nonempty fixed-point set.) This procedure has the effect of replacing the given
S1–action by another (nonequivalent) S1–action on the same 4–manifold. Besides the
construction of locally linear, nonlinear S1–actions on S4 in the original paper [35],
the following are some of the further implications of Pao’s trick when combined with
the classification results of Fintushel in [16; 17; 18]:

� If a 4–manifold X admits a locally linear (resp. smooth) S1–action with a pair
of fixed points or a fixed 2–sphere, then X admits infinitely many nonequivalent
locally linear (resp. smooth) S1–actions; see [35]. (There are many examples of
such 4–manifolds, including a large class of simply connected 4–manifolds.)

� Modulo the 3–dimensional Poincaré conjecture (which is now resolved [36]), a
simply connected, smooth S1–four-manifold is diffeomorphic to a connected
sum of S4 , ˙CP2 , or S2 �S2 ; see [18], compare also [48].

� If an oriented 4–manifold with bC
2
� 1 admits a locally linear (resp. smooth)

S1–action having at least one fixed point, then it contains a topologically (resp.
smoothly) embedded, essential 2–sphere of nonnegative self-intersection; see
Baldridge [3, Theorem 2.1].1 In particular, the Hurwitz map �2 ! H2 has
infinite image. Baldridge’s theorem gives a useful obstruction for the existence
of S1–actions with fixed points, particularly for the smooth case as such a
smoothly embedded 2–sphere constrains the Seiberg–Witten invariants of the
4–manifold; see [19].

In this paper we study fixed-point free S1–actions on orientable 4–manifolds, either
smooth or locally linear depending on which category (ie smooth or topological) we
work in. The arguments are valid for both categories; for simplicity, we shall work
mainly in the smooth category. Our results indicate that the equivariant classification
of fixed-point free S1–actions, where there is a lack of Pao’s replacement trick, is
sharply different from that of S1–actions with fixed points. In particular, we show
that under reasonable assumptions the fundamental group plays a predominant role in
the equivariant classification of 4–manifolds with a fixed-point free S1–action. We
showcase this phenomenon with the following two theorems.

1Baldridge [3] works in the smooth category, but the arguments are valid in the locally linear category
as well.
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Theorem 1.1 Let X be an orientable 4–manifold such that

(i) the center of �1.X / is infinite cyclic,

(ii) �1.X / is single-ended and is not isomorphic to the fundamental group of a Klein
bottle, and

(iii) any canonical JSJ decomposition of �1.X / contains a vertex subgroup which is
not isomorphic to an HNN extension of a finite cyclic group.

Then there exists a constant C > 0, depending only on �1.X /, such that the number of
equivalence classes of fixed-point free S1–actions (smooth or locally linear) on X is
bounded by C .

Theorem 1.2 Let G be a finitely presented group with infinite center. There exists a
constant C > 0, depending only on G , such that the number of diffeomorphism classes
(resp. homeomorphism classes) of orientable 4–manifolds admitting a fixed-point free,
smooth (resp. locally linear) S1–action, whose fundamental group is isomorphic to G ,
is bounded by C .

Our approach to equivariant classification (resp. classification) of fixed-point free S1–
four-manifolds differs from the traditional approach of legally weighted 3–manifolds
(see Fintushel [16; 17; 18]) where, in our method, geometric group theory plays a
prominent role. The central notion in our approach is a certain decomposition of the
S1–manifolds which is called a fiber-sum decomposition; see Definition 1.3. Such a
decomposition gives rise to a Z–splitting of the fundamental group of the manifold, and
the central result of this paper states that the Z–splitting is a canonical JSJ decomposition
of the fundamental group in the sense of Rips and Sela [38, Theorem 1.5]. We
also point out that the methods of this paper are essentially different from those in
Hillman [25], where homotopy/homeomorphism classifications of S1–bundles over
certain 3–manifolds are given. In particular, the diffeomorphism classification result
in Theorem 1.2 is not accessible by the surgery-theoretic techniques employed in
Hillman [25].

The orbit map of a fixed-point free S1–action on an orientable 4–manifold defines
a Seifert-type S1–fibration of the 4–manifold, giving the orbit space a structure of
a closed, orientable 3–dimensional orbifold whose singular set consists of a disjoint
union of embedded circles, called singular circles. (Equivalently, the 4–manifold is
the total space of a principal S1–bundle over the 3–orbifold.) With this understood,
the building blocks of a fiber-sum decomposition are oriented fixed-point free S1–four-
manifolds whose corresponding orbit space is an irreducible 3–orbifold. We shall
call such S1–four-manifolds irreducible. Note that the orientation of the 4–manifold
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determines an orientation of the base 3–orbifold, as the fibers of the Seifert–type
S1–fibration are canonically oriented.

Definition 1.3 (Fiber-sum decomposition) Let X be a smooth orientable 4–manifold.
Suppose we are given a finite set of smooth oriented 4–manifolds Xi , i 2 I , with the
following significance.

(i) For each i 2 I , there is a fixed-point free S1–action on Xi with orbit map
�i W Xi! Yi where Yi is irreducible.

(ii) There is a finite set J such that, for each j 2 J , there exists a pair of distinct
points yj ;1 , yj ;2 2

F
i2I Yi which have the same multiplicity if singular.

(iii) Let Fj ;1 and Fj ;2 be the fibers of
F

i �i W
F

i Xi !
F

i Yi over yj ;1 and
yj ;2 , respectively. For each j 2 J , there is an orientation-reversing but fiber-
wise orientation-preserving, fiber-preserving diffeomorphism �j W @Nd.Fj ;1/!

@Nd.Fj ;2/.

(iv) For any i 2 I , j 2 J , if Yi contains exactly one of the points yj ;1 , yj ;2 , say
yj ;1 2 Yi , then the homotopy class of the fiber Fj ;1 generates a proper subgroup
of �1.Xi/.

With the above understood, we say that X admits a fiber-sum decomposition if there
exists a diffeomorphism between X and the oriented 4–manifoldG

i2I

Xi n

G
j2J

.Nd.Fj ;1/tNd.Fj ;2//=�
G
j2J

�j ;

and, given such a diffeomorphism, we say that X is fiber-sum-decomposed into Xi

along Nj , where each Nj Š S1 � S2 is the image of @Nd.Fj ;1/ (or equivalently,
@Nd.Fj ;2/) in X . Furthermore, the irreducible S1–four-manifolds Xi are called the
factors of the fiber-sum decomposition.

Remarks The isotopy classification of diffeomorphisms of S1 � S2 is given by
�0.O.2/�O.3/��O.3//; see Hatcher [23]. In particular, there are two distinct isotopy
classes of homologically trivial diffeomorphisms because of the factor �0.�O.3//D

�1 SO.3/D Z2 . However, the isotopy class of the diffeomorphism �j W @Nd.Fj ;1/!

@Nd.Fj ;2/ is uniquely determined because of the requirement that it be fiber-preserving.

It turns out that the class of 4–manifolds which admit a fiber-sum decomposition are
precisely the smooth, fixed-point free S1–four-manifolds whose fundamental group has
infinite center. In order to understand this, we recall that a fixed-point free S1–action
is called injective (and so is the corresponding S1–four-manifold) if the homotopy
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class of the principal orbits has infinite order. With this understood, note that in
Definition 1.3 each 3–orbifold Yi is irreducible. It follows easily that the S1–action
on each Xi must be injective. Moreover, it is clear that the S1–actions on Xi descend
to a fixed-point free S1–action on X , which is also injective. On the other hand, given
any injective S1–action, the orbit space (as a 3–orbifold) admits a certain kind of
spherical decompositions which are called reduced (see Lemma 2.4 for details), and
any such spherical decomposition naturally gives rise to a fiber-sum decomposition of
the 4–manifold (for more details see the proof of Theorem 1.4).

In summary, a 4–manifold admits a fiber-sum decomposition if and only if it admits
an injective fixed-point free S1–action. Note that the homotopy class of the principal
orbits of the S1–action lies in the center of the fundamental group of the 4–manifold.
In particular, �1 of an injective fixed-point free S1–four-manifold has infinite center.
The converse is given in the following theorem.

Theorem 1.4 Let X be a smooth (resp. locally linear), fixed-point free S1–four-
manifold whose fundamental group has infinite center. Then the S1–action must
be injective unless X is diffeomorphic (resp. homeomorphic) to the mapping torus
of a periodic diffeomorphism of some elliptic 3–manifold. As a consequence, any
smooth, fixed-point free S1–four-manifold whose �1 has infinite center admits a fiber-
sum decomposition.

Note that in the case where X is diffeomorphic to the mapping torus of a periodic diffeo-
morphism of some elliptic 3–manifold, X admits another fixed-point free S1–action
which is injective. So in any event, the 4–manifold admits a fiber-sum decomposition.

We remark that the fundamental group of a smooth, fixed-point free S1–four-manifold
with nontrivial Seiberg–Witten invariant must have infinite center; see [11; 12].

With the preceding understood, the main theme of this paper is to recover the fiber-sum
decompositions of an injective S1–four-manifold from its fundamental group. The
main results are summarized in Theorems 1.5 and 1.6 below.

In order to describe the results, observe that given any fiber-sum decomposition of
X into factors Xi along Nj , there is an associated finite graph of groups where the
vertex groups and edge groups are given by �1.Xi/ and �1.Nj /, respectively, such
that �1.X / is isomorphic to the fundamental group of the graph of groups. Such a
presentation of �1.X / is called a Z–splitting as each edge group �1.Nj / is infinite
cyclic. An in-depth study of Z–splittings of single-ended finitely generated groups
was given in [38] by Rips and Sela; in particular, they showed the existence of certain
“universal” Z–splittings for each single-ended finitely presented group, which are called
canonical JSJ decompositions.
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Theorem 1.5, which is the main technical result of this paper, asserts that the Z–
splitting associated to a fiber-sum-decomposition is a canonical JSJ decomposition of
the fundamental group.

Theorem 1.5 Let X and X 0 be smooth 4–manifolds which are fiber-sum-decomposed
into Xi along Nj and X 0i0 along N 0j 0 , respectively. Suppose �1.X / and �1.X

0/ are
single-ended and are not isomorphic to the fundamental group of a 2–torus or a Klein
bottle. Then the following hold.

(1) The Z–splitting of �1.X / associated to the given fiber-sum-decomposition of X

is a canonical JSJ decomposition.2

(2) Assume further that the submanifolds Nj and N 0j 0 are null-homologous in
X and X 0 , respectively, and let ˛W �1.X /!�1.X

0/ be any isomorphism. Then
after modifying the embeddings of Nj and N 0j 0 by fiber-preserving isotopies
if necessary, ˛W �1.X / ! �1.X

0/ may be enhanced to an isomorphism be-
tween the Z–splittings of �1.X / and �1.X

0/ associated to the new fiber-sum
decompositions of X and X 0 , respectively.

Remarks (1) Canonical JSJ decompositions are not unique as Z–splittings. Never-
theless, Theorem 1.5(1) implies that the number of factors Xi , the number of
submanifolds Nj , as well as the conjugacy classes of subgroups �1.Xi/ and
�1.Nj /, depend only on �1.X /; see Proposition 3.5 for details. We shall also
point out that in the course of the proof of Theorem 1.5, the group �1.X / is
shown to have the property that it admits no hyperbolic-hyperbolic elementary
Z–splittings; see Lemma 3.1.

(2) The stronger uniqueness in Theorem 1.5(2) corresponds to the uniqueness of
canonical JSJ decompositions up to a sequence of slidings, conjugations, and
conjugations of boundary monomorphisms. Such uniqueness has been estab-
lished for torsion-free (Gromov) hyperbolic groups (see Sela [43, Theorem 1.7]),
but remains open in general for single-ended finitely presented groups; see [38,
page 106].

(3) The assumption that the submanifolds Nj are null-homologous in X is equivalent
to the assumption that the underlying graph of the associated Z–splitting of
�1.X / is a tree. By Theorem 1.5(1), this assumption depends only on the group
�1.X /.

2There is an annoying collapse of terminology here as a canonical JSJ decomposition of �1.X /

corresponds not to the JSJ decomposition of the base 3–orbifold, but to a reduced spherical decomposition
of the 3–orbifold; see Lemma 2.4.
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(4) It is worth pointing out that the considerations in this paper provide an almost
ideal setting for the need for developing the algebraic theory of Rips and Sela
on Z–splittings of single-ended finitely presented groups [38].

The next theorem, Theorem 1.6, is concerned with the building blocks of fiber-sum
decompositions. In particular, it is shown that in most of the cases the diffeomorphism
class of an irreducible S1–four-manifold is determined by the fundamental group. To
state the result, we remark that a finitely generated group with infinite center is either
single-ended or double-ended; see Lemma 4.1.

Theorem 1.6 Let X and X 0 be irreducible S1–four-manifolds, and let ˛W �1.X /!

�1.X
0/ be any isomorphism.

(1) If �1.X / and �1.X
0/ are single-ended, then there exists a diffeomorphism

�W X !X 0 such that �� D ˛W �1.X /! �1.X
0/.

(2) If �1.X / and �1.X
0/ are double-ended, then X and X 0 are each the mapping-

torus of a periodic diffeomorphism of an elliptic 3–manifold. Moreover, there
exists a diffeomorphism �W X ! X 0 such that �� D ˛W �1.X /! �1.X

0/, if
the elliptic 3–manifold is not a lens space.

Finally, the cases which are not covered in Theorems 1.5 and 1.6, ie when �1.X /

is isomorphic to the fundamental group of a 2–torus or a Klein bottle, are handled
separately. In particular, we direct the reader’s attention to two classification theorems
of fixed-point free S1–four-manifolds. One is concerned with the situation where the
center of �1 is of rank greater than 1; the other is about the situation where �1 is
isomorphic to the �1 of a Klein bottle. See Theorems 4.3 and 6.2 for more details.

With the preceding understood, Theorem 1.1 follows readily from Theorems 1.5 and
1.6. Theorem 1.2 also follows from Theorems 1.5 and 1.6 with the additional help of
Theorems 1.4, 4.3 and 6.2.

Having reviewed the main theorems, we now give a few remarks about the technical as-
pect of this paper. Our arguments rely heavily on the recent advances in 3–dimensional
topology, particularly those centered around the resolution of Thurston’s Geometrization
Conjecture (henceforth referred to as the Geometrization theorem; see [4; 36]; see also
[14]). For instance, Lemma 5.2(which asserts that an orientable 3–orbifold is Seifert
fibered if �orb

1
has infinite center, and furthermore, if �orb

2
¤ 0, it is the mapping torus

of a periodic diffeomorphism of a 2–orbifold with finite �orb
1

) played a key role in
the proofs of several theorems of this paper. The proof of this lemma involves several
particular forms of the Geometrization theorem, which include the earlier work of
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Meeks and Scott [32] on finite group actions on Seifert 3–manifolds, the resolution
of the Seifert fiber space conjecture due to Gabai [20] (and independently Casson
and Jungreis [9]), as well as the more recent Orbifold theorem of Boileau, Leeb and
Porti [4] and the resolution of Poincaré conjecture; see [36]. On the other hand, as we
mentioned earlier, this paper also draws considerably from geometric group theory,
particularly the work of Rips and Sela on Z–splittings of single-ended finitely presented
groups; see [38].

Before ending the introduction, we point out a corollary of Theorem 1.4 which is of
independent interest.

Corollary 1.7 Let X be a 4–manifold whose fundamental group has infinite center.
If X admits a locally linear, fixed-point free S1–action, then there are no embedded
2–spheres with odd self-intersection in X . In particular, X is minimal.

We end the introduction with the following questions, which are naturally suggested
by the results of this paper (see [44; 45; 46; 34; 47] for some relevant problems and
results in dimension three).

Question 1.8 Let X be an oriented, smooth, fixed-point free S1–four-manifold whose
fundamental group has infinite center.

(1) Is the diffeomorphism type of X determined by its homeomorphism type?
(2) Can one express the Seiberg–Witten invariant of X in terms of topological

invariants of the manifold?

The organization of the rest of the paper is as follows. In Section 2, we first review
some basic definitions and facts about 2–orbifolds and 3–orbifolds, and then we
prove several preliminary lemmas which will be used in later sections. Section 3 is
devoted to the proof of Theorem 1.5; it begins with a brief review of the Bass–Serre
theory of groups acting on trees (in particular, the definition of graph of groups and
its fundamental group), as well as a review on the relevant part of the work of Rips
and Sela in [38] concerning Z–splittings of single-ended finitely presented groups. The
proof of Theorem 1.6 is given in Section 4, and so is the classification of fixed-point
free S1–four-manifolds whose �1 has a center of rank greater than 1. Section 5 is
devoted to Theorem 1.4; in particular, we prove the key lemma, Lemma 5.2, in this
section. Corollary 1.7 asserting minimality of injective S1–four-manifolds is proven
here as well. Section 6 contains the proofs of Theorems 1.1 and 1.2, as well as the
classification of fixed-point free S1–four-manifolds whose �1 is isomorphic to the �1

of a Klein bottle.

Throughout this paper, we shall adopt the following notation: the center of a group G

is denoted by z.G/.
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2 Recollections and preliminary lemmas

For the reader’s convenience, we shall begin by giving a brief review on the relevant
definitions and basic facts about 2–orbifolds and 3–orbifolds; for more details, see
eg [41; 5]. Recall first that an orbifold (not necessarily orientable) is called good if it
is the quotient of a manifold by a properly discontinuous action of a discrete group;
otherwise it is call bad. It is called very good if it is the quotient of a manifold by a
finite group action. All orbifolds are assumed to be connected and closed (ie compact
without boundary) unless mentioned otherwise.

An orientable 2–orbifold is given by a closed orientable surface as the underlying space,
with isolated singular points where the local groups are cyclic, generated by a rotation.
For a nonorientable 2–orbifold, if the underlying space has a nonempty boundary,
the singular set will also contain the boundary of the underlying space, which is a
polygon with local groups being either a reflection through a line in R2 or a dihedral
group D2n generated by two reflections through lines making an angle �=n. With this
understood, a teardrop is a 2–sphere with one singular point. A spindle is a 2–sphere
with two singular points of different multiplicities (ie the orders of the local groups). A
football is a 2–sphere with two singular points of the same multiplicity. A turnover is
a 2–sphere with three singular points. Except for a teardrop or a spindle, all orientable
2–orbifolds are very good. An orientable 2–orbifold is called spherical (resp. toric,
resp. hyperbolic) if it is the quotient of a 2–sphere (resp. 2–torus, resp. closed surface
of genus > 1) by a finite group. A 2–orbifold is spherical if and only if it is either
a nonsingular sphere, a football, or a turnover with multiplicities .2; 2; n/, .2; 3; 3/,
.2; 3; 4/, or .2; 3; 5/. The turnovers correspond to the quotient of 2–sphere by the
action of a dihedral group D2n or one of the platonic groups T12 , O24 , or I60 .

All 2–suborbifolds in a 3–orbifold are assumed to be orientable. There is a special
class of 3–orbifolds which are important for the considerations in this paper; these are
the 3–orbifolds which do not contain any bad 2–suborbifolds. It is a consequence of
the Geometrization theorem (see [4; 31]) that if a 3–orbifold does not contain any bad
2–suborbifolds, then it must be very good, ie it is the quotient of a 3–manifold by a
finite group action. For simplicity, we shall call such a 3–orbifold good.

An orientable 3–orbifold (with or without boundary) is called spherical (resp. discal)
if it is the quotient of the 3–sphere (resp. 3–ball) by a finite isometry group. A good
3–orbifold is called irreducible if every spherical 2–suborbifold bounds a discal 3–
orbifold. An irreducible 3–orbifold is called atoroidal if it contains no essential toric
2–suborbifold. A 3–orbifold (not necessarily orientable) is called Seifert fibered if it is
the total space of an orbifold bundle over a 2–orbifold (not necessarily orientable) with
generic fiber a circle or a mirrored interval. (A mirrored interval is the quotient of a
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circle by an orientation-reversing involution.) It is easily seen that a generic fiber of an
orientable Seifert fibered 3–orbifold must be a circle. Moreover, if the base 2–orbifold
is orientable, then the singular set of the Seifert fibered 3–orbifold must consist of a
union of fibers.

The rest of this section is occupied by a number of preliminary lemmas. The following
lemma about the center of an amalgamated product or an HNN extension is well known
to the experts. However, for the sake of completeness, we include a statement and a
proof of the lemma here.

Lemma 2.1 (1) If A¤ C ¤ B , then the center of A�C B is contained in C .

(2) Let C �A be a subgroup and ˛W C !A be an injective homomorphism, and let
A�C ˛ denote the corresponding HNN extension. Suppose x 2 z.A�C ˛/. Then
either x 2 C , or x is nontorsion, C DAD ˛.C /, and A�C ˛ is isomorphic to
A�C ˛

0 for some ˛0W A!A which is of finite order.

Proof For a proof of part (1), see Magnus, Karrass and Solitar [30], Corollary 4.5,
page 211. We shall give a proof for part (2) here. An element of A �C ˛ can be
uniquely represented by a reduced word; see eg Scott and Wall [42]. Lemma 2.1 is a
direct consequence of this fact.

More concretely, recall that the group A �C ˛ is generated by elements of A and a
letter t with additional relations tct�1 D ˛.c/ for all c 2 C . We let T and T˛ be the
sets of some fixed choices of representatives of the right cosets of C and ˛.C / in A,
respectively. Then a reduced word in A�C ˛ takes the form

a1t�1a2t�2 � � � ant�nanC1;

where �i D˙1, ai 2 T if �i DC1, ai 2 T˛ if �i D�1, and furthermore, ai ¤ 1 if
�i�1 ¤ �i , and anC1 is allowed to be an arbitrary element of A.

Let x D a1t�1a2t�2 � � � ant�nanC1 be an element of the center (here nD 0 represents
the case where x 2A). If nD 0, then by txD xt it is clear that xD anC1 2C which
obeys ˛.x/ D x . Suppose n > 0. If a1 ¤ 1, then the uniqueness of representation
by reduced words implies that tx ¤ xt , which is a contradiction. If a1 D 1, then
t��1x D xt��1 implies that a2 D 1. Iterating this process, we see that x D t lanC1 for
some 0¤ l 2 Z. It follows from t�1x D xt�1 that anC1 D tanC1t�1 , which implies
that anC1 2 C and ˛.anC1/D anC1 . Furthermore, the commutativity of t and anC1

also implies that x D t lanC1 is nontorsion. To see C DAD ˛.C /, note that if there
is an a 2 T or T˛ such that a¤ 1, then one has ax ¤ xa which is a contradiction.
This implies that C DAD ˛.C /. Now for any c 2 C ,

t lanC1˛
l.c/D x˛l.c/D ˛l.c/x D ˛l.c/t lanC1 D t lcanC1;
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which implies that anC1˛
l.c/D canC1 for any c 2C DA. Let ˛0W A!A be defined

by ˛0.c/D anC1˛.c/a
�1
nC1

. Then it follows from ˛.anC1/D anC1 that

.˛0/l.c/D anC1˛
l.c/a�1

nC1 D c; 8c 2A:

Now note that A �C ˛ is isomorphic to A �C ˛
0 where ˛0 has finite order l . This

completes the proof of the lemma.

For our purposes in this paper, it is important to understand the center of the fundamental
group of a 2–orbifold or a 3–orbifold.

Lemma 2.2 Let † be a 2–orbifold (not necessarily orientable) such that z.�orb
1
.†//

is nontrivial. Then the following statements hold true.

(a) If † is orientable, then it is either a football, a spindle with non-coprime multi-
plicities, a turnover with multiplicities .2; 2; 2/, or a nonsingular torus.

(b) If † is nonorientable, then its orientable double cover z† must lie in the following
list: a nonsingular sphere, a teardrop, a spindle, a football, a turnover with
multiplicities .2; 2; 2/, or a nonsingular torus. Moreover, z.�orb

1
.†// is torsion-

free if and only if z† is a nonsingular torus.

Proof Suppose † is orientable. If † is bad, then it must be a spindle with non-coprime
multiplicities because this is the only case where �orb

1
.†/ is nontrivial. Assume †

is good. If † is spherical, then it must be a football or a turnover with multiplicities
.2; 2; 2/, because the other groups, ie D2n with n¤ 2, T12 , O24 , I60 , all have trivial
center. If † is toric, then it must be a nonsingular torus because the fundamental group
of a toric turnover is centerless. Finally, † can not be hyperbolic because a cocompact
Fuchsian group has trivial center.

Suppose † is nonorientable, and let z† be the orientable 2–orbifold which doubly
covers †. Note that Z2 acts on z† via deck transformations. We shall discuss the
proof in two cases: (i) the deck transformations are free, (ii) the deck transformations
are not free.

In case (i), the underlying space j†j is a nonorientable, closed surface. We can
decompose j†j as the union of RP2 nD2 and an orientable surface with one boundary
component along their boundaries. Correspondingly, we have a decomposition of †
as the union of (nonsingular) RP2 nD2 and an orientable 2–orbifold †0 with one
boundary component. It follows that z.�orb

1
.†// being nontrivial forces �orb

1
.†0/ to be

finite (see Lemma 2.1(1) and Lemma 2.2(a)), so that †0 must be either a (nonsingular)
D2 or D2=Zm with m>1. This shows that the double cover z† is either a (nonsingular)
sphere or a football.
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In case (ii), if z.�orb
1
.z†// is nontrivial, then we are done by part (a). Moreover, if

z† is a nonsingular torus, the fixed-point set of the deck transformation consists of a
union of circles. Since the deck transformation is orientation-reversing, the Lefschetz
fixed-point theorem implies that the action on H1.z†IR/ must have eigenvalues C1 and
�1. It follows then that z.�orb

1
.†// D Z in this case. If z.�orb

1
.z†// is trivial, then

z.�orb
1
.†//D Z2 and acts on z† via deck transformations. Let p be a fixed-point of

the deck transformation. Since �orb
1
.z†/! �1.j z†j/ is surjective, the induced action

of z.�orb
1
.†// D Z2 on �1.j z†j;p/ must be trivial. This implies that the Lefschetz

number of the action of z.�orb
1
.†//D Z2 on j z†j equals �2 times the genus of j z†j.

The Lefschetz fixed-point theorem then implies that j z†j has genus zero. If z† is bad,
then clearly we are done. If z† is good, then it is the quotient of an orientable closed
surface †0 by a finite group. Note that z.�orb

1
.†// D Z2 also acts on †0 via deck

transformations which are orientation-reversing. The same argument as above shows
that †0 must have genus zero. In other words, z† is spherical. It follows easily that
it must be either a (nonsingular) sphere, a football or a turnover with multiplicities
.2; 2; 2/. (In fact z† is a sphere because we assume z.�orb

1
.z†// is trivial.) Hence

the lemma.

Lemma 2.3 Let Y denote an irreducible 3–orbifold with infinite �orb
1
.Y /. Then

z.�orb
1
.Y // is torsion-free.

Proof By the JSJ-decomposition theorem for 3–orbifolds (see [5, Theorem 3.3]),
there is a finite collection (possibly empty) of disjoint, essential toric 2–suborbifolds
†j , j D 1; 2; : : : ;m, which split Y into 3–suborbifolds Yi , i D 1; 2; : : : ; n, such that
each Yi is either Seifert fibered or atoroidal. This presents �orb

1
.Y / as the fundamental

group of a finite graph of groups, where the vertex groups are �orb
1
.Yi/ and the edge

groups are �orb
1
.†j /. If f†j g is not empty, then the torsion part of z.�orb

1
.Y // must

lie in the edge groups z.�orb
1
.†j //; see Lemma 2.1. By Lemma 2.2(a), z.�orb

1
.†j //

is torsion-free, which implies that z.�orb
1
.Y // is torsion-free when f†j g is not empty.

Suppose f†j g is empty. Then Y is either Seifert fibered or atoroidal. Assume Y is
Seifert fibered first, and let � W Y !B be a Seifert fibration. There is an induced exact
sequence (see [5, Proposition 2.12])

1! C ! �orb
1 .Y /

��
��! �orb

1 .B/! 1;

where C is cyclic or dihedral (either finite or infinite). In addition, C is finite if and
only if �orb

1
.Y / is finite. In the present case Y only has a 1–dimensional singular

set, so that a generic fiber of � must be a circle. Consequently, C is cyclic in the
above exact sequence. Since �orb

1
.Y / is infinite, we have C D Z. On the other hand,
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C D �1.S
1/=Image ı , where ıW �orb

2
.B/! �1.S

1/ is the connecting homomorphism
in the exact sequence of homotopy groups associated to the Seifert fibration � W Y !B .
(For the definition of homotopy groups of orbifolds and the exact sequence associated
to an orbifold fibration, see [21; 22; 10].) As C is infinite, ı must be the zero
map, and consequently ��W �

orb
2
.Y / ! �orb

2
.B/ is surjective. By the assumption

that Y is irreducible, its universal cover zY is also irreducible; see [5, Theorem 3.23].
Consequently, we have �orb

2
.Y /D �2. zY /D 0 which implies that �orb

2
.B/D 0. Now

observing that a bad 2–orbifold and a spherical 2–orbifold must have nontrivial �orb
2

,
we conclude, by Lemma 2.2, that z.�orb

1
.B// must be torsion-free. It follows easily

that z.�orb
1
.Y // is torsion-free in this case.

It remains to consider the case where Y is atoroidal. If Y is nonsingular (ie a 3–
manifold), then �orb

1
.Y /D �1.Y / is torsion-free; hence z.�orb

1
.Y // must be torsion-

free. If Y is an honest orbifold, then by the Orbifold theorem of Boileau, Leeb and
Porti (see [4, Corollary 1.2]), Y is geometric. In fact, we will need the following more
precise statement: Y has a metric of constant curvature or is Seifert fibered. It is clear
that, since �orb

1
.Y / is infinite, we only need to discuss the following two cases: (i) Y

is hyperbolic, (ii) Y is Euclidean.

Suppose Y is hyperbolic. Then there is a hyperbolic 3–manifold Y 0 and a finite group
of isometries G such that Y D Y 0=G . Now suppose z.�orb

1
.Y // is not torsion-free,

and let g 2 z.�orb
1
.Y // be a torsion element. Then since �1.Y

0/ is torsion-free, g may
be regarded as an element of G , and it acts on Y 0 via deck transformations. Moreover,
g must have a fixed point, say p 2 Y 0 . This gives rise to an automorphism g� of
�1.Y

0;p/, which is trivial because g 2 z.�orb
1
.Y //. By Mostow Rigidity, gW Y 0! Y 0

is trivial, which is a contradiction.

Suppose Y is Euclidean. By the Bieberbach theorem (see [41, page 443]), Y is finitely
covered by T 3 with deck transformation group G . Let x 2 z.�orb

1
.Y // be a torsion

element. Then x may be regarded as an element of G and acts on T 3 via deck
transformations. Furthermore, x must have a fixed point, say p 2 T 3 . Since x is
central, the induced automorphism x�W �1.T

3;p/! �1.T
3;p/ must be trivial. It

follows that x is trivial, which is a contradiction.

This completes the proof of the lemma.

Given any good 3–orbifold Y which is not irreducible, one can cut Y open along
a finite system of spherical 2–suborbifolds into pieces which are irreducible. More
precisely, by the spherical decomposition theorem (see [5, Theorem 3.2]), there is a
finite, nonempty collection of disjoint spherical 2–suborbifolds f†j g such that each
component Yi of Y n f†j g becomes an irreducible 3–orbifold after capping-off the
boundary spherical 2–suborbifolds by the corresponding discal 3–orbifolds.
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For the purpose in this paper, a slightly improved version of the above statement is
needed. More concretely, given any system of spherical 2–suborbifolds f†j g of Y ,
let fYig be the set of components of Y n f†j g. We say that †j is separating (resp.
nonseparating) in Yi if †j is a boundary component (resp. a nonseparating spherical
2–suborbifold) of the closure of Yi in Y . (Note that †j can be a nonseparating
spherical 2–suborbifold of Y but is separating in Yi .) With this understood, we say
that the corresponding spherical decomposition of Y is reduced if for any †j , Yi

such that †j is separating in Yi , �orb
1
.†j / is a proper subgroup of �orb

1
.Yi/ under the

inclusion of †j in the closure of Yi in Y .

Lemma 2.4 For any good, reducible 3–orbifold Y , there exists a reduced spherical
decomposition of Y into irreducible 3–orbifolds.

Proof Given any spherical decomposition of Y into irreducible pieces, which always
exists (see [5, Theorem 3.2]), we can modify it into a reduced spherical decomposition
as follows. Let f†j g be the corresponding system of spherical 2–suborbifolds and let
fYig be the set of components of Y n f†j g. Suppose for some i; j , †j is separating
in Yi and �orb

1
.†j /D �

orb
1
.Yi/. Let Yk 2 fYig be the other component whose closure

in Y also contains †j as a boundary component. Then observe that the 3–orbifold
obtained from capping-off Yk [†j [Yi is the same as that obtained from capping-off
Yk . This is because, by the Geometrization theorem, the 3–orbifold obtained from
capping-off the boundary components of Yi other than †j is a discal 3–orbifold with
boundary †j . Consequently, if we remove †j from f†j g, the corresponding spherical
decomposition still splits Y into irreducible pieces. Continuing this process, we arrive
at a reduced spherical decomposition in finitely many steps. Hence the lemma.

We remark that given any spherical decomposition of a good 3–orbifold Y , with f†j g

being the system of spherical 2–suborbifolds and fYig being the set of components
of Y n f†j g, one has a corresponding finite graph of groups whose vertex groups and
edge groups are given by f�orb

1
.Yi/g and f�orb

1
.†j /g respectively, such that �orb

1
.Y /

is naturally isomorphic to the fundamental group of the graph of groups. When the
spherical decomposition is reduced, the corresponding graph of groups is also reduced
in the sense that an edge group is always a proper subgroup of the vertex groups as
long as the end points of the edge are distinct vertices. Given any finite graph of groups,
one can always modify it into a reduced one without changing the isomorphism class
of the fundamental groups by collapsing a number of edges. Lemma 2.4 is simply a
manifestation of this principle in the geometric setting of spherical decomposition of 3–
orbifolds. When there are no nonseparating spherical 2–suborbifolds, the existence and
uniqueness of reduced spherical decompositions were proven in [37] (called efficient
splittings therein).
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Next we give a classification of certain orientation-preserving finite group actions on
S1 �S2 . The case where the actions are free or have only isolated exceptional orbits
was discussed in Meeks and Scott [32, Theorem 8.4]. Our discussion relies on the
Equivariant sphere theorem of Meeks and Yau (see [33]) and Geometrization of finite
group actions on S3 (compare also Dinkelbach and Leeb [14] via equivariant Ricci
flow).

In order to state the result, we shall fix the following convention and notations. We
orient S3 as the boundary of the unit ball in C2 and consider certain orientation-
preserving Z2m –actions on S3 . When m is even, there is only one such action up
to a change of generators of Z2m . When m is odd, there are two nonequivalent such
actions, and we shall denote the quotient orbifolds by RP3

m and eRP3
m , respectively.

More concretely, we fix a generator t of Z2m , and let

RP3
m D S3=Z2m; where t � .z1; z2/D

�
�z1; exp

�
� i

m

�
z2

�
;

and

eRP3
m D S3=Z2m; where t � .z1; z2/D

�
�z1; exp

�
.mC 1/� i

m

�
z2

�
; m is odd.

Note that when m> 1, these actions can be characterized by the fact that the whole
group has no fixed points but the index 2 subgroup fixes an unknotted circle. Moreover,
the difference between RP3

m and eRP3
m is that the singular set of eRP3

m has two
components, of multiplicities 2 and m, respectively, while the singular set of RP3

m has
only one component, of multiplicity m.

Lemma 2.5 Let G be a finite group that acts on S1 �S2 preserving the orientation.

� Suppose the action of G is homologically trivial. Then S1 � S2=G is the
mapping torus of a periodic diffeomorphism of some spherical 2–orbifold.

� Suppose G is cyclic and is generated by t which is homologically nontrivial.
Then the quotient orbifold S1 �S2=G is diffeomorphic to one of the following:

RP3
m #m RP3

m; RP3
m #m

eRP3
m; or eRP3

m #m
eRP3

m;

where #m denotes the connected sum of orbifolds over a point of multiplicity m,
such that a generator of the �orb

1
of S2=Zm has the same image on both sides of

the connected sum.

Proof First of all, by the Equivariant sphere theorem of Meeks and Yau (see [33,
page 480]), there exists a finite set of embedded 2–spheres f†ig of S1 �S2 that is
G–invariant and generates the �2 as a �1 –module. Since �2.S

1 � S2/ has rank 1,
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we may assume G acts on the set of spheres f†ig transitively. It follows easily from
the Geometrization theorem that when cutting S1 � S2 open along the †i ’s, each
component Yj of S1 �S2 n f†ig is a 3–manifold diffeomorphic to the product of S2

with an interval.

For convenience of the argument, we shall consider the following finite graph � , where
the vertices correspond to the components Yj and the edges to the embedded spheres
†i , and †i is incident to Yj if and only if †i is contained in the closure of Yj . Clearly
� is homeomorphic to a circle, and there is an induced simplicial action of G on � .
We denote by G0 the subgroup of G which acts trivially on � .

Suppose G0 is nontrivial. We pick an embedded sphere †i and cut S1 � S2 open
along †i . Because †i is G0 –invariant, we can close up S1 �S2 n†i and obtain a
G0 –action on S3 . By the Geometrization theorem, the action of G0 is given by an
isometry, which implies that the original G0 –action on S1 �S2 is a product action
that is trivial on the S1–factor. Note that we are done if G DG0 .

Assume G¤G0 and consider the action of G . In the case where G acts homologically
trivially, G=G0 acts effectively on � by rotations. This implies that S1 �S2=G is the
mapping torus of the 2–orbifold S2=G0 for some periodic diffeomorphism of S2=G0

which generates G=G0 . The lemma follows easily in this case.

Suppose G is generated by t which is homologically nontrivial. Then the induced
action of t on � must be given by a reflection, and G0 is an index 2 subgroup.
Furthermore, G0 is cyclic in this case and the action of G0 on S2 is given by rotations.
The order of t is even, say 2m, and there are two possibilities for the induced action
of t on the graph � : (i) t has an invariant edge, (ii) t fixes two vertices.

In case (i), t leaves an embedded sphere †i invariant (which is the only one because
by assumption G acts transitively on the set of spheres f†ig). The induced action of
t on †i is orientation-reversing, and there are two nonequivalent actions when m is
odd. More concretely, if we identify †i with the unit sphere in R3 DR�C , then the
actions are given by

t � .x; z/D

�
�x; exp

�
� i

m

�
z

�
; where .x; z/ 2R�C;

and

t � .x; z/D

�
�x; exp

�
.mC 1/� i

m

�
z

�
; where .x; z/ 2R�C; m is odd.

It follows easily that the quotient of a t –invariant regular neighborhood of †i is diffeo-
morphic to either RP3

m or eRP3
m with a ball centered at a singular point of multiplicity

m removed. Moreover, the complement of the t –invariant regular neighborhood is a
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3–manifold Yj that is diffeomorphic to the product of S2 with an interval. The action
of t on Yj can be naturally extended to an t –action on S3 by capping-off the boundary
of Yj , which, by the Geometrization theorem, is equivalent to an isometry. Note that
when m> 1, t2 has a 1–dimensional fixed-point set. It follows easily that Yj=hti is
also diffeomorphic to either RP3

m or eRP3
m with a ball centered at a singular point of

multiplicity m removed, and S1 �S2=G is diffeomorphic to either RP3
m #m RP3

m , or
RP3

m #m
eRP3

m , or eRP3
m #m

eRP3
m as claimed.

In case (ii) where t fixes two vertices of the graph � , the set f†ig has two elements †1

and †2 , and S1�S2 n f†ig has two components Y1 and Y2 , such that Y1 and Y2 are
t –invariant and t switches †1 and †2 . Similarly, the t –actions on Y1 and Y2 can be
extended to a t –action on S3 by capping-off the boundary, and by the Geometrization
theorem, the quotients of Y1 and Y2 by t are diffeomorphic to either RP3

m or eRP3
m ,

and the lemma follows in this case too.

We end with a lemma concerning existence of Seifert-type T 2 –fibrations on a 4–
manifold.

Lemma 2.6 Let � W X ! Y be a principal S1–bundle over an orientable 3–orbifold
where Y is Seifert fibered. If the homotopy class of a regular fiber of the Seifert
fibration on Y lies in the image of z.�1.X // under ��W �1.X / ! �orb

1
.Y /, then

� W X ! Y may be extended to a principal T 2 –bundle over a 2–orbifold.

Proof Let prW Y ! B be the Seifert fibration on Y where B is a 2–orbifold. (We
note that B must be orientable because the class of a regular fiber of pr lies in the
center z.�orb

1
.Y //.) Then the composition of � with pr, …W X ! B , defines X as

a T 2 –bundle over B . We shall prove that … is principal, which is equivalent to the
condition that … has a trivial monodromy representation.

To see that the monodromy representation of … is trivial, we consider an arbitrary loop
 in B lying in the complement of the singular set. Pick a base point b0 2  , and a
base point x0 2…

�1.b0/. Choose a section  0 of … over  through x0 , and a loop
ı containing x0 in X that is a section of � over the fiber of pr at b0 . Let h be the
fiber of � containing x0 . With this understood, the monodromy representation of …
is trivial if and only if the classes of h, ı , and  0 in �1.X / commute. But this is clear
because the classes of both h and ı lie in the center z.�1.X //. Hence the lemma.

3 Fiber-sum decomposition and fundamental group

This section contains three subsections. Section 3.1 is devoted to a review of Bass–Serre
theory and Rips–Zela theory, and it also contains a proof of Lemma 3.1 and Lemma 3.2.
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Section 3.2 is occupied by a proof of Theorem 1.5(1), as given through Lemma 3.3,
Lemma 3.4, and Proposition 3.5. The last subsection, Section 3.3, contains the proof
for Theorem 1.5(2).

3.1 Some recollections in geometric group theory

We begin with a brief review of the Bass–Serre theory of groups acting on trees, see eg
[13; 42] for more details.

Let � be a connected, nonempty graph, with the set of vertices and edges denoted by
V � and E� , respectively, and the incidence functions denoted by �; � W E�! V � .
Recall that a group of graphs, denoted by G� , consists of the following data: each
v 2 V � and e 2 E� is assigned with a group G.v/ and G.e/, respectively, and
for each e 2E� there is a pair of boundary monomorphisms ˛W G.e/!G.�e/ and
!W G.e/!G.�e/.

Let �0 be a maximal tree in � . The fundamental group of G� with respect to �0 ,
denoted by �.G� ; �0/, is the group given by the following presentation:

� Generating set: fte j e 2E�g[
S
v2V � G.v/.

� Relations: the relations for G.v/, 8v 2 V � ; t�1
e ˛.g/te D !.g/, 8g 2 G.e/,

8e 2E� ; and te D 1, 8e 2E�0 DE� \�0 .

It is known that the isomorphism class of �.G� ; �0/ is independent of �0 , and it is
called the fundamental group of the graph of groups G� .

Given any graph of groups G� , there is a canonically constructed tree T , called the
Bass–Serre tree, together with a canonical action of the fundamental group of G� .
Moreover, the graph of groups G� can be recovered from the action of its fundamental
group on the Bass–Serre tree in a canonical way, which we describe below.

Let G be a group acting on a tree T without inversion, ie the action sends vertices to
vertices and edges to edges such that every edge invariant under the action is being
fixed. Let � be the quotient graph, and pW T !� be the quotient map. Let T 0�T be
a subset and T0 � T 0 be a subtree of T . We call T 0 a fundamental G –transversal in
T with subtree T0 if (i) pW T 0! � is bijective, and (ii) pW T0! � is onto a maximal
tree in � . It is known that such a pair .T 0;T0/ always exists. Note that by (i), one can
give a canonical graph structure to T 0 as follows: V T 0D V T \T 0 , ET 0DET \T 0 ,
and the incidence functions N�; N� W ET 0! V T 0 are defined by the equations

p.N�e/D p.�e/; p. N�e/D p.�e/; 8e 2ET 0:
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(Here �; � are the incidence functions of T .) Note that by (ii), T0 is a maximal tree in
T 0 with respect to this graph structure, and N�e D �e , N�e D �e for any e 2ET0 .

Now, given any fundamental G –transversal T 0 with subtree T0 , one can canonically
construct a graph of groups G� as follows, where � and T 0 are identified as graphs.
For any v 2 V T 0 , we assign to it the group G.v/DGv D fg 2G j gv D vg, and for
any e 2ET 0 , we assign to it the group G.e/DGe D fg 2G j geD eg. The boundary
monomorphisms ˛W G.e/!G.N�e/, !W G.e/!G. N�e/ are defined as follows. For any
e 2ET 0 , pick ge; he 2 G such that geN�e D �e , he N�e D �e , where for any e 2ET0 ,
ge D he D 1. Then for any g 2 G.e/, define ˛.g/ D g�1

e gge and !.g/ D h�1
e ghe

(note that G.e/�G.�e/, G.e/�G.�e/).

There is an obvious homomorphism �W �.G� ;T0/!G which sends te to g�1
e he 2G .

The fundamental theorem of the Bass–Serre theory asserts that � is an isomorphism.
Moreover, when T is the Bass–Serre tree of a graph of groups G� and G is the
fundamental group of G� with the canonical action on T , the graph of groups G� can
be recovered in the above manner.

Next we review the Rips–Sela theory; see [38] for more details. Given any group G ,
a Z–splitting of G is a presentation of G as the fundamental group of a finite graph
of groups where all the edge groups are infinite cyclic. Elementary Z–splittings are
Z–splittings for which the graph of groups contains only one edge, ie an amalgamated
product or an HNN extension. Given a Z–splitting of G and an elementary Z–splitting of
a vertex group of the Z–splitting that is compatible with the boundary monomorphisms,
there is a naturally defined new Z–splitting of G , which is called an elementary
refinement, where the new graph of groups is obtained by replacing the vertex in the
original graph by the corresponding one edge graph. A refinement of a Z–splitting is the
result of a sequence of elementary refinements. The inverse operation of a refinement
is called a collapse.

The fundamental result in the Rips–Sela theory concerns the existence of certain
universal Z–splittings of a single-ended finitely presented group, called canonical JSJ
decompositions, from which all other Z–splittings of the group can be derived in a
certain organized way (involving refinement or collapse). The starting point of this
work is an analysis of the interactions between two distinct elementary Z–splittings.
To be more concrete, let G D Ai �Ci

Bi (or Ai�Ci
) be two given elementary Z–

splittings, where Ci is generated by ci , for i D 1; 2. The element c2 is called elliptic
with respect to the first splitting if it is contained in a conjugate of A1 or B1 , and
hyperbolic otherwise, and similarly for c1 with respect to the second splitting. With
this understood, one of the basic result in the Rips–Sela theory (see [38, Theorem 2.1])
asserts that if G is freely indecomposable, then c1 and c2 are simultaneously elliptic
or simultaneously hyperbolic.
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The bulk of the Rips–Sela theory is devoted to the analysis of hyperbolic-hyperbolic
splittings. Our first observation is that, for a group G with infinite z.G/, hyperbolic-
hyperbolic splittings seldom occur, which greatly simplifies the situation.

Lemma 3.1 Let G be a single-ended group with infinite z.G/, and suppose G is not
isomorphic to the fundamental group of a 2–torus or Klein bottle. Then

(i) the center z.G/ is contained in the edge groups of every reduced Z–splitting of
G , and

(ii) there are no hyperbolic-hyperbolic elementary Z–splittings of G .

Proof We shall first prove part (i) of the lemma, where it suffices to consider only the
case of elementary Z–splittings. Let GDA�C B or A�C be an elementary Z–splitting,
where A¤ C ¤ B . By Lemma 2.1, if the splitting is an amalgamated product, then
C contains z.G/. If the splitting is an HNN extension and C does not contain z.G/,
then AD C D hci which is infinite cyclic, and G is isomorphic to A�A ˛ for a finite
order automorphism ˛ of A. Clearly ˛ is either the identity or ˛W c 7! c�1 , which
implies that G is isomorphic to the fundamental group of a 2–torus or Klein bottle.
Hence part (i) of the lemma.

As for part (ii), suppose to the contrary, there is a pair of hyperbolic-hyperbolic
elementary Z–splittings G DAi �Ci

Bi (or Ai�Ci
), i D 1; 2, where Ci is generated

by ci . We first note that the hyperbolicity implies that the splittings are reduced. Then
by part (i), there are integers m; n > 0 such that cm

1
; cn

2
2 z.G/, so that cm

1
and cn

2

commute. With this understood, Theorem 3.6 in Rips and Sela [38] implies that G

is isomorphic to the fundamental group of either a 2–torus, or a Klein bottle, or a
Euclidean 2–branched projective plane, or a Euclidean 4–branched sphere (an explicit
presentation of these groups are given in Proposition 3.3 of [38], page 63). The case of
2–torus or Klein bottle is excluded by the assumptions of the lemma, and the rest of the
cases are excluded by the fact that G has infinite center; see Lemma 2.2. (Note that in
Theorem 3.6 of [38], there is the assumption that G is a freely indecomposable group
which does not split over Z2 . By Stallings’ End theorem (see eg [42, Theorem 6.1]),
G satisfies this assumption because of being single-ended.) Hence the lemma.

We remark that hyperbolic-hyperbolic splittings do occur. For example, let G be the
fundamental group of a Klein bottle. Then G D A �A ˛ , where A D hci is infinite
cyclic and ˛W c 7! c�1 , and G D A �C A, where C is the index 2 subgroup of the
infinite cyclic group A, are a pair of hyperbolic-hyperbolic splittings of G .

Let G be a single-ended group with infinite z.G/, which is not isomorphic to the
fundamental group of a 2–torus or Klein bottle. Let T be the Bass–Serre tree of a
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reduced Z–splitting of G , and let V be the subset of the set of vertices V T which
consists of v such that the isotropy subgroup Gv fixes a vertex v0 ¤ v . The subset
V is clearly G –invariant, which gives rise to a G –invariant partition .V;V T nV / of
V T . The following lemma is concerned with the structure of V .

Lemma 3.2 There exists a collection of infinite cyclic subgroups Gi of G , i 2 I ,
which has the following significance.
� For each i 2 I , let Vi be the subset of V consisting of v such that Gv D Gi ,

and let Hi � ft 2 G j tgt�1 D g;8g 2 Gig be the centralizer of Gi . Then Hi

acts transitively on Vi .
� For each i 2 I , let fgj j j 2 J.i/g be a fixed choice of representatives of the

right cosets of Hi in G , where the right coset Hi is represented by gj D 1.
Then fgj .Vi/ j j 2 J.i/; i 2 Ig forms a partition of V .

Proof Let v 2 V be any element, and let v0 ¤ v be fixed under Gv . Since T is a
tree, there exists a unique reduced path  in T which connects v and v0 . Because Gv
fixes both v and v0 , and because  is unique, Gv must also fix  . In particular, if e

is the edge in  which is incident to v , then it follows easily that Gv D Ge , which
implies that Gv is infinite cyclic.

Let v1 be the other vertex in  to which e is incident. Since the Z–splitting is reduced,
v1 must lie in the same orbit of v under the action of G . In other words, there is a
t 2G such that t � v D v1 . Suppose Gv DGe is generated by c . Then Gv1

D tGvt
�1

is generated by c1 � tct�1 . Furthermore, c 2 Ge � Gv1
, so that c D cn

1
for some

n 2 Z. On the other hand, by Lemma 3.1(i), there exists a nonzero m 2 Z such that
cm 2 z.G/. Consequently,

cm
1 D .tct�1/m D tcmt�1

D cm
D cnm

1 ;

which implies nD 1. With c D c1 D tct�1 , it follows that t lies in the centralizer of
Gv , and moreover, Gv1

DGv . Repeating this argument to v1 , we see that there is a t 0

lying in the centralizer of Gv , such that t 0 � v D v0 and Gv0 DGv . Now if we let V .v/

be the subset of V consisting of elements whose isotropy subgroup equals Gv , and let
H.v/ be the centralizer of Gv , then H.v/ acts transitively on V .v/.

The above analysis shows that the following relation � on V is an equivalence relation:
v0 � v if and only if Gv fixes v0 . The equivalence relation gives rise to a partition of
V . It is clear that one can choose a subset fVi j i 2 Ig of equivalence classes such that
this partition can be described as fgj .Vi/ j j 2 J.i/; i 2 Ig, where Gi is the isotropy
subgroup of the vertices in Vi , and gj , j 2 J.i/, is some fixed representative of the
right coset of the centralizer Hi of Gi in G , with gj D 1 for the right coset of Hi .
This completes the proof of the lemma.
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3.2 Proof of Theorem 1.5(1)

By assumption, X is fiber-sum-decomposed into Xi along Nj . This gives rise to a
Z–splitting of �1.X / which will be denoted by ƒ, with vertex groups and edge groups
given by �1.Xi/ and �1.Nj /, respectively. Note that Definition 1.3 (iv) implies that
the Z–splitting ƒ is reduced. Furthermore, we shall point out that by Lemma 3.1(i),
z.�1.X // is contained in every edge group of ƒ. On the other hand, recall that the
fiber-sum decomposition of X gives rise to a canonical injective S1–action on X . We
denote the orbit map by � W X ! Y , where we shall point out that Y is naturally a
good orbifold, ie it does not contain any bad 2–suborbifolds. Let †j be the spherical
2–suborbifold of Y over which Nj is Seifert fibered under � . Then it follows easily
that the decomposition of Y in Yi along †j is a reduced spherical decomposition,
where Yi is the irreducible 3–orbifold in the orbit map �i W Xi! Yi that comes with
the fiber-sum decomposition of X ; see Definition 1.3.

Let ƒJ SJ be a canonical JSJ decomposition of �1.X / as constructed in [38]. We
will show that ƒJ SJ and ƒ are equivalent as canonical JSJ decompositions of �1.X /

as described in [38]. To this end, we consider the Bass–Serre trees TJ SJ and T of
ƒJ SJ and ƒ, respectively, each equipped with the canonical action of �1.X /. As
for notations, recall that for any vertex v or edge e of TJ SJ or T , the corresponding
isotropy subgroups of �1.X / are denoted by Gv or Ge , respectively.

Lemma 3.3 For any w 2 V T , Gw fixes a vertex of TJ SJ .

Proof We consider the induced action of Gw on the Bass–Serre tree TJ SJ , and for
any vertex v and edge e of TJ SJ , we denote by G0v and G0e the isotropy subgroups
of the Gw–action at v and e , respectively. By Theorem 4.12 in [13], there are the
following three possibilities.

(a) Gw fixes a vertex of TJ SJ .

(b) There is a reduced infinite path, v0; e
�1

1
; v1; e

�2

2
; : : :, in TJ SJ such that

G0v0
�G0v1

� � � � ; Gw D
[
n�0

G0vn
D

[
n�1

G0en
;

and for all n� 1, Gw ¤G0en
.

(c) Some element of Gw translates some edge e of TJ SJ , and for C �G0e , either
Gw D B �C D with B ¤ C ¤D , or Gw D B�C .

It remains to show that neither (b) nor (c) can occur. First, applying Lemma 3.1(i) to the
�1.X /–action on TJ SJ , we see that z.�1.X // fixes every edge of TJ SJ . Secondly,
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note that there is a factor Xi such that Gw is conjugate to the subgroup �1.Xi/ in
�1.X /. Finally, if h denotes the homotopy class of a regular fiber of � W X ! Y , then
h 2 z.�1.X //\Gw , so that h 2G0e for every edge e of TJ SJ .

With the preceding understood, we consider case (b) first. In this case, we have

�orb
1 .Yi/Š �1.Xi/=hhi ŠGw=hhi D

[
n�1

G0en
=hhi D

[
n�1

Fn;

where Fn is a finite group, Fn � FnC1 , and Gw=hhi ¤ Fn for all n � 1. Clearly,
�orb

1
.Yi/ can not be finite. To rule out the case where �orb

1
.Yi/ is infinite, we note that

�orb
1
.Yi/ has a finite index torsion-free subgroup H by the Geometrization theorem; see

[4; 31]. Let zH be the corresponding subgroup of Gw=hhi under �orb
1
.Yi/ŠGw=hhi.

Then zH D
S

n�1 Fn\
zH D

S
n�1 ∅D∅, which is a contradiction. Hence case (b)

is excluded.

For case (c), we set C 0 D C=hhi, B0 D B=hhi, and D0 DD=hhi; then

Gw=hhi D B0 �C 0 D
0; with B0 ¤ C 0 ¤D0; or Gw=hhi D B0 �C 0 :

Since C 0 is a finite group, Gw=hhi has more than one end by Stallings’ End theorem;
see eg [42, Theorem 6.1]. However, since Yi is irreducible, the number of ends of
�orb

1
.Yi/ is at most 1, which is a contradiction to �orb

1
.Yi/ŠGw=hhi. This rules out

case (c), and the lemma is proved.

Lemma 3.4 There exists a �1.X /–equivariant bijection �W V T ! V TJ SJ . In par-
ticular, for any w 2 V T , Gw DG�.w/ .

Proof First, we let V (resp. VJ SJ ) be the subset of V T (resp. V TJ SJ ) described
in Lemma 3.2, and let Gi , Vi , Hi , gj , j 2 J.i/, i 2 I , be as defined in Lemma 3.2
for V T .

Given any w 2 V T , Gw fixes a vertex v 2 V TJ SJ by Lemma 3.3. On the other
hand, since �1.X / has no hyperbolic-hyperbolic splittings (see Lemma 3.1(ii)), it
follows from the construction of canonical JSJ decompositions in [38] that the action
of Gv on T must also fix a vertex, say w0 . One has the obvious inclusion relations
Gw �Gv �Gw0 . By Lemma 3.2, one always has Gw DGw0 , so that Gv DGw must
hold. We will discuss according to cases (i) w 2 V T nV and (ii) w 2 V .

In case (i), w0 D w . We claim that v 2 V TJ SJ nVJ SJ ; in particular, v is uniquely
determined by w . To see this, suppose there is a v1 ¤ v such that Gv1

D Gv . Then
by Lemma 3.2 there is a t lying in the centralizer of Gv such that v1 D t � v . In
particular, t is not in Gv DGw . This implies that t �w ¤ w , but Gt �w DGw , which
is a contradiction to the assumption that w 2 V T nV . With this understood, we define
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� from V T nV to V TJ SJ nVJ SJ by setting �.w/D v . It follows easily that � is a
�1.X /–equivariant bijection between T V nV and V TJ SJ nVJ SJ . (The surjectivity
part uses the fact that for any vertex v 2 V TJ SJ , the action of Gv on T fixes a vertex.
This is a consequence of Lemma 3.1(ii) by the construction of JSJ decompositions
in [38].)

In case (ii) where w 2 V , v also lies in VJ SJ by a similar argument. We shall define
�W V ! VJ SJ as follows. Let Vi;J SJ be the subset of VJ SJ consisting of vertices
whose isotropy subgroups are given by Gi . Then for any fixed choice of wi 2 Vi ,
vi 2 Vi;J SJ , there is an Hi –equivariant bijection �W Vi! Vi;J SJ sending wi to vi .
Using the elements gj , j 2 J.i/, we can uniquely extend � to a �1.X /–equivariant
bijection from

S
j2J .i/ gj .Vi/ to

S
j2J .i/ gj .Vi;J SJ /, which defines � from V to

VJ SJ . This completes the proof of the lemma.

According to Rips and Sela [38, Theorem 7.1], canonical JSJ decompositions of a
single-ended, finitely presented group G are determined up to the following equivalence
relation: the Bass–Serre trees are G –homotopy equivalent relative to the set of vertices.
With this understood, Theorem 1.5(1) follows from part (1) of the following proposition.
In (2)–(4) we list some consequences of (1) which will be used later in the proofs of
Theorem 1.5(2), Theorem 1.1, and Theorem 1.2.

Proposition 3.5 (1) There exist subdivisions T 0 and T 0
J SJ

of T and TJ SJ ,
respectively, and �1.X /–equivariant simplicial maps h1W T

0 ! TJ SJ and
h2W T

0
J SJ
! T extending � and ��1 , respectively (� as in Lemma 3.4), such

that h2 ıh1 and h1 ıh2 are �1.X /–homotopic, relative to the set of vertices, to
the corresponding identity maps.

(2) There exists a bijection y�W Vƒ! VƒJ SJ , such that for any factor Xi of the
fiber-sum decomposition of X , �1.Xi/ is conjugate in �1.X / to the vertex
group at the vertex y�.Xi/ of ƒJ SJ . In particular, the number of factors Xi and
the conjugacy classes of subgroups �1.Xi/ depend only on �1.X /.

(3) The cardinality of fNj g depends only on �1.X /.

(4) For any Nj , there is an edge ej of the graph of ƒJ SJ such that �1.Nj / is
conjugate in �1.X / to the edge group at ej , and vice versa. In particular, the set
of conjugacy classes of subgroups �1.Nj / depends only on �1.X /.

Proof Fixing a choice of � in Lemma 3.4, we shall define the subdivision T 0 of
T and the simplicial map h1W T

0 ! T as follows. For any edge e 2 ET , there is
a unique reduced path in TJ SJ which starts from �.�e/ and ends at �.�e/. There
is a unique subdivision of e such that � can be extended to a simplicial map over
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e . Doing this to every edge of T , we obtain the subdivision T 0 and the simplicial
map h1 . The whole construction is clearly �1.X /–equivariant because � is �1.X /–
equivariant and reduced paths with fixed ends in a tree are unique. The subdivision
T 0

J SJ
and the simplicial map h2 are constructed similarly with � replaced by ��1 .

One can further subdivide T 0 (still denoted by T 0 for simplicity) so that h1 can be
regarded as a simplicial map to the subdivision T 0

J SJ
of TJ SJ . With this understood,

h2 ıh1W T
0! T is �1.X /–homotopic to the identity map relative to the set of vertices

V T because (i) it is identity on V T , and (ii) T is a tree. The statement about h1 ıh2

follows similarly. This finishes the proof of part (1).

Part (2) is a direct consequence of Lemma 3.4. For part (3), recall that the set of edges
of ƒ is identified with the set fNj g. With this understood, observe that the underlying
graphs of ƒ and ƒJ SJ , which are given by T=�1.X / and TJ SJ =�1.X /, respectively,
are homotopy equivalent, so that they have the same Euler characteristics. This shows
that the Euler characteristic of ƒ, ie the number of vertices minus the number of edges
of ƒ, depends only on �1.X /. It follows that the cardinality of fNj g depends only
on �1.X /.

Finally, we give a proof for part (4). For any Nj , we choose an edge e of T whose
�1.X /–orbit corresponds to Nj . As we have shown in the proof of part (1), h2 ıh1.e/

is a path in T which has the same initial and terminal points as e . Since T is a tree,
the loop formed by h2 ı h1.e/ and e�1 must be reduced, which implies that e lies in
the image of h2 ı h1.e/. Let e0 be an edge of TJ SJ lying in the path h1.e/ such that
e is contained in the path h2.e

0/. Then by the construction of h1; h2 in part (1), we
have Ge � Ge0 � Ge , which implies that Ge D Ge0 . We name ej to be the edge of
ƒJ SJ which corresponds to the �1.X /–orbit of e0 . Then it follows that �1.Nj / is
conjugate to the edge group of ƒJ SJ at ej . Part (4) follows easily. This completes
the proof of Proposition 3.5.

3.3 Proof of Theorem 1.5(2)

Before turning to the proof of Theorem 1.5(2), we first give a geometric interpretation
of the conjugacy classes of subgroups �1.Nj / in �1.X /. We begin by observing that
the submanifolds Nj fall into two different types as follows. Let � be the subgroup of
�1.X / generated by the homotopy class of a regular fiber of � W X!Y . Then Nj falls
into two cases according to (i) � D �1.Nj /, or (ii) � is a proper subgroup of �1.Nj /.
It is clear that case (i) corresponds to the case where †j is an ordinary 2–sphere.

With the preceding understood, we have the following lemma.
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Lemma 3.6 (1) Suppose � is a proper subgroup of �1.Nj / for some j . Then for
any Nk , if g�1�1.Nj /g � �1.Nk/ for some g 2 �1.X /, then g�1�1.Nj /g D

�1.Nk/. In particular, if �1.Nj / D z.�1.X //, then �1.Nk/ D z.�1.X // for
any k .

(2) Let Nj and Nk be given which are over †j and †k , respectively. Suppose
there are components j and k of the singular set of Y such that †j \ j ¤∅,
†k \ k ¤ ∅, and suppose that �1.Nj / and �1.Nk/ are conjugate in �1.X /.
Then j and k are equivalent in the following sense: either j D k , or
there are components of the singular set of Y , 0; 1; : : : ; N , and spherical
2–suborbifolds †1; : : : ; †N 2 f†j g, such that

˛�1\†˛ \ ˛ ¤∅; ˛ D 1; 2; : : : ;N:

Proof For part (1), let Nj and Nk be Seifert fibered over †j and †k , respectively,
under � W X!Y . Since � is a proper subgroup of �1.Nj / and g�1�1.Nj /g��1.Nk/

for some g 2 �1.X /, � is also a proper subgroup of �1.Nk/. Consequently, there are
components j and k of the singular set of Y such that †j\j ¤∅ and †k\k¤∅.
If j D k , one clearly has g�1�1.Nj /g D �1.Nk/ as claimed.

Suppose j ¤ k . We denote by Y0 the 3–orbifold obtained from Y by removing a
regular neighborhood of all singular circles of Y except k . Note that Y0 is a good
3–orbifold as Y is good. We let yY0 be a 3–manifold cover of Y0 . We shall apply the
Equivariant loop theorem (see eg [5, Theorem 3.19]) to yY0 as follows. Denote by F a
component of @ yY0 which contains the preimage of a meridian of j . Then observe that
the assumption g�1�1.Nj /g��1.Nk/ for some g 2�1.X / implies that F is not �1 –
injective. Hence, by the Equivariant loop theorem, there is an equivariant compression
2–disc yD in yY0 with @ yD�F . The group action on yD contains exactly one fixed point,
which implies that the image of yD under the covering map yY0! Y0 is an embedded
2–disc D in jY0j intersecting k at exactly one point. Furthermore, it follows easily
that @D must be a meridian of j . Closing up D in jY j, we obtain an embedded
2–sphere †, which intersects each of j and k at exactly one point and intersects no
other singular circles. Since Y contains no bad 2–suborbifolds, it follows that j and
k must have the same multiplicity, which implies that g�1�1.Nj /g D �1.Nk/ as
claimed. If �1.Nj /D z.�1.X //, then �1.Nj /� �1.Nk/ for any k by Lemma 3.1(i),
which implies that �1.Nk/ D z.�1.X // for any k . This finishes off the proof of
part (1).

Next we prove part (2). The idea is to show that up to replacing one or both of j and
k by some singular circles that are equivalent in the sense described in part (2) of the
lemma, the embedded 2–sphere † which we constructed in the previous paragraph
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can be modified so that it lies in the complement of the spherical 2–suborbifolds f†j g.
To this end, we first perturb † so that it intersects each element of f†j g transversely
and the intersection occurs in the complement of the singular set of Y . Now we fix
our attention on a †0 2 f†j g such that †\†0 ¤ ∅. Let l 2 †\†0 be a circle (if
there is any) which bounds a disc D �†0 such that (i) D contains no singular points,
and (ii) D contains no intersection points with †. Let D1 and D2 be the two discs
into which l divides †. Then both D1 [D , D2 [D are embedded 2–spheres in
Y . Since Y contains no bad 2–suborbifolds, it follows easily that exactly one of D1

and D2 , say D1 , contains no singular points. With this understood, we shall modify
† by replacing D1 with D and slightly perturbing it by an isotopy so that the new
surface does not intersect †0 in a neighborhood of D . In order to keep the notation
simple, we shall still denote the resulting embedded 2–sphere by †. It is easily seen
that the above procedure has the effect of removing the component l from †\†0 , and
moreover, it does not create new intersection points of † with any element of f†j g.
By repeating this procedure, we may assume now that the intersection of † with any
element †0 2 f†j g is either empty, or it consists of a union of circles each of which
divides †0 into two discs, each containing exactly one singular point.

One can further reduce the number of components of †\†0 to at most one. To see
this, let l and l 0 be a pair of components of † \†0 such that l and l 0 bound an
annulus A0 �†0 and l bounds a disc D0 �†0 where A0 and D0 do not contain any
intersection points with † (note that if the number of components of †\†0 is greater
than 1, such a pair always exists). Then the annulus A�† bounded by l and l 0 does
not contain any singular points, because otherwise, either l or l 0 , say l , will bound
a disc D � † containing no singular points, and furthermore, D and a disc in †0

bounded by l form an embedded 2–sphere in Y containing exactly one singular point,
contradicting the fact that Y is pseudogood. With this understood, we modify † by
replacing the annulus A with A0 , and as before, after applying a small isotopy the pair
of components l and l 0 are removed and no new intersection points are created. By
repeating this procedure, we may assume that for each †0 2 f†j g, the intersection
†\†0 consists of at most one component.

Now we are at the final stage of modifying †. Let l be a circle of intersection of †
with a †0 2 f†j g such that l bounds a disc D �† which does not intersect with any
other elements of f†j g. (Such l always exists, or † lies in the complement of f†j g.)
Let D0 �†0 be a disc bounded by l . Then D[D0 is an embedded 2–sphere which
can be perturbed so that it lies in the complement of f†j g. Call it y†, and suppose
that y† lies in Yi , which is an irreducible 3–orbifold. Furthermore, without loss of
generality we assume D contains a singular point in j , and we denote by  0j the
singular circle which intersects with D0 . We claim that j and  0j are equivalent in
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the sense described in part (2) of the lemma. To see this, note that y† bounds a discal
3–orbifold in Yi by the irreducibility of Yi . In particular, there is an arc  lying in
the singular set of Yi which connects the two singular points on y†. If  does not
intersect any elements of f†j g, then j D  0j ; hence they are equivalent. Suppose
†1; : : : ; †N are the elements of f†j g that intersect with  . Then there are subarcs
I1; : : : ; IN of  , where I˛ is contained in the discal 3–orbifold in Yi bounded by †˛ ,
1� ˛ �N . Clearly there are singular circles 0; 1; : : : ; N such that the end points
of I˛ lie in ˛�1 and ˛ , respectively. It follows easily that j and  0j are equivalent
through 0; : : : ; N and †1; : : : ; †N . With this understood, we replace j by  0j , and
we modify † by replacing D by D0 . The new embedded 2–sphere can be perturbed
slightly so that it does not intersect †0 and no new intersection points with elements
of f†j g were created. Furthermore, it intersects with each of the singular circles k

and  0j in exactly one point and contains no other singular points. By repeating this
procedure, we obtain an embedded 2–sphere, which is still denoted by †, such that
(i) † is in the complement of the elements of f†j g, and (ii) † contains exactly two
singular points lying on some singular components yj and yk , which are equivalent to
j and k , respectively. As we have shown earlier, yj and yk are equivalent, which
implies that j and k are equivalent. This finishes the proof of the lemma.

In summary, the conjugacy classes of subgroups �1.Nj / (which are the conjugacy
classes of the edge groups of ƒ) can be classified as follows: (i) there is a distinguished
conjugacy class, ie the class of those �1.Nj / D � , and this conjugacy class can be
characterized by the fact that the corresponding †j are ordinary 2–spheres; (ii) for
any other conjugacy class where �1.Nj / contains � as a proper subgroup, there is an
associated equivalence class of singular circles as described in Lemma 3.6(2), which
is characterized by the fact that �1.Nj / belongs to the conjugacy class if and only if
the corresponding †j intersects with a singular circle belonging to the equivalence
class. With this understood, we shall show in the next lemma that, by modifying
the embeddings of Nj via fiber-preserving isotopies (with respect to � W X ! Y ) if
necessary, one can bring the underlying graph of the Z–splitting ƒ into a certain normal
form. We should point out that modifying the embeddings of Nj via fiber-preserving
isotopies does not change the conjugacy classes of the edge groups of the Z–splitting.

Lemma 3.7 For any given vertex v of ƒ, and any conjugacy class of edge groups of
ƒ that are contained in the vertex group G.v/ up to conjugacy, one can modify the
embeddings of those Nj via fiber-preserving isotopies, where �1.Nj / belongs to the
given conjugacy class of edge groups, such that the Z–splitting of �1.X / associated to
the new fiber-sum decomposition of X has the following property: for any edge e , if
G.e/ belongs to the given conjugacy class of edge groups, then e is incident to v .
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Proof First of all, we observe that modifying the embeddings of Nj via fiber-pres-
erving isotopies corresponds to moving one of the points yj ;1 or yj ;2 (see Definition 1.3)
via isotopies, and moreover, for any Yi , the edge which corresponds to Nj is incident
to the vertex corresponding to Xi if and only if one of the points yj ;1 or yj ;2 lies
in Yi .

Now with the vertex v and the conjugacy class of edge groups given as in the lemma,
we denote by X0 the irreducible S1–four-manifold corresponding to v , and denote
by Y0 the corresponding irreducible 3–orbifold. We first note that the case where the
given conjugacy class of edge groups is the distinguished one, ie where �1.Nj /D � ,
is trivial, because in this case †j is an ordinary 2–sphere and hence the points yj ;1

and yj ;2 are both lying in the complement of the singular set. For any other conjugacy
class of edge groups, there is an associated equivalence class of singular circles as
described in Lemma 3.6(2). Since the edge groups belonging to the given conjugacy
class are contained in the vertex group G.v/D �1.X0/ up to conjugacy, there must be
a singular circle belonging to the equivalence class which has nonempty intersection
with the irreducible 3–orbifold Y0 . We pick one such singular circle and denote it by
0 , and we set I0 � Y0\0 ¤∅. Now consider any Nj such that �1.Nj / belongs to
the given conjugacy class of edge groups and †j \0¤∅. There are two possibilities:
(i) †j intersects 0 at two points; (ii) †j intersects 0 at only one point. Consider
case (i) first. If we cut Y open along †j and then fill in the 3–discal neighborhoods
of yj ;1 and yj ;2 , the singular circle 0 is turned into two components, one of which,
denoted by  0 , contains I0 . Without loss of generality, assume yj ;1 is contained in
 0 . Then by moving yj ;1 along  0 via isotopy if necessary, we may arrange such that
yj ;1 2 I0 . Now consider case (ii). Let 1 be the singular circle which contains the other
singular point on †j . Then when we cut Y open along †j and fill in the 3–discal
neighborhoods of yj ;1 and yj ;2 , the two components 0 and 1 are turned into one
component, denoted by  0 . In this case, one can always arrange so that yj ;1 2 I0 , by
moving yj ;1 via isotopy along  0 . Note that after moving yj ;1 via isotopy and then
performing the connected sum operation to get back to Y , the singular circles 0 and
1 are turned into  0

0
and  0

1
, respectively, both of which have nonempty intersection

with Y0 . With this last property understood, observe that we can now perform the
operation described above to any Nj such that †j \ 

0
1
¤∅. The lemma follows by

an induction process.

We remark that applying Lemma 3.7 to a Z–splitting ƒ does not change the sets Vƒ

and Eƒ; it only changes the incident function. From the construction of Bass–Serre
trees (see [13]), it follows particularly that neither the action of �1.X / on the vertex
set of the Bass–Serre tree T of ƒ changes, nor does the �1.X /–equivariant bijection
� in Lemma 3.4.
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Proof of Theorem 1.5(2) First of all, we shall reformulate the problem as follows. We
denote the group �1.X

0/ by G and identify �1.X / with G via the given isomorphism
˛W �1.X /! �1.X

0/. With this understood, let ƒ and ƒ0 be the Z–splittings of G

associated to the given fiber-sum decompositions of X and X 0 , respectively. We shall
prove that after modifying the embeddings of Nj and N 0j via fiber-preserving isotopies
if necessary, ƒ and ƒ0 may be arranged to be isomorphic as Z–splittings of G . Note
that the assumption that Nj and N 0j are null-homologous is equivalent to that the
underlying graphs of ƒ and ƒ0 are trees. We shall denote by T and T 0 the Bass–Serre
trees of ƒ and ƒ0 , respectively. By Lemma 3.4, there exists a G –equivariant bijection
� from V T onto V T 0 , which induces a bijection y�W Vƒ! Vƒ0 and a family of
isomorphisms of vertex groups �vW G.v/!G.v0/ given by conjugation by elements
of G , where v 2 Vƒ and v0 D y�.v/ 2 Vƒ0 .

First consider the special case where �1.Nj /D z.G/D �1.N
0

j / for all Nj and N 0j .
We fix a vertex v 2 Vƒ and let v0 D y�.v/ 2 Vƒ0 be the corresponding vertex. Then
we apply Lemma 3.7 to ƒ and ƒ0 so that for the resulting new Z–splittings, which
are still denoted by ƒ and ƒ0 for simplicity, every edge e 2 Eƒ and e0 2 Eƒ0 is
incident to v and v0 , respectively. With this understood, there is an isomorphism of the
underlying graphs of ƒ and ƒ0 , extending y�W Vƒ! Vƒ0 . Since by assumption all
the edge groups of ƒ and ƒ0 are given by the center z.G/, it follows easily that the
family of isomorphisms �v can be extended to an isomorphism of the Z–splittings ƒ
and ƒ0 . This finishes the proof for the special case where �1.Nj /D z.G/D �1.N

0
j /

for all Nj and N 0j .

Suppose �1.Nj /Dz.G/ for all Nj does not hold. Then by Lemma 3.6(1), the condition
that �1 of a regular fiber of � W X ! Y is a proper subgroup of �1.Nj / for some Nj

is equivalent to the more convenient condition that �1.Nj / ¤ z.G/, as the latter is
formulated without reference to � W X ! Y . On the other hand, by Proposition 3.5(4),
�1.N

0
j /D z.G/ for all N 0j also does not hold. Accordingly, one can divide the set of

edges Eƒ (resp. Eƒ0 ) into two groups by the following rules:

(I) e 2 Eƒ (resp. e0 2 Eƒ0 ) belongs to (I) if and only if G.e/ ¤ z.G/ (resp.
G.e0/¤ z.G/).

(II) e 2 Eƒ (resp. e0 2 Eƒ0 ) belongs to (II) if and only if G.e/ D z.G/ (resp.
G.e0/D z.G/).

Pick a vertex v 2 Vƒ, and without loss of generality, assume that there is an edge e

belonging to (I) such that G.e/ is conjugate to a subgroup of G.v/. We denote the
set of such edges by Ev . Then by Lemma 3.7, we can assume that any e 2 Ev is
incident to v . Furthermore, we can assume (again with the help of Lemma 3.7) that
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any e 2Eƒ belonging to (II) is not incident to v by the fact that Ev ¤∅. With this
understood, we denote by �v the minimal subgraph containing v and Ev and by G�v

the corresponding subgraph of groups supported by �v . Finally, we let v0D y�.v/2Vƒ0

be the corresponding vertex in the Z–splitting ƒ0 . We make the same arrangement as
above for the vertex v0 with the corresponding notations in which v is replaced by v0 .

Our next goal is to construct an isomorphism between the subgraphs of groups G�v

and G�v0
, extending the given isomorphism �vW G.v/!G.v0/. To this end, we pick

a fundamental G –transversal for G�v
as follows. Let Qv be a vertex of the Bass–Serre

tree T whose G –orbit is v . For each e 2Ev , we choose an edge Qe 2ET incident to
Qv , whose G –orbit is e . We let �Qv be the minimal subgraph of T containing Qv and Qe ,
8e 2Ev . Then it is clear that �Qv is a fundamental G –transversal for G�v

. With this
understood, we shall construct a fundamental G –transversal for G�v0

as follows.

We set Qv0 D �. Qv/, where �W V T ! V T 0 is the G –equivariant bijection coming from
Lemma 3.4, which induces y�W Vƒ! Vƒ0 . For any edge Qe 2 �Qv , we denote by zw the
vertex other than Qv to which Qe is incident, and set zw0 D �. zw/ correspondingly. Then
as in the proof of Proposition 3.5, there exists a unique reduced path in T 0 connecting
Qv0 to zw0 ,

v0 D Qv
0; e

�1

1
; v1; e

�2

2
; : : : ; e�n

n ; vn D zw
0;

such that GQe �Gei
for all i and that there exists a j with Gej

DGQe . Let yei 2Eƒ0 be
the G –orbit of ei . Then since the edge e 2Ev belongs to (I), it follows that yej 2Eƒ0

also belongs to (I) because Gej
D GQe . Now with Gej

D GQe � Gei
, it follows from

Lemma 3.6(1) that Gej
D Gei

for all i , which implies that the edge groups G.yei/

belong to the same conjugacy class in G . It follows that the vertices vk , where k is
even, must be in the same G–orbit, and that n must be odd. In particular, vn�1 and
v0 D Qv

0 are in the same G–orbit. We fix a choice of gQe 2 G such that gQevn�1 D Qv
0 ,

set Qe0 D en , and let w 2 Vƒ and w0 2 Vƒ0 be the G –orbit of zw and zw0 , respectively.
Then the G–orbit e0 2 Eƒ0 of Qe0 is incident to the vertices v0 and w0 . It follows
that e0; w0 are part of the subgraph �v0 , and v 7! v0 , e 7! e0 and w 7! w0 define an
isomorphism between �v and �v0 .

Suppose �vW G.v/ ! G.v0/ is given by h 7! gQvhg�1
Qv

for some gQv 2 G , where
h2GQv . Then the subset fgQv Qv0;gQvgQe Qe0;gQvgQe zw0 j e 2Ev; w 2�vg is a fundamental G –
transversal for G�v0

. Moreover, there is an isomorphism f�v; �e; �w j e 2Ev; w 2 �vg

between the subgraphs of groups G�v
and G�v0

, extending the given isomorphism
�vW G.v/! G.v0/, where �eW GQe ! Gg Qvg Qe Qe0 and �wW G zw ! Gg Qvg Qe zw0 are given by
conjugation of gQvgQe 2G .

Finally, by repeating the above construction, we obtain a disjoint union of subgraphs of
groups G�k

of the Z–splitting ƒ, a disjoint union of subgraphs of groups G� 0
k

of the
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Z–splitting ƒ0 , and a collection of isomorphisms �k W G�k
!G� 0

k
, such that for any

edges e 2Eƒ n f�kg and e0 2Eƒ0 n f� 0
k
g, G.e/D z.G/D G.e0/. It follows easily

that the isomorphisms �k can be uniquely extended to an isomorphism of Z–splittings
between ƒ and ƒ0 . This finishes the proof of Theorem 1.5(2).

4 Irreducible S1–four-manifolds

This section is devoted to a proof of Theorem 1.6. The proof involves a smooth
classification of fixed-point free, smooth S1–four-manifolds whose �1 has a center of
rank greater than 1 (see Theorem 4.3), which is given at the end of the section.

The following lemma shows that a finitely generated group with infinite center is either
single-ended or double-ended.

Lemma 4.1 Let G be a finitely generated group with infinite z.G/ and suppose G

is not single-ended. Then G is isomorphic to A �A ˛ , where A is a finite group. In
particular, G is double-ended.

Proof Let e.G/ denote the number of ends of G . Then e.G/ � 1 because G is
infinite. On the other hand, by Stallings’ End theorem (see eg Scott and Wall [42]), if
e.G/� 2, then G splits over a finite subgroup, ie either GDA�C B with A¤C ¤B ,
or GDA�C ˛ , where in both cases C is a finite group. By Lemma 2.1, the assumption
that z.G/ is infinite implies that the first case can not occur, and in the second case,
C DAD ˛.C /. In particular, A is a finite group.

Lemma 4.2 Let � W X ! Y be the orbit map of an injective S1–action. Then �1.X /

is double-ended if and only if �orb
1
.Y / is finite.

Proof It suffices to show that if �1.X / is double-ended, then �orb
1
.Y / is finite; the

other direction is trivial; see eg Scott and Wall [42]. To see this, note that �1.X /D

A�A ˛ for a finite group A by Lemma 4.1, where we recall that A�A ˛ is generated
by elements of A and a letter t with additional relations tat�1 D ˛.a/, a 2 A. If
we let H be the cyclic subgroup generated by t , then H has finite index in �1.X /.
On the other hand, if we let � be the subgroup generated by the homotopy class of
a regular fiber of � , then � \H has finite index in H because ˛ is of finite order.
Consequently � \H has finite index in �1.X /. This implies that the index of � in
�1.X / is also finite, which means exactly that �orb

1
.Y / is finite. Hence the lemma.
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Proof of Theorem 1.6 Part (1) The proof for this part is based on the rigidity of
injective Seifert fibered space construction, which we shall briefly review first; see Lee
and Raymond [28] for more details. Suppose we are given a group � together with
a short exact sequence 1! � ! � !Q! 1, where � D Zk . Let W be a simply
connected smooth manifold and consider the trivial principal Rk –bundle Rk �W

over W . Let  be a smooth, free and properly discontinuous action of � on Rk �W

via bundle morphisms, such that the restriction  j� is given by translations via an
embedding �W � DZk!Rk as a uniform lattice. Such an action  induces a smooth
action of Q on W , which is denoted by � . The quotient space E �Rk �W = .�/ is
a Seifert fibered space over the orbifold W =�.Q/, with regular fiber T k DRk=�.�/

which is a k –dimensional torus. Conversely, a Seifert fibered space with a regular
fiber T k must arise from such a construction if the inclusion of a regular fiber induces
an injective map on �1 (such Seifert fibered spaces are called injective). In this
case the short exact sequence 1! � ! � !Q! 1 is part of the homotopy exact
sequence associated to the corresponding fibration, with � being the �1 of the Seifert
fibered space, � D Zk being the �1 of a regular fiber, and Q being the �orb

1
of the

base orbifold.

Given two such actions  1 and  2 of � , with induced embeddings �1; �2W �!Rk

and induced actions �1 and �2 of Q on W , the aforementioned rigidity theorem
asserts that if �1 and �2 are conjugate by a diffeomorphism hW W !W , then  1 and
 2 are conjugate by .�;g; h/, where � 2 C1.W;Rk/, g 2 GL.k;R/, and

.�;g; h/ � .v; w/D .g.v/C�.h.w//; h.w//; .v; w/ 2Rk
�W:

Note that in particular, the corresponding Seifert fibered spaces E1 DRk �W = 1.�/

and E2 DRk �W = 2.�/ are diffeomorphic via a fiber-preserving diffeomorphism
induced by .�;g; h/; see [28, page 381].

Now let E1 and E2 be two injective Seifert fibered spaces and let ˛W �1.E1/!�1.E2/

be an isomorphism. Furthermore, we assume that the universal covers of E1 and E2 are
diffeomorphic, say given by Rk �W , and that the isomorphism ˛W �1.E1/! �1.E2/

respects the homotopy exact sequences associated to the corresponding fibrations on
E1 and E2 . Note that the latter is always true when there is a certain uniqueness of the
short exact sequence 1!�!�!Q! 1, eg when � D z.�/. With this understood,
we denote the group �1.E2/ by � and identify �1.E/ with � via ˛ . Then E1 and
E2 may be regarded as arising from the injective Seifert fibered space construction
for some actions  1 and  2 of � on Rk �W . Let �1 and �2 be the induced actions
of Q on W . Then the rigidity theorem mentioned above implies that there is a fiber-
preserving diffeomorphism �W E1!E2 such that �� D ˛W �1.E1/! �1.E2/ if �1

and �2 are conjugate by a diffeomorphism hW W !W . (Roughly speaking, the above
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rigidity theorem allows us to show that if the diffeomorphism classification of the base
orbifolds are determined by the fundamental groups, then so are the fiber-preserving
diffeomorphism classification of the corresponding Seifert fibered spaces.)

With the preceding understood, we shall now give a proof for part (1). Consider
first the case where rank z.�1.X // > 1. A smooth classification of such fixed-point
free, smooth S1–four-manifolds is given in Theorem 4.3, which shows that it suffices
to consider the case where rank z.�1.X // D 2 and �2.X / D 0. Moreover, it also
shows that, in this case, X and X 0 arise from the above injective Seifert fibered space
construction with k D 2 and W D R2 . (Note that the uniqueness of the short exact
sequence follows from the fact that �D z.�/; see Lemma 2.2(a).) With this understood,
the existence of �W X ! X 0 with �� D ˛ follows from the fact that for orientable
2–orbifolds with infinite fundamental group, any isomorphism of �orb

1
may be realized

by a diffeomorphism of the 2–orbifolds; eg see [29].

It remains to consider the case where rank z.�1.X // D 1. In this case, X is an
injective Seifert fibered space over a 3–orbifold Y with regular fiber S1 , where Y

is an irreducible 3–orbifold with infinite fundamental group. As Y is good, the
Geometrization theorem implies that Y D zY =G for some aspherical 3–manifold zY ;
see [31; 4]. (Note that G may be trivial here.) Furthermore, by the Geometrization
theorem, zY admits a geometric decomposition; see eg Kleiner and Lott [27]. In
particular, zY is either Haken, or Seifert fibered, or hyperbolic, and the universal cover
of zY is diffeomorphic to R3 . With this understood, we see that X arises from the
injective Seifert fibered space construction with k D 1 and W DR3 . (Note that the
condition � D z.�/ is satisfied (see Lemma 2.3), which gives the required uniqueness
for the short exact sequence 1! � ! � ! Q! 1.) It remains to show that for
irreducible 3–orbifolds with infinite fundamental group, any isomorphism of �orb

1
may

be realized by a diffeomorphism of the 3–orbifolds. This was verified by McCullough
and Miller (see the proof of Corollary 5.3 in [31]) when zY is either Haken or Seifert
fibered. For the remaining case, the 3–orbifolds are hyperbolic, and in this case,
Mostow Rigidity implies that any isomorphism of �orb

1
may be realized by an isometry

of the 3–orbifolds. This finishes off the proof for part (1).

Part (2): Let � W X ! Y be the orbit map of the S1–action on X . By Lemma 4.2,
this is the case precisely when Y has finite fundamental group. By the Geometrization
theorem, Y is a spherical 3–orbifold, ie there is a finite subgroup G of SO.4/ such
that Y D S3=G . Note that the Euler class of � W X ! Y is torsion, so that there is
a 3–manifold yY and a periodic diffeomorphism f such that Y D yY =hf i and X is
the mapping torus of f . Moreover, by the Geometrization theorem, yY is an elliptic
3–manifold. Similar conclusions hold for X 0 ; ie X 0 is the mapping torus of a periodic
diffeomorphism f 0 of an elliptic 3–manifold yY 0 .
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Note that the mapping torus descriptions of X and X 0 imply that �1.X / and �1.X
0/

are given by HNN extensions �1. yY / ��1. yY /
f� and �1. yY

0/ �
�1. yY 0/

f 0� , respectively.
This gives rise to short exact sequences

1! �1. yY /
i
! �1.X /

p
! Z! 1 and 1! �1. yY

0/
i0

! �1.X
0/

p0

! Z! 1:

With this understood, given any isomorphism ˛W �1.X /!�1.X
0/, we observe that the

homomorphism p0 ı˛ ı i W �1. yY /! Z is trivial because �1. yY / is finite. This implies
that ˛ ı i W �1. yY /! �1.X

0/ lies in the image of i 0W �1. yY
0/! �1.X

0/. It follows
easily from this consideration that ˛W �1.X / ! �1.X

0/ induces an isomorphism
y̨W �1. yY / ! �1. yY

0/ such that f 0� D y̨ ı f� ı y̨
�1 as an element of Out .�1. yY

0//.
Suppose y̨ can be realized by a diffeomorphism hW yY ! yY 0 , eg when yY and yY 0 are
not lens spaces. Identifying yY with yY 0 via h, X may be regarded as the mapping
torus of the periodic diffeomorphism g D h ı f ı h�1W yY 0! yY 0 . Now observe that
g� D f

0
� as an element of Out .�1. yY

0//, which implies that g and f 0 are homotopic,
hence isotopic; see [1; 39; 7; 26; 40; 6]. The existence of �W X ! X 0 with �� D ˛
follows easily from these considerations. This finishes the proof of part (2).

We end this section with the smooth classification theorem alluded to earlier. The proof
of the theorem employs a key lemma, Lemma 5.2, whose proof will be given in the
next section.

Theorem 4.3 Suppose that X is a fixed-point free, smooth S1–four-manifold with
rank z.�1.X // > 1. Then X belongs to one of the following cases:

(1) If rank z.�1.X // > 2, then X is diffeomorphic to the 4–torus T 4 .

(2) If rank z.�1.X //D 2 and �2.X /¤ 0, then X is diffeomorphic to T 2 �S2 .

(3) If rank z.�1.X //D 2 and �2.X /D 0, then X is diffeomorphic to S1�N 3=G ,
where N 3 is an irreducible Seifert 3–manifold with infinite fundamental group,
and G is a finite cyclic group acting on S1�N 3 preserving the product structure
and orientation on each factor, and the Seifert fibration on N 3 .

Proof Let � W X ! Y be the orbit map of the S1–action. Note that ��W �1.X /!

�orb
1
.Y / is surjective, so that ��.z.�1.X // is contained in z.�orb.Y //. It follows

easily from rank z.�1.X // > 1 that z.�orb.Y // is infinite. By Lemma 5.2, Y is
Seifert fibered, and furthermore, by Lemma 2.6, � W X ! Y extends to a principal
T 2 –bundle over a 2–orbifold B , which will be denoted by …W X ! B . We remark
that B is an orientable, closed 2–orbifold.

We begin by describing a decomposition of the principal T 2 –bundle into a pair of
principal S1–bundles over B . More concretely, given any basis .e1; e2/ of �1.T

2/,
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we let �i W T
2!S1 , i D 1; 2, be the projections to the first and the second factor of the

decomposition T 2DS1�S1 that is determined by the basis .e1; e2/. This gives rise to
a pair of principal S1–bundles over B , denoted by V1 and V2 , which are induced by �1

and �2 , respectively. Note that one can recover the principal T 2 –bundle …W X!B as
the pull-back bundle of V1�V2!B�B via the diagonal map B!B�B . Moreover,
with a change of basis, one can always arrange V1 to have vanishing Euler number.
Indeed, under the change of basis

e1 D ae01C ce02; e2 D be01C de02;

where ad � bc D 1, the corresponding principal S1–bundles V 0
1

and V 0
2

associated to
the basis .e0

1
; e0

2
/ have Euler numbers

e.V 01/D a � e.V1/C b � e.V2/; e.V 02/D c � e.V1/C d � e.V2/:

If both of e.V1/ and e.V2/ are nonzero, one can choose a unique pair of integers (up
to a sign), .a; b/, such that e.V 0

1
/D 0. Note that, up to a sign, e.V 0

2
/ is independent

of the choices of c and d . This said, we shall assume in what follows that e.V1/D 0.

With these preparations, we now consider case (1) where rank z.�1.X // > 2. It
is clear that z.�orb

1
.B// is nontrivial and infinite. By Lemma 2.2(a), B must be a

nonsingular torus. As e.V1/D 0 and B is nonsingular, V1 is trivial, which implies
that X D S1 � V2 . Finally, the assumption that rank z.�1.X // > 2 implies that V2

must also be trivial. Hence X is diffeomorphic to the 4–torus T 4 .

Consider case (2) where rank z.�1.X //D2 and �2.X /¤0. Note that X is a principal
S1–bundle over V2 , which is the pull-back of the principal S1–bundle V1!B via the
map V2! B . The homotopy exact sequence associated to the fibration X ! V2 (see
Haefliger [22]) implies that z.�orb

1
.V2// is infinite and �orb

2
.V2/¤ 0. By Lemma 5.2,

V2 is the mapping torus of a periodic diffeomorphism of a 2–orbifold † where �orb
1
.†/

is finite. Now observe that e.V1/D 0 implies that † must be either S2 or a football.
It follows easily that X is diffeomorphic to T 2 � S2 , which finishes the proof for
case (2).

For case (3) where rank z.�1.X //D 2 and �2.X /D 0, we first observe that �orb
1
.B/

is infinite, and therefore B is good. Let B D zB=� , where zB is a closed orientable
surface and � is a finite group acting on zB . We let zX , zV1 , and zV2 be the pull-backs
of X ! B , V1! B , and V2! B to zB via zB! B D zB=� . Then � acts freely on
zX , giving X D zX=� and zV1 D S1 � zB . Let �1 be the subgroup of � which acts

trivially on the S1–factor in zV1 D S1 � zB . Then �1 acts freely on zV2 . Denote by N 3

the quotient zV2=�1 , which is clearly an irreducible Seifert 3–manifold with infinite
fundamental group. With this understood, note that zX=�1 D S1 �N 3 , so that if we
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set G D �=�1 , then X D S1 �N 3=G where the action of G preserves the product
structure and the orientation of each factor, as well as the Seifert fibration on N 3 , as
claimed. This finishes the proof of Theorem 4.3.

Remark 4.4 Theorem 2.1 in [12] asserts that if a 4–manifold with bC
2
� 1 has

nontrivial Seiberg–Witten invariant, then the homotopy class of the principal orbits
of any smooth, fixed-point free S1–action on the manifold must be of infinite order;
in particular, the center of the fundamental group must be infinite. As a corollary of
Theorem 4.3(2), the converse of the above statement is not true. More concretely,
consider a ruled surface X which is a nontrivial S2 –bundle over T 2 . Note that X

satisfies bC
2
� 1, it has nontrivial Seiberg–Witten invariant, and z.�1.X // is infinite.

However, by Theorem 4.3(2), X does not admit any smooth, fixed-point free S1–
action. It is also interesting to note that a double cover of X , which is diffeomorphic
to S2 �T 2 , admits a smooth, fixed-point free S1–action. We remark that for a closed
aspherical manifold, such a correlation between the existence of circle actions and the
nontriviality of the center of the fundamental group is part of a conjectured rigidity of
aspherical manifolds going back to work of Borel. See [8] for some recent progress
and more detailed discussions.

5 Injectivity of S1–actions when �1 has infinite center

The main purpose of this section is to show that a smooth fixed-point free S1–four-
manifold whose fundamental group has infinite center is injective, and hence admits a
fiber-sum decomposition. A key role is played by Lemma 5.2, whose proof requires
the use of the Geometrization theorem in various forms.

We begin with the following observation.

Lemma 5.1 Let Y be a 3–orbifold with a singular set consisting of a union of circles.
Then there is a good 3–orbifold Y0 such that Y and Y0 have the same underlying
space, and �orb

1
.Y0/D �

orb
1
.Y /.

Proof Denote by jY j the underlying 3–manifold of Y and by †Y the singular
set of Y , consisting of components 1; : : : ; n . Then �orb

1
.Y / admits the follow-

ing presentation
�orb

1 .Y /D �1.jY j n†Y /=N:

Here N is the normal subgroup generated by the elements �mi
i

, i D 1; 2; : : : ; n, where
�i

is the meridian around i and mi is the multiplicity of i ; see [5, Proposition 2.7].

With this understood, for any bad 2–suborbifold C in Y , one has the following
two possibilities:
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(i) There is exactly one i such that C \ i ¤∅.

(ii) There are i and j , with i ¤ j and mi ¤ mj , such that C \ i ¤ ∅ and
C \ j ¤∅.

In case (i), the existence of such a C implies that �i
D 1 in �1.jY j n†Y /, hence

�orb
1
.Y / is unchanged after removing i from †Y . In the resulting 3–orbifold, C is

no longer a bad 2–suborbifold.

In case (ii), let mD gcd .mi ;mj /. We change Y to a new 3–orbifold by replacing
the multiplicities of i , j with m. (In case of mD 1, this simply means that i ; j
are both removed from †Y .) Note that the existence of C implies that the normal
subgroup generated by �mi

i
and �mj

j
is the same as that generated by �m

i
and �m

j
. It

follows that �orb
1
.Y / remains unchanged in this process. Since there are only finitely

many singular circles and during the process either the number of singular circles
is decreased or the multiplicity of a singular circle is decreased, this process must
terminate in finitely many steps. At the end, we obtain a good 3–orbifold Y0 such that
jY0j D jY j and �orb

1
.Y0/D �

orb
1
.Y /. Hence the lemma.

A more conceptual view which was suggested by the referee goes as follows: introducing
a notion of complexity for 3–orbifolds, say by the sum of the multiplicities of the
singular circles, then the orbifold Y0 in Lemma 5.1 is characterized as the one with the
minimal complexity among the 3–orbifolds which have the same underlying space and
the same fundamental group of the orbifold Y .

In the following lemma, for the definition of �orb
2
.Y / we refer to [21; 22; 10].

Lemma 5.2 Let Y be an orientable 3–orbifold, not necessarily good, with a singular
set consisting of a union of circles. If z.�orb

1
.Y // is infinite, then Y is Seifert fibered.

Moreover, if �orb
2
.Y /¤ 0, then Y is the mapping torus of a periodic diffeomorphism

of a 2–orbifold with finite fundamental group.

Proof Let Y0 be the good 3–orbifold associated to Y from Lemma 5.1, which
is clearly orientable. Then there is an orientable 3–manifold Y 0 equipped with a
finite group action of G , such that Y0 D Y 0=G ; see [4; 31]. Since �orb

1
.Y0/ D

�orb
1
.Y /, z.�orb

1
.Y0// is also infinite, and consequently, z.�1.Y

0//, which contains
�1.Y

0/ \ z.�orb
1
.Y0//, is infinite. As an abelian subgroup of a 3–manifold group,

z.�1.Y
0// must contain an infinite cyclic subgroup H (see [24, Theorem 9.14]), which

is clearly normal in �1.Y
0/.

Consider first the case where �2.Y
0/D 0. By work of Gabai (see [20] and, indepen-

dently, Casson and Jungreis [9]), Y 0 is Seifert fibered, with H being generated by
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a regular fiber of the Seifert fibration. Since H � z.�orb
1
.Y0//, it must be invariant

under the action of G . By a theorem of Meeks and Scott (see [32, Theorem 2.2]), G

preserves the Seifert fibration on Y 0 , which implies that Y0 is Seifert fibered. Since
we assume �2.Y

0/ D 0, Y0 does not contain any essential spherical 2–suborbifold.
From the proof of Lemma 5.1, we see that Y contains no bad 2–suborbifold, and in
this case, Y D Y0 . This proves that Y is Seifert fibered. Note that in this case,

�orb
2 .Y /D �orb

2 .Y0/D �2.Y
0/D 0:

Suppose �2.Y
0/¤ 0. Since z.�1.Y

0// is nontrivial, Y 0 must be prime (here we use
Lemma 2.1 and the resolution of the Poincaré conjecture [36]), and consequently,
Y 0D S1�S2 . Note that G must act on Y 0D S1�S2 homologically trivially because
the fundamental group of Y0 D Y 0=G is infinite. By Lemma 2.5, Y0 D Y 0=G is the
mapping torus of a periodic diffeomorphism of some spherical 2–orbifold; in particular,
Y0 is Seifert fibered. If Y is good, then Y D Y0 , and the lemma follows in this case.
Note that in this case,

�orb
2 .Y /D �orb

2 .Y0/D �2.Y
0/¤ 0:

It remains to consider the case where Y is not good. Recall that in the proof of
Lemma 5.1, Y0 is obtained from Y by performing a sequence of operations where, in
each, either a singular circle is removed or its multiplicity is decreased. Since Y0 is
the mapping torus of a periodic diffeomorphism f of some spherical 2–orbifold †, it
follows easily that † is either S2 or a football. Moreover, if † is a football, f must
be isotopic to the identity map, and therefore Y0 is diffeomorphic to S1�†. It follows
readily that Y is the product of S1 with a bad 2–orbifold B . Note that in this case,

�orb
2 .Y /D �orb

2 .B/¤ 0;

since a bad 2–orbifold has nontrivial �orb
2

.

Suppose † D S2 , and therefore Y0 D S1 � S2 . Note that Y can have at most two
singular circles. Assume first that Y has only one singular circle, which is denoted
by  . It suffices to show that .jY j;  / and .S1 � S2;S1 � fptg/ are diffeomorphic.
To see this, let W D Y nNd. / and let � denote a meridian of  . Then �orb

1
.Y /D

�1.W /=h�mi where m denotes the multiplicity of  . Since � bounds a disc in W ,
and �orb

1
.Y /D �1.Y0/D Z, it follows that �1.W /D Z. Cutting W open along the

disc bounded by �, we obtain a 3–manifold W0 with @W0 D S2 and �1.W0/ trivial.
By the Geometrization theorem, W0 is a 3–ball, which implies easily that .jY j;  / is
diffeomorphic to .S1 �S2;S1 � fptg/. This shows that Y is the product of S1 with a
teardrop. Note that �orb

2
.Y /¤ 0 as we argued before.
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Finally, suppose Y has two components, denoted by 1; 2 , which have multiplicities
m1;m2 respectively. From the construction of Y0 in Lemma 5.1, it follows easily that
m1;m2 are relatively prime. With this understood, it suffices to show that .jY j; 1; 2/

is diffeomorphic to .S1�S2;S1�fptg;S1�fptg/. First, as we argued in the previous
case, .jY j; 1/ is diffeomorphic to .S1 � S2;S1 � fptg/, so that if we let W D Y n

Nd.1/, then jW j D S1 �D2 . It remains to show that .jW j; 2/ is diffeomorphic to
.S1 �D2;S1 � fptg/. To see this, note that the meridians �1 and �2 of 1 and 2 ,
respectively, bound an annulus in W nNd.2/. Consequently,

ZD �orb
1 .Y /D �1.W nNd.2//=h�

m1

1
; �

m2

2
i D �1.W nNd.2//=h�2i;

which implies that the following sequence is short exact:

1! Zm2
! �orb

1 .W /D �1.W nNd.2//=h�
m2

2
i ! Z! 1:

Now if we cut W open along a copy of fptg �D2 in jW j D S1 �D2 , we obtain a
3–orbifold W0 with @W0 D S2=Zm2

. Moreover, it follows from the above short exact
sequence that �orb

1
.W0/D Zm2

. Then the Geometrization theorem implies that W0

is discal, from which it follows that .jY j; 1; 2/ is diffeomorphic to .S1 �S2;S1 �

fptg;S1 � fptg/, and consequently, Y is the product of S1 with a bad 2–orbifold.
Moreover, �orb

2
.Y /¤ 0. This finishes the proof of the lemma.

Proof of Theorem 1.4 Let � W X ! Y be the orbit map of the fixed-point free
S1–action. Suppose the S1–action is not injective. Then the homotopy class of a
regular fiber of � is finite, and since z.�1.X // is infinite, the image of z.�1.X //

under ��W �1.X /! �orb
1
.Y /, clearly contained in z.�orb

1
.Y //, must also be infinite.

By Lemma 5.2, either Y is irreducible, or Y is the mapping torus of a periodic
diffeomorphism of a 2–orbifold with finite fundamental group. Since we assume that
the homotopy class of a regular fiber of � is finite, Y can not be irreducible. Then
it follows easily that X is the mapping torus of a periodic diffeomorphism of some
elliptic 3–manifold.

To see that X admits a fiber-sum decomposition, it suffices to consider the case where
the S1–action is injective. We note first that the fact that the homotopy class of a regular
fiber of � has infinite order implies that the orbit space Y of the S1–action does not
contain any bad 2–suborbifolds. In other words, Y must be good. By Lemma 2.4, Y

admits a reduced spherical decomposition. More precisely, there is a system of finitely
many spherical 2–suborbifolds †j � Y such that, after capping off the boundary of
each component of Y n

S
j †j , one obtains a collection of 3–orbifolds Yi where each

Yi is irreducible. Furthermore, each †j must be either an ordinary 2–sphere or a
football, and the preimage Nj � �

�1.†j / must be diffeomorphic to S1�S2 , because
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the homotopy class of a regular fiber of � has infinite order. Finally, observe that the
restriction of � on each Nj may be uniquely extended to a Seifert-type S1–fibration
on S1 �B3 so that, correspondingly, we obtain the irreducible S1–four-manifolds Xi

and the orbit maps �i W Xi ! Yi . It follows easily that X is fiber-sum-decomposed
into Xi along Nj . We remark that the requirement that the spherical decomposition of
Y be reduced ensures that Definition 1.3(iv) is satisfied. This finishes off the proof of
Theorem 1.4.

Proof of Corollary 1.7 By Theorem 1.4, it suffices to consider the case where the
S1–action is injective. Let � W X ! Y be the corresponding orbit map. We observe that
Y does not contain any bad 2–suborbifolds, hence there exist a 3–manifold zY and a
finite group G such that Y D zY =G ; see [4; 31]. On the other hand, by the homotopy
exact sequence associated to � W X ! Y (see Haefliger [22]), it follows easily that
��W �2.X /! �orb

2
.Y / is an isomorphism. Let z� W zX ! zY be the pull-back fibration

via the projection zY ! Y . Then zX is a finite regular cover of X . It suffices to show
that there exist no embedded 2–spheres with odd self-intersection in zX .

Suppose to the contrary, there is an embedded 2–sphere C in zX with C 2� 1 .mod 2/.
Consider the projection of C into zY under z� . Clearly ŒC �2�2. zX / is nonzero. On the
other hand, ��W �2.X /! �orb

2
.Y / is an isomorphism, so that z��W �2. zX /! �2. zY /

is also an isomorphism. Consequently, z�jC W S2! zY is homotopically nontrivial. By
the Sphere theorem (see [24, Theorem 4.11]), there is an embedded 2–sphere † in
a neighborhood of z�.C /, whose class is clearly homologous to z��ŒC �. Observe that
the Euler class of z� W zX ! zY evaluates to 0 on †. This is because the pull-back of
the Euler class of z� to zX is zero so that the Euler class of z� evaluates trivially on the
class of z�.C /. This implies that the restriction of z� to † is trivial, and in particular,
† has a section †0 in zX . Consequently, we obtain an equation of homology classes

C D†0C
X

i

Ti ;

where Ti D z�
�1.i/ for some loops i �

zY ; see [2, Theorem 9]. Since †0 and all Ti

have self-intersection 0, this implies C 2 � 0 .mod 2/, which is a contradiction. This
finishes the proof of Corollary 1.7.

6 Theorems 1.1 and 1.2

This section is devoted to the proofs of Theorems 1.1 and 1.2. We remark that while
Theorem 1.1 follows readily from Theorems 1.5 and 1.6, the proof of Theorem 1.2
requires some additional care in the case when each irreducible S1–four-manifold in
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the fiber-sum decomposition is a mapping torus of a periodic diffeomorphism of a
lens space. Furthermore, the case when the fundamental group of the 4–manifold is
isomorphic to the fundamental group of a Klein bottle needs to be dealt with separately.
In all these considerations, the following lemma describing certain isotopies of periodic
diffeomorphisms of S3 or a lens space plays a key role.

Let Y D S3=G where G is a cyclic subgroup of SO.4/ of order n given by

� � .z1; z2/D .�
pz1; �

qz2/;

where �D exp.2� i=n/ is a nth root of unity and gcd.n;p; q/D 1. Set uD gcd.n;p/,
v D gcd.n; q/. Then gcd.u; v/ D 1 so that uv is a divisor of n D j�orb

1
.Y /j, and

Y has at most two singular circles of multiplicities u and v , given by z2 D 0 and
z1 D 0, respectively.

Suppose H is a subgroup of G of order yn generated by �n=yn , which acts freely on S3 .
Note that this condition is equivalent to gcd.yn;p/D 1 and gcd.yn; q/D 1; in particular,
yn;u; v are pairwise coprime so that yn� n=uv . We set yY D S3=H , which is either S3

or a lens space. With this understood, let f W yY ! yY be a periodic diffeomorphism
such that Y D yY =hf i.

Lemma 6.1 For any singular circle  of Y , say the one defined by z2 D 0 which
has multiplicity u, we let y be the preimage of  in yY . Then there exist a periodic
diffeomorphism f 0W yY ! yY and an isotopy ft W

yY ! yY between f and f 0 , such that:

� The restriction of ft on y is independent of t (in particular, f D f 0 on y ).

� f 0 is free on y so that the image of y in Y 0 D yY =hf 0i is not a singular circle.

� When yY D S3 , one can arrange f 0 such that Y 0 is the lens space L.n=u; 1/.

Proof We first consider the case where yn > 1. Set p0 D p=u, let u0 be the unique
integer satisfying uu0 � 1 .mod yn/ and 0< u0 < yn, and consider the following action
of a cyclic subgroup G0 � SO.4/ of order n0 D n=u, given by

ı � .z1; z2/D .ı
p0z1; ı

qu0z2/;

where ı D exp.2� i=n0/ is an n0 th root of unity. Note that since �n=yn � .z1; z2/ D

ın0u=yn � .z1; z2/, H D h�n=yni D hın0=yni is also a subgroup of G0 .

There is a k with gcd.n; k/ D 1 such that f W yY ! yY is represented by the H –
equivariant map F W .z1; z2/ 7! �k � .z1; z2/. We shall consider the H –equivariant
map F 0W .z1; z2/ 7! ık � .z1; z2/, which has the following properties: (i) F D F 0 on
f.z1; 0/ j jz1j D 1g, (ii) there is an H –equivariant isotopy Ft between F and F 0 which
is constant in t on f.z1; 0/ j jz1j D 1g. For instance, Ft W .z1; z2/ 7! .ıkp0z1; �tz2/,
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where �t D exp.2tkqu0� i=n0 C 2.1 � t/kq� i=n/, 0 � t � 1. Let f 0; ft be the
descendant of F 0;Ft to yY respectively. Then clearly ft is an isotopy between f and
f 0 that is constant on y D f.z1; 0/ j jz1j D 1g=H , and f 0 is free on y so that the
image of y in Y 0 D yY =hf 0i is not a singular circle. This finishes the proof for the
case where yn> 1.

Now suppose yn D 1, which means that H is trivial. Then instead, we consider the
following action of a cyclic subgroup G0 � SO.4/ of order n0 D n=u, given by

ı � .z1; z2/D .ı
p0z1; ı

p0z2/:

The rest of the argument is the same, with H �G0 trivially true. Note that in this case,
Y 0 D S3=hf 0i D S3=G0 DL.n=u; 1/. This finishes the proof of Lemma 6.1.

As an immediate corollary of Lemma 6.1, we obtain the following classification of
fixed-point free smooth S1–four-manifolds whose fundamental group is isomorphic to
the fundamental group of a Klein bottle.

Theorem 6.2 Let X be a fixed-point free smooth S1–four-manifold such that �1.X /

is isomorphic to the fundamental group of a Klein bottle. Then X is diffeomorphic to
the quotient of T 2 �S2 by the involution � , where

� W .x;y; z/ 7! .�x; Ny;�z/ for x;y 2 S1
�C and z 2 S2

�R3:

Proof As �1.X / is isomorphic to the fundamental group of a Klein bottle, it has the
following presentation: �1.X /D fc; t j tct�1 D c�1g. Clearly the center z.�1.X // is
the infinite cyclic subgroup generated by t2 . By Theorem 1.4, the S1–action is injective.
We let � W X ! Y be the corresponding orbit map. Let m> 0 be the multiplicity of
the homotopy class of a regular fiber of � in z.�1.X //. Then

�orb
1 .Y /D fc; t j tct�1

D c�1; t2m
D 1g:

Let yY be the regular covering of Y corresponding to the infinite normal cyclic subgroup
generated by c . Since yY is good and its fundamental group is torsion-free, yY must be a
3–manifold, and clearly, yY DS1�S2 . The corresponding group of deck transformations
on yY is cyclic of order 2m and is generated by t , which sends c 2 �1. yY / to �c .
By Lemma 2.5, Y is diffeomorphic to either RP3

m #m RP3
m , RP3

m #m
eRP3

m , or
eRP3

m #m
eRP3

m . Consequently, X is fiber-sum-decomposed into X1 and X2 along
N , with �i W Xi ! Yi , i D 1; 2, where each of Y1 and Y2 is either RP3

m or eRP3
m ,

and � W N !† where † intersects the singular circle of multiplicity m in Y .

There are yYi and periodic diffeomorphisms fi such that Yi D
yYi=hfii and Xi is the

mapping torus of fi , where i D 1; 2. We apply Lemma 6.1 to Yi , yYi , and fi , with 
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being the singular circle of multiplicity m. We claim that in either case, ie Yi DRP3
m

or eRP3
m , yYi must be S3 , ie ynD 1. For the case where Yi D

eRP3
m , it follows from

the fact that eRP3
m has two singular circles with multiplicities 2 and m, respectively,

so that yn� n=uv D 2m=2mD 1. For the case where Yi DRP3
m , a similar argument

shows that yn� 2. Continuing using the notations in Lemma 6.1, we have, in this case,
pDm, qD 1, n0D 2, and f 0i is given by multiplication by ı . If ynD 2 and, therefore,
yYi DRP3 , f 0i is the identity map on yYi . Consequently, as the mapping torus of f 0i ,
Xi is diffeomorphic to S1� yYi , and �1.X / contains a torsion subgroup of Z2 coming
from �1. yYi/. But this contradicts the fact that �1.X / is isomorphic to the �1 of a
Klein bottle. Hence yYi D S3 in both cases. We conclude by observing that each Xi

is the mapping torus of the antipodal map on S3 . We denote by � 0i W Xi ! RP3 the
corresponding Seifert-type S1–fibration.

Finally, by the property in Lemma 6.1 that the restriction of ft on y is independent of
t , it is easily seen that the Seifert-type S1–fibrations �i W Xi! Yi and � 0i W Xi!RP3

are identical on the mapping torus of f D f 0W y ! y . It follows easily that X is also
fiber-sum-decomposed into X1 and X2 along N , with � 0i W Xi!RP3 on each factor
Xi . Theorem 6.2 follows easily.

Theorem 1.1 follows immediately from the following theorem.

Theorem 6.3 Let G be a finitely presented group such that:

(i) rank z.G/D 1.

(ii) G is single-ended and is not isomorphic to the �1 of a Klein bottle.

(iii) Any canonical JSJ decomposition of G contains a vertex subgroup which is not
isomorphic to an HNN extension of a finite cyclic group.

Let SG be the set of equivariant diffeomorphism classes of orientable, fixed-point free,
smooth S1–four-manifolds X such that �1.X / D G . Then there exists a constant
C > 0, depending only on G , such that #SG < C .

Proof Let X be an orientable, fixed-point free, smooth S1–four-manifold such that
�1.X / D G . Since G is single-ended, it follows easily from Theorem 1.4 that any
fixed-point free S1–action on X must be injective. Thus, any fixed-point free S1–
action on X is associated with a canonical fiber-sum decomposition. Suppose X is
decomposed into factors Xi along Nj . For convenience we shall fix an orientation of
X , which is the one induced from the fiber-sum decomposition. Then the following
data completely determine the oriented equivariant diffeomorphism class of X :
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(i) The isomorphism class of the underlying graph of ƒ.

(ii) For each pair of i; j such that Nj � Xi , the fiber-preserving isotopy class of
embeddings of Nj in Xi for each fixed oriented, fiber-preserving diffeomorphism
class of Xi .

(iii) For each i , the oriented, fiber-preserving diffeomorphism class of Xi .

These data are subject to the following constraints: the cardinalities of fXig and fNj g

and the conjugacy classes of subgroups �1.Xi/ and �1.Nj / in G are determined by
G ; see Proposition 3.5. With this understood, our aim is to show that the number of
objects in each of (i), (ii), and (iii) is bounded by a constant depending only on G .

The number of objects in (i) is clearly bounded by a constant depending only on
G , since the cardinalities of fXig and fNj g are fixed by G . For the objects in (ii)
and (iii), where an index i is being fixed, we shall discuss separately according to
the following three cases, (a) rank z.�1.Xi// > 1, (b) �1.Xi/ is single-ended with
rank z.�1.Xi//D 1, (c) �1.Xi/ is double-ended.

Note that the number of objects in (ii) is bounded by the number of singular circles
of Yi plus one, so we need to show that, for each i , the number of singular circles
of Yi is bounded by a constant depending only on G . With this understood, consider
case (a) where Xi is a Seifert-type T 2 –fibration over a 2–orbifold Bi with infinite
�orb

1
. As shown in the proof of Theorem 1.6(1), Bi is uniquely determined by �1.Xi/,

hence by G . On the other hand, Yi is Seifert fibered over Bi , so that the number
of singular circles of Yi is bounded by the number of singular points of Bi , which
depends only on G . In case (b), Yi is uniquely determined by �1.Xi/ as shown in
the proof of Theorem 1.6(1), hence the number of singular circles of Yi depends only
on G . In case (c), �orb

1
.Yi/ is finite. The Geometrization theorem implies that Yi is

spherical. Since the singular set of Yi consists of a union of embedded circles, the work
of Dunbar in [15] shows that Yi D S3=Gi , where Gi is a subgroup of SO.4/ which
preserves a Hopf fibration. It follows easily that the number of singular components of
Yi is universally bounded (say by 4). This shows that the number of objects in (ii) is
bounded by a constant depending only on G .

Finally, we examine the boundedness of the number of objects in (iii). In case (a), the
diffeomorphism class of Xi is uniquely determined by �1.Xi/ (see Theorem 1.6(1));
however, the Seifert-type S1–fibration �i W Xi!Yi has infinitely many choices, one for
each primitive element of z.�1.Xi//. With this understood, note that, by assumption,
z.G/ has rank 1, so there is only one possible choice for the regular fiber class of �i

in z.�1.Xi//. This shows that �i W Xi! Yi is uniquely determined by G in this case.
In case (b), both Xi and �i are uniquely determined by �1.Xi/, as shown in the proof
of Theorem 1.6(1), and hence are also determined by G .
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Lastly, we consider case (c). By Theorem 1.6(2), Xi is the mapping torus of a periodic
diffeomorphism fi W

yYi !
yYi of an elliptic 3–manifold. It follows from the proof of

Theorem 1.6(2) that the number of diffeomorphism classes of Xi is bounded by a
constant depending only on �1.Xi/. In order to bound the number of fiber-preserving
diffeomorphism classes, we shall employ the rigidity theorem of injective Seifert fibered
space constructions as in the proof of Theorem 1.6(1), with k D 1 and W D S3 . With
this understood, it is clear that it suffices to show that the number of possible short
exact sequences 1! � ! � ! Q! 1 involved in the argument is bounded by a
constant depending only on G . Equivalently, we will show that the multiplicity of
the homotopy class of a regular fiber of �i in z.�1.Xi// is bounded by a constant
depending only on G .

Denote by h the homotopy class of a regular fiber. Since the conjugacy classes of the
subgroups �1.Xi/ in G depend only on G , it follows easily that it suffices to bound
the multiplicity of h in z.�1.X //. With this understood, we observe that since for
each j , z.�1.X // � �1.Nj /, the multiplicity of h in z.�1.X // is bounded by the
multiplicity of h in �1.Nj / for every j , which equals 1 if †j is an ordinary 2–sphere,
and equals the multiplicity of the singular circle of Y that †j intersects otherwise.
In particular, if one of the †j is an ordinary 2–sphere, or one of the Yi has infinite
fundamental group, we are done for (iii). (Note that, since G is single-ended, there is
at least one Nj if case (c) is valid.)

Suppose �orb
1
.Yi/ is finite for each i and †j is a football for each j . Again, since

the singular set of Yi consists of a union of embedded circles, the work of Dunbar
in [15] shows that Yi D S3=Gi for a finite subgroup Gi of SO.4/ that preserves a
Hopf fibration. It follows that Xi is the mapping torus of a periodic diffeomorphism
fi W
yYi !

yYi , where yYi has a Seifert fibration induced from the Hopf fibration and fi

preserves the Seifert fibration on yYi . By the assumption (iii), there is a Yi such that
�1. yYi/ is nonabelian. With the following lemma (Lemma 6.4), we finish the proof
by observing that �1. yYi/ is completely determined by �1.Xi/, which depends only
on G .

Lemma 6.4 Let yY be an elliptic 3–manifold with nonabelian fundamental group,
and let � W yY ! B be the unique Seifert fibration on yY . Suppose f W yY ! yY is an
orientation-preserving periodic diffeomorphism that preserves � . Then the multiplicity
of any singular circle of the 3–orbifold Y D yY =hf i is bounded by a constant depending
only on the multiplicities of the singular points of B .

Proof For any singular circle  in Y , the multiplicity of  equals the order of its
isotropy subgroup. Let f be a generator of the isotropy subgroup, which is given
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by f k for some k . Since f W yY ! yY preserves � W yY ! B , so does f , and there
is an induced periodic diffeomorphism Nf W B! B of the 2–orbifold B .

Since �1. yY / is nonabelian, B is a turnover with multiplicities .2; 2; n/, .2; 3; 3/,
.2; 3; 4/, or .2; 3; 5/. We shall discuss according to the following cases: (i) Nf is
trivial, (ii) Nf is nontrivial.

Suppose Nf is trivial. Then f acts as a rotation on each fiber of � W yY !B . It follows
easily that  must be an exceptional fiber of � , and the order of f is a divisor of the
multiplicity of the singular point �. / 2 B .

Suppose Nf is nontrivial. Then there are two possibilities: (a) Nf is orientation-
preserving, (b) Nf is orientation-reversing. In case (a), the order of Nf is either 2 or
3, and Nf has two isolated fixed-points. Moreover,  must be the fiber over one of
the fixed-points of Nf . It follows easily that the multiplicity of  equals the order of
Nf , which is at most 3. In case (b), Nf must be a reflection over a great circle in B

because Nf has a nonempty fixed-point (which contains �. /, for instance). Since f
is orientation-preserving, f must be a reflection on the fibers over the great circle
fixed under Nf . It follows that the multiplicity of  equals 2 in this case.

Proof of Theorem 1.2 This result follows from Theorem 6.3 except in the follow-
ing cases:

(a) rank z.G/ > 1.

(b) G is double-ended.

(c) G is isomorphic to the �1 of a Klein bottle.

(d) None of the above is true, and moreover, every vertex subgroup of a canonical
JSJ decomposition of G is an HNN extension of a finite cyclic group.

Cases (a), (c) are settled with the help of Theorems 4.3 and 6.2. Case (b) is settled
by Theorem 1.4, Lemma 4.2, and Theorem 1.6. (Note that in case (b) where G is
double-ended, we appeal to Theorem 1.6(2), where we observe that when X is a
mapping torus of a periodic diffeomorphism of a lens space, the number of possible
lens spaces is bounded by a constant depending only on �1.X /.)

For case (d), we shall continue with the proof of Theorem 6.3, where we are left with
the situation that �1. yYi/ is finite cyclic for each i and †j is a football for each j .
Recall that Yi D

yYi=hfii for some periodic diffeomorphism fi . Moreover, there is a
Seifert fibration pri W

yYi!Bi which is induced from a Hopf fibration and is preserved
under fi .
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We shall analyze the multiplicities of the singular circles in Yi . To this end, let  be a
singular circle and f be a generator of its isotropy subgroup. Denote by Nf W Bi!Bi

the induced map. If Nf is orientation-reversing, then as we showed in the proof of
Lemma 6.4, the multiplicity of  is 2. If Nf is orientation-preserving and switches
the two singular points of Bi , then the multiplicity of  is also 2, as we argued in the
proof of Lemma 6.4. In the remaining cases where Nf is either trivial or fixes the two
singular points of Bi , or Bi has no singular points at all, the multiplicity of  may not
be bounded by a constant depending only on G , and we need to deal with it differently.

Note that in either of the remaining cases, Yi D S3=Gi for a finite subgroup Gi of
SO.4/, which is given by

� � .z1; z2/D .�
pi z1; �

qi z2/;

where �D exp.2� i=ni/ is a nth
i root of unity and gcd.ni ;pi ; qi/D 1. Set

ui D gcd.ni ;pi/ and vi D gcd.ni ; qi/:

Then Yi has at most two singular circles of multiplicities ui and vi , respectively.
Furthermore, if †j intersects the singular circle of multiplicity ui (resp. vi ), the index
of �1.Nj / in �1.Xi/ is ni=ui (resp. ni=vi ). Consequently, if both singular circles
of Yi are intersected by †j for some j , then ui � ni=vi and vi � ni=ui are both
bounded by a constant depending only on G ; see Proposition 3.5. Clearly, we are done
for (iii) in the proof of Theorem 6.3 if there exists a Yi for which such a situation
occurs.

We are left to examine the case where, for each i , there is exactly one singular circle
of Yi which is intersected by †j for some j . In this case, we shall apply Lemma 6.1
and change the Seifert-type S1–fibrations �i W Xi! Yi in the fiber-sum decomposition
of X to � 0i W Xi ! Y 0i . Note that with the new fibrations � 0i , each Nj is fibered over
an ordinary 2–sphere. Consequently, up to suitable modifications of the Seifert-type
S1–fibrations, the number of objects in (iii) in the proof of Theorem 6.3 is bounded by
a constant depending only on G , from which Theorem 1.2 follows.
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Exactly fourteen intrinsically knotted graphs have 21 edges

MINJUNG LEE

HYOUNGJUN KIM

HWA JEONG LEE

SEUNGSANG OH

Johnson, Kidwell, and Michael showed that intrinsically knotted graphs have at least
21 edges. Also it is known that K7 and the thirteen graphs obtained from K7 by
rY moves are intrinsically knotted graphs with 21 edges. We prove that these 14
graphs are the only intrinsically knotted graphs with 21 edges.

57M25, 57M27

1 Introduction

Throughout the article we will take an embedded graph to mean a graph embedded in
R3 . We call a graph G intrinsically knotted if every embedding of the graph contains
a knotted cycle. Conway and Gordon [2] showed that K7 , the complete graph with
seven vertices, is an intrinsically knotted graph. A graph H is minor of another graph
G if it can be obtained from G by contracting or deleting some edges. An intrinsically
knotted graph is minor minimal intrinsically knotted provided no proper minor is
intrinsically knotted. Robertson and Seymour [9] proved that there are only finite minor
minimal intrinsically knotted graphs, but finding the complete set of them is still an
open problem. However, it is well known that K7 and the thirteen graphs obtained
from this graph by rY moves are minor minimal intrinsically knotted; see Conway
and Gordon [2], and Kohara and Suzuki [6].

A rY move is an exchanging operation that removes all edges of a triangle abc and
inserts a new vertex v and three edges va; vb and vc as in Figure 1. Its reverse
operation is called a Yr move. Since rY moves preserve intrinsic knottedness (see
Motwani, Raghunathan, and Saran [7]), we will only consider triangle-free graphs in
the article.

From the work of Johnson, Kidwell, and Michael [5], it follows that any intrinsically
knotted graph consists at least 21 edges. Here is the main theorem.
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a b

c

a b

c

v

Figure 1: rY and Yr moves

Theorem 1 The only triangle-free intrinsically knotted graphs with exactly 21 edges
are H12 and C14 . . H12 and C14 were described by Kohara and Suzuki in [6]./

Kohara and Suzuki [6] found fourteen intrinsically knotted graphs. Goldberg, Mattman,
and Naimi [3] constructed twenty graphs derived from H12 and C14 by Yr moves
as in Figure 2, and they showed that these six graphs, N9 , N10 , N11 , N 0

10
, N 0

11
, and

N 0
12

, are not intrinsically knotted. This fact was proved by Hanaki, Nikkuni, Taniyama,
and Yamazaki [4] independently. Theorem 1 guarantees that all intrinsically knotted
graphs with 21 edges can be obtained from H12 and C14 by Yr moves. Thus, we
have the following theorem.

Theorem 2 The only intrinsically knotted graphs with exactly 21 edges are K7 and
the thirteen graphs obtained from K7 by rY moves.

This theorem gives us the complete set of fourteen minor minimal intrinsically knotted
graphs with 21 edges.
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2 Terminology

From now on let G D .V; E/ denote a triangle-free graph with 21 edges. Here V and
E denote the sets of all vertices and edges of G , respectively. For any two distinct
vertices a and b , let yGa;bD . yVa;b ; yEa;b/ denote the graph obtained from G by deleting
two vertices a and b , and then contracting an edge incident to a vertex of degree 1 or
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K7

H8

H9

H10

H11

H12

F9

F10
E10

E11 C11

C12

C13

C14

N9

N10

N11

N 0
10

N 0
11

N 0
12

Figure 2: The graph K7 and 19 more related graphs, where each arrow
represents a rY move
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2 repeatedly until no vertices of degree 1 or 2 exist. Removing vertices means deleting
interiors of all edges incident to these vertices as well as the resulting isolated vertices.

In a graph, the distance between two vertices a and b is the number of edges in the
shortest path connecting them and is denoted by dist.a; b/. The degree of a vertex
a is denoted by deg.a/. To count the number of edges of yGa;b , we introduce some
notation.

� E.a/ is the set of edges which are incident to a.
� V .a/D fc 2 V j dist.a; c/D 1g.
� Vn.a/D fc 2 V j dist.a; c/D 1; deg.c/D ng.
� Vn.a; b/D Vn.a/\Vn.b/.
� VY .a; b/D fc 2 V j 9 d 2 V3.a; b/ such that c 2 V3.d/ n fa; bgg.

First consider the graph Gnfa; bg for some distinct vertices a and b . In this graph each
vertex of V3.a; b/ has degree 1, and each vertex of V3.a/; V3.b/ (not in V3.a; b/),
and V4.a; b/ has degree 2. To derive yGa;b , we first delete all edges incident to a and b

from G , and then we also delete the remaining edges incident to V3.a; b/, and finally
we contract one edge of the remaining pair of edges incident to each vertex of V3.a/,
V3.b/ (not in V3.a; b/), V4.a; b/, and VY .a; b/ as dotted lines in Figure 3(a). Thus,
we have the following equation counting the number of edges of yGa;b which is called
a count equation:

j yEa;bjD21�jE.a/[E.b/j�.jV3.a/jCjV3.b/j�jV3.a; b/jCjV4.a; b/jCjVY .a; b/j/:

For short, NE.a; b/D jE.a/[E.b/j and NV3.a; b/D jV3.a/jC jV3.b/j� jV3.a; b/j.
If a and b are adjacent vertices (ie dist.a; b/D 1), then all of V3.a; b/; V4.a; b/, and
VY .a; b/ are empty because G is triangle-free. Note that this manner of deriving yGa;b

must be handled in a slightly different way when there is a vertex c in V such that more
than one vertex of V .c/ are contained in V3.a; b/ as in Figure 3(b). In this case, we
usually delete or contract more edges incident to c , even though c is not in VY .a; b/.

A graph is n–apex if one can remove n vertices from the graph to obtain a planar graph.
The following lemma gives an important condition for a graph to be not intrinsically
knotted.

Lemma 3 [1; 8] If G is 2�apex, then G is not intrinsically knotted.

The following two lemmas play an important role for G to be 2–apex.

Lemma 4 If j yEa;bj � 8, then yGa;b is a planar graph. Thus, G is not intrinsically
knotted.

Algebraic & Geometric Topology, Volume 15 (2015)
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a b a bc

VY .a; b/

V3.a/
V3.a; b/

V3.b/

V4.a; b/

(a) (b)

Figure 3: Deriving yGa;b

Lemma 5 If j yEa;bj D 9, then yGa;b is either a planar graph or homeomorphic to
K.3; 3/. Furthermore, if yGa;b is not homeomorphic to K.3; 3/, then G is not intrinsi-
cally knotted.

The graph K.3; 3/ is a bipartite graph where each part has three vertices and each
vertex is adjacent to every vertex in the opposite part, and so it is a triangle-free graph
and every vertex has degree 3.

To prove Theorem 1, we will show that any triangle-free graph with 21 edges is
eventually either a 2–apex or homeomorphic to one of H12 or C14 . Since intrinsically
knotted graphs have at least 21 edges [5], it is sufficient to consider simple and
connected graphs having no vertex of degree 1 or 2. Our process is constructing all
possible such triangle-free graph G with 21 edges, deleting two suitable vertices a

and b of G , and then counting the number of edges of yGa;b . If yGa;b has 9 edges or
less, we can use Lemma 4 or Lemma 5 in order to show that G is not intrinsically
knotted. In the event that yGa;b is not planar, we will show that G is homeomorphic to
H12 or C14 .

Before describing the proof of Theorem 1, we introduce more notation. Since G is
triangle-free, for any vertex a of G , no two vertices in V .a/ are adjacent. This means
that E.b/ and E.c/ do not contain an edge in common for any two distinct vertices b

and c in V .a/. We set:

� E2.a/D
[

b2V .a/

E.b/.

� E nE2.a/D fe1.a/; : : : ; e21�n.a/g if jE2.a/j D n < 21.

ei.a/ is called an extra edge, and the two endpoints of the edge are denoted as xi.a/

and yi.a/, where deg.xi.a//� deg.yi.a//.

Algebraic & Geometric Topology, Volume 15 (2015)
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In order to visualize G , we perform the following steps. First choose a vertex a

with the maximal degree among all vertices and draw E2.a/. If jE2.a/j< 21, draw
E nE2.a/ apart from E2.a/ as in Figure 4(a). Then all vertices of degree 1 of E2.a/

and E nE2.a/ are merged into some vertices of degree at least 3 without adding new
edges as in Figure 4(b). Let V .a/ denote the set of all such vertices, and let ŒV .a/�

denote a sequence of the degrees of vertices in V .a/ as follows:
� V .a/DV n.V .a/[fag/Dfv1.a/; : : : ; vm.a/g with deg.vi.a//�deg.viC1.a//.
� ŒV .a/�D Œdeg.v1.a//; : : : ; deg.vm.a//�.
� jŒV .a/�j D deg.v1.a//C � � �C deg.vm.a//.

The graph in Figure 4(b) is an example satisfying deg.a/D 5; jV3.a/j D 1; jE2.a/j D

19, and ŒV .a/�D Œ4; 4; 4; 3; 3�.

a e1.a/ e2.a/
a

e1.a/

e2.a/

xv1.a/

xv2.a/

xv3.a/

xv4.a/

xv5.a/

(a) (b)
Figure 4: Visualization of G

The remaining three sections of the article are devoted to the proof of Theorem 1. From
now on, a denotes one of vertices with maximal degree in G . The proof is divided into
three parts according to the degree of a. In Section 3 we show that any graph G with
deg.a/� 5 cannot be intrinsically knotted. In Section 4 we show that an intrinsically
knotted graph with deg.a/D 4 is exactly H12 . Finally, in Section 5 we show that any
intrinsically knotted graph, all of whose vertices have degree 3, is always C14 .

3 deg.a/� 5

In this section we will show that for some a0; b0 2V either j yEa0;b0 j � 8 or j yEa0;b0 j D 9,
but that yGa0;b0 is not homeomorphic to K.3; 3/ by showing that it contains a vertex of
degree more than 3 or a triangle (or sometimes a bigon). Then, as a conclusion, G is
not intrinsically knotted by Lemmas 4 and 5. Recall that G has 21 edges, every vertex
has degree at least 3, and a has the maximal degree among them.

Algebraic & Geometric Topology, Volume 15 (2015)
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3.1 Case deg.a/� 6 or deg.a/D 5 with jV3.a/j � 4

If deg.a/ � 6, then jV3.a/j � 3. Let c be any vertex in V3.a/. Choose a vertex
b which has the maximal degree among V .c/ n fag. Then jE.b/j C jVY .a; b/j � 4,
since jVY .a; b/j � 1 when deg.b/D 3. Note that jV3.b/j � jV3.a; b/j. By the count
equation, j yEa;bj � 8 in yGa;b .

Suppose that deg.a/D5 and jV3.a/j�4. The proof is similar to the previous paragraph.

3.2 Case deg.a/D 5 and jV3.a/j D 3

Let b and c be two vertices of V .a/ nV3.a/. First, suppose that both of them have
degree 5. Then NE.a; b/D 9 and jV3.a/j D 3, so j yEa;bj � 9. Furthermore, the vertex
c has degree 4 in yGa;b , so it follows that yGa;b is not homeomorphic to K.3; 3/. Thus,
G is not intrinsically knotted by Lemma 5.

Now assume that one of them, say b , has degree 4. If V .b/ n fag consists of three
vertices, all of which are of degree 3, then NE.a; b/ D 8 and NV3.a; b/ D 6, so
j yEa;bj � 7. If not, let d be a vertex of V .b/ which has degree at least 4. Then
NE.a; d/ � 9, jV3.a/j D 3, and jV4.a; d/j � 1, because V4.a; d/ 3 b . This implies
that j yEa;d j � 8.

3.3 Case deg.a/D 5 and jV3.a/j D 0

First, suppose that V .a/ contains a vertex of degree 5, say c . Since G has 21 edges,
the other four vertices of V .a/ have degree 4. By the previous cases, it is sufficient to
suppose that jV3.c/j�2. So V .c/nfag has at least two vertices, say b and d , of degree
4 or 5. Since jE2.a/j D 21 and G is triangle-free, all edges of E.b/ must be incident
to different vertices of V .a/, so jV4.a; b/j � 3. This implies that j yEa;bj � 9. Since
yGa;b has the vertex d of degree at least 4, it follows that yGa;b is not homeomorphic
to K.3; 3/.

Now, assume that all vertices of V .a/ have degree 4, giving jE2.a/j D 20. Let e1.a/

be the extra edge and recall that two endpoints of e1.a/ are x1.a/ and y1.a/ with
deg.x1.a//� deg.y1.a//. Since G is triangle-free, all edges of E.x1.a//[E.y1.a//

except e1.a/ must be incident to different vertices of V .a/. Thus the degrees of x1.a/

and y1.a/ must be either 4 and 3, or 3 and 3, respectively. If deg.x1.a//D 4, then
jV4.a; x1.a//j D 3 and jV3.x1.a//j D 1, so j yEa;x1.a/j D 8. If not, ŒV .a/� is either
Œ5; 3; 3; 3; 3� or Œ4; 4; 3; 3; 3�, because jŒV .a/�j D 17. Thus v1.a/ has degree 5 or 4

and differs from x1.a/ and y1.a/, so jV4.a; v1.a//j � 4. Therefore, j yEa;v1.a/j � 8.

Algebraic & Geometric Topology, Volume 15 (2015)
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3.4 Case deg.a/D 5 and jV3.a/j D 1

In this case, V .a/ contains four vertices of degree 4 or 5. Let n be the number of such
vertices of degree 4, and so we have 4� n vertices of degree 5, where n D 2; 3; 4.
This implies that jE2.a/j D 21C.2�n/, and n�2 extra edges exist. If V .a/ contains
a vertex v1.a/ of degree 5, then five edges of E.v1.a// are extra edges or incident to
different vertices in V .a/. For any of the above n, at least two among these edges are
incident to vertices of degree 4 in V .a/. Then NE.a; v1.a//D 10, jV3.a/j D 1, and
jV4.a; v1.a//j � 2, implying j yEa;v1.a/j � 8.

Now, suppose that V .a/ contains vertices of degree 3 or 4 only. If nD2, jŒV .a/�jD16,
and so ŒV .a/� is either Œ4; 4; 4; 4� or Œ4; 3; 3; 3; 3�. For any vertex b in V5.a/, four
edges of E.b/ must be incident to different vertices of V .a/. Indeed, these four edges
are incident to four vertices of degree 4, or at least three edges among them are incident
to vertices of degree 3 in V .a/. This means that the vertex b has degree 5 with either
V3.b/D 0 or V3.b/� 3. Both cases are dealt with in previous cases 3.3, 3.1, and 3.2.

If nD 3, jŒV .a/�j D 17, and so ŒV .a/�D Œ4; 4; 3; 3; 3�. Let V5.a/D fbg. To avoid the
case 3.2, four edges of E.b/ must be incident to two vertices of degree 4 and two
vertices of degree 3 in V .a/, which are v1.a/, v2.a/, v3.a/, and v4.a/. Then there
is a vertex c of V4.a/ such that at most one edge of E.c/ is incident to v3.a/ and
v4.a/, ie two edges of E.c/ are incident to v1.a/, v2.a/, or v5.a/. This implies that
NE.b; c/D 9 and NV3.b; c/CjV4.b; c/j � 4, implying j yEb;cj � 8.

Finally, if nD 4, jŒV .a/�j D 18, and so ŒV .a/� is either Œ4; 4; 4; 3; 3� or Œ3; 3; 3; 3; 3; 3�.
Recall that two extra edges exist. In the former case let fv1.a/; v2.a/; v3.a/g be
the three vertices of degree 4 in V .a/. For each i D 1; 2; 3, if more than two
edges of E.vi.a// are incident to V4.a/, then NE.a; vi.a// D 9, jV3.a/j D 1, and
jV4.a; vi.a//j � 3, implying j yEa;vi .a/j � 8. So, each of at least two edges of E.vi.a//

must be either incident to the unique vertex of V3.a/ or an extra edge. Since G is
triangle-free, one of three vertices, say v1.a/, has the property that E.v1.a// contains
both extra edges, and V .v1.a// and V .vi.a// for each i D 2; 3 cannot share a vertex
in V .a/. This implies that V .v2.a// and V .v3.a// coincide as in Figure 5(a). Then
NE.v2.a/; v3.a// D 8, and either jV4.v2.a/; v3.a//j D 4 or jV4.v2.a/; v3.a//j D 3

and jV3.v2.a//j D 1. Thus, j yEv2.a/;v3.a/j � 9. In yGv2.a/;v3.a/ the vertex a still has
degree 4 or 5 so that yGv2.a/;v3.a/ is not homeomorphic to K.3; 3/.

In the latter case, let V4.a/D fb1; b2; b3; b4g. We claim that for some i; j D 1; 2; 3; 4,
jV3.bi ; bj /j � 1. Suppose not; that is, jV3.bi ; bj /j � 2 for all combinations of i

and j . By some combinatorics we can derive that all 12 edges of E.b1/[E.b2/[

E.b3/[E.b4/ nE.a/ are incident to only four vertices of V .a/ as in Figure 5(b).

Algebraic & Geometric Topology, Volume 15 (2015)



Exactly fourteen intrinsically knotted graphs have 21 edges 3313

This means that two extra edges must be incident to the remaining two vertices of V .a/

at both endpoints. But a bigon is not allowed. Therefore, without loss of generality,
jV3.b1; b2/j � 1. Then NE.b1; b2/D 8 and NV3.b1; b2/� 5, implying j yEb1;b2

j � 8.

a
xv1.a/

xv2.a/

xv3.a/

a

b1

b2

b3

b4

xv1.a/

xv2.a/

xv3.a/

xv4.a/

(a) (b)

Figure 5: Œ4; 4; 4; 3; 3� and Œ3; 3; 3; 3; 3; 3� cases

3.5 Case deg.a/D 5 and jV3.a/j D 2

If V .a/ contains a vertex of degree 5, say b , then the previous four cases guarantee
that we only consider that jV3.b/j D 2, so NV3.a; b/D 4, which implies j yEa;bj D 8.
Therefore we assume that V .a/ contains three vertices of degree 4. In this case
three extra edges exist. Since jŒV .a/�j D 19, ŒV .a/� is one of Œ5; 5; 5; 4�, Œ5; 5; 3; 3; 3�,
Œ5; 4; 4; 3; 3�, Œ4; 4; 4; 4; 3�, or Œ4; 3; 3; 3; 3; 3�.

If, for some vertex vi.a/ with degree 5, one edge of E.vi.a// is incident to V4.a/,
then NE.a; vi.a//D 10, jV3.a/j D 2, and jV4.a; vi.a//j � 1, implying j yEa;vi .a/j � 8.
Thus, three edges of E.vi.a// are extra edges and the remaining two edges are incident
to V3.a/. In the first two cases, Œ5; 5; 5; 4� and Œ5; 5; 3; 3; 3�, both E.v1.a// and
E.v2.a// share three extra edges, but G does not have a bigon. In the third case,
Œ5; 4; 4; 3; 3�, E.v1.a// contains three extra edges and one of these extra edges must
be incident to v4.a/ or v5.a/, both of which have degree 3. Then NE.a; v1.a//D 10

and NV3.a; v1.a//� 3, implying j yEa;v1.a/j � 8.

If, for some vertex vi.a/ with degree 4, two edges of E.vi.a// are incident to V4.a/,
then NE.a; vi.a// D 9, jV3.a/j D 2, and jV4.a; vi.a//j � 2, implying j yEa;vi .a/j �

8. Thus, at most one edge of E.vi.a// is incident to V4.a/. In the fourth case,
Œ4; 4; 4; 4; 3�, at least twelve among sixteen edges incident to four vertices of degree
4 in V .a/ are not incident to V4.a/. This is impossible because there are only two
vertices in V3.a/ and three extra edges. In the last case, Œ4; 3; 3; 3; 3; 3�, since only one
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edge of E.v1.a// is possibly incident to V4.a/, there is a vertex b in V4.a/ such that
three edges of E.b/ are incident to vertices of degree 3 in V .a/. Then NE.a; b/D 8

and NV3.a; b/� 5, implying j yEa;bj � 8.

4 deg.a/D 4

Since jV j D jV4j C jV3j and 4jV4j C 3jV3j D 2jEj, the pair .jV4j; jV3j/ has three
choices: .3; 10/, .6; 6/, and .9; 2/. Here, Vn denotes the set of vertices of degree n.
As in the preceding section, we will show that for some a0; b0 2 V either j yEa0;b0 j � 8

or j yEa0;b0 j D 9, but yGa0;b0 is not homeomorphic to K.3; 3/, implying that G is not
intrinsically knotted. But one exception occurs so that G can possibly be H12 when
.jV4j; jV3j/D .6; 6/.

4.1 Case .jV4j; jV3j/D .3; 10/

First suppose that V4 has a vertex a such that all four vertices of V .a/ have degree 3.
Let b1 and b2 be the other vertices of V4 . For each i D 1; 2, NE.a; bi/D 8. If there
is a vertex of V3.bi/ which is not contained in V .a/, then NV3.a; bi/� 5, implying
j yEa;bi

j � 8. Thus each vertex of V .b1/ is the vertex b2 or contained in V .a/, and
similarly for b2 . This implies that the number of vertices of V3 which have distance 1

or 2 from the vertex a is at most 6. Take a vertex c of V3 with distance at least 3 from
a. Since each vertex of V .c/ is neither b1 nor b2 , it has degree 3. Thus NE.a; c/D 7

and NV3.a; c/� 7, implying j yEa;cj � 7.

Now, we only need to consider the case that each vertex of V4 is adjacent to at least
one vertex of degree 4. Then, without loss of generality, we have vertices a, b and
c of V4 such that V .b/ contains a and c . If V3.a/ and V3.c/ do not coincide, then
jV4.a; c/j D 1 and NV3.a; c/� 4, implying j yEa;cj � 8. If V3.a/ and V3.c/ coincide
and jVY .a; c/j � 2, then jV4.a; c/j D 1 and NV3.a; c/D 3, implying j yEa;cj � 7. If
not, for the unique vertex d of VY .a; c/, V3.a/D V3.c/D V .d/. Then, for a vertex
b0 of V3.b/, V3.b0/ is disjoint from V3.a/. Thus NE.a; b0/D 7, NV3.a; b0/D 5, and
jV4.a; b0/j D 1, implying j yEa;b0 j � 8.

4.2 Case .jV4j; jV3j/D .6; 6/

Consider the subgraph H of G consisting of all edges whose both end vertices have
degree 4. Since G has six vertices of degree 3 and the same number of vertices of
degree 4, H is not empty set.

Claim 1 If H has a vertex of degree 1, then G is not intrinsically knotted.
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Proof Suppose that H has a vertex a of degree 1. Let b be the unique vertex of degree
4 in V .a/. If jV3.b/jD 3, then NE.a; b/D 7 and NV3.a; b/D 6, implying j yEa;bj � 8.
Thus, there is another vertex c of V4.b/, and so we let V .c/D fb; d1; d2; d3g.

First, assume that jV3.c/j D 0. So the two vertices of V .b/nfa; cg must have degree 3,
because the six vertices a; b; c; d1; d2 , and d3 in V4 are all different. Thus NE.a; b/D7

and NV3.a; b/D 5, so j yEa;bj � 9. Since yGa;b has another vertex d1 of degree 4, it
follows that yGa;b is not homeomorphic to K.3; 3/.

Second, assume that jV3.c/j D 1, say d1 2 V3.c/. If d1 is not one of the vertices in
V .a/, then NE.a; c/D 8 and NV3.a; c/CjV4.a; c/j D 5, implying j yEa;cj � 8. So we
may assume that d1 is in V .a/ and let V .d1/D fa; c; v1g. If v1 has degree 3, then
NV3.a; c/CjV4.a; c/jD4 and VY .a; c/Dfv1g, implying j yEa;cj�8. Otherwise v1 has
degree 4 and it is different from d2 and d3 . For any i D 2; 3, each vertex of V .di/nfcg

either has degree 3 or is v1 . Thus NE.d2; d3/D 8 and NV3.d2; d3/CjV4.d2; d3/j� 4,
implying j yEd2;d3

j � 9. But yGd2;d3
has a triangle containing vertices a, b and d1 . See

Figure 6(a).

a b c

d1

d2

d3

v1

a b c

d1

d2

d3

v1

v2

(a) (b)

Figure 6: Some nonintrinsically knotted cases

Last, assume that jV3.c/j�2 and let d1 and d2 be two such vertices. As in the previous
case, we may say that d1 and d2 are in V .a/, and V .di/ D fa; c; vig for i D 1; 2

where vi has degree 4. When v1D v2 , jV3.a/j D 3, jV4.a; c/j D 1, and v1 has degree
2 when we construct yGa;c , implying j yEa;cj � 8. When dist.v1; v2/� 2, three cases
occur as follows: jV3.v1/j � 3, jV3.v2/j � 3, or for both i D 1; 2 jV3.vi/j D 2 and
V4.vi/DV4nfa; c; v1; v2g. All three cases satisfy that NV3.v1; v2/CjV4.v1; v2/j � 4,
implying j yEv1;v2

j � 9. But yGv1;v2
has a bigon containing vertices a and c . Finally,

when dist.v1; v2/D 1, two cases occur as follows. If d3 has degree 3, then by the same
reason as before we may say that d3 is also in V .a/, and V .d3/D fa; c; v3g where v3

has degree 4. By the previous argument any pair of v1 , v2 and v3 has distance 1. This
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implies that G contains a triangle. If d3 has degree 4, then jV3.d3/j � 2, because at
most one vertex of V .d3/ can be v1 or v2 . Thus, NV3.a; d3/�4, implying j yEa;d3

j�9.
But yGa;d3

has a triangle containing vertices c , v1 and v2 . See Figure 6(b).

Claim 2 If H is not a cycle with 6 edges, then G is not intrinsically knotted.

Proof By Claim 1, if H is not a cycle with 6 edges, then H contains a cycle with
4 or 5 edges. First assume that H contains a cycle with 5 edges. Let fa1; : : : ; a5g

be the set of five vertices of the cycle appearing in clockwise order. If the remaining
vertex b of V4 is contained in some V .ai/, say i D 1, then b must have distance
1 from one of a3 and a4 , say a3 , by Claim 1. See Figure 7. If V3.a2/ ¤ V3.b/,
NV3.a2; b/CjV4.a2; b/j � 5, implying j yEa2;bj � 8. Otherwise, V3.a2/D V3.b/. Let
c1 and c3 be the vertices of V3.a1/ and V3.a3/, respectively. If c1 D c3 , we still
have j yEa2;bj � 9 and yGa2;b has a triangle containing vertices a5 , a4 and c1 D c3 . If
c1 ¤ c3 , then j yEa1;a3

j � 9 and yGa1;a3
has a bigon as in the figure.

If b is not contained in V .ai/ for any i D 1; : : : ; 5, then jV3.ai/j D 2. If there is a
pair of vertices ai and aiC2 (or ai�3 if i D 4; 5) such that V3.ai/ and V3.aiC2/ are
disjoint, then NV3.ai ; aiC2/CjV4.ai ; aiC2/jD5, implying j yEai ;aiC2

j�8. Otherwise,
for any pair of vertices ai and aiC2 (or ai�3 if i D 4; 5), V3.ai/ and V3.aiC2/ share
vertices. Then they must share only one vertex as in Figure 7(b). Since there is only one
extra vertex b of degree 4, for some pair of vertices ai and aiC2 , NV3.ai ; aiC2/C

jV4.ai ; aiC2/j D 4 and VY .ai ; aiC2/� 1, implying j yEai ;aiC2
j � 8.

a1

a2

a3a4

a5

b

c1

c3

ai

aiC2

(a) (b)

Figure 7: Cycle with 5 edges

Now, assume that H contains a cycle with 4 edges. Let fa1; : : : ; a4g be the set of four
vertices of the cycle appearing in clockwise order. If V .a1/ and V .a3/ (or similarly
for V .a2/ and V .a4/) share only two vertices, a2 and a4 , then the remaining two
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vertices of V4 must be contained in V .a1/[V .a3/. Otherwise, since V .a1/[V .a3/

has four more vertices other than a2 and a4 , NV3.a1; a3/� 3 and jV4.a1; a3/j D 2,
implying j yEa1;a3

j � 8. By Claim 1, the two vertices have distance 1, so H contains
a cycle with 5 edges which was dealt in the previous case. If V .a1/ and V .a3/ (or
similarly for V .a2/ and V .a4/) share exactly three vertices, a2 , a4 and b , then let
c1 and c3 be the remaining vertices of V .a1/ and V .a3/, respectively. If both c1

and c3 have degree 3, then NV3.a1; a3/C jV4.a1; a3/j � 5. If both have degree 4,
then H contains a cycle with 5 edges as in the previous case. Finally, if only c1 (or
similarly c3 ) has degree 4, then, by Claim 1, V .c1/ contains another vertex, say d , of
V4 , and also d must have distance 1 from one of a2 and a4 , say a4 , as in Figure 8(a).
So NV3.a4; c1/CjV4.a4; c1/j � 4, implying j yEa4;c1

j � 9, and yGa4;c1
has a triangle

containing vertices a2 , a3 , and b . Now we may assume that V .a1/ D V .a3/ and
V .a2/ D V .a4/. Then NV3.a1; a3/C jV4.a1; a3/j D 4, implying j yEa1;a3

j � 9, and
so yGa1;a3

has a bigon as in Figure 8(b).

a1 a2

a3a4

b

c1

c3

d

a1 a2

a3a4

(a) (b)

Figure 8: Cycle with 4 edges

By Claim 2, H is exactly a cycle with 6 edges. Let fa1; : : : ; a6g be the set of six
vertices of the cycle with ai adjacent to aiC1 for i D 1; : : : ; 5, and a6 adjacent to a1 .
First, suppose that there is not a vertex b in V3 such that V .b/Dfa1; a3; a5g. If V3.a1/

and V3.a3/ are disjoint, then NV3.a1; a3/CjV4.a1; a3/j D 5. If V3.a1/ and V3.a3/

share exactly one vertex c , then the vertex of V .c/n fa1; a3g is not a5 , so it should be
one of VY .a1; a3/. Thus NV3.a1; a3/CjV4.a1; a3/jCjVY .a1; a3/jD5. If V3.a1/ and
V3.a3/ are same, then NV3.a1; a5/C jV4.a1; a5/j D 5, because V3.a1/ and V3.a5/

are disjoint. All three cases guarantee that G is not intrinsically knotted. Therefore we
may assume that there are two vertices b1 and b2 so that V .b1/D fa1; a3; a5g and
V .b2/D fa2; a4; a6g. See Figure 9(a).
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Suppose that there is a vertex c , with c¤ b1 , so that V .c/ contains a1 and a3 . Let d2

and d5 be the vertices of V3.a2/ and V3.a5/, other than b1 and b2 , respectively. If
d2 ¤ d5 , then NV3.a2; a5/D 4. If d2 D d5 , then NV3.a2; a5/D 3 and VY .a2; a5/

is not empty. Both cases provide j yEa2;a5
j � 9, and yGa2;a5

has a triangle containing
vertices a1 , a3 , and c . Therefore we may assume in general that for any vertex c ,
except b1 and b2 , V .c/ does not contain both ai and aiC2 for any i D 1; 2; 3; 4, and
both ai and ai�4 for any i D 5; 6.

Now we conclude E n fE2.b1/[E2.b2/g consists of three extra edges. Note that
each vertex of these edges has degree 3, and there are four more vertices of degree 3

besides b1 and b2 . These two facts guarantee that these extra edges must be connected
as a tree. This tree can be of two types; either all three edges are incident to one vertex
d , or two edges are incident to different endpoints of the other edge e , respectively. In
both cases, any two edges adjoined to the tree at the same vertex at the end must be
also incident to ai and aiC3 , respectively, for some i D 1; 2; 3. Therefore, G is one
of three graphs as in Figure 9(b)–(c), depending on the type of the tree. The graph G

in Figure 9(b) is H12 , which is intrinsically knotted. But the two graphs in Figure 9(c)
are not intrinsically knotted because, for some i , j yEai ;aiC2

j � 9, and yGai ;aiC2
has a

triangle.

4.3 Case .jV4j; jV3j/D .9; 2/

Let b1 and b2 be the vertices of V3 . Since jV3jD 2, there are at least three vertices, a1 ,
a2 , and a3 , in V4 such that all vertices of each V .ai/ have degree 4. If dist.a1; a2/D1,
then V .a1/ [ V .a2/ consists of 8 vertices of V4 , and so let c be the ninth vertex.
Let d be any vertex among V .a1/[V .a2/ n fa1; a2g which is not contained in V .c/.
We assume that d is in V .a1/. Then V .d/ should be contained in V .a2/[fb1; b2g.
This implies that NE.a2; d/D 8 and jV3.d/jCjV4.a2; d/j � 4, implying j yEa2;d j � 9.
Since c has degree 4 in yGa2;d , it follows that yGa2;d is not homeomorphic to K.3; 3/.
We have the same result for any choices of pairs among a1 , a2 , and a3 .

Now assume that the distance between any pair among a1 , a2 , and a3 is at least 2. We
separate into several cases according to the number jV4.a1; a2/j. If V4.a1; a2/ D

∅ (ie dist.a1; a2/ > 2), then jV4j � 10, a contradiction. If V4.a1; a2/ D fdg,
then V4 D V .a1/ [ V .a2/ [ fa1; a2g. This implies that a3 2 V .a1/ [ V .a2/, so
dist.a1; a3/D 1 or dist.a2; a3/D 1, both of which were dealt with in the previous case.
If V4.a1; a2/D fd1; d2g, then V .d1/[V .d2/ n fa1; a2g is contained in fa3; b1; b2g.
This implies that each V .di/ n fa1; a2g is a set of two vertices among fa3; b1; b2g,
so that jV3.d1; d2/j C jV4.d1; d2/j � 4, implying j yEd1;d2

j � 9. Since at least two
of four vertices in V .a1/[V .a2/ n fd1; d2g still have degree 4 in yGd1;d2

, it follows

Algebraic & Geometric Topology, Volume 15 (2015)



Exactly fourteen intrinsically knotted graphs have 21 edges 3319

a1

a2

a3
a4

a5

a6

b1 b2

c
d

H12

(a) (b)

ai

aiC2

e

ai

aiC2

e

(c)

Figure 9: Constructing H12

that yGd1;d2
is not homeomorphic to K.3; 3/. If V4.a1; a2/ D fd1; d2; d3g, then

V .d1/[V .d2/[V .d3/ n fa1; a2g is contained in fa3; a4; b1; b2g, where a3 and a4

are the remaining two vertices of degree 4 other than V .a1/[V .a2/[fa1; a2g. Thus
each V .di/ n fa1; a2g is the set of two vertices among fa3; a4; b1; b2g. This implies
that jV3.di ; dj /j C jV4.di ; dj /j � 4 for some i; j D 1; 2; 3, implying j yEdi ;dj

j � 9.
Since at least one of three vertices V .a1/[V .a2/nfdi ; dj g still has degree 4 in yGdi ;dj

,
it follows that yGdi ;dj

is not homeomorphic to K.3; 3/. Finally, if jV4.a1; a2/j D 4,
then j yEa1;a2

j � 9. Since yGa1;a2
still has the remaining three vertices of degree 4, it

follows that yGa1;a2
is not homeomorphic to K.3; 3/.

5 deg.a/D 3

Since we are working on the graph with 21 edges and every vertex has degree 3, there
are exactly 14 vertices. First, suppose that there exists a pair of vertices a and b with
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dist.a; b/� 4. Then E2.a/ and E2.b/ can share vertices, but they do not share edges
in common. Since jE2.a/[E2.b/j D 18 and jV .a/[ V .b/[ fa; bgj D 8, the 18

endpoints of E2.a/, E2.b/, and three extra edges which are E n fE2.a/[E2.b/g,
meet at six vertices. If any two edges of E2.a/nE.a/ (and similarly for b ) are incident
to one vertex c of these six vertices, take the unique vertex d of V .a/ which is not
an endpoint of these two edges. Then NE.b; d/ D 6 and NV3.b; d/ D 6, implying
j yEb;d j D 9. But yGb;d has a triangle containing c and the two vertices of V .a/nfdg, so
it follows that yGb;d is not homeomorphic to K.3; 3/. If not, each of these six vertices
is a common endpoint of one edge of E2.a/, one edge of E2.b/, and one extra edge.
Now, take an extra edge e and let b1 and b2 be the two vertices of V .b/ which have
distance 1 from the endpoints of e . Let b3 be the remaining vertex of V .b/. Then
NE.b1; b2/ D 6, NV3.b1; b2/ D 5, and VY .b1; b2/ D fb3g, implying j yEb1;b2

j D 9.
But yGb1;b2

has a triangle containing a and two vertices of V .a/, so it follows that
yGb1;b2

is not homeomorphic to K.3; 3/. See Figure 10(a).

a

b1

b2

b3
b

e

a

b1

b2 b3

c1c2

c3

c4 c5

c6

d1

d2d3

d4

C14

(a) (b)

Figure 10: Constructing C14

Therefore, we assume that the distance between any pair of vertices cannot exceed 3.
Now we construct the intrinsically knotted graph G satisfying these conditions. Take a
vertex a and let V .a/D fb1; b2; b3g and V .bi/D fa; c2i�1; c2ig for i D 1; 2; 3. As
in Figure 10(b), the graph E.a/[E.c1/[ � � � [E.c6/ consists of 21 edges and 22

vertices. We show this is the only way to draw the graph with 21 edges such that all
vertices have distance at most 3 from a and 10 vertices a; b1; b2; b3; c1; : : : ; c5 , and
c6 have degree 3. Now we join 12 white dots in Figure 10(b) into 4 groups indicating
the remaining 4 vertices by d1 , d2 , d3 and d4 . Thus each V .dj /, j D 1; 2; 3; 4, has
three vertices among c1; : : : ; c6 . Since the distance between any ci and ci0 cannot
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exceed 3, the following two properties must be satisfied. The first property is that
V .dj / contains exactly one vertex from each group fc2i�1; c2ig for i D 1; 2; 3. For
example, if V .d1/ D fc1; c2; c3g (ie two vertices from the group fc1; c2g), then we
can connect c1 to at most two vertices among fc4; c5; c6g through some E.dj /. This
means that the distance between c1 and one among fc4; c5; c6g exceeds 3. The second
property is that different V .dj / and V .dj 0/ share at most one vertex. For example, if
they share two vertices c1 and c3 , then dist.c1; c4/D 4. From these two properties,
without loss of generality, we may say that

V .d1/D fc1; c3; c5g; V .d2/D fc1; c4; c6g;

V .d3/D fc2; c3; c6g; V .d4/D fc2; c4; c5g

as drawn in Figure 10(b). This graph is exactly C14 .
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Equivalence classes of augmentations and
Morse complex sequences of Legendrian knots

MICHAEL B HENRY

DAN RUTHERFORD

Let L be a Legendrian knot in R3 with the standard contact structure. In earlier
work of Henry, a map was constructed from equivalence classes of Morse complex
sequences for L , which are combinatorial objects motivated by generating families, to
homotopy classes of augmentations of the Legendrian contact homology algebra of L .
Moreover, this map was shown to be a surjection. We show that this correspondence
is, in fact, a bijection. As a corollary, homotopic augmentations determine the same
graded normal ruling of L and have isomorphic linearized contact homology groups.
A second corollary states that the count of equivalence classes of Morse complex
sequences of a Legendrian knot is a Legendrian isotopy invariant.

57R17; 57M25, 53D40

1 Introduction

The symplectic techniques of holomorphic curves and generating families provide
two effective classes of invariants of Legendrian knots in standard contact R3 . The
holomorphic curve approach, which in this low-dimensional setting takes on a combi-
natorial flavor, can be used to define a differential graded algebra (DGA). The DGA
is known alternatively as the Legendrian contact homology DGA or the Chekanov–
Eliashberg DGA and was originally defined by Chekanov [1] and Eliashberg, Givental
and Hofer [5]. Generating families of Legendrian submanifolds in 1–jet spaces, includ-
ing R3 , have also been used to produce homological Legendrian invariants; see, for
instance, Jordan and Traynor [13], Sabloff and Traynor [18] and Traynor [19; 20]. In
addition to distinguishing Legendrian isotopy classes of knots, both the holomorphic
and generating family invariants carry useful information about Lagrangian cobordisms,
see Ekholm, Honda and Kálmán [4] and Sabloff and Traynor [18].

For Legendrian knots in R3 , several close connections have been discovered between
holomorphic curve and generating family invariants, although many questions remain.
For example, the existence of a linear at infinity generating family for a Legendrian
knot is known to be equivalent to the existence of a certain DGA morphism, called an
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augmentation, from the Chekanov–Eliashberg DGA to its ground ring; see Pushkar’
and Chekanov [3], Fuchs [7], Fuchs and Ishkhanov [8], Fuchs and Rutherford [9]
and Sabloff [17]. However, it is unknown if this statement can be strengthened to
a bijective correspondence between appropriate equivalence classes of generating
families and augmentations. In this article, we approach this question using a discrete
analog of a generating family called a Morse complex sequence, abbreviated MCS.
MCSs have proven to be more tractable for explicit construction and computation; see,
for example, Henry [10] and Henry and Rutherford [11; 12]. Section 2.2 sketches
the connection between generating families and Morse complex sequences; a more
complete description can be found in [11].

The concept of a Morse complex sequence originally appeared in unpublished work of
Petya Pushkar, and first appears in print in the work of the first author [10] where MCSs
are studied in connection with augmentations. In [10], a surjective map is defined
from MCSs of L to augmentations of the Chekanov–Eliashberg DGA of L. Moreover,
equivalent MCSs are mapped to homotopic augmentations. In the present article, we
complement the results of [10] by showing in Lemma 3.1 that two MCSs mapped to
homotopic augmentations must, in fact, be equivalent as MCSs. Combined with [10]
this gives the following.

Theorem 1.1 For any Legendrian knot L � R3 with generic front diagram, there
is a bijection between equivalence classes of Morse complex sequences for L and
homotopy classes of augmentations of the Chekanov–Eliashberg DGA of L.

As a consequence, the number of MCS equivalence classes is a Legendrian isotopy
invariant; see Corollary 4.1. The less immediate Corollary 4.2 combines Theorem 1.1
with previous work of the authors from [11] to deduce that homotopic augmentations
must have isomorphic linearized homology groups. The set of linearized homology
groups is a Legendrian isotopy invariant. Corollary 4.2 allows for a refinement of this
invariant by considering multiplicities.

The remainder of the article is organized as follows. Section 2 recalls background
concerning augmentations and Morse complex sequences. Section 3 contains the proof
of Theorem 1.1 and Section 4 includes three corollaries.
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where conversations between the authors on this project began in August 2013 at
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2 Background

A Legendrian knot in the standard contact structure on R3 is a smooth knot LW S1!R3

satisfying L0.t/ 2 ker.dz�y dx/ for all t 2 S1. A smooth one-parameter family Lt ,
0 � t � 1, of Legendrian knots is a Legendrian isotopy between L0 and L1 . The
front diagram of L is the projection of L to the xz–plane. Every Legendrian knot
is Legendrian isotopic, by an arbitrarily small Legendrian isotopy, to a Legendrian
knot whose front diagram is embedded except at transverse self-intersections, called
crossings, and semi-cubical cusps such that, in addition, all of these exceptional points
have distinct x–coordinates. A Legendrian knot with such a front diagram is said
to have a � –generic front diagram; see, for example, the front diagram in Figure 1.
In a neighborhood of an x value that is not the x–coordinate of a crossing or cusp,
the front diagram looks like a collection of non-intersecting line segments commonly
called the strands of D at x . Orient L. The rotation number r.L/ is .d � u/=2,
where d (resp. u) is the number of cusps at which the orientation travels downward
(resp. upward) with respect to the z–axis.

Figure 1: A � –generic front diagram of a Legendrian knot with rotation
number 0

2.1 Chekanov–Eliashberg algebra

Fix a Legendrian knot L with � –generic front diagram D and rotation number 0. A
Maslov potential is a map �W L!Z that is constant except at cusp points of L where
the Maslov potential of the lower strand of the cusp is one less than the upper strand. Let
A.D/ be the Z=2Z vector space generated by the labels QDfq1; : : : ; qng assigned to
the crossings and right cusps of D . A generator q 2Q is assigned a grading jqj, also
called a degree, so that jqj is 1 if q is a right cusp and, otherwise, jqj is �.T /��.B/
where T and B are the strands of D crossing at q and T has smaller slope. The
graded algebra A.D/ is the unital tensor algebra TA.D/. The Chekanov–Eliashberg
algebra, written .A.D/; @/, is the algebra A.D/ along with a degree �1 differential
@W A.D/ ! A.D/ that, in the case of the front diagram description from [15], is
defined by counting certain admissible maps of the two-disk D2 into the xz–plane.
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3326 Michael B Henry and Dan Rutherford

Definition 2.1 below defines only those admissible maps needed in this article; we refer
the reader to [15] for a complete definition of @.

An augmentation is an algebra homomorphism �W A.D/!Z=2Z satisfying � ı@D 0,
�.1/D 1, and �.q/D 1 only if jqj D 0. The set Aug.D/ is the set of all augmentations
of .A.D/; @/. We say a crossing q is augmented by � if �.q/D 1. An augmentation
can be thought of as a morphism between the differential graded algebra .A.D/; @/ and
the differential graded algebra .Z=2Z; @0/ whose only non-zero element is in degree 0

and where @0 D 0. From this perspective, there is a natural algebraic equivalence
relation on Aug.D/. Given � and �0 in Aug.D/, a chain homotopy from � to �0 is a
degree 1 linear map H W .A.D/; @/! .Z=2Z; @0/ satisfying ���0D @0ıHCH ı@ and
H.ab/DH.a/�0.b/C .�1/jaj�.a/H.b/ for all a; b 2 A.D/. Since we are working
over Z=2Z and @0 D 0, these conditions simplify to

(1) �� �0 DH ı @ and H.ab/DH.a/�0.b/C �.a/H.b/:

By [14, Lemma 2.18], a chain homotopy H is determined by the values it takes on the
degree �1 crossings of D .

We say augmentations � and �0 are homotopic and write � ' �0 if there exists a
chain homotopy from � to �0 . As the notation implies and as is proven in [6], chain
homotopy provides an equivalence relation on the set Aug.D/. We let Augch.D/ be
Aug.D/='. By [10, Proposition 4.5], the count of homotopy classes of augmentations
is a Legendrian isotopy invariant.

Suppose � and �0 are augmentations in Aug.D/ and there exists a chain homotopy
H from � to �0 . Suppose q is a degree 0 crossing and h@q;

Qm
iD1 qki

i is 1, where
h@q;

Qm
iD1 qki

i is the coefficient of
Qm

iD1 qki
in @q . Then, by Equation (1),

.�� �0/.q/DH ı @.q/ DH

� mY
iD1

qki
C � � �

�
DH

� mY
iD1

qki

�
CH.� � � /

D

mX
jD1

�� j�1Y
iD1

�.qki
/

�
H.qkj

/

� mY
iDjC1

�0.qki
/

��
CH.� � � /:

At most one term in the sum

mX
jD1

�� j�1Y
iD1

�.qki
/

�
H.qkj

/

� mY
iDjC1

�0.qki
/

��
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may be non-zero, since � and �0 are non-zero only on generators of degree 0 and H is
non-zero only on generators of degree �1. Note that, for a fixed j 2 f1; : : : ;mg, the
term � j�1Y

iD1

�.qki
/

�
H.qkj

/

� mY
iDjC1

�0.qki
/

�
is non-zero if and only if H.qkj

/D 1 holds and for 1� i � j �1 (resp. jC1� i �m),
the crossing qki

is augmented by � (resp. �0 ).

The monomials
Qm

iD1 qki
appearing in @.q/ correspond to certain mappings of the

two-disk D2 into the xz–plane that are immersions except for allowable exceptions
along @D2 . Only monomials containing generators of degree 0 or �1 are relevant for
our purposes. Therefore, we present only the description of such disks in the following
definitions. Note that this restriction allows us to rule out some additional behaviors of
@D2 near right cusps that appear in [15] and lead to monomials that contain generators
of degree 1.

Let D2 be the disk of radius 1 centered at the origin in R2 . Choose m points from
@D2 n f.1; 0/g. Label the chosen points fb1; : : : ; bmg counter-clockwise with b1 the
first point counter-clockwise from .1; 0/.

Definition 2.1 In terms of the notation above, a .0;�1/–admissible disk is a contin-
uous map from D2 into the xz–plane that maps @D2 to the front diagram D and
is a smooth orientation preserving immersion when restricted to the interior of D2

satisfying the following conditions:

(1) The mapping takes .1; 0/ to a degree 0 crossing q and the image of f in a
neighborhood of .1; 0/ looks as in Figure 2(a). We say the .0;�1/–admissible
disk originates at q .

(2) For exactly one 1� j �m, f .bj / is a degree �1 crossing qkj
and the image

of f in a neighborhood of bj looks as in Figure 2(d) or (e).

(3) For all i ¤ j , f .bi/ is a degree 0 crossing qki
and the image of f in a

neighborhood of bi looks as in Figure 2(d) or (e).

(4) Along @D2 the mapping is smooth except at fb1; : : : ; bmg[f.1; 0/g as described
in (1)–(3) and at points in @D2 n .fb1; : : : ; bmg[ f.1; 0/g/ where the image of
f looks like either Figure 2(b) or (c).

We say the .0;�1/–admissible disk has convex corners at qk1
; : : : ; qkm

. The .0;�1/–
admissible disk is assigned the monomial

Qm
iD1 qki

. We say a .0;�1/–admissible
disk is an .�; �0;H /–admissible disk if, for some 1� j �m, H.qkj

/D 1 holds and
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(a) (b)

(c)

(d) (e) (f)

i

j

fx0g � Œi; j �

Figure 2: The possible singularities of the disk in Definition 2.1 and the
half-disks in Definitions 3.3 and 3.2. The crossings in (d) and (e) are called
convex corners. Near a boundary point that maps to a right cusp the image of
a disk overlaps itself as indicated in (c) by the darkly shaded region.

for 1 � i � j � 1 (resp. j C 1 � i � m), the crossing qki
is augmented by � (resp.

�0 ); see Figure 3.

Henceforth, we consider admissible disks up to orientation preserving reparametrization
of the domain (fixing fb1; : : : ; bmg [ f.1; 0/g), and all counts of disks are up to this
equivalence relation.

q

�

��

H

�0

�0

�0 �0

�0

Figure 3: The domain of an .�; �0;H /–admissible disk with labels indicating
marked points mapped to crossings augmented by � and �0 and the marked
point mapped to the crossing satisfying H.qkj

/D 1

The restrictions on the types of non-smooth points of an .0;�1/–admissible disk imply
that q is the right-most point of the disk. From [15, Section 2], when a single qkj

has
degree �1 while q and all of the remaining qki

have degree 0, h@q;
Qm

iD1 qki
i D 1

holds if and only if there are an odd number of .0;�1/–admissible disks originating
at q and with monomial

Qm
iD1 qki

. Proposition 2.2 follows directly from the discussion
above.
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Proposition 2.2 Suppose D is a � –generic front diagram of a Legendrian knot and
� and �0 are augmentations in Aug.D/. If q is a degree 0 crossing and H is a chain
homotopy from � to �0 , then � and �0 differ at q if and only if there are an odd number
of .�; �0;H /–admissible disks originating at q .

2.2 Morse complex sequences

We briefly sketch the connection between generating families and Morse complex
sequences and refer the reader to [11] for more details. A one-parameter family of
smooth functions fx W RN !R, parametrized by x 2R, is a generating family for a
Legendrian knot L with front diagram D if

D D
n
.x; z/ W z D fx.e/ for some e 2RN satisfying @fx

@e
.e/D 0

o
:

With an appropriately chosen metric, a generic x 2 R determines a Morse chain
complex .Cx; dx/ on RN and, as x varies, the evolution of the Morse complexes
of fx are well-understood; a cusp of D corresponds to the creation or elimination
of a canceling pair of critical points and a crossing corresponds to two critical points
exchanging critical values. As x varies, it is also possible for a fiberwise gradient
flowline to momentarily flow between two critical points of the same index. Such an
occurrence is called a handleslide and it determines an explicit chain isomorphism
between successive Morse complexes. In summary, a generating family and choice of
metric determine a one-parameter family of Morse chain complexes and the relationship
between successive chain complexes is determined by the crossings and cusps of D

and the handleslides. A Morse complex sequence on D is a finite sequence of chain
complexes .Cm; dm/ and vertical marks on D that are meant to correspond to the
Morse chain complexes and handleslides of a generating family and choice of metric.
In addition, varying the choice of metric motivates an equivalence relation on MCSs.

Fix a Legendrian knot L with � –generic front diagram D , rotation number 0, and
Maslov potential �. Theorem 1.1 proves that a certain surjective map in [10] from
equivalence classes of Morse complex sequences to Augch.D/ is, in fact, a bijection.
We will use the definition of a Morse complex sequence given in [11]. This definition
differs slightly from the definition in [10], but both definitions determine the same set
of objects on L.

A handleslide on D is a vertical line segment disjoint from all crossings and cusps and
with endpoints on strands of D that have the same Maslov potential.

Definition 2.3 A Morse complex sequence on a � –generic front diagram D is the
triple C D .f.Cm; dm/g; fxmg;H / satisfying:

Algebraic & Geometric Topology, Volume 15 (2015)
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(1) H is a set of handleslides on D .
(2) The real values x1 < x2 < � � � < xM are x–coordinates distinct from the x–

coordinates of crossings and cusps of D and handleslides of H . For each
1�m<M , the set f.x; z/ W xm � x � xmC1g contains a single crossing, cusp
or handleslide. The set f.x; z/ W �1< x � x1g contains the left-most left cusp
and the set f.x; z/ W xM � x <1g contains the right-most right cusp.

(3) For each 1�m�M , the points of intersection of the vertical line fxmg�R and
D are labeled e1; e2; : : : ; esm

from top to bottom. The vector space Cm is the
Z–graded Z=2Z vector space generated by e1; e2; : : : ; esm

, where the degree of
each generator is the value of the Maslov potential on the corresponding strand
of D , jei j D �.ei/. The map dmW Cm! Cm is a degree �1 differential that is
triangular in the sense that

dmei D

X
i<j

cij ej ; cij 2 Z=2Z:

(4) The coefficients hd1e1; e2i and hdM e1; e2i are both 1. Suppose 1 �m <M

and let T be the tangle D \ f.x; z/ W xm � x � xmC1g. If T contains a left
(resp. right) cusp between strands k and kC1, then hdmC1ek ; ekC1i is 1 (resp.
hdmek ; ekC1i is 1). If T contains a crossing between strands k and kC1, then
hdmek ; ekC1i is 0.

(5) For 1 � m < M , the crossing, cusp, or handleslide mark in the tangle T D

D\f.x; z/ W xm � x � xmC1g determines an algebraic relationship between the
chain complexes .Cm; dm/ and .CmC1; dmC1/ as follows:
(a) Crossing If the crossing is between strands k and k C 1, then the map

�W .Cm; dm/! .CmC1; dmC1/ defined by

�.ei/D

8<:
ei if i 62 fk; kC 1g;

ekC1 if i D k;

ek if i D kC 1

is an isomorphism of chain complexes.

(b) Right cusp If the right cusp is between strands k and k C 1, then the
linear map

�.ei/D

�
Œei � if i < k;

ŒeiC2� if i � k

is an isomorphism of chain complexes from .CmC1; dmC1/ to the quotient
of .Cm; dm/ by the acyclic subcomplex generated by fek ; dmekg.

(c) Left cusp The case of a left cusp is the same as the case of a right cusp,
though the roles of .Cm; dm/ and .CmC1; dmC1/ are reversed.
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(d) Handleslide If the handleslide mark has endpoints on strands k and l

with k < l , then the map hk;l W .Cm; dm/! .CmC1; dmC1/ defined by

hk;l.ei/D

�
ei if i ¤ k;

ek C el if i D k

is an isomorphism of chain complexes.

The set MCS.D/ is the set of all Morse complex sequences on D .

Remark 2.4 Morse complex sequences may be defined over more general coefficient
rings than Z=2Z; see [12]. We restrict attention to Z=2Z coefficients as this is also
done in [10].

Definition 2.5 An MCS C D .f.Cm; dm/g; fxmg;H / in MCS.D/ has simple left
cusps if, for each tangle T D f.x; z/ W xm � x � xmC1g containing a left cusp between
strands k and k C 1, the chain complex .CmC1; dmC1/ satisfies hdmC1ek ; eii D

hdmC1ekC1; eii D 0 for all k C 1 < i and hdmC1ej ; ekC1i D hdmC1ej ; eki D 0 for
all j < k .

The subset MCSb.D/ � MCS.D/ denotes the set of MCSs with simple left cusps.
We use the letter b to be consistent with the notation of [10], where a left cusp is
also called a “birth”. This language is meant to draw a connection to the creation of
a canceling pair of critical points, often called a birth, in a one-parameter family of
Morse functions on a manifold.

Given an MCS CD .f.Cm; dm/g; fxmg;H / with simple left cusps, the chain complexes
f.Cm; dm/g are uniquely determined by the crossings and cusps of D , the handleslides
H , and requirements (5) (a)–(d) of Definition 2.3. Consequently, C may be represented
visually by placing the handleslide marks H on the front diagram D ; see Figure 4.

In [10] an equivalence relation on the set MCS.D/ is defined that is motivated by a
corresponding equivalence for generating families; see also [11]. Here we denote the
set of equivalence classes of this relation by 1MCS.D/ DMCS.D/='. We recall a
version of this equivalence relation that applies to the more restricted set of MCSs
with simple left cusps, MCSb.D/. We denote equivalence classes with respect to
this relation by 1MCSb.D/. By [10, Proposition 3.17], the map from 1MCSb.D/ to
1MCS.D/ induced by the inclusion MCSb.D/ �MCS.D/ is a bijection. Therefore,
to prove Theorem 1.1, we need only consider MCSs in MCSb.D/ and MCS classes in
1MCSb.D/.
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Figure 4: An MCS with simple left cusps. This MCS is also in A–form.

The equivalence relation on MCSb.D/ is generated by the MCS moves pictured in
Figures 5 and 6. The numbering indicated will be used throughout this article. Ad-
ditional moves result from reflecting each of the two figures in (3), (7), (9), (10) and
(12) of Figure 5 about a horizontal axis and reflecting each of the two figures in (4),
(9), (11) and (12) of Figure 5 about a vertical axis. The handleslide modification
that results from reflecting Figure 5 (10) about a vertical axis is not an MCS move
for MCSs with simple left cusps. (The absence of this reflected move is the only
difference between the definitions of the equivalence relations on MCSb.D/ and
MCS.D/ discussed in the previous paragraph.) MCS move (13) requires explanation.
Suppose CD .f.Cm; dm/g; fxmg;H / is an MCS on D and suppose there exist xm and
1 � k < l � sm such that �.ek/D �.el/� 1. Then MCS move (13) introduces the
collection of handleslides K defined as follows. The handleslides in K are of two
types. First, if i < k and hdmei ; eki D 1 holds, then K contains a handleslide with
endpoints on i and l . Second, if l < j and hdmel ; ej i D 1 holds, then K contains a
handleslide with endpoints on k and j .

By [10, Proposition 3.8], modifying the handleslide set of an MCS in MCSb.D/ as in
one of the cases in Figures 5 and 6 results in another MCS in MCSb.D/. Therefore,
the notion of equivalence in the following definition is well-defined. In addition, if an
MCS move is applied to an MCS, then only those chain complexes near the location
of the MCS move are affected. In other words, the MCS moves are local in the sense
that they change both the handleslides and chain complexes of an MCS only in a local
neighborhood.

Definition 2.6 Two MCSs C and C0 in MCSb.D/ are equivalent, written C ' C0 , if
there exists a sequence C1; C2; : : : ; Cs in MCSb.D/ so that C D C1 , C0 D Cs , and, for
all 1� i < s , the set of handleslide marks of Ci and CiC1 differ by exactly one MCS
move. The set 1MCSb.D/ is the set MCSb.D/='.

MCSs of the following type have a standard form that makes their relationship with
augmentations particularly simple to describe.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11) (12)

Figure 5: Handleslide modifications, called MCS moves, that result in an
equivalent MCS

Definition 2.7 An MCS C in MCSb.D/ is in A–form if there exists a set R of degree
0 crossings so that just to the left of each q in R there is a handleslide with endpoints
on the strands crossing at q and C has no other handleslides. A crossing q in R is
said to be marked.

Figure 4 shows an MCS in A–form where R is the four left-most crossings. The subset
MCSA.D/�MCSb.D/ consists of all A–form MCSs on D .
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i

k

l

j

Figure 6: MCS move (13). On the left, a dotted arrow from strand ˛ to strand
ˇ indicates that hdme˛; eˇi is 1 .

3 The main result

Suppose L is a Legendrian knot with � –generic front diagram D , rotation number
0, and Maslov potential �. The proof of Theorem 1.1 depends upon the following
technical lemma, whose proof comprises most of this section.

Lemma 3.1 Suppose D is a � –generic front diagram and C and C0 are in MCSA.D/

with corresponding augmentations �C and �C0 , respectively. If �C and �C0 are homotopic,
then C and C0 are equivalent as MCSs.

We now prove Theorem 1.1, assuming Lemma 3.1. Section 4 includes three corollaries
of Theorem 1.1.

Proof of Theorem 1.1 By [10, Proposition 3.17], the natural inclusion of MCSb.D/

into MCS.D/ induces a bijection from 1MCSb.D/ to 1MCS.D/. Therefore, it suffices to
construct a bijection from 1MCSb.D/ to Augch.D/. In [10, Section 6], a surjective mapb‰ is constructed from 1MCSb.D/ to Augch.D/. We will prove this map is injective.
By [10, Theorem 1.6], every MCS is equivalent to an A–form MCS. Therefore, every
MCS equivalence class contains an A–form representative. We give the definition of b‰
in terms of A–form representatives and, in so doing, avoid most of the technical details
of [10]. By [10, Corollary 6.21], given an MCS class ŒC� with A–form representative
C , b‰.ŒC�/ is the augmentation homotopy class Œ�C �, where a degree 0 crossing q is
augmented by �C if and only if q is marked by C . Lemma 3.1 shows that if �C1

is
homotopic to �C2

, then C1 is equivalent to C2 . It follows that b‰ is injective.

Before proving Lemma 3.1, we require two definitions and a lemma. Let D2 be the
disk of radius 1 centered at the origin in R2 . Choose mC 2 points on @D2 . Label
the chosen points fb0; : : : ; bmC1g counter-clockwise. Let  be the arc of @D2 with
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endpoints bmC1 and b0 and so that b1; : : : ; bm are not in  . Given x0 2R that is not
the x–coordinate of any crossing or cusp of D , we let fx0g� Œi; j � denote the vertical
line segment with x–coordinate x0 and endpoints on strands i and j of D , where the
strands of D above x D x0 are numbered 1; 2; : : : from top to bottom and i < j .

Definition 3.2 Let � and �0 be homotopic augmentations in Aug.D/ and let H be a
chain homotopy from � to �0 . An .�; �0;H /–half-disk is a mapping of the two-disk D2

into the xz–plane as in Definition 2.1, except for the following variations along the
boundary:

(1) The arc  maps to a vertical line fx0g � Œi; j �; see Figure 2(f). We say the
.�; �0;H /–half-disk originates at fx0g � Œi; j �.

(2) For exactly one 1 � j �m, f .bj / is a degree �1 crossing qkj
, H.qkj

/D 1

holds, and f has a convex corner at f .bj /; see Figure 2(d) or (e).

(3) If 1� i < j (resp. j < i �m), f .bi/ is a degree 0 crossing augmented by �
(resp. �0 ) and f has a convex corner at f .bi/.

(4) The restriction of f to @D2 is smooth except at fb0; : : : ; bmC1g as described
in (1) and (2) and at points in @D2 n .fb0; : : : ; bmC1g/ where the image of f
looks like Figure 2(b) or (c).

The set H.x0; Œi; j �/ consists of all .�; �0;H /–half-disks originating at fx0g� Œi; j � up
to reparametrization, and #H.x0; Œi; j �/ is the mod 2 count of elements in H.x0; Œi; j �/.

Definition 3.3 Let � be an augmentation in Aug.D/. An �–half-disk is a mapping
f of the two-disk D2 into the xz–plane as in Definition 3.2 except that conditions (2)
and (3) are replaced with the requirement that all convex corners are at crossings that
are augmented by � .

The set G�.x0; Œi; j �/ consists of all �–half-disks originating at fx0g � Œi; j � up to
reparametrization, and #G�.x0; Œi; j �/ is the mod 2 count of elements in G�.x0; Œi; j �/.

As in Definition 2.1, the points in the vertical line fx0g� Œi; j � are the right-most points
of either an .�; �0;H /–half-disk or an �–half-disk. It follows from the definitions that
�.i/D �.j / in the case of an .�; �0;H /–half-disk and �.i/D �.j /C 1 in the case
of an �–half-disk

By [10, Corollary 6.21], the map ˆW MCSA.D/! Aug.D/ defined as follows is a
bijection. Given C 2MCSA.D/ and a generator q of A.D/, ˆ.C/.q/D 1 holds if and
only if q is a marked crossing of C . We let �C be the augmentation ˆ.C/.
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Lemma 3.4 below generalizes [11, Lemma 7.10] and [12, Lemma 5.4] by removing
the assumption that the front diagram D is nearly plat. Note that “gradient paths”
from [11, Lemma 7.10] correspond to �C –half-disks in our terminology, and that [12,
Lemma 5.4] allows more general coefficients.

Lemma 3.4 Suppose D is a � –generic front diagram and C D .fCm; dmg; fxmg;H /

is in MCSA.D/. Suppose C has M 2N chain complexes, p 2 f1; : : : ;M g, and xp is
to the immediate right of a crossing or cusp. Then, for all i < j ,

(2) hdpei ; ej i D #G�C .xp; Œi; j �/:

Proof We induct on p . The base case, p D 1, follows since there is a unique
disk in G�C .x1; Œ1; 2�/, as in Figure 2(b), while hd1e1; e2i D 1 holds according to
Definition 2.3(4) .

Assume now that xp sits to the immediate right of a crossing or cusp and that the result
is known for smaller values of p . We complete the inductive step by considering cases.

Left cusp Suppose xp is to the right of a left cusp with the two strands that meet at
the cusp labeled k and kC 1 at xp . Define � W f1; : : : ; sp�1g ! f1; : : : ; spg by

�.i/D

�
i if i < k;

i C 2 if i � k.

(Note that sp�1 D sp � 2.) For any 1 � i 0 < j 0 � sp�1 there is a bijection between
G�C .xp�1; Œi

0; j 0�/ and G�C .xp; Œ�.i
0/; �.j 0/�/; see, for example, Figure 7. Moreover,

Definition 2.3(5)(c) together with the requirement that C has simple left cusps give

hdp�1ei0 ; ej 0i D hdpe�.i0/; e�.j 0/i;

so (2) follows when i D �.i 0/ and j D �.j 0/.

(a) (b)

Figure 7: Possible extensions of an �–half-disk or .�; �0;H /–half-disk past
a left cusp

It remains to consider those cases where fi; j g\fk; kC1g¤∅. Suppose that precisely
one of i or j belongs to fk; kC1g. As C has simple left cusps, we have hdpei ; ej iD 0.
In addition, the restriction on the behavior of an �–half disk near a left cusp from
Figure 2(b) gives that G�C .xp; Œi; j �/ D ∅, so (2) holds. Finally, when i D k and
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j D k C 1, there is a unique �–half disk in G�C .xp; Œk; k C 1�/. (This disk has no
convex corners, so Definition 3.3(2) is vacuously satisfied.) Therefore, (2) follows in
view of Definition 2.3(4).

Crossing When xp sits immediately to the right of a crossing, the inductive step is
achieved precisely as in [11, Lemma 7.10] or [12, Lemma 5.4] (the signs in the latter
reference may be ignored). The arguments in these references apply regardless of
whether or not the crossing is marked.

Right cusp Suppose a right cusp sits between xp and xp�1 with the strands that meet
at the cusp labeled k and kC 1 at xp�1 . Let ai;j be hdp�1ei ; ej i. In the quotient of
.Cp�1; dp�1/ by the subcomplex spanned by ek and dp�1ek , we have

0D Œdp�1ek �D ŒekC1�C
X

kC1<j

ak;j Œej �;

so

dp�1Œei �D
X
i<j

ai;j Œej �D
X

i<j<k

ai;j Œej �C
X

kC1<j

.ai;j C ai;kC1 � ak;j /Œej �:

By Definition 2.3 (5) (b), this gives the computation of the differential in .Cp; dp/ as

(3) hdpei ; ej i D hdp�1e�.i/; e�.j/iC hdp�1e�.i/; ekC1i � hdp�1ek ; e�.j/i;

where � W f1; : : : ; spg ! f1; : : : ; sp�1g is defined by

�.i/D

�
i if i < k;

i C 2 if i � k.

We note that the second term on the right can be non-zero only if i < k � j ; see
Figure 8.

xp�1 xp

ai;j C ai;k � ai;kC1

ai;kC1ai;j

ak;j

i

j

Figure 8: (Left) The relation between differentials at a right cusp. A dotted
arrow at xl pointing from strand i to strand j indicates the matrix coefficient
hdlei ; ej i . (Right) The appearance of disks in G�C .xp; Œi; j �/ with a boundary
point at the right cusp between xp�1 and xp .
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To complete the proof, we combine Equation (3) with the observation that �–half-disks
satisfy a bijection

G�C .xp; Œi; j �/Š G�C .xp�1; Œ�.i/; �.j /�/

[
�
G�C .xp�1; Œ�.i/; kC 1�/�G�C .xp�1; Œk; �.j /�/

�
explained as follows. Those disks in G�C .xp; Œi; j �/ whose boundaries do not intersect
the cusp point are in bijection with G�C .xp�1; Œ�.i/; �.j /�/; see Figure 9. Disks in
G�C .xp; Œi; j �/ whose boundaries do intersect the cusp point appear between xp�1

and xp as pictured in Figure 8. Removing the portion of the disk between xp�1

and xp leaves a pair of initially overlapping disks from G�C .xp�1; Œ�.i/; k C 1�/ �

G�C .xp�1; Œk; �.j /�/, and this correspondence is bijective.

(a) (b)

(c)

Figure 9: Possible extensions of an �–half-disk or .�; �0;H /–half-disk past
a right cusp

We outline the central idea of Lemma 3.1 before proceeding to the proof. Recall that
an augmentation � has an associated A–form MCS C where a degree 0 crossing q is
marked by C if and only if �.q/ is 1. The proof of Theorem 1.1 reduced to showing
that if augmentations � and �0 are homotopic, then their associated A–form MCSs
C and C0 are equivalent. This is accomplished in Lemma 3.1 where an algorithm is
given to translate a chain homotopy H from � to �0 into a sequence of MCS moves
from C to C0 . In particular, for each degree �1 crossing p sent to 1 by H , we employ
MCS move (13) just to the left of p to introduce new handleslides. We prove that
these handleslides give the mod 2 count of certain .�; �0;H /–half disks. Moving these
handleslides to the right in the front diagram D , we find that a degree 0 crossing
q is changed from marked to unmarked or from unmarked to marked if and only if
there exists an odd number of .�; �0;H /–half disks originating at q . Therefore, by
Proposition 2.2 and the definition of C and C0 , q is changed from marked to unmarked
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or from unmarked to marked if and only if C and C0 differ at q . We may therefore
conclude that C and C0 are equivalent.

Proof of Lemma 3.1 Suppose C and C0 are A–form MCSs and �C is homotopic
to �C0 . We simplify notation by letting � be �C and �0 be �C0 . Since � and �0 are
homotopic, there exists a chain homotopy H W A.D/! Z=2Z. Label the degree �1

crossings sent to 1 by H , from left to right, p1; : : : ;pm .

To prove the lemma, we will construct a sequence of MCSs C0; : : : ; Cs so that C0 is C
and Cs is C0 , and, for all 0 � r < s , Cr ' CrC1 holds. The construction of the Cr is
inductive, and each of the Cr will contain a (possibly empty) collection of handleslides
Vr that are grouped together immediately to the right of a particular crossing or cusp.

Figure 10: An ordered collection of handleslides

For our purposes it will be convenient to require that the handleslides in each of the Vr

are ordered in the following sense. We say a collection of handleslides is ordered if,
given two handleslides h and h0 in the collection with endpoints on strands i < j and
i 0 < j 0 respectively, h is right of h0 if and only if i > i 0 holds, or i D i 0 and j < j 0

hold; see Figure 10. We let vi;j
r be 1 if there exists a handleslide in Vr with endpoints

on strands i and j , where i < j . Otherwise, vi;j
r is defined to be 0. In a slight abuse

of notation, we also let vi;j
r refer to the handleslide in Vr with endpoints on i and j ,

if such a handleslide exists.

We will verify that Property 1 below holds for all 0� r � s as we inductively construct
MCSs Cr with ordered handleslide collections Vr .

Property 1 (a) The MCS Cr agrees with C0 to the left of Vr and C to the right
of Vr .

(b) For all i < j ,
vi;j

r D #H.xr ; Œi; j �/;

where xr is the x–coordinate of the left-most handleslide in Vr .

Each time r increases, the collection of handleslides Vr is pushed to the right past one
cusp or crossing. We continue this inductive process until we arrive at an MCS Cs with

Algebraic & Geometric Topology, Volume 15 (2015)



3340 Michael B Henry and Dan Rutherford

Vs located just to the left of the right-most right cusp of D . Since the two strands of
this cusp do not have the same Maslov potential, Vs must be empty. Then, Property 1
(a) shows that Cs is C0 . As C D C0 , and for 0 � i < s , Ci ' CiC1 it will then follow
that C ' C0 holds, as desired.

In the remainder of the proof we construct the sequence of MCSs C0; : : : ; Cs . Since
a crossing q is augmented by � (resp. �0 ) if and only if q is marked by C (resp. C0 ),
Proposition 2.2 implies C and C0 differ at q if and only if there exists an odd number
of .�; �0;H /–admissible disks originating at q . Since q is the right-most point of an
.�; �0;H /–admissible disk originating at q , it follows that there are no admissible disks
originating to the left of p1 (which is the first crossing sent to 1 by H ). Therefore,
C and C0 are identical to the left of p1 . We can then set C0 D C and define V0 to be
empty, but located just to the left of p1 . It follows that Property 1 holds for C0 .

Given Cr and Vr , we will construct CrC1 and VrC1 by applying MCS moves to Cr .
We will prove that if Property 1 holds for Cr , then it holds for CrC1 as well. We
consider five cases depending on the type of crossing or cusp just to the right of Vr . Let
q be the crossing or cusp point to the immediate right of Vr . Let xr (resp. xrC1 ) be an
x–coordinate to the immediate left (resp. right) of q . In each of the five cases, we first
analyze the .�; �0;H /–half-disks in H.xrC1; Œi; j �/ before describing the sequence of
MCS moves used to construct CrC1 from Cr and proving Property 1 holds for CrC1

and VrC1 .

In the first three cases considered, q is a crossing between strands k and kC 1 where
the strands of D have been numbered 1; : : : ; sr , from top to bottom, just to the left
of q . Let �W f1; : : : ; sr g! f1; : : : ; sr g be the permutation that transposes k and kC1.

Crossing q such that jqj¤0 and H.q/¤1 Since jqj is non-zero, H.xr ; Œk; kC1�/

and H.xrC1; Œk; kC1�/ are both empty. Given 1 � i < j � sr such that .i; j / ¤
.k; kC1/, one has that .�; �0;H /–half-disks in H.xrC1; Œi; j �/ cannot have a con-
vex corner at q , since jqj ¤ 0 and H.q/ ¤ 1 hold. In fact, #H.xrC1; Œi; j �/ D

#H.xr ; Œ�.i/; �.j /�/ holds, since there is a natural bijection between H.xrC1; Œi; j �/

and H.xr ; Œ�.i/; �.j /�/; see, for example, Figure 11.

We now define the sequence of MCS moves that create CrC1 from Cr and prove
Property 1 holds for CrC1 . Move all handleslides of Vr to the right of q using MCS
moves (7)–(9). Since jqj is non-zero, vk;kC1

r is 0, and therefore all handleslides of Vr

can be moved past q and no new handleslides are created by doing so. The resulting
collection can be ordered, using MCS moves, without creating new handleslides. The
reordering requires rearranging handleslides with one endpoint on either strand k

or k C 1. Since jqj is non-zero, there is no handleslide between k and k C 1, and
therefore the rearrangement can be done without using MCS move (4). The resulting
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Possible extensions of an .�; �0;H /–half-disk past a crossing

ordered collection is VrC1 and the MCS is CrC1 , and vi;j
rC1
D v�.i/;�.j/r holds for

all 1 � i < j � sr . By Property 1(b), v�.i/;�.j/r D #H.xr ; Œ�.i/; �.j /�/ holds and as
shown above, #H.xrC1; Œi; j �/D #H.xr ; Œ�.i/; �.j /�/ holds. Therefore, Property 1(b)
holds for CrC1 . Property 1(a) holds for Cr and since jqj is non-zero, q is not marked
by either CrC1 or C0 . Therefore, Property 1(a) holds for CrC1 .

Crossing q such that jqj D 0 Let vq be 1 if q is marked by C and 0 otherwise.
Since Property 1(a) holds for Cr , if q is marked by C , then q is marked by Cr as well.
We slightly abuse notation and also let vq be the handleslide at q in Cr in the case
such exists.

Suppose i¤kC1 and j ¤k . Half-disks in H.xrC1; Œi; j �/ cannot have a convex corner
at q , and therefore there is a bijection from H.xr ; Œi; j �/ to H.xrC1; Œ�.i/; �.j /�/; see,
for example, Figure 11(c)–(f). Since Property 1(b) holds for Cr , #H.xrC1; Œi; j �/D

v�.i/;�.j/r holds.

Note that H.xrC1; Œk; k C 1�/ is empty. Suppose one of i D k C 1 or j D k holds.
Half-disks in H.xr ; Œ�.i/; �.j /�/ may be smoothly extended past q as in Figure 11(a)
and (b). Therefore, there exists an injection from H.xr ; Œ�.i/; �.j /�/ to H.xrC1; Œi; j �/.
However, there may be half-disks in H.xrC1; Œi; j �/ that have a convex corner at q .
If j D k (resp. i D k C 1) and q is marked by C0 (resp. C ), then a half-disk in
H.xrC1; Œi; j �/ can have a convex corner at q ; see Figure 12(a) and (b) respectively.
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(a) (b)

vq

v
k;kC1
r C vq

Figure 12: Extending an .�; �0;H /–half-disk past a degree 0 crossing so as
to have a convex corner at the crossing

Such half-disks are in bijection with half-disks in H.xr ; Œi; j �/, as can be seen in
Figure 12(a) and (b), and by Property 1(b), are counted by vi;j

r . Since vk;kC1
r is

1 if and only if C0 and C differ at q , q is marked by C0 (resp. C ) if and only if
v

k;kC1
r Cvq is 1 (resp. vq is 1). Therefore, if j D k (resp. i D kC1), then the mod 2

count of half-disks in H.xrC1; Œi; j �/ with a convex corner at q is .vk;kC1
r C vq/ � v

i;k
r

(resp. vq � v
kC1;j
r ). In summary,

(4) #H.xrC1; Œi; j �/D

8̂̂̂<̂
ˆ̂:
v

i;kC1
r C .v

k;kC1
r C vq/ � v

i;k
r if j D k;

v
k;j
r C vq � v

kC1;j
r if i D kC 1;

0 if i D k and j D kC 1;

v
�.i/;�.j/
r otherwise.

We now define the sequence of MCS moves that create CrC1 from Cr and prove
Property 1 holds for CrC1 . We move each handleslide vi;j

r of Vr past q beginning with
the right-most handleslide in Vr . If i � k and j ¤ kC1 hold, use MCS moves (2)–(9)
to move vi;j

r past vq , if vq is 1, and then past the crossing q . If vq is 1 and i D kC1,
a new handleslide with endpoints on strands k and j is created when MCS move (4)
is used to move vi;j

r past vq . Move this handleslide to the right of q as well. It is not
possible to move vk;kC1

r past q and so, for now, we simply leave vk;kC1
r to the left of

q . If i < k holds, use MCS moves (2)–(9) to move vi;j
r past vk;kC1

r , if vk;kC1
r is 1,

then past vq , if vq is 1, and then past the crossing q . If vq is 1 or vk;kC1
r is 1, and

j D k , a new handleslide with endpoints on strands i and kC1 is created when MCS
move (4) is used to move vi;j

r past vq or vk;kC1
r . Move this handleslide to the right of

q as well. Once all vi;j
r , except vk;kC1

r , have been moved past q , use MCS moves (5)
and (1) to order the collection of handleslides just to the right of q and remove pairs of
handleslides that have the same endpoints. The resulting collection is VrC1 . From our
work above, we have:

(5) v
i;j
rC1
D

8̂̂̂<̂
ˆ̂:
v

i;kC1
r C .v

k;kC1
r C vq/ � v

i;k
r if j D k;

v
k;j
r C vq � v

kC1;j
r if i D kC 1;

0 if i D k and j D kC 1;

v
�.i/;�.j/
r otherwise.
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Use MCS move (1) to remove both vk;kC1
r and vq , in the case that they both exist.

The resulting MCS is CrC1 . By Property 1, vk;kC1
r is 1 if and only if there is an odd

number of .�; �0;H /–half-disks originating at fxr g � Œk; kC 1�. There is a bijection
between such disks and the .�; �0;H /–admissible disks originating at q ; see Figure 13.
Therefore, by Proposition 2.2, vk;kC1

r is 1 if and only if C and C0 differ at q . Therefore,
Property 1(a) holds for CrC1 . Finally, Equations (5) and (4) imply Property 1(b) holds
for CrC1 .

Figure 13: The bijection between .�; �0;H /–half-disks originating at fxr g �

Œk; k C 1� and .�; �0;H /–half-disks originating at a crossing q between
strands k and kC 1

Crossing pi where 1 < i �m Suppose pi is a degree �1 crossing between strands
k and k C 1 and H.pi/ D 1 holds. Suppose i ¤ k C 1 and j ¤ k . Half-disks in
H.xrC1; Œi; j �/ cannot have a convex corner at pi and, therefore, there is a bijection
from H.xr ; Œi; j �/ to H.xrC1; Œ�.i/; �.j /�/; see, for example, Figure 11(c)–(f). Since
Property 1(b) holds for Cr , #H.xrC1; Œi; j �/D v

�.i/;�.j/
r holds.

(a)

(b) (c)

(d) (e)

Figure 14: The correspondence between .�; �0;H /–half-disks with a convex
corner at the degree �1 crossing in the figure and handleslides introduced
by MCS move (13) to the left of the crossing. In step (d), two handleslides
are created by MCS move (13). These handleslides correspond to the two
.�; �0;H /–half-disks in the top right figure, each of which has a convex corner
at the crossing.
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(a) (b)

(c)

(d)(e)

V

V 0

pi

Figure 15: The sequence of MCS moves at a crossing pi where jpi j D �1

and H.pi/D 1 both hold.

Note that H.xrC1; Œk; k C 1�/ is empty. Suppose one of i D k C 1 or j D k holds.
Half-disks in H.xr ; Œ�.i/; �.j /�/ may be smoothly extended past pi as in Figure 11(a)
and (b). Therefore, there exists an injection from H.xr ; Œ�.i/; �.j /�/ to H.xrC1; Œi; j �/.
However, there may be half-disks in H.xrC1; Œi; j �/ that have a convex corner at q .
In the case that j D k (resp. i D kC 1), such disks correspond to �–half-disks (resp.
�0–half-disks) that have been extended past pi so as to have a convex corner at pi ; see
Figure 14(a)–(e). Let .C; d/ (resp. .C 0; d 0/) be the chain complex of C (resp. C0 ) just
to the left of pi . Property 1(a) implies that, in Cr , .C; d/ (resp. .C 0; d 0/) is the chain
complex to the immediate right (resp. left) of Vr . By Lemma 3.4, the mod 2 count of
such half-disks is hdei ; ej i and hd 0ei ; ej i respectively. Since Property 1(b) holds for
Cr , we may summarize the work of the previous two paragraphs as follows:

(6) #H.xrC1; Œi; j �/D

8̂̂̂<̂
ˆ̂:
v
�.i/;�.j/
r Chdei ; ej i if j D k;

v
�.i/;�.j/
r Chd 0ei ; ej i if i D kC 1;

0 if i D k and j D kC 1;

v
�.i/;�.j/
r otherwise.

We now define the sequence of MCS moves that create CrC1 from Cr and prove
Property 1 holds for CrC1 . Let V � Vr (resp. V 0 � Vr ) be the handleslides vi;j

r in Vr
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satisfying i � k (resp. i < k ). Since Vr is ordered, V is right of V 0 ; see Figure 15.
Let . xC ; xd/ be the chain complex of Cr between V 0 and V . Use MCS moves (7) and
(9) to move the handleslides in V past pi ; see Figure 15(a). Since pi has degree �1,
vk;kC1

r is 0 and �.k/D �.kC 1/� 1 holds. Therefore, strands k and kC 1 satisfy
the conditions of MCS move (13). Use MCS move (13) to introduce new handleslides
between V 0 and pi ; see Figure 15(b). MCS move (13) introduces a handleslide with
endpoints i and j if and only if either j D kC 1 and h xdei ; eki is 1, or i D k and
h xdekC1; ej i is 1. Recall that .C; d/ (resp. .C 0; d 0/) is the chain complex of Cr to
the immediate right (resp. left) of Vr . Since Vr is ordered, the handleslides between
.C; d/ and . xC ; xd/ have upper endpoints on k; : : : ; sr and the handleslides between
.C 0; d 0/ and . xC ; xd/ have upper endpoints on 1; : : : ; k � 1. Because of the ordering
of handleslides in Vr , the coefficient h xdei ; eki (resp. h xdekC1; ej i) is unaffected by
handleslides in V (resp. V 0 ). As a consequence h xdei ; eki D hdei ; eki holds for all
i < k and h xdekC1; ej i D hd

0ekC1; ej i holds for all k C 1 < j . Therefore, MCS
move (13) introduces a handleslide with endpoints i and j if and only if either
j D kC 1 and hdei ; eki is 1, or i D k and hd 0ekC1; ej i is 1. Move the handleslides
created by MCS move (13) and the handleslides in V 0 past pi using MCS moves
(7)–(9); see Figure 15(c). Use MCS moves (1), (3), (5) and (6) to order the collection
of handleslides to the right of pi and remove pairs of handleslides with identical
endpoints; see Figure 15 (d) and (e). In particular, this can be done without creating
any new handleslides. The resulting ordered collection of handleslides is VrC1 and
the MCS is CrC1 . Since the only new handleslides created were those created by the
single application of MCS move (13),

(7) v
i;j
rC1
D

8̂̂̂<̂
ˆ̂:
v
�.i/;�.j/
r Chdei ; ej i if j D k;

v
�.i/;�.j/
r Chd 0ei ; ej i if i D kC 1;

0 if i D k and j D kC 1;

v
�.i/;�.j/
r otherwise.

Equations (6) and (7) imply Property 1(b) holds for CrC1 . Finally, Property 1(a)
holds for Cr and jqj ¤ 0 implies q is not marked by either CrC1 or C0 . Therefore,
Property 1(a) holds for CrC1 .

Left cusp Suppose q is a left cusp. Number the strands of D , from top to bottom,
1; : : : ; sr (resp. 1; : : : ; srC1 ) just to the left (resp. right) of q . Define � W f1; : : : ; sr g!

f1; : : : ; srC1g by

�.i/D

�
i if i < k;

i C 2 if i � k.

(Note that sr D srC1 � 2.) For any 1 � i 0 < j 0 � sr , there is a bijection between
H.xrC1; Œ�.i

0/; �.j 0/�/ and H.xr ; Œi
0; j 0�/; see, for example, Figure 7(a) and (b). If
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fi; j g \ fk; k C 1g is non-empty, then H.xrC1; Œi; j �/ is empty. Therefore, since
Property 1(b) holds for Cr ,

(8) #H.xrC1; Œi; j �/D

�
v�
�1.i/;��1.j/

r if fi; j g\ fk; kC 1g D∅;
0 otherwise.

Use MCS moves (11) and (12) to move each handleslide in Vr past q . The resulting
collection VrC1 is ordered and the resulting MCS is CrC1 . The endpoints of a han-
dleslide remain on the same strands of D as it is moved past q . Therefore, we have

(9) v
i;j
rC1
D

�
v�
�1.i/;��1.j/

r if fi; j g\ fk; kC 1g D∅;
0 otherwise.

Equations (8) and (9) imply Property 1(b) holds for CrC1 . Since q is not a crossing
and Property 1(a) holds for Cr , it must hold for CrC1 as well.

Right cusp Suppose q is a right cusp between strands k and kC1. Let .C; d/ (resp.
.C 0; d 0/) be the chain complex of C (resp. C0 ) just to the left of q . Property 1(a) implies
that, in Cr , .C; d/ (resp. .C 0; d 0/) is the chain complex to the immediate right (resp.
left) of Vr . Number the strands of D , from top to bottom, by 1; : : : ; srC1 (resp. by
1; : : : ; sr ) just to the right (resp. left) of q . Define � W f1; : : : ; srC1g ! f1; : : : ; sr g by

�.i/D

�
i if i < k;

i C 2 if i � k.

(Note that sr D srC1C 2.)

If j < k or i � k , then

(10) #H.xrC1; Œi; j �/D v
�.i/;�.j/
r

holds, since Property 1(b) holds for Cr and there is a bijection from H.xr ; Œ�.i/; �.j /�/

to H.xrC1; Œi; j �/; see Figure 9(a) and (b).

When j � k and i < k , we claim that there is a bijection

(11) H.xrC1; Œi; j �/ŠH.xr ; Œ�.i/; �.j /�/

[ .G�.xr ; Œ�.i/; kC 1�/�H.xr ; Œk; �.j /�//

[ .H.xr ; Œ�.i/; kC 1�/�G�
0

.xr ; Œk; �.j /�//:

Suppose j �k and i <k . Half-disks in H.xr ; Œ�.i/; �.j /�/ may be smoothly extended
past q as in Figure 9(c). Therefore, there exists an injection from H.xr ; Œ�.i/; �.j /�/ to
H.xrC1; Œi; j �/. However, there may be half-disks in H.xrC1; Œi; j �/ whose boundary
intersects the cusp point; see Figure 16(a) and Figure 17(a).
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

l

k

kC 1
j

h

Figure 16: (a)–(e): The correspondence between Type 1 .�; �0;H /–half-
disks whose boundary intersects the right cusp in the figure and handleslides
introduced by MCS move (13) to the left of the crossing. (f), (g): A han-
dleslide introduced by MCS move (13) that is removed, along with vk;j

r , by
an MCS (1) move. (h), (i): A handleslide introduced by MCS move (13) that
is removed by an MCS (10) move.

We divide half-disks whose boundary intersects q into two types as follows. Any
such half-disk has one convex corner at a degree �1 crossing, which we denote p .
Trace the boundary of such a half-disk counter-clockwise beginning at the vertical
line fxrC1g � Œi; j �. In a Type 1 (resp. Type 2) half-disk, p appears after (resp.
before) q . A Type 1 (resp. Type 2) half-disk can be uniquely decomposed into an
.�; �0;H /–half-disk and an �–half-disk (resp. �0–half-disk) as in Figure 16(a) and
(b) (resp. Figure 17(a) and (b)). Therefore, the set in the second (resp. third) line of
Equation (11) is in bijection with Type 1 (resp. Type 2) half-disks. Since Property 1(b)
holds for Cr and Lemma 3.4 holds for both .C; d/ and .C 0; d 0/, the mod 2 count of
Type 1 half-disks is hde�.i/; ekC1i � v

k;�.j/
r and the mod 2 count of Type 2 half-disks

is v�.i/;kC1
r � hd 0ek ; e�.j/i. Therefore, for j � k and i < k , we have the formula

(12) #H.xrC1; Œi; j �/D v
�.i/;�.j/
r C v�.i/;kC1

r � hd 0ek ; e�.j/i

Chde�.i/; ekC1i � v
k;�.j/
r :
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We now define the sequence of MCS moves that create CrC1 from Cr and prove
Property 1 holds for CrC1 . We move the handleslides of Vr past q iteratively beginning
with the right-most handleslide. Suppose vi;j

r is the right-most handleslide of Vr that
has yet to be moved past q . If i > kC 1 or j < k , use MCS move (12) to move vi;j

r

past q . If i < k and j > kC1, use MCS move (11) to move vi;j
r past q . If i D kC1

or j D k , use MCS move (10) to remove vi;j
r . Since �.k/ D �.k C 1/C 1 and a

handleslide has endpoints on strands with the same Maslov potential, vk;kC1
r must be

0. It remains to consider the two cases i D k; j > kC 1 and i < k; j D kC 1.

(a)

(b) (c)

(d) (e)

i

k

kC 1

l

h

Figure 17: (a)–(e): The correspondence between Type 2 .�; �0;H /–half-
disks whose boundary intersects the right cusp in the figure and handleslides
introduced by MCS move (13) to the left of the crossing.

Suppose vi;j
r is vk;j

r where j > kC1. Since �.k/D�.j / and �.k/D�.kC1/C1

both hold, �.k C 1/ D �.j / � 1 holds and, thus, strands k C 1 and j satisfy the
conditions of MCS move (13). Use MCS move (13) to create new handleslide marks; see
the arrow directed to the right in Figure 6. Let . xC ; xd/ be the chain complex of Cr just
to the right of vk;j

r . The handleslides created are of three types. By Definition 2.3(4),
h xdek ; ekC1i is 1. Therefore, MCS move (13) introduces a handleslide with endpoints
k and j ; see Figure 16(f). Use MCS move (1) to remove this handleslide and vk;j

r ;
see Figure 16(g). For each l such that h xdej ; eli is 1, MCS move (13) introduces
a handleslide with endpoints k C 1 and l ; see Figure 16(h). Use MCS move (10)
to remove this handleslide; see Figure 16(i). Suppose l < k and h xdel ; ekC1i is 1.
The third type of handleslide introduced by MCS move (13) has endpoints l and j ;
see Figure 16(d). Let h be this handleslide. Use MCS move (11) to move h past
q ; see Figure 16(e). Recall that .C; d/ is the chain complex of Cr to the immediate
right of Vr . Since Vr is ordered, the handleslides between . xC ; xd/ and .C; d/ have
endpoints on strands kC 1; : : : ; sp . The coefficient h xdel ; ekC1i is unaffected by such
handleslides and, thus, h xdel ; ekC1i D hdel ; ekC1i holds. Therefore, h exists if and
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only if hdel ; ekC1i � v
k;j
r is 1. As we noted earlier, hdel ; ekC1i � v

k;j
r is 1 if and only

if the mod 2 count of Type 1 half-disks in H.xrC1; Œl; j C2�/ is 1. Therefore, h exists
if and only if the mod 2 count of Type 1 half-disks in H.xrC1; Œl; j C 2�/ is 1.

Suppose vi;j
r is vi;kC1

r where i < k . Note that �.i/ D �.k/ � 1 holds and, thus,
strands i and k satisfy the conditions of MCS move (13). Use MCS move (13) to create
new handleslides to the immediate right of vi;kC1

r . Suppose l > kC1 and h xdek ; eli is
1. MCS move (13) introduces a handleslide with endpoints i and l ; see Figure 17(d).
Let h be this handleslide. Use MCS move (11) to move h past q ; see Figure 17(e).
Following an analogous argument as was used in the case of a Type 1 half-disk, h

exists if and only if the mod 2 count of Type 2 half-disks in H.xrC1; Œi; l C 2�/ is 1.
MCS move (13) also introduces handleslides analogous to those in Figure 16(f) and
(h), which are removed in same manner as was done in Figure 16(g) and (i).

Once we have applied the above algorithm to each handleslide in Vr , we are left with
a collection of handleslides V to the right of q . The ordering of Vr ensures the only
new handleslides were those introduced by applications of MCS move (13). Therefore,
given 1 � i < j � srC1 , there may be up to 3 handleslides in V with endpoints on
i and j ; one counts .�; �0;H /–half-disks extended past q as in Figure 9, one counts
Type 1 half-disks as in Figure 16(a)–(e), and the third counts Type 2 half-disks as in
Figure 17(a)–(e). Use MCS moves (1), (3), (5), and (6) to remove pairs of handleslides
with identical endpoints and order V . In particular, V can be ordered without creating
new handleslides. The resulting ordered collection of handleslides is Vr and the MCS
is CrC1 . If j < k or i � k , then

vi;j
rC1 D v

�.i/;�.j/
r

holds and, if j � k and i < k , then

v
i;j
rC1
D v�.i/;�.j/r C v�.i/;kC1

r � hd 0ek ; e�.j/iC hde�.i/; ekC1i � v
k;�.j/
r

holds. These equations, along with Equations (10) and (12), imply Property 1(b) holds
for CrC1 . Finally, since q is not a crossing and Property 1(a) holds for Cr , it must
hold for CrC1 as well.

This completes the construction of the MCSs C0; : : : ; Cs .

4 Corollaries to Theorem 1.1

In the following corollaries to Theorem 1.1, D is the � –generic front diagram of a
Legendrian knot with rotation number 0. Recall that an augmentation � in Aug.D/
has a corresponding A–form MCS C where, for a degree 0 crossing q , �.q/D 1 holds
if and only if q is marked by C .
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Corollary 4.1 The count of MCS classes of a Legendrian knot is a Legendrian isotopy
invariant.

Corollary 4.1 follows from the fact that the count of homotopy classes of augmentations
is a Legendrian isotopy invariant and every Legendrian knot is Legendrian isotopic to
a Legendrian knot with � –generic front diagram by an arbitrarily small Legendrian
isotopy. Corollary 4.1 is stated and a proof is briefly sketched by Petya Pushkar in
a letter to Dmitry Fuchs from 2000. The proposed proof investigates the effect of
Legendrian Reidemeister moves on the number of MCS classes and is different from
the approach in this article.

Given the Chekanov–Eliashberg algebra .A.D/; @/, the differential @�W A.D/!A.D/
is ��ı@ı.��/�1 , where ��W A.D/!A.D/ is the algebra map defined on generators by
��.q/D qC �.q/. The group LCH.�/, called the linearized contact homology of � , is
the homology of the chain complex .A.D/; @�

1
/, where @�

1
.q/ is the length 1 monomials

of @�.q/. By [2], the set fLCH.�/g�2Aug.D/ is a Legendrian isotopy invariant, which
we will call the LCH invariant.

Corollary 4.2 If � and �0 are homotopic as augmentations, then LCH.�/ and LCH.�0/
are isomorphic as homology groups. Therefore, augmentation homotopy classes have
well-defined linearized contact homology groups.

Proof We will apply two theorems from [10]. In order to do so, the front diagram must
be “nearly plat”. A front diagram is plat if all left cusps have the same x–coordinate,
all right cusps have the same x–coordinate, and no two crossings have the same x–
coordinate. A front diagram is nearly plat if it is the result of perturbing a plat front
diagram slightly so that no two cusps have the same x–coordinate.

We now deduce the corollary in the case that D is nearly plat. Suppose � and �0 are
homotopic. By Lemma 3.1, the A–form MCSs C and C0 corresponding to � and �0

are equivalent as MCSs. In [11], differential graded algebras .AC; d/ and .AC0 ; d
0/

are assigned to C and C0 , respectively. The linear level of each algebra is a chain
complex .AC; d1/ and .AC0 ; d

0
1
/, respectively. By [11, Theorem 5.5], .AC; d1/ and

.AC0 ; d
0
1
/ are isomorphic. By [11, Theorem 7.3], .A.D/; @�

1
/ is isomorphic to .AC; d1/

and .A.D/; @�
0

1
/ is isomorphic to .AC0 ; d

0
1
/. Therefore, LCH.�/ and LCH.�0/ are

isomorphic as homology groups.

For the general case of a Chekanov–Eliashberg algebra .A; @/ assigned to a front (or
Lagrangian) diagram that is not nearly plat, we argue as follows. By [1], the Chekanov–
Eliashberg algebras assigned to Legendrian isotopic Legendrian knots are stable tame
isomorphic. Any Legendrian knot is Legendrian isotopic to a knot with nearly plat
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front diagram, therefore .A; @/ is stable tame isomorphic to a DGA that satisfies the
property stated in Corollary 4.2. We then verify that .A; @/ also satisfies the corollary
in two steps.

Step 1 The corollary holds for a stabilization .S.A/; @0/ of a DGA .A; @/ if and only
if it holds for .A; @/.

Here, S.A/ is obtained from A by adding two generators x and y in successive
degrees, and the differential satisfies @0jAD @ and @0x D y . Restricting augmentations
of S.A/ to A provides a surjection from the set of augmentations of S.A/ to the set of
augmentations of A, and this gives a well-defined bijection between homotopy classes
of augmentations of S.A/ and A. Moreover, for any augmentation �W S.A/! Z=2,
the linearized homology groups associated to � and �jA are isomorphic, so Step 1
follows.

Step 2 If 'W .A1; @1/! .A2; @2/ is an isomorphism of DGAs, then the corollary
holds for .A1; @1/ if and only if it holds for .A2; @2/.

To see this, observe that �2 7! �1 ı' gives a bijection from augmentations of .A2; @2/

to augmentations of .A1; @1/ that preserves homotopy classes and linearized homology
groups.

Corollary 4.2 provides a means for strengthening the LCH invariant. The set

fLCH.�/g�2Aug.D/;

along with a count of the number of augmentation homotopy classes associated with
each group, is a Legendrian isotopy invariant. The authors are currently unaware of
an example where this refinement is able to distinguish knots that are not already
distinguished by the LCH invariant taken without regard to multiplicity.

Corollary 4.3 If � and �0 are homotopic, then � and �0 are mapped to the same graded
normal ruling by the many-to-one map from augmentations to graded normal rulings
defined in [16].

Proof Suppose � and �0 are homotopic. By Lemma 3.1, the A–form MCSs C and C0

corresponding to � and �0 are equivalent. By [10, Lemma 3.14], every MCS determines
a graded normal ruling. By [10, Proposition 3.15], equivalent MCSs determine the same
graded normal ruling. Therefore, C and C0 determine the same graded normal ruling. In
[16], there is an algorithmically defined many-to-one map � from Aug.D/ to the set
of graded normal rulings of D . In the case of an augmentation � and its corresponding
A–form MCS C , �.�/ is the same as the graded normal ruling determined by C in
[10, Lemma 3.14]. Therefore, � maps � and �0 to the same graded normal ruling.
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On finite derived quotients of 3–manifold groups

WILL CAVENDISH

This paper studies the set of finite groups appearing as �1.M /=�1.M /.n/ , where M

is a closed, orientable 3–manifold and �1.M /.n/ denotes the nth term of the derived
series of �1.M / . Our main result is that if M is a closed, orientable 3–manifold,
n� 2 , and G Š �1.M /=�1.M /.n/ is finite, then the cup-product pairing H 2.G/˝

H 2.G/!H 4.G/ has cyclic image C , and the pairing H 2.G/˝H 2.G/
^
�! C is

isomorphic to the linking pairing H1.M /Tors˝H1.M /Tors!Q=Z .

57M10; 57M60

1 Introduction

One of the most elementary invariants of a connected topological space M is its
first homology group H1.M /, which, via Hurewitz’s theorem, may be expressed
as �1.M /=�1.M /.1/ , the quotient of the fundamental group of M by its derived
subgroup. Somewhat more mysterious are the topological invariants given by the higher
derived quotients of the fundamental group, �1.M /=�1.M /.n/ , where �1.M /.n/

denotes the nth term of the derived series of �1.M /. This paper studies the groups
that appear as �1.M /=�1.M /.n/ when M is a closed, orientable 3–manifold in the
special case that �1.M /=�1.M /.n/ is finite. Our interest in these groups is motivated
by the following well-known question, which was conjectured by Roushon in [15] to
have a positive answer in the case that �1.M / is torsion free:

Question 1 Let M be a closed, orientable 3–manifold. If Œ�1.M / W �1.M /.n/� is
finite for all n, does the derived series of �1.M / stabilize, ie is �1.M /.i/ a perfect
group for some i?

A positive answer to this conjecture would supply an alternative proof of the virtual
positive Betti number conjecture for hyperbolic 3–manifolds, which was resolved by Ian
Agol in [1], building on work of Kahn and Markovic in [10] and Wise in [16]. Indeed,
when the derived series of �1.M / stabilizes, it is well known that �1.M /=�1.M /.i/

is a solvable group with 4–periodic cohomology for sufficiently large i . A group of
this form is extremely rare, and it is isomorphic to the product of a trivial, dihedral, or
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generalized quaternion group with a cyclic group of relatively prime order; see [13].
All of these groups have abelianization with p–rank at most three for every prime p .
It is a well-known result of Lubotzky (see [12]) that every hyperbolic 3–manifold has
a finite-sheeted covering space with arbitrarily large p–rank for all but finitely many
p ; so if the above conjecture is true, we can pass to a finite-sheeted covering space N

of any hyperbolic 3–manifold M such that �1.N /=�1.N /.n/ is infinite for some n.
It follows by a simple group-theoretic argument that M has a finite-sheeted covering
space with positive first Betti number.

The main thrust of this paper is that the finite groups that appear as �1.M /=�1.M /.n/

satisfy restrictive group-theoretic constraints. These constraints do not appear when
nD 1 since, by taking connected sums of lens spaces, one can easily show that any
finite abelian group appears as �1.M /=�1.M /.1/ ŠH1.M / for a closed orientable
3–manifold M . The question of which finite groups appear as �1.M /=�1.M /.2/ ,
however, is already more interesting. Note that if �1.M /=�1.M /.2/ is finite, then
�1.M /.1/=�1.M /.2/ is a finite group, and therefore the maximal abelian cover of
M has trivial first Betti number. Reznikov showed in [14] that the fundamental
groups of 3–manifolds with this property satisfy a number of nontrivial constraints,
and consequently not every metabelian group can appear as �1.M /=�1.M /.2/ . The
restrictions Reznikov discovered are especially interesting in light of the main result
of Cooper and Long in [5], which shows that any finite group appears as the group of
deck transformations of a regular covering �W M 0!M of closed 3–manifolds where
b1.M

0/D 0. This shows that Reznikov’s constraints do not arise from obstructions to
fixed-point free group actions on rational homology 3–spheres.

In this paper we build on the themes explored by Reznikov in [14] by showing that the
cohomology ring of a finite group of the form �1.M /=�1.M /.n/ for n � 2 directly
reflects information about the linking pairing on H1.M /, which is a nondegenerate
bilinear form H1.M /Tors˝H1.M /Tors!Q=Z whose definition we now recall. Given
an element Œa� 2 H1.M /Tors and a loop a representing Œa�, there exists an integer
n2N such that n � Œa�D 0. Since the 1–cycle n �a is homologically trivial, there exists
an immersed oriented surface †a in M such that the oriented boundary of †a is equal
to n � a . Given another class Œb� 2H1.M /Tors , there exists a loop b representing b

such that b is transverse to †a . The value of the linking pairing hŒa�; Œb�i is defined by
.b t†a/=n 2Q=Z, the algebraic intersection number of b and †a divided by n.

The following theorem shows that the linking pairing on H1.M /Tors is isomorphic to the
2–dimensional cup-product pairing in H�.G/ for any finite quotient of qW �1.M /!G

such that ker.q/� �1.M /.2/ .
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Theorem 1.1 Let M be a closed, orientable 3–manifold, let � Š �1.M /, and let
qW �!G be a surjective homomorphism such that ker.q/� �.2/ . If G is finite, then
the cup-product pairing H 2.G/˝H 2.G/!H 4.G/ is nondegenerate and has cyclic
image C <H 4.G/. Furthermore, there exists an embedding i W C !Q=Z such that
for any !1; !2 2H 2.G/,

i.!1 ^!2/D hŒM � _ zq�.!1/; ŒM � _ zq�.!2/i;

where ŒM � 2 H3.M / denotes the fundamental class of1 M , h�;�i denotes the
linking pairing on H1.M /Tors , and zqW M ! BG is a continuous map from M to the
classifying space of G such that zq�W �1.M /! �1.BG/ŠG is equal to q .

We remark that Theorem 1.1 does not hold when the quotient group �=�.2/ is infinite,
even when H1.M / D �=�.1/ is finite. To see this, let M be homeomorphic to
RP3 # RP3 , the connected sum of two copies of real projective 3–space, and let
G D �1.M /=�1.M /.2/ . The fundamental group �1.M / is isomorphic to the infinite
dihedral group D1Š11Z=2�Z=2, and hence H1.M /ŠZ=2˚Z=2. The commutator
subgroup of Z=2 � Z=2 is isomorphic to Z, so �1.M /.2/ is trivial and therefore
G D �1.M /Š �1.M /=�1.M /.2/ Š Z=2�Z=2. Recall that the infinite dimensional
real projective space RP1 is a classifying space for Z=2, and that the cohomology
ring H�.RP1/ is generated by a single degree 2 element of order 2. It follows
that the wedge sum RP1 _RP1 is a classifying space for Z=2 �Z=2. Since the
cohomology ring of a wedge sum of connected spaces is isomorphic to the direct sum
of the cohomology rings of the summands modulo the identification of the zeroth
cohomology groups, H�.G/ Š H�.RP1 _RP1/ Š ZŒx;y�=.xy; 2x; 2y/, where
deg.x/D deg.y/D 2. The elements x2 and y2 are linearly independent in H 4.G/,
so the image of the cup-product pairing H 2.G/˝H 2.G/! H 4.G/ is not cyclic.
This example can be modified to produce aspherical (indeed hyperbolic) examples of
such 3–manifolds using the techniques of Baker, Boileau and Wang in [3].

As a sample application of Theorem 1.1, we demonstrate how it can be used to derive
the following result of Reznikov [14, Theorem 12.5] from well-known results about
2–groups and their cohomology rings.

Theorem 1.2 (Reznikov) Let � be the fundamental group of a closed, orientable
3–manifold M such that H1.M / Š Z=2˚Z=2. If �=�.2/ is finite and hc; ci D 0

for all nontrivial c 2H1.M /, then the Sylow-2 subgroup of �=�.2/ is equal to the
quaternion group of order 8. If �=�.2/ is finite and hc; ci is nontrivial for some
nontrivial c 2 H1.M /, then the Sylow-2 subgroup of �=�.2/ is isomorphic to a
generalized quaternion group Q2k for k > 3.

Algebraic & Geometric Topology, Volume 15 (2015)
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Proof Let G denote �=�.2/ , let S denote the Sylow-2 subgroup of G , and let
K denote G.1/ . Note that since G is metabelian, it follows that K is abelian. Let
K.2/ denote the 2–part of K and let K0 be the complementary subgroup of K so that
KŠK0˚K.2/ . Note that K0 is a characteristic subgroup of G and is therefore normal,
and that the order of G=K0 is equal to the order of S . Since S is a Sylow subgroup,
G=K0 Š S , and the inclusion S ,! G therefore has a right inverse r W G! S . This
shows that r�W H�.S/!H�.G/ is injective. It is a simple consequence of the universal
coefficients theorem (see Lemma 2.2 in Section 2 below) that r�W H 2.S/!H 2.G/ is
an isomorphism, and it follows from naturality of the cup product that the cup-product
pairing on H 2.S/ is isomorphic to the cup-product pairing on H 2.G/. Applying
Theorem 1.1, the cup-product pairing on H 2.S/ is therefore isomorphic to the linking
form on H1.M /Tors .

We now examine the possibilities for the group S . If S is abelian, then S ŠZ=2˚Z=2
and the cup-product pairing H 2.S/˝H 2.S/! H 4.S/ has 3–dimensional image
by the Künneth theorem. We may therefore assume that S is nonabelian. Since
H1.S/Š Z=2˚Z=2, S is a 2–group of maximal class (see [7, Section 5.4]), and is
therefore isomorphic to either a dihedral group, a semidihedral group, or a quaternion
group. The cup-product pairing on the second cohomology of a dihedral group of order
4k has image with rank larger than one (see [8]), and is degenerate on any semidihedral
group; see [6]. It follows that S is isomorphic to Q2k , a generalized quaternion group
of order 2k .

The cohomology ring H�.Q8/ of the quaternion group of order 8 has the feature that
any ˛ 2H 2.Q8/ satisfies ˛2D 0 (see [2]), whereas the cohomology ring of H�.Q2k /

for k > 3 has 2–dimensional elements with nontrivial squares; see [9]. Since the
cup-product pairing on H 2.S/ is isomorphic to the linking pairing on H1.M /Tors , it
follows that if hc; ci D 0 for all c 2H1.M /Tors , then S ŠQ8 ; otherwise S ŠQ2k

for some k > 3.

Given a manifold M , let zMab denote the maximal abelian cover of M . It is interesting
to note that there are only two isomorphism types of nondegenerate pairings .Z=2/2˝
.Z=2/2! Q=Z, and that both types appear as pairings on H1.M /Tors for a closed
orientable 3–manifold M such that b1. zMab/D 0. Examples of such manifolds are
given by the spaces S3=Q8 and S3=Q16 , where S3 is viewed as the group of unit
quaternions and Q2n is realized as the subgroup of S3 generated by ei�=n and j . It
has been shown by Kawauchi and Kojima in [11] that every nondegenerate pairing
A˝A!Q=Z on a finite abelian group A appears as the linking form of a 3–manifold
with b1.M /D 0. Given this result, it is interesting to ask the following:
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Question 2 Given a finite abelian group A, does every nondegenerate bilinear pairing
A˝A!Q=Z appear as the linking pairing of a 3–manifold M such that H1.M /DA

and b1. zMab/D 0?

Note that by Theorem 1.1, any pairing that appears in this way also appears as the
cup-product pairing on H 2.G/ for the finite metabelian group GŠ�1.M /=�1.M /.2/ .

The proof of Theorem 1.1 breaks into two parts. The first part, carried out in Section 2,
consists of showing that the linking pairing on H1.M / can be factored through the cup-
product pairing H 2.G/˝H 2.G/!H 4.G/. One consequence of this factorization is
the following theorem, which applies to quotients of �1.M / whose abelianization has
maximal order.

Theorem 1.3 Let � be the fundamental group of a closed, orientable 3–manifold M,
let ŒM �2H3.M / denote the fundamental class of M, and let qW �!G be a surjective
homomorphism onto a finite group G such that ker.q/� �.1/ . Then:

(i) H 2.G/˝H 2.G/!H 4.G/ is nondegenerate.

(ii) ord.zq�.ŒM �// �H1.M /D 0, where zqW M ! BG is a continuous map such that
zq�W �1.M /! �1.BG/ŠG is equal to q .

Note that this theorem provides information about how the fundamental class of the
manifold M behaves under finite quotient maps. Indeed, in the special case that
GŠH1.M /, this theorem shows that the image of the homomorphism zq�W H3.M /!

H3.G/ has maximal order, since the annihilator of H3.G/ is equal to the annihilator
of H1.G/ when G is an abelian group.

The second part of the proof of Theorem 1.1, carried out in Section 3, establishes the
following result using an argument known as spectral sequence comparison:

Lemma 1.4 Let � be the fundamental group of a closed, orientable 3–manifold M,
and let �W �1.M /! G be a surjective homomorphism. If ker.�/ � �.2/, then the
image of the cup-product pairing H 2.G/˝H 2.G/!H 4.G/ is cyclic.

As we will show in section 4, Theorem 1.1 follows easily from Lemma 1.4 together with
the relationship between the cup-product pairing and the linking pairing established in
Section 2.

We remark that the methods of this paper are purely algebraic, and also apply to
Poincaré duality groups of dimension 3.
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2 The linking pairing on H1.M /Tors and cup products in
quotients of �1.M / with maximal abelianization

Throughout this paper, we will let M be a closed orientable 3–manifold, � de-
note �1.M /, h�;�i denote the linking pairing on H1.M /Tors , and ŒM � 2 H3.M /

denote the fundamental class of M . For functoriality reasons, we will regard the
image of the linking pairing h�;�i as an element of H0.M;Q=Z/, rather than
as an element of the abstract group Q=Z. It will also be convenient to work the
dual pairing �W H 2.M /Tors˝H 2.M /Tors!H0.M;Q=Z/, defined by �.!1; !2/D

hŒM � _ !1; ŒM � _ !2i. This pairing satisfies the well-known identity

(2-1) �.!1; !2/D ŒM � _ .!1 ^ˇ�1.!2//;

where ˇW H 1.M;Q=Z/!H 2.M;Z/ denotes the Bockstein homomorphism arising
from the short exact sequence 0! Z!Q!Q=Z! 0.

The following lemma shows how the linking pairing on H1.M /Tors relates to the
cup-product pairing H 2.G/˝H 2.G/!H 4.G/.

Lemma 2.1 Let qW �!G be a surjective homomorphism onto a finite group G , and
let zqW M ! BG be a continuous map from M to the classifying space of G such that
zq�W �1.M /! �1.BG/ŠG equals q . Given !1; !2 2H 2.G/,

zq�
�
�.zq�.!1/; zq

�.!2//
�
D zq�.ŒM �/ _ ˇ�1.!1 ^!2/:

Proof We begin by noting that the expressions on the left-hand side of the above iden-
tity are well defined, since H 2.G/ is a finite group, and therefore zq�.!/2H 2.M /Tors .
Note also that, since G is finite, H i.G;Q/ D 0 for all i > 0. It follows that
ˇW H 1.G;Q=Z/ ! H 2.G;Z/ is an isomorphism, and therefore the map ˇ�1 ap-
pearing on the right-hand side of the above equation is well defined as well.

Recall that the cup-product pairing H i.G;A/˝H j .G;Z/! H iCj .G;A˝Z/ Š
H iCj .G;A/ equips H�.G;A/ with the structure of a right H�.G/–module. Given a
short exact sequence 0!A!B! C ! 0 of G –modules, the connecting homomor-
phisms in the long exact sequence

� � � !H i.G;A/!H i.G;B/!H i.G;C /
ı
!H iC1.G;A/! � � �

fit together to give an H�.G/–module homomorphism ıW H�.G;C /!H�.G;A/; ie
given ˛ 2H�.G;C / and ! 2H�.G/, ı.˛/ ^ ! D ı.˛ ^ !/; see [4, Chapter V.3].
Since the Bockstein homomorphism ˇW H�.G;Q=Z/! H�.G;Z/ is given by the
connecting homomorphism in the long exact sequence in cohomology arising from
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the short exact sequence 0! Z! Q! Q=Z! 0, given ! 2 H 1.G;Q=Z/ and
� 2 H 1.G;Z/, ˇ.!/ ^ � D ˇ.! ^ �/. It follows that given �1; �2 2 H 2.G;Z/,
�1 ^�2 D ˇ.ˇ

�1.�1/ ^ �2/, and therefore

(2-2) ˇ�1.�1 ^�2/D ˇ
�1.�1/ ^ �2:

Recall that for a continuous map f W X ! Y between topological spaces, the cap
product satisfies the following naturality property for c 2Hi.X /; � 2H j .Y /:

(2-3) f�.c _f �.�//D f�.c/ _ �:

Applying these identities together with the identity (2-1) for the pairing � and naturality
of the cup product and the Bockstein homomorphism, we obtain

zq�
�
�
�
zq�.!1/; zq

�.!2/
�� (2-1)
D zq�

�
ŒM � _

�
zq�.!1/ ^ ˇ�1.zq�.!2//

��
D zq�

�
ŒM � _

�
zq�.!1/ ^ zq

�.ˇ�1.!2//
��

D zq�
�
ŒM � _ zq�

�
!1 ^ˇ�1.!2/

��
(2-3)
D zq�.ŒM �/ _ .!1 ^ˇ�1.!2//

(2-2)
D zq�.ŒM �/ _ ˇ�1.!1 ^!2/:

We now turn to the proof of Theorem 1.3, which will require several preliminary
lemmas.

Lemma 2.2 Let f W X ! Y be a continuous map between topological spaces such
that H2.X / and H2.Y / are finite. If f�W H1.X /!H1.Y / is an isomorphism, then
f �W H 2.Y /!H 2.X / is an isomorphism.

Proof By naturality of the universal coefficients exact sequence, we have the following
commutative diagram of exact sequences:

0 // Ext.H1.Y /;Z/ //

f �

��

H 2.Y / //

f �

��

Hom.H2.Y /;Z/ //

f �

��

0

0 // Ext.H1.X /;Z/ // H 2.X / // Hom.H2.X /;Z/ // 0

Since H2.Y / and H2.X / are finite, the Hom terms in the above diagram are trivial
and therefore f �W H 2.Y / ! H 2.X / is completely determined by the morphism
f �W Ext.H1.Y /;Z/! Ext.H1.X /;Z/. If f�W H1.X /!H1.Y / is an isomorphism,
then f �W Ext.H1.Y /;Z/! Ext.H1.X /;Z/ is an isomorphism by functoriality, so the
lemma follows.
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Note that since finite groups have finite second homology groups, Lemma 2.2 can be
applied to any homomorphism between finite groups that induces an isomorphism on
the level of abelianizations. We will use the following simple consequence of this
lemma several times in what follows.

Lemma 2.3 Let M be a rational homology 3–sphere, let qW �1.M /!G be a surjec-
tive homomorphism onto a finite group, and let zqW M!BG be a continuous homomor-
phism from M to the classifying space of G such that zq�W �1.M /! �1.BG/ŠG is
equal to q . If ker.q/� �1.M /.1/ , then zq�W H 2.G/!H 2.M / is an isomorphism.

Proof We claim that the hypotheses of Lemma 2.2 hold in this setting. To see
that q�W H1.M / ! H1.G/ is an isomorphism, note that since ker.q/ � �.1/ , the
abelianization map � ! �=�.1/ Š H1.M / factors through q . It follows that the
homomorphism zq�W H1.M /!H1.G/ is injective. Since the map q is surjective, the
induced map zq�W H1.M /!H1.G/ is surjective as well.

Since H2.G/ is finite for any finite group G , it remains to check that H2.M / is
finite. This is a simple consequence of Poincaré duality and the universal coefficients
theorem, since H2.M / Š H 1.M / Š Hom.H1.M /;Z/, and Hom.H1.M /;Z/ D 0

since H1.M / is a torsion group.

The next lemma we will need is the following well-known result on the values taken
by the linking form.

Lemma 2.4 Let M be a 3–manifold. Given a 2 H 2.M /Tors , there exists b 2

H 2.M /Tors such that ord.�.a; b//D ord.a/.

Proof Let A denote H 2.M /Tors . It is a well-known consequence of Poincaré duality
that �W A�A!Q=Z is nondegenerate, so the homomorphism A! Hom.A;Q=Z/
given by a 7! �.a;�/ is injective. Given b 2A, let �b D ord.a/= ord.�.a; b//. Let d

be the greatest common divisor of f�b j b 2Ag. Then

ord.a/
d
��.a; b/D

�b � ord.�.a; b//
d

��.a; b/D
�b

d
� ord.�.a; b// ��.a; b/D 0

for all b , so .ord.a/=d/ � �.a;�/D 0, and therefore ord.�.a;�// divides ord.a/=d .
Since a 7! �.a;�/ is an isomorphism, ord.�.a;�//D ord.a/, so d D˙1. It follows
that for each prime p dividing ord.a/, there exists an element bp such that �bp

is
coprime to p , and hence the p–part of ord.a/ divides ord.�.a; b//. By taking a
multiple of bp if necessary, we can assume that ord.�.a; bp// is exactly equal to the
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p–part of ord.a/. Since the sum of a set of elements with pairwise coprime orders
n1; n2; : : : ; n` , in an abelian group has order given by n1 � n2 � � � � � n` ,

ord.�.a; b//D ord
�
�.a;

X
p

bp/

�
D ord

�X
p

�.a; bp/

�
D

Y
p

ord �.a; bp/D ord.a/:

The proof of Theorem 1.3 follows easily from the above lemmas.

Proof of Theorem 1.3 Let qW � ! G be a surjective homomorphism onto a finite
group such that ker.q/� �.1/ . Note that By Lemma 2.3, zq�W H 2.G/!H 2.M / is
an isomorphism.

We first show that the cup-product pairing H 2.G/˝H 2.G/!H 4.G/ is nondegen-
erate. Given a nontrivial element !1 2H 2.G/, zq�.!1/ gives a nontrivial element of
H 2.M /Tors since zq� is injective. By Lemma 2.4, there exists an element � 2H 2.M /

such that the order of �.zq�.!1/; �/ is equal to the order of !1 , and since zq�W H 2.G/!

H 2.M / is surjective, there exists an element !2 2 H 2.G/ such that zq�.!2/ D �.
Applying Lemma 2.1 together with the fact that zq�W H0.M;Q=Z/!H0.G;Q=Z/ is
an isomorphism, we have

0¤ zq�.�.zq
�.!1/; �//D zq�.�.zq

�.!1/; zq
�.!1///D zq�.ŒM �/ _ ˇ�1.!1 ^!2/:

This shows that !1 ^ !2 ¤ 0, and since !1 was an arbitrary nontrivial element of
H 2.G/, the cup product pairing H 2.G/˝H 2.G/!H 4.G/ is nondegenerate.

Note that the order of zq�.ŒM �/ _ ˇ�1.!1 ^ !2/ divides the order of zq�.ŒM �/, so
since

ord.!1/D ord.�.zq�.!1/; �//D ord
�
zq�.ŒM �/ _ ˇ�1.!1 ^!2/

�
;

the order of !1 divides ord.zq�.ŒM �// for all !1 2 H 2.G/. This shows that
ord.zq�.ŒM �// � H 2.G/ D 0. Since H 2.G/ Š H 2.M / Š H1.M /, ord.zq�.ŒM �//

annihilates H1.M / as well.

3 Cup products in H �.G/ for finite quotients G Š�1.M/=N

with N < �1.M/.2/

In this section we prove Lemma 1.4 from the introduction. Throughout this section,
we will let G be a finite group, and we will let �W �1.M /Š �! G be a surjective
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homomorphism such that ker.�/� �.2/ . We will also let QDH1.M /, N D Œ�; ��,
K D ŒG;G�, and we will refer to the maps labeled in the following commutative
diagram of exact sequences:

1 // N //

r

��

�
qı� //

�

��

Q //

id
��

1

1 // K // G
q // Q // 1

The above commutative diagram corresponds to a commutative diagram of continuous
maps of the form

zM //

zr

��

M
zqız� //

z�

��

BQ

id
��

BK // BG
zq // BQ;

where zM is the regular covering space of M corresponding to N <�1.M /. The map
z�� induces a morphism between the Lyndon–Hochschild–Serre spectral sequence for
the extension 1!K!G!Q! 1 and the Cartan–Serre spectral sequence for the
regular cover zM !M. The proof of Lemma 1.4 proceeds by analyzing this morphism.
We will require several preliminary lemmas.

Lemma 3.1 The cover zM is a rational homology 3–sphere and zr�W H 2.K/ !

H 2. zM / is an isomorphism.

Proof Since � surjects onto G , N Š �1. zM / surjects onto K and H1. zM / surjects
onto H1.K/. By assumption ker.�/ � �.2/ Š ŒN;N � D N .1/ and r D �jN , so
ker.r/ � N .1/. The abelianization map N ! N=N .1/ Š H1. zM / therefore factors
through r , and so zr�W H1. zM /!H1.K/ is an isomorphism. Since K is a finite group,
its abelianization H1.K/ is also finite, so H1.M;Q/ Š H1.K/˝Q is trivial, and
therefore zM is a rational homology 3–sphere. The result then follows by Lemma 2.3
in Section 2.

To set some notation for the next lemmas, let .Ek/
˛ , .dk/

˛ and .Ek/
ˇ , .dk/

ˇ denote
the pages and differentials in the cohomological spectral sequences H r .Q;H s.K//D

)H rCs.G/ and H r .Q;H s. zM //D)H rCs.M / respectively.
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Lemma 3.2 There exists a commutative diagram with exact rows of the form

(3-1)

0 // .E1;2
4
/˛ //

��
4
��

.E
1;2
3
/˛
.d

1;2

3
/˛
//

��
3
��

.E
4;0
3
/˛ //

��
3
��

.E
4;0
4
/˛ //

��
4
��

0

0 // .E1;2
4
/ˇ // .E1;2

3
/ˇ
.d

1;2

3
/ˇ
// .E4;0

3
/ˇ // .E4;0

4
/ˇ // 0

where the middle two homomorphisms labeled ��
3

are isomorphisms.

Proof Note that since the first cohomology group with integral coefficients is trivial
for any finite group, .E2/

˛ has the following form:

H 0.Q;H 3.K// H 1.Q;H 3.K// H 2.Q;H 3.K// H 3.Q;H 3.K// H 4.Q;H 3.K//

H 0.Q;H 2.K// H 1.Q;H 2.K// H 2.Q;H 2.K// H 3.Q;H 2.K// H 4.Q;H 2.K//

0 0 0 0 0

Z 0 H 2.Q/ H 3.Q/ H 4.Q/

By assumption the manifold M is orientable, so Q acts on zM by orientation preserving
homeomorphisms. It follows that Q acts on H 3. zM ;Z/ Š Z trivially, and hence
H i.Q;H 3. zM ;Z//ŠH i.Q/ for all i . Furthermore, since zM is a rational homology
3–sphere and H 1. zM /Š Hom.H1. zM /;Z/D 0, .E2/

ˇ has the following form:

Z 0 H 2.Q/ H 3.Q/ H 4.Q/

H 0.Q;H 2. zM // H 1.Q;H 2. zM // H 2.Q;H 2. zM // H 3.Q;H 2. zM // H 4.Q;H 2. zM //

0 0 0 0 0

Z 0 H 2.Q/ H 3.Q/ H 4.Q/

The map z� induces a morphism between these two spectral sequences, ie a se-
quence of homomorphisms ��

k
W .Ek/

˛! .Ek/
ˇ such that ��

k
ı .dk/

˛ D .dk/
ˇ ı ��

k
,

��
kC1

is the map induced on homology by ��
k

, and the map ��
2
W H r .Q;H s.K//!

H r .Q;H s. zM // is induced by the Q-module homomorphism q�W H s.K/!H s. zM /.
Since q�W H 2.K/!H 2. zM / is an isomorphism by Lemma 3.1 and q�W H s.K/!

H s. zM / is trivially an isomorphism for s 2 f0; 1g, the maps ��
2
W .E

r;s
2
/˛! .E

r;s
2
/ˇ

are isomorphisms for all pairs .r; s/ such that s � 2.
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Since the first row of each spectral sequence vanishes, the differentials .d i;2
2
/˛ , .d i;2

2
/ˇ

and .d i;1
2
/˛ , .d i;1

2
/ˇ , whose domain or range lie in the first row, are trivial for all i .

It follows that 0th row of the E3 –page of each spectral sequence is identical to the
0th row of the E2 –page, ie .Ei;0

3
/˛ Š .E

i;0
2
/˛ and .Ei;0

3
/ˇ Š .E

i;0
2
/ˇ for all i . Since

none of the d2 –differentials have image lying in the 0th or first columns, it also follows
that for j 2 f0; 1g, .Ej ;2

3
/˛ Š .E

j ;2
2
/˛ and .Ej ;2

3
/ˇ Š .E

j ;2
2
/ˇ .

Note that the E
1;2
3

terms of both spectral sequences are outside the range of the d3

differential, and that the d3 differential vanishes on the E
4;0
3

terms. This implies that
the rows in the following commutative diagram are exact:

0 // .E1;2
4
/˛ //

��
4
��

.E
1;2
3
/˛
.d

1;2

3
/˛
//

��
3
��

.E
4;0
3
/˛ //

��
3
��

.E
4;0
4
/˛ //

��
4
��

0

0 // .E1;2
4
/ˇ // .E1;2

3
/ˇ
.d

1;2

3
/ˇ
// .E4;0

3
/ˇ // .E4;0

4
/ˇ // 0

The fact that ��
2

induces isomorphisms on E
r;s
2

for s � 2 implies that ��
3

induces
isomorphisms .E1;2

3
/˛! .E

1;2
3
/ˇ and .E4;0

3
/˛! .E

4;0
3
/ˇ , since ��

3
is induced by ��

2

and each of these groups are isomorphic to the corresponding entries on the E2 –page
of the spectral sequence. This shows that the middle two homomorphisms in the above
commutative diagram are isomorphisms.

Lemma 3.3 The term .E
1;2
4
/ˇ is trivial.

Proof The term .E
1;2
4
/ˇ is isomorphic to .E1;2

1 /ˇ , so it suffices to show that .E1;2
1 /ˇ

is trivial. The term .E
1;2
1 /ˇ lies on the third diagonal of the E1–page for the spectral

sequence H r .Q;H s. zM //D)H rCs.M /. Since H r .Q;H s. zM // is annihilated by
jQj for any r � 1, the group E

r;s
k

is torsion for all r � 1. The groups .Ei;3�i
1 /ˇ give

successive quotients in the filtration

.E3;0
1 /ˇ Š F3

3 � F3
2 � F3

1 � F3
0 DH 3.M /Š Z:

Since Z is torsion free and .E3;0
1 /ˇ is torsion, .E3;0

1 /ˇ Š 0. This implies that

.E2;1
1 /ˇ Š F3

2 =F
3
3 Š F3

2 =.E
3;0
1 /Š F3

2 ;

so F3
2
� Z is torsion and hence trivial as well. Applying this argument once more, we

find that .E1;2
1 /ˇ Š F3

1
=F3

2
must vanish as well.

Lemma 3.4 The term .E
4;0
4
/˛ is isomorphic to .E4;0

4
/ˇ .
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Proof By Lemma 3.3, the term in bottom left of the commutative diagram (3-1) from
Lemma 3.2 is trivial. The commutativity of the diagram together with the fact that
the second vertical map is an isomorphism shows that .E1;2

4
/˛ is also trivial. Since

the first 3 maps in this commutative diagram of exact sequences are isomorphisms,
a straightforward diagram chasing argument shows that the last map ��

4
W .E

4;0
4
/˛!

.E
4;0
4
/ˇ is an isomorphism as well.

Lemma 3.5 The term .E
4;0
4
/ˇ is cyclic.

Proof Note that there is an exact sequence

.E
0;3
4
/ˇ

.d
4;0

4
/ˇ

�����! .E
4;0
4
/ˇ �! .E

4;0
5
/ˇ �! 0:

Since E
4;0
5
ŠE

4;0
1 and H 4.�/D 0, it follows that .d4;0

4
/ˇ is surjective. The group

.E
0;3
4
/ˇ is isomorphic to a subgroup of

.E
0;3
2
/ˇ ŠH 0.Q;H 3. zM //Š Z;

so since .E4;0
4
/ˇ is isomorphic to a quotient of .E0;3

4
/ˇ, .E4;0

4
/ˇ is cyclic.

Lemma 3.6 The map q�W H 4.Q/!H 4.G/ has cyclic image.

Proof Recall that the image of q�W H 4.Q/!H 4.G/ is isomorphic to .E4;0
1 /˛, and

that .E4;0
1 /˛ is isomorphic to a quotient of .E4;0

4
/˛ . By Lemma 3.4,

.E
4;0
4
/˛ Š .E

4;0
4
/ˇ;

and by Lemma 3.5, .E4;0
4
/ˇ is cyclic. Since quotients of cyclic groups are cyclic, the

result follows.

We are now ready to prove Lemma 1.4, which is an immediate consequence of
Lemma 2.2 from the previous section and Lemma 3.6.

Proof of Lemma 1.4 Let !1 and !2 be elements of H 2.G/. By Lemma 2.2,
q�W H 2.Q/!H 2.G/ is surjective, so there exist ˛1; ˛22H 2.Q/ such that q�.˛1/D

!1 and q�.˛2/D !2 . It follows that

!1 ^!2 D q�.˛1/ ^ q�.˛2/D q�.˛1 ^˛2/;

so any cup product of elements in H 2.G/ lies in q�.H 4.Q//. By Lemma 3.6, the
image of q�W H 4.Q/!H 4.G/ is cyclic.
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4 The proof of Theorem 1.1

We now turn to the proof of the main theorem.

Proof of Theorem 1.1 Since ker.q/� �.2/ and �.2/ � �.1/ , the nondegeneracy of
the cup-product pairing follows from Theorem 1.3. The cyclicity of the image C of
the cup-product pairing H 2.G/˝H 2.G/!H 4.G/ follows from Lemma 3.6, so it
remains to demonstrate the existence of the desired embedding i W C !Q=Z.

Let  W H 4.G/!H0.G;Q=Z/ denote the map ˛ 7! zq�.ŒM �/ _ ˇ�1.˛/, and let i

denote the restriction of  to C . By Lemma 2, given !1 and !2 in H 2.G/,

(4-1) i.!1 ^!2/D zq�.ŒM �/ _ ˇ�1.!1 ^!2/D zq�.�.zq
�.!1/; zq

�.!2///:

After identifying H0.G;Q=Z/ and H0.M;Q=Z/ with Q=Z in the natural way, the
last term of this equation is equal to hŒM � _ zq�.!1/; ŒM � _ zq�.!2/i.

It remains to check that i W C ! Q=Z is injective. Given an abelian group A, let
exp.A/ denote the maximal order of an element of A. Note that for a finite abelian
group A, exp.A/D exp.A˝A/. Since C is cyclic and is isomorphic to a quotient
of H 2.G/˝H 2.G/, it follows that the order of C divides exp.H 2.G/˝H 2.G//D

exp.H 2.G//. It therefore suffices to show that i.C / contains an element of order
exp.H 2.G//.

By Lemma 2.4 there exist elements �1; �2 2H 2.M / such that the order of �.�1; �2/ is
equal to exp.H 2.M //. Since ker.q/��.1/, q�W H 2.G/!H 2.M / is an isomorphism
by Lemma 2.3, so exp.H 2.G//D exp.H 2.M //, and there exist elements !1 and !2

such that q�.!i/D �i . Equation (4-1) above therefore shows that

i.!1 ^!2/D zq�.�.�1; �2//;

and since zq�W H0.M;Q=Z/!H0.G;Q=Z/ is an isomorphism,

ord.i.!1 ^!2//D ord.zq�.�.�1; �2///D ord.�.�1; �2//D exp.H 2.G//:
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A colored operad for string link infection

JOHN BURKE

ROBIN KOYTCHEFF

Budney constructed an operad that encodes splicing of knots and further showed
that the space of (long) knots is generated over this splicing operad by the space of
torus knots and hyperbolic knots. This generalized the satellite decomposition of
knots from isotopy classes to the level of the space of knots. Infection by string links
is a generalization of splicing from knots to links. We construct a colored operad
that encodes string link infection. We prove that a certain subspace of the space of
2–component string links is generated over a suboperad of our operad by its subspace
of prime links. This generalizes a result from joint work with Blair from isotopy
classes of string links to the space of string links. Furthermore, all the relations in the
monoid of 2–string links (as determined in our joint work with Blair) are captured by
our infection operad.

57M25, 18D50, 55P48, 57R40, 57R52

1 Introduction

This paper concerns operations on knots and links, particularly infection by string
links. Classically, knots and links are considered as isotopy classes of embeddings of a
1–manifold into a 3–manifold, such as R3 , D3 , or S3 . Instead of considering just
isotopy classes, we consider the whole space of links, that is the space of embeddings of
a certain 1–manifold into a certain 3–manifold. We also consider spaces parametrizing
the operations and organize all of these spaces via the concept of an operad (or colored
operad). The operad framework is in turn convenient for studying spaces of links
and generalizing statements about isotopy classes to the space level. Finding such
statements to generalize was the motivation for recent work of the authors and R Blair
on isotopy classes of string links [1].

Our work closely follows the work of Budney. Budney first showed that the little
2–cubes operad C2 acts on the space K of (long) knots, which implies the well-known
commutativity of connect-sum of knots on isotopy classes. He showed that K is freely
generated over C2 by the space P of prime knots, generalizing the prime decomposition
of knots of Schubert from isotopy classes to the level of the space of knots [2]. Later,
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he constructed a splicing operad SP which encodes splicing of knots. He showed that
K is freely generated over a certain suboperad of SP by the subspace of torus and
hyperbolic knots, thus generalizing the satellite decomposition of knots from isotopy
classes to the space level [4].

Infection by string links is a generalization of splicing from knots to links. This
operation is most commonly used in studying knot concordance. One instance where
string link infection arises is in the clasper surgery of Habiro [15], which is related to
finite-type invariants of knots and links. In another vein, Cochran, Harvey, and Leidy
observed that iterating the infection operation gives rise to a fractal-like structure [9].
This motivated our work, and we provide another perspective on the structure arising
from string link infection. We do this by constructing a colored operad which encodes
this infection operation. We then prove a statement that decomposes part of the space
of 2–component string links via our colored operad.

Splicing and infection are both generalizations of the connect-sum operation. The latter
is always a well defined operation on isotopy classes of knots, but if one considers long
knots, it is even well defined on the knots themselves. This connect-sum operation
(ie “stacking”) is also well defined for long (aka string) links with any number of
components. Thus we restrict our attention to string links.

1.1 Basic definitions and remarks

Let I D Œ�1; 1� and let D2 �R2 ŠC be the unit disk with boundary.

Definition 1.1 A c–component string link (or c–string link) is a proper embedding
of c disjoint intervals a

c

I ,! I �D2

whose values and derivatives of all orders at the boundary points agree with those of
a fixed embedding ic . For concreteness, we take ic to be the map which on the i th

copy of I is given by t 7! .t;xi/, where xi D ..i �1/=c; 0/. We will call ic the trivial
string link. Another example of a string link is shown in Figure 1.

In our work [1], our definition of string links allowed more general embeddings, and
the ones defined above were called “pure string links”. We choose the definition above
in this paper because infection by string links behaves more nicely with this more
restrictive notion of string link. (Specifically, it preserves the number of components in
the infected link.)
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D2 � f0g

D2 � f1g

Figure 1: A string link

The condition on derivatives is not always required in the literature.1 We impose it
because this allows us to identify a c–string link with an embedding

`
c R ,!R�D2

which agrees with a fixed embedding outside of I�D2 . Let LcDEmb.
`

c R;R�D2/

denote the space of c–string links, equipped with the C1 Whitney topology. An isotopy
of string links is a path in this space, so the path components of Lc are precisely the
isotopy classes of c–string links. Often we will write K for the space L1 of long knots.

The braids which qualify as string links under Definition 1.1 are precisely the pure
braids. There is a map from Lc to the space Emb.

`
c S1;R3/ of closed links in R3

by taking the closure of a string link. When c D 1, this map is an isomorphism on �0 .
In other words, isotopy classes of long knots correspond to isotopy classes of closed
knots. In general, this map is easily seen to be surjective on �0 , but it is not injective
on �0 . For example, any string link and its conjugation by a pure braid yield isotopic
closed links, and for c � 3, there are conjugations of string links by braids which are
not isotopic to the original string link. We will sometimes write just “link” rather than
“string link” or “closed link” when the type of link is either clear from the context or
unimportant.

1.2 Main results

Our first main result is the construction of a colored operad encoding string link infection.
An operad O consists of spaces O.n/ of n–ary operations for all n 2 N . Roughly,
an operad acts on a space X if each O.n/ can parametrize ways of multiplying n

elements in X . (We provide thorough definitions in Section 3.) A colored operad
arises when different types of inputs must be treated differently. In our case, we have
to treat string links with different numbers of components differently, so the colors in

1The homotopy type of the space of such embeddings would be unchanged by omitting the condition on
derivatives, since the space of possible tangent vectors and higher-order derivatives at the boundary is
contractible.
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our colored operad are the natural numbers. This theorem is proven as Theorem 5.6
and Proposition 6.3.

Theorem 1 There is a colored operad I which encodes the infection operation and
acts on spaces of string links Lc for c D 1; 2; 3; : : : .

� When restricting to the color 1, the (ordinary) operad If1g which we recover is
Budney’s splicing operad, and the action of If1g on K is the same as Budney’s
splicing operad action.

� For any c , the operad Ifcg obtained by restricting to c is an operad which admits
a map from the little intervals operad C1 . The resulting C1 –action on Lc encodes
the operation of stacking string links.

� On the level of �0 , our infection operad encodes all the relations in the whole
2–string link monoid.

We then use our colored operad to decompose part of the space of string links. We rely
on an analogue of prime decomposition for 2–string links proven in our joint work
with R Blair [1], so we must restrict to c D 2. We consider a “stacking operad” I# ,
which is a suboperad of If2g and which is homeomorphic to the little intervals operad.
This operad simply encodes the operation of stacking 2–string links in I �D2 , with
the little intervals acting in the I factor. The theorem below is proven as Theorem 6.8.

Theorem 2 Let �0S2 denote the submonoid of �0L2 generated by those prime 2–
string links which are not central. (By [1], this monoid is free.) Let S2 be the subspace
of L2 consisting of the path components of L2 that are in �0S2 . Then �0S2 is freely
generated as a monoid over the stacking suboperad I# . The generating space is the
subspace consisting of those components in S2 which correspond to prime string links.

1.3 Organization of the paper

In Section 2, we review the definition of string link infection.

In Section 3, we review the definitions of an operad and the particular example of the
little cubes operad. We then give the more general definition of a colored operad.

In Section 4, we review Budney’s operad actions on the space of knots. This includes
his action of the little 2–cubes operad, as well as the action of his splicing operad.

In Section 5, we define our colored operad for infection and prove Theorem 1. We
make some remarks about our operad related to pure braids and rational tangles, and
we briefly discuss a generalization to embedding spaces of more general manifolds.
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In Section 6, we focus on the space of 2–string links. We prove Theorem 2, which
decomposes part of the space of 2–string links in terms of a suboperad of our infection
colored operad. We conclude with several other statements about the homotopy type of
certain components of the space of 2–string links.

Notation

�
`

c X means

c times‚ …„ ƒ
X t � � � tX .

� f jA means the restriction of f to A.

� X denotes the closure of X ; X
ı

denotes the interior of X .

� Œa� denotes the equivalence class represented by an element a; Œa1; : : : ; an�

denotes the equivalence class of a tuple .a1; : : : ; an/.
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2 Infection

Infection is an operation which takes a link with additional decoration together with a
string link and produces a link. This operation is a generalization of splicing which
in turn is a generalization of the connect-sum operation. Infection has been called
multi-infection by Cochran, Friedl, and Teichner [8], infection by a string link by
Cochran [7] and tangle sum by Cochran and Orr [10]. Special cases of this construction
have been used extensively since the late 1970s, for example in the work of Gilmer [14],
Livingston [22], Cochran, Orr, and Teichner [11; 12], Harvey [16], and Cimasoni [6].
The operad we define in this paper will encode a slightly more general operation than
the infection operation that has been defined in previous literature. This section is meant
to inform the reader of the definition in previous literature and provide motivation for
the infection operad.

Algebraic & Geometric Topology, Volume 15 (2015)



3376 John Burke and Robin Koytcheff

2.1 Splicing

Consider a link R 2 S3 and a closed curve � 2 S3 n R such that � bounds an
embedded disk in S3 (� is unknotted in S3 ) which intersects the link components
transversely. Given a knot K , one can create a new link R�.K/, with the same number
of components as R, called the result of splicing R by K at �. Informally, the splicing
process is defined by taking the disk in S3 bounded by �, cutting R along the disk,
grabbing the cut strands, tying them into the knot K (with no twisting among the
strands) and regluing. The result of splicing given a particular R, � and K is show in
Figure 2. Note that if � simply linked one strand of R then the result of the splicing
would be isotopic to the connect-sum of R and K .

R

�

K

R�.K/

Figure 2: An example of the splicing operation

Formally, R�.K/ is arrived at by first removing a tubular neighborhood, N.�/, of �
from S3 . Note S3 nN.�/� S3 is a solid torus with R embedded in its interior. Let
CK denote the complement in S3 of a tubular neighborhood of K . Since the boundary
of CK is also a torus, one can identify these two manifolds along their boundary. In
order to specify the identification, we use the terminology of meridians and longitudes.
Recall that the meridian of a knot is the simple closed curve, up to ambient isotopy,
on the boundary of the complement of the knot which bounds a disk in the closure of
the tubular neighborhood of the knot and has C1 linking number with the knot. Also
recall that the longitude of a knot is the simple closed curve, up to ambient isotopy, on
the boundary of the complement of the knot which has C1 intersection number with
the meridian of the knot and has zero linking number with the knot.

The gluing of S3 n N.�/ to CK is done so that the meridian of the boundary of
S3 nN.�/ is identified with the meridian of K in the boundary of CK . Note that this
process describes a Dehn surgery with surgery coefficient 1 along K � S3 where
the solid torus glued in is S3 nN.�/. Thus, the resulting manifold will be a 3–sphere
with a subset of disjoint embedded circles whose union is R�.K/ (the image of R

under this identification). Although the embedding of R�.K/ in S3 depends on the
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identification of the surgered 3–manifold with S3 , its isotopy class is independent of
this choice of identification.

2.2 String link infection

Although there is a well-studied generalization of the connect-sum operation from
closed knots to closed links, there is no generalization of splicing by a closed link.
There is, however, a generalization of splicing called infection by a string link, which
we will now define. See the work of Cochran, Friedl, and Teichner [8, Section 2.2] for
a thorough reference.

By an r –multi-disk D we mean the oriented disk D2 together with r ordered embedded
open disks D1; : : :Dr (see Figure 3). Given a link L� S3 we say that an embedding
'W D ! S3 of an r –multi-disk into S3 is proper if the image of the multi-disk,
denoted by D , intersects the link components transversely and only in the images of
the disks D1; : : :Dr as in Figure 3. We will refer to the image of the boundary curves
of '.D1/; : : : ; '.Dr / by �1; : : : ; �r .

D

D1
D2

Dr

D

�1 �r

Figure 3: An r –multi-disk and a properly embedded multi-disk

Suppose R� S3 is link, D � S3 is the image of a properly embedded r –multi-disk,
and L is an r –component string link. Then informally, the infection of R by L at
D , denoted by RD.L/, is the link obtained by tying the r collections of strands of R

that intersect the disks '.D1/; : : : ; '.Dr / into the pattern of the string link L, where
the strands linked by �i are identified with the i th component of L, such that the i th
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collection of strands are parallel copies of the i th component of L. Figure 5 shows an
example of this operation.

We now define this operation formally. Given a string link LW
`

r I ,! I �D2 , let
CL denote the complement of a tubular neighborhood of (the image of) L in I �D2 .
In Figure 4, an example of a string link is shown with its complement to the right. The
meridian of a component of a string link is the simple closed curve, up to ambient isotopy,
on the I � @D2 boundary of the closure of the tubular neighborhood of the component
which bounds a disk and has C1 linking number with the component. We call the set
of such meridians the meridians of the string link. The longitude of a component of a
string link is a properly embedded line segment f W I! I�@D2 , up to ambient isotopy,
on the I �@D2 boundary of the closure of the tubular neighborhood of the component;
it is required to have C1 intersection number with the meridian of that component, to
have zero linking number with that component, and to satisfy f .0/D .1; 0/2 f0g�@D2

and f .1/D .1; 1/ 2 f1g�@D2 . We call the set of such longitudes the longitudes of the
string link. In Figure 4 the meridians �i and longitudes `i are shown on the boundary
of the complement. Note that the boundary of the complement of any r –component
string link is homeomorphic to a genus-r orientable surface.

`1

�1

�2

`2

Figure 4: A string link and its complement

Let R� S3 be a link, and let LW
`

r I ,! I �D2 � S3 be a string link. Fix a proper
embedding of a thickened r –multidisk I �D in S3 nR. Formally the infection of R

by L at D is obtained by removing I � .D n
F

i '.Di// from S3 and gluing in the
complement of L. Note that I � .Dn

F
i '.Di// is the complement of a r –component

trivial string link T (see Figure 5), and thus the boundary of S3n.I�.Dn
F

i '.Di/// is
a genus-r orientable surface. One identifies the boundary of S3n.I �.Dn

F
i '.Di///

and the boundary of the complement of L, @CL , by
� identifying I � @D � S3 n .I � .D n

F
i '.Di/// with I � @D2 � @CL ,

� identifying f0; 1g� .D n
F

i '.Di//� S3 n .I � .D n
F

i '.Di/// with .f0; 1g�
D2/ nN.L/� @CL , and

Algebraic & Geometric Topology, Volume 15 (2015)



A colored operad for string link infection 3379

� identifying I � @'.Di/ � S3 n .I � .D n
F

i '.Di/// with the boundaries of
the tubular neighborhoods of the components of L in @CL in such a way that
the meridians �i and longitudes `i of L are identified with f1

2
g � @'.Di/ and

I � f0g respectively.

D

R

Figure 5: Infection of the string link R along D by the string link L from Figure 4

We claim that the resulting manifold is S3 containing a link RD.L/ (which is the
image of R under this identification). The resulting manifold is homeomorphic to S3

because

S3
n Int

�
I �

�
D n

G
i

'.Di/

��
[ .I �D2/ nN.L/

D
�
S3
n .I �D/

�
[

�
I �

G
i

'.Di/[ .I �D2/ nN.L/

�
Š S3;

where the last homeomorphism follows form the observation that the previous space is
the union of two 3–balls. Again, the specific embedding of RD.L/ will depend on the
choice of homeomorphism, but all choices will yield isotopic embeddings.
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3 Operads

We start by reviewing the definitions of an operad OD fO.n/gn2N , and an action of
O on X (aka an algebra X over O ). We then proceed to colored operads. Technically,
the definition of a colored operad subsumes the definition of an ordinary operad, but
for ease of readability, we first present ordinary operads. Readers familiar with these
concepts may safely skip this section.

3.1 Operads

Operads can be defined in any symmetric monoidal category, but we will only consider
the category of topological spaces. In this case, the rough idea is as follows. An algebra
X over an operad O is a space with a multiplication X �X ! X , and the space
O.n/ parametrizes ways of multiplying n elements of X , ie maps X n!X . In other
words, O.n/ captures homotopies between different ways of multiplying the elements,
as well as homotopies between these homotopies, etc. Thus an element of O.n/ is an
operation with n inputs and one output. This can be visualized as a tree with n leaves
and a root, and in fact, free operads are certain spaces of decorated trees. For a more
detailed introduction, the reader may wish to consult the book of Markl, Shnider, and
Stasheff [23], May’s book [24], or the expository paper of McClure and Smith [25].

Definition 3.1 An operad O (in the category of spaces) consists of

� a space O.n/ for each nD 1; 2; : : : with an action of the symmetric group †n ,

� structure maps

(1) O.n/�O.k1/� � � � �O.kn/!O.k1C � � �C kn/;

such that the following three conditions are satisfied:

Associativity The following diagram commutes:

O.n/�
nY

iD1

O.ki/�

nY
iD1

kiY
jD1

O.`i;j / //

��

O.n/�
nY

iD1

O
� kiX

jD1

`i;j

�

��

O.k1C � � �C kn/�

nY
iD1

kiY
jD1

O.`i;j / // O
� nX

iD1

kiX
jD1

`i;j

�
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Symmetry Let � � � denote the diagonal action on the product

O.n/� .O.k1/� � � � �O.kn//

coming from the actions of †n on O.n/ and on O.k1/� � � � �O.kn/ by permuting
the factors. For a partition Ek D .k1; : : : ; kn/ of a natural number k1C � � � C kn , let
� Ek 2†k1C���Ckn

denote the “block permutation” induced by � and Ek .

We require that the following composition agrees with the map of Equation (1):

O.n/�
nY

iD1

O.ki/
���
�!O.n/�

nY
iD1

O.k�.i// �!O
� nX

iD1

ki

�
��1
Ek
�!O

� nX
iD1

ki

�
:

We also require that for �i 2†ki
for i D 1; : : : ; n, the following diagram commutes:

O.n/�
nY

iD1

O.ki/

id��1������n

��

// O
� nX

iD1

ki

�
�1������n

��

O.n/�
nY

iD1

O.ki/ // O
� nX

iD1

ki

�
Identity There exists an element 1 2O.1/ (ie a map �!O.1/) which induces the
identity on O.k/ via

O.1/�O.k/!O.k/;
.1;L/ 7!L;

and which induces the identity on O.n/ via

O.n/�O.1/�O.1/� � � � �O.1/!O.n/;
.L; 1; 1; : : : ; 1/ 7!L:

Some authors define the structure maps via ıi operations, ie plugging in just one
operation into the i th input, as opposed to n operations into all n inputs. These
ıi maps can be recovered from the above definition by setting kj D 1 for all j ¤ i

and using the identity element in O.1/.

Definition 3.2 Given an operad O , an action of O on X (also called an algebra X

over O) is a space X together with maps

O.n/�X n
!X
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such that the following conditions are satisfied:

Associativity The following diagram commutes:

O.n/�O.k1/� : : :�O.kn/�X k1C���Ckn //

��

O.n/�X n

��
O.k1C � � �C kn/�X k1C���Ckn // X

Symmetry For each n, the action map is †n –invariant, where †n acts on O.n/ by
definition, on X n by permuting the factors, and on the product diagonally. In other
words, the action map descends to a map

O.n/�†n
X n
!X:

Identity The identity element 1 2O.1/ together with the map

O.1/�X !X

induce the identity map on X , ie the map takes .1;x/ 7! x .

3.2 The little cubes operad

Our infection colored operad extends Budney’s splicing operad, which in turn was an
extension of Budney’s action of the little 2–cubes operad on the space of long knots.
Thus the little 2–cubes operad is of interest here.

Definition 3.3 The little j –cubes operad Cj is the operad with Cj .n/ the space of
maps

.L1; : : : ;Ln/W
a

n

Ij ,! Ij

which are embeddings when restricted to the interiors of the Ij and which are increasing
affine-linear maps in each coordinate. The structure maps are given by composition:

Cj .n/� Cj .k1/� : : :� Cj .kn/ �! Cj .k1C � � �C kn/;

.L1; : : : ;Ln/; .L
1
1; : : : ;L

1
k1
/; : : : ;.Ln

1; : : : ;L
n
kn
/

7! .L1ı .L
1
1; : : : ;L

1
k1
/; : : : ;Lnı .L

n
1; : : : ;L

n
kn
//:

Note that for all j � 2, the multiplication induced by choosing (any) element in Cj .2/

is commutative up to homotopy, which can be seen via the same picture that shows
that �j X is abelian for j � 2.
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3.3 Colored operads

Now we present the precise definitions of a colored operad and an action of a colored
operad on a space. This generalization of an operad is necessary to generalize Budney’s
operad from splicing of knots to infection by links.

Definition 3.4 A colored operad OD .O;C / (in the category of spaces) consists of:

� A set of colors C .

� A space O.c1; : : : ; cnI c/ for each .nC1/–tuple .c1; : : : ; cn; c/2C together with
compatible maps O.c1; : : : ; cnI c/!O.c�.1/; : : : ; c�.n/I c/ for each � 2†n .

� (Continuous) maps

O.c1; : : : ; cnI c/�O.d1;1; : : : ; d1;k1
I c1/� � � � �O.dn;1; : : : ; dn;kn

I cn/

�!O.d1;1; : : : ; dn;kn
I c/:

Here the maps satisfy the following three conditions:

Associativity The map below is the same regardless of whether one first applies the
structure maps to the first two factors or the last two factors on the left-hand side:

O.c1; : : : ; cnI c/�

nY
iD1

O.di;1; : : : ; di;ki
I ci/�

nY
iD1

kiY
jD1

O.ei;j ;1; : : : ; ei;j ;`i;j
I di;j /

�!O.e1;1;1; : : : ; en;kn;`1;kn
/:

Symmetry The following diagram below commutes. The vertical map is induced
by � in both the first factor and the last n factors, and � Ek 2†k1C���Ckn

is the block
permutation induced by � and the partition .k1; : : : ; kn/:

O.c1; : : : ; cnI c/�

nY
iD1

O.di;1; : : : ; di;ki
I ci/ //

���
��

O.d1;1; : : : ; dn;kn
I c/

�Ek

��
O.c�.1/; : : : ; c�.n/I c/

�

nY
iD1

O.d�.i/;1; : : : ; d�.i/;k�.i/ I c�.i// // O.d1;1; : : : ; dn;kn
I c/
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We also require that, for �i 2†ki
, i D 1; : : : ; n, the following diagram commutes:

O.c1; : : : ; cnI c/�

nY
iD1

O.di;1; : : : ; di;ki
I ci/ //

id��1������n

��

O.d1;1; : : : ; dn;kn
I c/

�1������n

��
O.c1; : : : ; cnI c/�

nY
iD1

O.di;1; : : : ; di;ki
I ci/ // O.d1;1; : : : ; dn;kn

I c/

Identity For every c 2 C , there is an element 1c 2O.cI c/ which together with

O.cI c/�O.c1; : : : ; cnI c/!O.c1; : : : ; cnI c/

induces the identity map on O.c1; : : : ; cnI c/. We also require that the elements
1c1
; : : : ; 1cn

together with

O.c1; : : : ; cnI c/�O.c1I c1/� � � � �O.cnI cn/!O.c1; : : : ; cnI c/

induce the identity map on O.c1; : : : ; cnI c/.

The colors c1; : : : ; cn can be thought of as the colors of the inputs, while c is the color
of the output. A colored operad with C D fcg is just an operad, where

O.c; : : : ; c„ ƒ‚ …
n times

I c/

is O.n/. Sometimes, for brevity, we write “operad” to mean “colored operad”.

Note that if we have a colored operad O with colors C and a subset C 0 � C , we can
restrict to another colored operad OC 0 consisting of just the spaces O.c1; : : : ; cnI c/

with ci ; c 2 C 0 (and the same structure maps as O).

Definition 3.5 Given a colored operad OD .O;C /, an action of O on A (also called
an O–algebra A) consists of a collection of spaces fAcgc2C together with maps

(2) O.c1; : : : ; cnI c/�Ac1
� � � � �Acn

!Ac

satisfying the following conditions:
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Associativity The following diagram commutes:

O.c1; : : : ; cnI c/

�

nY
iD1

O.di;1; : : : ; di;ki
I ci/�

nY
jD1

Adj ;kj
//

��

O.c1; : : : ; cnI c/�

nY
iD1

Aci

��
O.d1;1; : : : ; dn;kn

I c/�

nY
jD1

Adj ;kj
// Ac

Symmetry For each � 2 †n , the following diagram commutes, where the vertical
map is induced by the †n –action and permuting the factors of A:

O.c1; : : : ; cnI c/�Ac1
� � � � �Acn

//

��

Ac

O.c�.1/; : : : ; c�.n/I c/�Ac�.1/ � � � � �Ac�.n/

44

Identity The map induced by 1c 2O.c; c/ together with O.cI c/�Ac!Ac is the
identity on Ac .

If we have a subset C 0 � C , the restriction colored operad OC 0 acts on the collection
of spaces fAcgc2C 0 .

Example 3.6 A planar algebra as in the work of Jones [20] is an algebra over a certain
colored operad. In fact, planar diagrams form a colored operad called the planar operad
P . The colors C are the even natural numbers, and P.c1; : : : ; cnI c/ is the space of
diagrams with n holes, ci strands incident to the i th boundary circle, and c strands
incident to the outer boundary circle. If Ac denotes the space of tangle diagrams in D2

with c endpoints on @D2 , then the collection fAcgc2C is an example of an algebra
over P (aka a planar algebra).

4 A review of Budney’s operad actions

4.1 Budney’s 2–cubes action

The operation of connect-sum of knots is always well defined on isotopy classes of
knots. If one considers long knots, one can further define connect-sum (or stacking) of
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knots themselves, rather than just the isotopy classes. That is, there is a well-defined
map

#W K�K! K;

where K D Emb.R;R�D2/ is the space of long knots. If one descends to isotopy
classes, this operation is commutative, ie # is homotopy-commutative. See Budney’s
paper [2, page 4, Figure 2] for a beautiful picture of the homotopies involved. This
picture suggests that one can parametrize the operation # by S1 ' C2.2/. Thus it
suggests that the little 2–cubes operad C2 acts on K .

Budney succeeded in constructing such a 2–cubes action, but to do so, he had to
consider a space of fat long knots

EC.1;D2/ WD ff W R1
�D2 ,!R1

�D2
j supp.f /� I �D2

g;

where supp.f / is defined as the closure of fx 2R1 �D2 j f .x/¤ xg. The notation
EC.1;D2/ stands for (self-)embeddings of R1 �D2 with cubical support. This space
is equivalent to the space of framed long knots, but one can restrict to the subspace
where the linking number of the curves f jR�.0;0/ and f jR�.0;1/ is zero; this subspace
is then equivalent to the space of long knots.

The advantage of EC.1;D2/ is that one can compose elements. In the 2–cubes action
on this space, the first coordinate of a cube acts on the R factor in R�D2 , while the
second factor dictates the order of composition of embeddings. Precisely, the action is
defined as follows. For one little cube L, let Ly be the embedding I ,! I given by
projecting to the last factor. Let Lx be the embedding I ,! I given by projecting to the
first factor(s). Let � 2†n be a permutation (thought of as an ordering of f1; : : : ; ng)
such that L

y

�.1/
.0/� � � � �L

y

�.n/
.0/. The action

C2.n/�EC.1;D2/n! EC.1;D2/

is given by

.L1; : : : ;Ln/�.f1; : : : ; fn/ 7!Lx
�.n/ıf�.n/ı.L

x
�.n//

�1
ı� � �ıLx

�.1/ıf�.1/ı.L
x
�.1//

�1:

4.2 The splicing operad

In the above 2–cubes action, the second coordinate is only used to order the embeddings.
Thus instead of the 2–cubes operad, one could consider an operad of “overlapping
intervals” C0

1
. An element in C0

1
.n/ is n intervals in the unit interval, not necessarily

disjoint, but with an order dictating which interval is above the other when two intervals
do overlap. Precisely, an element of C0

1
.n/ is an equivalence class .L1; : : : ;Ln; �/

where each Li is an embedding I ,! I and where � 2†n . Elements .L1; : : : ;Ln; �/
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and .L0
1
; : : : ;L0n; �

0/ are equivalent if Li D L0i for all i and if whenever Li and
Lj intersect, ��1.i/ � ��1.j / () .� 0/�1.i/ � .� 0/�1.j /. It is not hard to see
what the structure maps for the operad are (and they are given in Budney’s paper [4]).
Budney then easily recasts his 2–cubes action as an action of the overlapping intervals
operad C0

1
.

The splicing operad SCD2

1
(which we abbreviate for now as SC ) is formally similar

to the overlapping intervals operad, in that SC.n/ consists of equivalence classes of
elements .L0;L1; : : : ;Ln; �/ with the same equivalence relation as for C0

1
. In the

splicing operad, however, L0 is in EC.1;D2/, L1; : : : ;Ln are embeddings

Li W I �D2 ,! I �D2;

and all the Li are required to satisfy a “continuity constraint”, as follows. One considers
� 2 †n as an element of †nC1 D Autf0; : : : ; ng which fixes 0. If ��1.i/ < ��1.k/

one can think of Li as inner (or first in order of composition) with respect to Lk .
One wants the “round boundary” of Lk not to touch Li , but for the operad to have
an identity element, one needs to allow for Lk to be flush around Li . The precise
requirement needed is that for 0� ��1.i/ < ��1.k/,

im Li n im Lk \Lk.I
ı

� @D2/D∅:

Note that SC is a much “bigger” operad than C0
1

. One can think of L0 as the “starting
(thickened long) knot” for the splicing operation and of the other Li as n “hockey
pucks” with which one grabs L0 and ties up into n knots. This gives a map

SC.n/�Kn
! K

which will define the action of the splicing operad on K . To fully construct SC as an
operad, one needs the operad structure maps, which also come from the map above.
Roughly speaking, the structure maps are as follows. Given one splicing diagram with
n pucks and n other splicing diagrams each with ki pucks (i D 1; : : : ; n), put the i th

splicing diagram into the i th puck by composing the “starting knots” L0 and “taking
the pucks along for the ride”. For a precise definition and pictures, the reader may
either consult [4] or read the next section, which closely follows Budney’s construction
and subsumes the splicing operad.

5 The infection colored operad

Definition 5.1 Fix for each c D 1; 2; 3; : : : a trivial c–component fat string link

ic W
a

c

I �D2 ,! I �D2;
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with image denoted Sc WD im.ic/� I �D2 .

We will be more concerned with this image of the fixed trivial fat string link rather
than the embedding itself.

A convenient way of choosing an ic is to fix an embedding
`

c D2 ,!D2 and then
take the product with the identity map on I . For c� 2, we choose an embedding which
takes the centers of the c copies of D2 to the points x1; : : : ;xc from our Definition 1.1
of string links. Beyond that, we remain agnostic about this fixed embedding. For cD 1,
we choose i1 to be the identity map. This will recover Budney’s splicing operad from
our colored operad when all the colors are 1.

Now we define the space of c–component fat string links to be

FSLc WD

�
f W
a

c

I �D2 ,! I �D2

ˇ̌̌̌
f agrees with ic on @I �D2

�
:

These are the spaces on which the infection colored operad will act. An element of
FSL3 is displayed in Figure 6. By our condition on the fixed trivial fat string link,
we can restrict f to the cores of the solid cylinders to obtain an ordinary string link
f jI�fx1;:::;xcg as in Definition 1.1.

Figure 6: A fat string link, or more precisely, an element of FSL3

5.1 The definition of the infection colored operad

We now define our colored operad I D .I;C /. We put C DNC , so each color c is a
positive natural number.

Definition 5.2 (The spaces in the colored operad I ) An infection diagram is a tuple
.L0;L1; : : : ;Ln; �/ with L0 2 FSLc , � 2†n , and Li an embedding Li W I �D2 ,!

I �D2 (for i D 1; : : : ; n) satisfying a certain continuity constraint. The constraint is
that if 0� ��1.i/ < ��1.k/, then

(|) Li.I �D2/ nLk.Sck
/\Lk.I

ı

� .D2
n S
ı

ck
//D∅;
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where Sck
is the image of a fixed trivial string link, as in Definition 5.1. As in the

splicing operad, we think of � 2 †n as a permutation in †nC1 D Autf0; 1; : : : ; ng
which fixes 0.

The space I.c1; : : : ; cnI c/ is the space of equivalence classes ŒL0; : : : ;Ln; � � of infec-
tion diagrams, where .L0; : : : ;Ln; �/ and .L0

0
; : : : ;L0n; �

0/ are equivalent if Li DL0i
for all i , and if whenever the images of Li and Lk intersect, ��1.i/� ��1.k/ if and
only if .� 0/�1.i/� .� 0/�1.k/.

L0

L4

L1

L2

L3 L5

L4.S3/

L1.S1/

Figure 7: An infection diagram, or more precisely, an element of I.1; 2; 2; 3; 1I 3/

Informally, the Li are like the hockey pucks in Budney’s splicing operad, and the
permutation � is a map that sends the order of composition to the index i of Li . The
difference is that instead of re-embedding a hockey puck into itself, we will re-embed
the image of Sci

, a subspace of thinner inner cylinders, into the puck. Thus we keep
track of the image of Sci

, and our pucks can be thought of as having cylindrical holes
drilled in them, the holes with which we will grab the string link (or long knot) L0 .
Following a suggestion of V Krushkal, we call the restrictions of the

Li to .I �D2/ n S
ı

ci

“mufflers” (motivated by the picture for ci D 2).

The generalization of Budney’s continuity constraint to the constraint .|/ is the key
technical ingredient in defining our colored operad. The need for this constraint is
explained precisely in Remark 5.4 below. The rough meaning of this condition is that
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a muffler which acts earlier should be inside a hole of a muffler that acts later; in other
words, the “solid part” of a higher Lk (which remains after drilling out the trivial string
link) should not intersect any part of a lower Li , where “higher” and “lower” are in
the semi-linear ordering determined by � . However, we must allow for the possibility
of the boundaries of the mufflers intersecting in certain ways. Figure 8 displays the
cross-section of a set of mufflers which satisfy constraint .|/.

Figure 8: The cross-section of a set of thirteen mufflers, including seven
one-holed mufflers (or hockey pucks), satisfying the constraint .|/ . Each
grey area is the “forbidden region” Lk.I

ı
� .D2 nS

ı

ck
// of the k th muffler,

ie the region where no other muffler may lie.

So far we haven’t finished defining the operad, since we haven’t defined the structure
maps. We start by defining the action on the space of fat string links. Only after that
will we define the structure maps and check that they form a colored operad and that
the definition below is a colored operad action.

Definition 5.3 (The action of I on fat string links) Consider ŒL0;L1 : : : ;Ln; � � 2

I.c1; : : : ; cnI c/ and fat string links f1; : : : ; fn where fk 2 FSLck
. Let Lin

k
be the

map obtained from Lk by restricting the domain to Sck
and restricting the codomain

to its image. We use the shorthand notation Lk �fk to denote the map

Lk ıfk ı .L
in
k /
�1
W Lk.Sck

/! I �D2:

Then we define

I.c1; : : : ; cnI c/�FSLc1
� � � � �FSLcn

�! FSLc ;

.ŒL0;L1; : : : ;Ln; � �; f1; : : : ; fn/ 7! .L�.n/ �f�.n// ı � � � ı .L�.1/ �f�.1// ıL0:
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Remark 5.4 Strictly speaking, each map L�.k/ �f�.k/ is only defined on

L�.k/.Sc�.k//D im Lin
�.k/;

so one might worry whether the above composition is well defined. We claim that the
conditions on the support of the f�.k/ and the continuity constraint (|) guarantee that
we can continuously extend each L�.k/ �f�.k/ by the identity on im L0 n im Lin

�.k/
.

In fact, first write

@
�
im Lin

�.k/

�
D

�
@I �

a
ck

D2

�
[

�
I � @

a
ck

D2

�
:

Since each f�.k/ is the identity on the @I �
`

ck
D2 part of its domain (the “flat

boundary”), the map L�.k/ �f�.k/ is the identity on the @I �
`

ck
D2 part of im Lin

�.k/
.

The constraint (|) says that

im L0 n im Lin
�.k/
\L�.k/

�
I
ı

� @
a
ck

D2

�
D∅;

hence
im L0 n im Lin

�.k/
\ im L�.k/ � @I �

a
ck

D2:

So the continuity constraint guarantees that we don’t need to worry about extending
past the I � @

`
D2 part of the boundary (the “round boundary”).

Hence this defines the composition on the whole image of L0 .

Definition 5.5 (The structure maps in I ) The structure maps

(3) I.c1; : : : ; cnI c/� I.d1;1; : : : ; d1;k1
I c1/� � � � � I.dn;1; : : : ; dn;kn

I cn/

�! I.d1;1; : : : ; d
n;kn I c/;

.J0; : : : ;Jn; �/� .L1;0; : : : ;L1;k1
; �1/� � � � � .Ln;0; : : : ;Ln;kn

; �n/

7! ..J � EL/0; .J � EL/1;1; : : : ; .J � EL/n;kn
; �/

are defined as follows. (Here EL D .L1;�; : : : ;Ln;�/, which can be thought of as n

infection diagrams, and J � EL is just shorthand for the result on the right-hand side.)
The “starting” fat string link is

.J � EL/0 WD

�
n



iD1

J�.i/ �L�.i/;0

�
ıJ0

WD .J�.n/ ıL�.n/;0 ı .J
in
�.n//

�1/ ı � � � ı .J�.1/ ıL�.1/;0 ı .J
in
�.1//

�1/ ıJ0:
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f1 f2

f3

L0

L1

L3

L2

.L3 �f3/ ı � � � ı .L1 �f1/ ıL0

L1 �f1

L3 �f3

L2 �f2

Figure 9: The action of an infection diagram on three fat string links via the
map I.1; 3; 2I 2/ � FSL1 � FSL2 � FSL3 ! FSL2 . The 2–component fat
string link at the bottom is the result of this action.
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Given a 2 f1; : : : ; ng and b 2 f1; : : : ; kag, the .a; b/th puck is

.J � EL/a;b WD

�
n



iD��1.a/C1

J�.i/ �L�.i/;0

�
ı .Ja ıLa;b/:

Finally, the permutation � associated to J � EL is given by

��1.a; b/ WD ��1

�
bC

a�1X
iD1

ki

�
WD ��1

a .b/C

�.a/�1X
iD1

k�.i/:

In other words

(4) ��1
W .1; 1/; .1; 2/; : : : ; .n; kn/

7�! .��1.1/; ��1
1 .1//; .��1.1/; ��1

1 .2//; : : : ; .��1.n/; ��1
n .kn//;

where the set acted on can be thought of as a set of ordered pairs (though not a cartesian
product) with a lexicographical ordering as on the left.

Notice that the action maps are just special cases of the structure maps. In fact, FSLc

is precisely I.∅I c/ where ∅ is 0–tuple of positive integers (or the sequence of zero
elements). Thus each action map can be written as

I.c1; : : : ; cnI c/� I.∅I c1/� � � � � I.∅I cn/! I.∅I c/:

Thus we can make just a slight modification to Figure 9 to produce a picture of a
structure map (that is not an action map), as in Figure 10.

Theorem 5.6 (A) The spaces and maps in Definitions 5.2 and 5.5 make I a colored
operad with an action on the space of fat string links given by Definition 5.3.

(B) When restricting to the single color cD 1, one recovers Budney’s splicing operad
SCD2

1
. Thus C2 maps to this part of the colored operad.

(C) There is a map of the little intervals operad C1 to the restriction Ifcg of I to any
single color c .

Proof For (A), we can first see that a composed operation (ie an infection diagram on
the right-hand side I.d1;1; : : : ; dn;kn

I c/ of Equation (3)) satisfies the constraint .|/,
as follows. Any two non-disjoint mufflers in the composed diagram are the images
of mufflers in some I.di;1; : : : ; di;ki

I ci/ under a composition of embeddings. But if
the constraint .|/ holds for Li ;Lk , then it holds for the compositions of Li ;Lk with
these embeddings, since “image under an embedding” commutes with complement,
closure, and intersection.
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J2

L1 �J1

L3 �J3

L2 �J2

Figure 10: A slight variation of Figure 9, using the same .L0;L1;L2;L3/

but replacing the fat string link f2 in Figure 9 by the infection diagram
J2 shown above, gives an example of the operad structure maps. The
infection diagrams J1 and J3 have zero mufflers, and their 0th compo-
nents are respectively f1 and f3 . Thus the picture above is the image of
..L0; : : : ;L3/;J1;J2;J3/ under the structure map I.1; 3; 2I 2/� I.∅I 1/�
I.1I 3/� I.∅I 2/! I.1I 2/ .

Now we need to check the conditions of (a) associativity, (b) symmetry, and (c) identity
for the structure maps. The corresponding conditions for the action maps will then
follow because the action maps are special cases of the structure maps.

(a) Suppose we have

J D .J0; : : : ;Jj ; �/; ELD ..L1;0; : : : ;L1;`1
; �1/; : : : ; .Lj ;0; : : : ;Lj ; j̀ ; �j //;

EM D ..M1;1;0; : : : ;M1;1;m1;1
; �1;1/; : : : ; .Mj ; j̀ ;0; : : : ;Mj ; j̀ ;mj ; j̀

; �j ; j̀ //:

Then .J � EL/ � EM has 0th component�
��1.j ; j̀ /



.h;k/D��1.1;1/

��
j



iD��1.h/C1

J�.i/ �L�.i/;0

�
ıJh ıLh;k

�
�Mh;k;0

�
ı

�
j



iD1

J�.i/ �L�.i/;0

�
ıJ0;
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where � is the permutation for JL, and where the order of the terms in the leftmost
composition is given by the indices ��1.1; 1/; ��1.1; 2/; : : : ; ��1.j ; j̀ /. On the other
hand, the 0th component of J � . EL � EM / is

j



iD1

J�.i/ �

��
`�.i/



kD1

L�.i/;�.k/ �M�.i/;�.k/;0

�
ıL�.i/;0

�
ıJ0:

These two expressions agree by canceling adjacent terms

J�.i/; .J
in
�.i//

�1 and L�.i/;0; .L�.i/;0/
�1

in the expression for ..J � EL/ � EM /0 . For example, if

J D .J0;J1;J2; �/; ELD ..L1;0;L1;1/; .L2;0;L2;1/; �/;

EM D ..M1;1;0;M1;1;1/; .M2;1;0;M2;1;1/; �/;

with � denoting the identity permutation, then

..J � EL/ � EM /0

D Œ.J � EL/2;1 �M2;1;0� ı Œ.J � EL/1;1 �M1;1;0� ı ŒJ2 �L2;0� ı ŒJ1 �L1;0� ıJ0

D ŒJ2 ıL2;1 ıM2;1;0 ı .L
in
2;1/
�1
ı�

��J�1
2 �

ı Œ��J2 ıL2;0 ı .J
in
2 /
�1
ıJ1 ıL1 ıM1;1;0 ı .L

in
1;1/
�1
ı�

��J�1
1 ı��J2 ı�����

.L2;0/
�1
ı�

��J�1
2 �

ı Œ��J2 ı�
��L2;0 ı�

���.J in
2 /
�1� ı Œ��J1 ıL1;0 ı .J

in
1 /
�1� ıJ0

D ŒJ2 � . EL � EM /2;1;0� ı ŒJ1 � . EL � EM /1;1;0� ıJ0

D .J � . EL � EM //0:

Checking that the .a; b; c/th mufflers of these two infection diagrams agree similarly
involves canceling adjacent terms in the expression for ..J � EL/ � EM /a;b;c . (Also cf [4].)

Finally, to check that the permutations for these two infection diagrams agree, note
that the inverse of either one is given (with notation as in Equation (4)) by

.i; k; h/ 7! .��1.i/; ��1
i .k/; ��1

i;k .h//:

(b) We need to check that both diagrams in the symmetry condition in Definition 3.4
commute for OD I . The maps involved consist of permutations of labels on mufflers
and labels on infection diagrams. The commutativity of these diagrams is easily verified.

(c) The identity 1c 2 I.cI c/ is an element ŒL0;L1; e� with L0 the fixed trivial
c–component fat string link, L1 the identity map on I �D2 , and e the element in †1 .

Part (B) of the theorem follows quickly from our definitions. One can check that by
choosing the identity map for the trivial fat 1–string link, our constraint .|/ reduces
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to Budney’s continuity constraint. The rest of our definitions are then exactly as in
Budney’s splicing operad.

For part (C), the map C1 ! Ifcg is easy to construct. An element of C1.n/ is
.a1; : : : ; an/ where each ai W I ,! I is the restriction of an affine-linear, increasing
map. The map C1! Ifcg is given by .a1; : : : ; an/ 7! .ic ; a1� idD2 ; : : : ; an� idD2 ; �/

where ic was the trivial fat c–string link, and where � is the identity permutation.
(Actually, we could choose any permutation since the mufflers are disjoint.)

Remark 5.7 For c ¤ 1, it is clear that C2 cannot map to the operad Ic , for then
connect-sum of string links would be (homotopy-)commutative. But this is not the
case. For c � 3, the pure braid group is not abelian, and for c D 2, the monoid of
string links up to isotopy is nonabelian. The latter result can be deduced either from
our recent results on the structure of this monoid [1] or from work of Le Dimet in the
late 1980s [21] on the group of string links up to cobordism.

Just as Budney’s fat long knots are equivalent to framed long knots, our fat string links
are equivalent to framed string links. In more detail, given a fat string link L2FSLc , we
can restrict to the “cores of the tubes” to get an ordinary string link Lj.I�fx1; : : : ;xcg/.
Thus we have a map FSLc ! Lc , which is a fibration, since in general restriction
maps are fibrations. The fiber FibL over L is the space of tubular neighborhoods of
im L which are fixed at the boundaries. We express such a neighborhood as a map
�W
`

c I �D2! I �D2 and associate to � a collection of c loops in SO.2/; these
are obtained by taking the derivative at .0; 0/ of the map ftg�D2! I �D2 , for each
t 2

`
c I . Thus we can map the fiber FibL to .�SO.2//c . This “derivative map” is a

homotopy equivalence (by shrinking � to a small neighborhood of
`

c I � f0g). Since
�SO.2/Š Z, we can write the fibration as

Zc
�! FSLc �! Lc :

For L 2 FSLc , there are c framing numbers !1; : : : ; !c , one for each component. The
j th framing number is given by the linking number of Ij�.0; 0/ with Ij�.1; 0/, where
Ij is the j th copy of I in

`
c I . The map !1� � � ��!c W FSLc!Zc gives a splitting

of the above fibration. Then we consider the product fibration Zc!Lc�Zc!Lc and
the map from the above fibration to this one induced by the splitting. The long exact
sequence of homotopy groups for a fibration together with the five lemma imply that
the map from FSLc to Lc �Zc is a weak equivalence, hence a homotopy equivalence.
Thus yLc WD .!1 � � � � �!c/

�1f.0; 0; : : : ; 0/g is equivalent to Lc .

Corollary 5.8 By restricting to the subspaces yLc � FSLc of fat string links with zero
framing number in every component, we obtain an action of I on spaces homotopy
equivalent to the spaces of c–component string links.
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5.2 Mufflers, rational tangles, and pure braids

We now briefly discuss how general an infection our operad I encodes. Informally,
one might wonder how twisted the inner cylinders (ie the holes) Lin of a muffler could
be. Clearly, a fat string link can appear as Lin if and only if the pair .I �D2;Lin/

is homeomorphic to the pair .I �D2; ic/ where ic is the trivial fat c–string link.
The purpose of the following well-known proposition is just to show an alternative
and perhaps more intuitive way of thinking about such string links. Recall from
Definition 5.1 that Sc is the image of ic .

Proposition 5.9 The following are equivalent:

(i) There is a diffeomorphism of pairs .I �D2;Sc/ �!
Š
.I �D2; im.L//.

(ii) There is an isotopy from L to the trivial link which takes @
�`

c I
�

into @.I�D2/.
Note that the isotopy need not fix the endpoints of

`
c I .

Proof (i) D) (ii) Suppose we have a diffeomorphism of pairs h as in (i). It
suffices to show that the identity can be connected to this diffeomorphism by a path
of diffeomorphisms of I �D2 , for then we can restrict to Sc to obtain the desired
isotopy.

By Cerf’s theorem [5], the space of diffeomorphisms of S3 is connected. As a corollary,
so is the space of diffeomorphisms of D3 whose values and derivatives agree with the
identity on the boundary. In fact, this follows by considering the fibration

Diff.D3; @D3/! Diff.S3/! Emb.D3;S3/

given by restricting to a hemisphere of S3 . The base space is homotopy-equivalent
to SO.3/, which is connected, while the fiber is the space of diffeomorphisms of D3

fixed on the boundary.

Now a diffeomorphism 'W .I �D2;Sc/�!
Š
.I �D2; im.L// is clearly isotopic to one

that is the identity outside of a ball D3 contained in I �D2 . Combining this with
Cerf’s Theorem, we get a path from ' to the identity, as desired.

(ii) D) (i) By the isotopy extension theorem (see for example Hirsch’s text [19]),
an isotopy as in (ii) can be extended to a diffeotopy of the whole space I �D2 . The
diffeotopy at time 1 then gives the desired diffeomorphism.

The 2–string links which satisfy the above condition(s) are by definition precisely
the 2–string links which are also rational 2–tangles. (Here we consider only string
links, not arbitrary tangles; the reader may consult the work of Conway [13] for more
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details about rational tangles in general.) Note that pure braids are examples of rational
2–tangles, since it is easy to see that a pure braid satisfies (ii) above. We immediately
have the following result, which informally says that “a muffler can grab the string link
in the shape of any rational 2–tangle”.

Proposition 5.10 A fat 2–string link Lin ,

Sc Š

a
c

I �D2 Lin

,�! I �D2;

extends to a diffeomorphism L of I �D2 if and only if the core Linj.I �fx1;x2g/ of
Lin is a rational tangle.

5.3 Generalizations to other embedding spaces

For j 2NC and M a compact manifold with boundary, let EC.j ;M / be the space of
“cubical embeddings” Rj �M ,!Rj �M , that is, all such embeddings which are the
identity outside Ij �M . Budney constructs the actions of the little 2–cubes operad Cj

and the splicing operad SCD2

1
on the space of long knots as special cases of actions of

the operads Cj and SCM
j on EC.j ;M /. Our extension of the splicing operad to string

links also gives an extension of the more general splicing operad SCM
j to a colored

operad acting on spaces of embeddings Ij �
`

c M ,! Ij �M .

For each c 2NC fix an embedding

ic W
a

c

Ij
�M ,!

a
c

Ij
�M

by fixing an embedding
`

c M ,!M . Let Sc be the image of ic .

Let

EC
`

c .j ;M / WD
n
f W
a

c

Ij
�M ,! Ij

�M
ˇ̌̌
f agrees with ic on @I �M

o
:

Definition 5.11 (The spaces in the colored operad IM
j ) An element in

IM
j .c1; : : : ; cnI c/

is an equivalence class of tuples .L0;L1; : : : ;Ln; �/, where L0 2 EC
`

c .j ;M /,
� 2†n , and for i D 1; : : : ; n, Li is an embedding Li W I

j �M ,! Ij �M subject to
the constraint that for 0� ��1.i/ < ��1.k/,

im Li nLk.Sc/\Lk.I
ı

j
� .M n S

ı

c//D∅:

Algebraic & Geometric Topology, Volume 15 (2015)



A colored operad for string link infection 3399

Here we think of � 2†n as a permutation in †nC1 D Autf0; 1; : : : ; ng which fixes 0.

Tuples .L0; : : : ;Ln; �/ and .L0
0
; : : : ;L0n; �

0/ are equivalent if Li DL0i for all i and
if whenever the images of Li and Lk intersect, ��1.i/ � ��1.k/ if and only if
.� 0/�1.i/� .� 0/�1.k/.

The structure maps of IM
j , and an action of IM

j on the spaces fEC
`

c .j ;M /gc2NC ,
can be defined exactly as in the special case where j D 1 and M DD2 .

6 Decomposing the space of 2–string links using the infection
operad

6.1 The monoid of 2–string links

Note that given any monoid M and subset C of central elements, the quotient monoid
M=C is well defined. We are interested in the monoid MD �0Lc of isotopy classes
of c–string links, especially for c D 2. The units in �0Lc are precisely the pure braids
[1, Proposition 2.7]. We say that a non-unit c–string link L is prime if LDL1 # L2

implies that either L1 or L2 is a unit (pure braid).

Definition 6.1 (i) A string link L is split if there exists a properly embedded 2–
disk .D; @D/ ,! .I �D2; @.I �D2// whose image is disjoint from L and such
that the two 3–balls into which D separates I �D2 each contain component(s)
of L. Such a 2–disk is called a splitting disk. See Figure 11.

(ii) A 1–strand cable is a string link L which has a neighborhood N Š I �D2

such that L considered as a link in N is a (pure) braid B . In other words, “all
the strands are tied into a knot”. We call @N n @.I �D2/ a cabling annulus for
L. See Figure 12.

Figure 11: An example of a split link

Since we are now focusing on 2–string links, we need not consider (or even define)
k –strand cables for k > 1. Hence we will often refer to 1–strand cables as just cables.
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Figure 12: An example of a 1–strand cable, shown together with a cabling annulus

Theorem 6.2 (Proven in [1]) The monoid �0L2 has center C generated by the pure
braids, split links, and 1–strand cables. The quotient �0L2=C is free. Furthermore,
every 2–component string link can be written as a product of prime factors

L1 # � � � # Lm # K1 # � � � # Kn�m;

where the Ki are precisely the factors which are in the center. Such an expression is
unique up to reordering the Ki and multiplying any of the factors by units (pure braids).

6.2 Removing twists

Next note that the linking number gives a map `W L2!Z which descends to a monoid
homomorphism �0`W �0L2 ! Z. For n 2 Z, let Ln

2
D `�1fng. We might like to

think of this as 0! L0
2
! L2! Z! 0, though if we wanted this to be a short exact

sequence of monoids, we should instead write

0! �0L0
2! �0L2! Z! 0;

since L2 is only a monoid up to homotopy. There is an action of Z on L2 where the
generator 1 2Z acts by following the embedding in L2 by the map D2�I !D2�I

given by .z; t/ 7! .e2� itz; t/. The action of any m 2 Z thus gives a continuous map2

Ln
2
! LnCm

2
with continuous inverse given by the action of �m. Thus L2 Š L0

2
�Z,

and it suffices to study L0
2

to understand L2 . Note that Theorem 6.2 above implies that
an element of �0L0

2
can be written as a product of primes L1#� � �#Lm#K1#� � �#Kn�m

which is unique up to only reordering the Ki . We similarly define a subspace yL0
2
� yL2

in the space of fat string links with zero framing number; note that yL0
2
' L0

2
.

2We can see that the map does indeed have this codomain because the resulting twisted link can be taken
by an isotopy to a link where the twists are on one end, in which case the linking number is clearly
increased by m .
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Proposition 6.3 The isotopies that yield the commutativity relations in �0L0
2

(which
by Theorem 6.2 are all the relations in �0L0

2
) can be realized as paths in the spaces

I.c1; : : : ; cnI 2/, where ci 2 f1; 2g.

Proof Note that by Theorem 6.2 any 2–string link can be obtained from infections
of the trivial 2–string link by prime knots and non-central prime 2–string links; these
infections can be chosen to commute with each other (so that they can be carried out
“all at once”). In terms of fat string links in yL0

2
.'L0

2
/, we can express these operations

using a relatively small class of 2–holed mufflers and hockey pucks, as follows.

Recall that an element a2 C1.1/ is just an affine-linear map I ,! I . Let e1; e2W D
2 ,!

D2 denote the restrictions of the trivial fat 2–string link i2W
`

2 I �D2 ,! I �D2 to
the two components in the 0–time slice:

e1 t e2W .f0g �D2/t .f0g �D2/ ,! f0g �D2:

(Equivalently, e1; e2 are the restrictions of i2 to the two components of a time-slice
at any time t 2 I ). Consider infection diagrams .L0;M1; : : : ;Mn; �/ representing
classes in I.c1; : : : ; cnI 2/ which satisfy the following three conditions (see Figure 13):

� L0 is the trivial 2–string link.

� If ci D 1, then either
(A1) Li D ai � e1 for some ai 2 C1.1/, or
(A2) Li D ai � e2 for some ai 2 C1.1/, or

(B) Li D ai � idW I �D2 ,! I �D2 for some ai 2 C1.1/.

� If ci D 2, then Li D ai � idW I �D2 ,! I �D2 for some ai 2 C1.1/.

Figure 13: An element of I.1; 1; 2; 1I 2/ , where the Li are ordered from left
to right. In this element, we have a hockey puck of type (B), then a hockey
puck of type (A1), then a two-holed muffler, then a hockey puck of type (A2).
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Figure 14: An element of I#.3/ (Š C1.3/)

Notice that plugging knots into pucks of types (A1) and (A2) produces a split link,
while plugging a knot into a puck of type (B) produces a cable. Hockey pucks of types
(A1) and (A2) can move through the inside of the two-holed mufflers, while the pucks
of type (B) can move through the two-holed mufflers on the outside. These two motions
correspond to the centrality of split links and cables, which by Theorem 6.2 are all the
commutativity relations in �0L0

2
. This proves the proposition. (Since L2 Š L0

2
�Z,

this is fairly close to a statement about all of L2 .)

6.3 A suboperad of the 2–colored restriction

Let If2g denote the suboperad of I corresponding to the color f2g �NC . Note that
If2g is an ordinary operad.

Definition 6.4 We define the stacking suboperad I# � If2g as the suboperad where
each space I#.n/ consists of elements of I.2; : : : ; 2I 2/ represented by infection dia-
grams .L0;M1; : : : ;Mn; �/ satisfying the following conditions:

� L0 is the trivial 2–string link.

� Mi D ai � idW I �D2 ,! I �D2 for some ai 2 C1.1/.

See Figure 14 for a picture of an element of this suboperad.

The following is obvious:

Proposition 6.5 For each n, the space I#.n/ is homeomorphic to C1.n/. Thus I#.n/

has contractible components and is equivalent to †n .
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6.4 A decomposition theorem

Recall that yLc is the space of fat c–string links with zero framing number in each
component; yL0

c �
yLc is the subspace where the linking number is 0 (defined in

Section 6.2); and we have homotopy equivalences yLc 'Lc and yL0
c 'L0

c . Let Pc � yLc

be the subspace of prime c–component fat string links. We will decompose a certain
subspace of yL2 in terms of our infection operad and the prime links in this subspace.

Definition 6.6 Define S2 to be the subspace of yL2 consisting of certain components
of yL2 : the component of yL2 corresponding to a string link L is in S2 if and only if L

is a product of prime string links, each of which is not in the center of �0L2 . (In other
words, each prime factor of L is neither a split link nor a cable.) Let PS2 WD P2\S2 ,
let S0

2
WD S2\ yL0

2
, and let PS0

2
WD PS2\ yL0

2
D P2\S2\ yL0

2
.

Before stating our decomposition theorem, we review a useful lemma, well known to
embedding theorists. Before proving the lemma, we need to set some more definitions.

� Let yLD
`1

cD1
yLc .

� For L 2 yL, let yL.L/ denote the component of L in yL.
� Recall that if L is an embedding of a 3–manifold with boundary into I �D2 ,

CL WDD3
n

ı

.im L/;

where we identify I �D2 with D3 .
� For a manifold with boundary M , let Diff.M I @/ denote the space of diffeo-

morphisms of M which are the identity on the boundary.
� For a group G , let BG denote the classifying space of G .

Lemma 6.7 For any L 2 yL, yL.L/' BDiff.CLI @/.

Proof Given a diffeomorphism in Diff.D3; @/, we can restrict to the image of L to
get a fibration

Diff.CLI @/ �! Diff.D3
I @/ �! yL.L/:

Hatcher showed that Diff.D3I @/ is contractible (the Smale conjecture [18]), which
implies the result.

Theorem 6.8 The subspace S0
2

is freely generated over the stacking suboperad I# by
its subspace PS0

2
of non-split, non-cable prime string links. More precisely,

S0
2 ' I#.PS0

2 t f�g/ WD

1a
nD0

I#.n/�†n
.PS0

2 t f�g/
n

�
'

1a
nD0

.PS0
2 t f�g/

n

�
;
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where f�g corresponds to the component of the trivial 2–string link. Furthermore
S2 Š S0

2
�Z.

Proof First note that by Theorem 6.2 we have a bijection on �0 . In fact, a prime
decomposition LD L1 # � � � # Ln corresponds to an isotopy class of an equivalence
class of infection diagram in I# with n mufflers exactly as in Definition 6.4.

Now we will check that we have an equivalence on each component of S0
2

. So fix
L 2 S0

2
. Let CL denote the complement of L in D3 , as above.

Definition 6.9 For a c–component string link L, a decomposing disk D � CL is a
2–disk with c open 2–disks removed which is properly embedded in CL in such a
way that c of its boundary components are (isotopic to) the c meridians of L.

Note that a decomposing disk D is incompressible in CL [1, Lemma 2.9].

A prime decomposition L D L1 # � � � # Ln corresponds to a maximal collection of
decomposing disks D1; : : : ;Dn�1 such that no two Di are isotopic. Thus the decom-
posing disks D1; : : : ;Dn�1 cut CL into n pieces that are precisely CL1

; : : : ;CLn
.

Recall the uniqueness of prime decompositions for L 2 S0
2

given by Theorem 6.2.
The proof of this theorem implies that (the image of) such a maximal collection of
decomposing disks is unique up to isotopy. Note that the prime factors of L 2 S0

2

cannot even be reordered.

Now consider the fibration

(5) Diff
� na

iD1

CLi
I @

�
�! Diff.CLI @/ �! Emb

� na
iD1

Di ; CL

�
:

Hatcher proved [17] that for a 3–manifold M and a properly embedded incompressible
surface S �M , the space Emb.S;M / has contractible components unless S is a
torus. (Strictly speaking, Hatcher proves this for connected S , but for S D

`n
iD1 Si

with each Si a connected surface, one can use the fibration

Emb
�

Sn; M n

� n�1a
iD1

Si

��
�! Emb

� na
iD1

Si ; M

�
�! Emb

� n�1a
iD1

Si ; M

�
and induction on n to get the result, noting that Hatcher’s theorem applies when the
3–manifold is a component of M n .

`n�1
iD1 Si/.)

Thus the components of the base space in Equation (5) are contractible. Since the
images of the Di are determined up to isotopy, we may replace Emb.

`n
iD1 Di ;CL/
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by Diff.
`n

iD1 Di/ (since the latter space also has contractible components). Note that
the fiber in Equation (5) is

Qn
iD1 Diff.CLi

/. So we have

Diff
� na

iD1

Di

�
�! Diff.CLI @/ �! Diff

� na
iD1

Di

�
:

Now apply the classifying space functor B.�/ to the above fibration. By Lemma 6.7,
we get

nY
iD1

yL.Li/ �! yL.L/ �!
nY

iD1

Conf2.D
2/;

where Conf2.D
2/ is the space of ordered distinct pairs in D2 (or the classifying space

of the braid group on two strands). The base space is a K.�; 1/, ie it has trivial �i for
i > 1. We claim that on �1 , the fibration is the zero map: in fact, if ˛ 2 �1.yL.L//
produced a nontrivial braid (say, in the i th factor), then in ˛.1/, at least one of the two
summands determined by Di would have nonzero ` (number of twists), contradicting
the fact that ˛ is a loop (in S0

2
).

So by the long exact sequence in homotopy groups for a fibration, the map from fiber
to total space is an isomorphism on �i for all i � 0. Then by the Whitehead theorem,

yL.L/'
nY

iD1

yL.Li/:

The right-hand space can be rewritten as †n�†n

Qn
iD1
yL.Li/, which by Proposition 6.5

is equivalent to I#.n/�†n

Qn
iD1
yL.Li/. This proves the main assertion of the theorem.

The remaining assertion, that S2 Š S0
2
�Z, follows immediately from Section 6.2.

6.5 Final remarks and future directions

We have described the components of links in S2 in terms of the components of the
prime links in S2 . In general, we do not have descriptions of the components of the
prime links in S2 themselves. However, we can describe some components of L2 . We
believe that at least some of these descriptions have been known to experts.

Proposition 6.10 The component of a 2–string link R 2 yL2 which is a rational tangle
is contractible.

Proof We have a fibration

(6) Diff.CRI @/ �! Diff.D3
I @/ �! yL.R/
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given by restricting to the image of R. The total space is contractible by the Smale
conjecture. So it suffices to show that the fiber Diff.CRI @/ is contractible. Note that
CR is a genus-2 handlebody.

We claim that for any 3–dimensional handlebody H , Diff.H I @/ is contractible. This
can be proven by induction on the genus. The basis case of genus 0 is the Smale
conjecture. For the induction step, let S be a meridional disk in H . Consider the
fibration

F �! Diff.H I @/ �! Emb.S;H /;

where the base is the space of proper embeddings of S with fixed behavior on @S . The
fiber F is the space of diffeomorphisms of a handlebody whose genus is 1 less than
that of H , and it is contractible by the induction hypothesis. Hatcher’s result on incom-
pressible surfaces says that Emb.S;H / has contractible components. Furthermore, we
claim that any two such embeddings of S are isotopic; this can be proven using the
fact that handlebodies are irreducible (ie every 2–sphere in H bounds a 3–ball) and
standard “innermost disk” arguments from 3–manifold theory. Hence Emb.S;H / is
connected, hence contractible. Thus Diff.H I @/ is contractible. Thus the base space in
the fibration of Equation (6) is also contractible.

Recall the definitions of split links and splitting disks from Definition 6.1.

Proposition 6.11 If L is a split string link which splits as links L1;L2 , then

yL.L/' yL.L1/� yL.L2/:

Proof Let D be a splitting disk for L. Consider the fibration

Diff.CL1
I @/�Diff.CL2

I @/ �! Diff.CLI @/ �! Emb.D;CL/;

where Emb.D;CL/ is the space of embeddings of D which agree on @D with the
given embedding of D . By Hatcher’s theorem on incompressible surfaces, this space
has contractible components. Irreducibility of CL implies further that any two such
embeddings of D in CL are isotopic, showing that the base space is connected, hence
contractible. This gives us the desired equivalence.

If we restrict our attention to 2–string links, the split links are just those links which
are obtained by tying a knot in one or both strands. So Budney’s work [3] together with
Proposition 6.11 gives a description of the homotopy type of each such component
of L2 .

We conclude by mentioning two open problems that immediately stand out as follow-ups
to Theorem 6.8:
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Problem 1 To determine the homotopy types of components of prime non-central
2–string links.

Problem 2 To understand how different types of 2–string links interact, ie find a
generalization of Theorem 6.8 from the subspace S2 to the space of all 2–string links.
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Systoles and kissing numbers
of finite area hyperbolic surfaces

FEDERICA FANONI

HUGO PARLIER

We study the number and the length of systoles on complete finite area orientable
hyperbolic surfaces. In particular, we prove upper bounds on the number of systoles
that a surface can have (the so-called kissing number for hyperbolic surfaces). Our
main result is a bound which only depends on the topology of the surface and which
grows subquadratically in the genus.

30F10; 32G15, 53C22

1 Introduction

In analogy with classical sphere packing problems in Rn , Schmutz Schaller named
and studied kissing numbers for hyperbolic surfaces. This is a particular instance of a
more general analogy between the study of n–dimensional lattices (and their parameter
spaces) and the study of hyperbolic surfaces (and their parameter spaces). Both are
natural generalizations of the study of 2–dimensional flat tori. The natural parameter
spaces of these tori are H and H=PSL2.Z/; their higher-dimensional analogues include
on the one hand the spaces of lattices and on the other Teichmüller and moduli spaces.

The classical kissing number problem is to bound the number of disjoint open unit
balls that can be tangent to a fixed unit ball; the lattice kissing number is the same
problem but where one asks that the centers of the spheres lie on some lattice. This is
in fact an equivalent problem to counting the number of systoles (up to isotopy) of the
underlying lattice. Another classical topic for flat tori is the study of Hermite constants.
This involves finding sharp upper bounds on the length of shortest non-trivial lattice
vectors or, in other words, bounds on the systole length of the quotient tori. Both of
these problems make perfect sense for finite-area hyperbolic surfaces and have been
studied by a variety of authors including Bavard [3] and Schmutz Schaller [17; 19].

Schmutz Schaller provided a variety of results on the length and the number of systoles
for complete hyperbolic surfaces in both the closed and finite area cases. Lower
bounds for either of these quantities can be found using arithmetic methods. Buser

Published: 12 January 2016 DOI: 10.2140/agt.2015.15.3409
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3410 Federica Fanoni and Hugo Parlier

and Sarnak [8] were the first to show that there exist families Sk of closed surfaces of
genus gk with gk !1 as k!1 whose systole length grows like

sys.Sk/�
4
3

log gk :

Katz, Schaps and Vishne [11] generalized this construction to principal congruence
subgroups of arbitrary arithmetic surfaces. Makisumi [12] showed that, in some sense,
this is the best one can hope for via arithmetic constructions. Schmutz Schaller [19]
found analogous results for kissing numbers: for any " > 0, there is a family of closed
surfaces Tk of genus gk with gk !1 as k!1 whose number of systoles grows
like

Kiss.Tk/� g
4
3
�"

k
:

For surfaces with cusps, families reaching these lower bounds (for both quantities)
are directly obtainable by considering principal congruence subgroups of PSL2.Z/
(see Schmutz Schaller [18], Brooks [5] and Balacheff, Makover and Parlier [2]). The
number of cusps in these examples grows roughly like g2=3 .

Upper bounds for these quantities have also been studied, in particular for closed
surfaces. Via an easy area argument, one can obtain an upper bound on the systole
length of closed surfaces of genus g that grows like 2 log g . This complements
Buser and Sarnak’s lower bound to show that the rough growth is logarithmic, but the
discrepancy between the 4

3
and the 2 remains mysterious. Schmutz Schaller, using a

disk packing argument of Fejes Tóth, proved a very nice upper bound on systole length
which is actually sharp for the congruence subgroups of PSL2.Z/ (see also Adams [1]
and Bavard [4]). We use this result in an essential way and give the exact formulation
in the sequel (Theorem 2.4).

For kissing numbers, the best known upper bounds are results of the second author [13].
In particular, there is a bound which depends only on the genus g and which grows
at most subquadratically in function of g . Again, there is a discrepancy between the
g4=3 lower bound and the g2 upper bound (although the latter cannot be sharp). Upper
bounds for kissing numbers of non-closed finite-area complete surfaces (ie surfaces
with cusps) have yet to be approached. Filling this gap is the main goal of our article.

One of the main consequences of what we obtain is the following:

Theorem 4.11 There exists a universal constant C > 0 such that, for any S 2Mg;n ,
g � 1, its kissing number satisfies

Kiss.S/� C.gC n/
g

log.gC 1/
:
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Systoles and kissing numbers of finite area hyperbolic surfaces 3411

We obtain this result as a consequence of a number of results concerning the length
and the topological configurations of systoles.

In particular, concerning the length of systoles, we show the following:

Theorem 2.3 There exists a universal constant K<8 such that every S 2Mg;n (g¤0)
satisfies

sys.S/� 2 log gCK:

The result is not surprising in view of the results for closed surfaces and Schmutz
Schaller’s bound, but it is interesting to note that it is asymptotically a stronger bound
when the growth of the number of cusps is bounded above by g1=2 .

Our results on topological configurations of systoles can be summarized as follows:

Propositions 3.2 and 3.3 and Lemma 3.5 If ˛ and ˇ are systoles of a surface
S 2Mg;n , then

i.˛; ˇ/� 2

and, if i.˛; ˇ/D 2, then either ˛ or ˇ surrounds two cusps. Furthermore, for every
genus g � 0, there exists n.g/ 2 N and a surface Sg of genus g with n.g/ cusps
which has systoles that intersect twice.

The above result is in contrast with closed surfaces, where systoles can intersect at
most once.

Finally, we obtain the following bound, which relates systolic lengths and kissing
numbers.

Theorem 4.10 If S 2Mg;n has systole of length sys.S/D `, then

Kiss.S/� 20n cosh
�

1
4
`
�
C 200

e`=2

`
.2g� 2C n/:

The article is organized as follows. In Section 2 we prove our upper bounds on systole
length. Section 3 is dedicated to the study of the topological configurations of systoles.
In Section 4 we prove Theorems 4.10 and 4.11.
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2 Bounds on lengths of systoles

We denote by Mg;n the moduli space of surfaces of signature .g; n/, by which we
mean the space of all complete finite area hyperbolic surfaces of genus g with n cusps
up to isometry. We shall always assume that g and n satisfy 3g�3Cn> 0. A systole
of a surface S 2Mg;n is a shortest closed geodesic. We think of systoles — and closed
geodesics in general — as being non-oriented. Given a surface S , we denote its systole
length (the length of one of its systoles) by sys.S/. The main objective of this section
is to show that every surface of genus g � 1, with or without cusps, has systole length
bounded above by a function which only depends on the genus.

For any cusp c , let Hc be the associated open horoball region of area 2. By the collar
lemma (see for instance Chapter 4 of Buser [7]), two such regions are disjoint.

For any cusp c and any non-negative r , define the set Dr .c/ to be

Dr .c/ WD fp 2 S j d.p;Hc/ < rg[Hc :

If Dr .c/ is homeomorphic to a once-punctured disk, we can compute its area, which is

area.Dr .c//D 2er :

Lemma 2.1 (a) If there are two cusps c and c0 such that Dr .c/ and Dr .c
0/ are

tangent, then the simple closed geodesic forming a pair of pants with them has length
4 arccosh er , so

sys.S/� 4 arccosh.er /:

(b) If Dr .c/ is tangent to itself for some r � log 2, then

sys.S/� 2 arccosh.er
� 1/:

Proof (a) Consider the pair of pants determined by the two cusps and the simple
closed geodesic  surrounding them. Cut it along the orthogonal from  to itself,
the shortest geodesic between the cusps and the perpendiculars from the cusps to  .
Consider one of the four obtained quadrilaterals; we denote its vertices by q , s , t and c

and the intersection point of @Hc with a side by p , as in Figure 1.

p
c

q

s t

Figure 1: One of the quadrilaterals
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p

q

y D 1

C1 C2
s

t

0 1

Figure 2: In the upper half-plane

Draw the quadrilateral in the upper half-plane, choosing infinity as the ideal point;
see Figure 2. We fix the two geodesics containing qc and tc to be x D 0 and x D 1.
The area of Hc intersected with the quadrilateral is 1, so @Hc is given by y D 1

and pD i . Moreover, d.p; q/D 1
2
d.Hc ;Hc0/D r , so qD ie�r . Consider C1 and C2 ,

the Euclidean circles representing the geodesics through q and s and through s and t .

Since C1 ? fx D 0g, C2 ? fx D 1g and C1 ? C2 , they have equations

C1W x2
Cy2

DR2;

C2W .x� 1/2Cy2
D 1�R2

for some R. As q 2 C1 , we have R D er . By imposing d.t; s/ D 1
4
`, we obtain

`D 4 arccosh.er /.

(b) The cusp c with the curve of length 2r from Hc and back determines a pair of
pants with at least one simple closed geodesic as boundary.

If the pair of pants has two cusps and a boundary curve ˛ , we can cut it along the
geodesic between the two cusps, the shortest geodesics between the cusps and ˛ and
the geodesic containing curve of length 2r . We get two right-angled triangles with
two ideal vertices and 1

2
� and two quadrilaterals with three right angles and an ideal

vertex, as in Figure 3.

Figure 3: The cut pair of pants with two cusps

Algebraic & Geometric Topology, Volume 15 (2015)



3414 Federica Fanoni and Hugo Parlier

Figure 4: The cut pair of pants with one cusp

By direct computation similar to before, we obtain

`.˛/D 2 arccosh.er
� 1/:

If the pair of pants has two boundary curves, we denote them by ˛ and ˇ and we
suppose that `.˛/ � `.ˇ/. We cut along the orthogonal from ˛ to ˇ , the shortest
geodesics from ˛ and ˇ to the horoball and the geodesic containing the curve of
length 2r . We obtain four quadrilaterals, with three right angles and an ideal vertex,
pairwise isometric; see Figure 4.

Again by direct computation we have

`.˛/D 2 arccosh.aer /;

`.ˇ/D 2 arccosh..1� a/er /;

where a is the area of Hc intersected with one of the two quadrilaterals containing
a part of ˛ . Since `.˛/ � `.ˇ/, we have a � 1

2
. Moreover, ˛ is longest when a is

maximum, that is, when aD 1
2

. In this case

`.˛/D `.ˇ/D 2 arccosh
�

1
2
er
�
:

Since by assumption r � log 2, we get that in both cases the curve ˛ satisfies

`.˛/� 2 arccosh.er
� 1/:

Remark 2.2 From the proof of the lemma we also have that, if Dr .c/ is tangent to
itself for some r � log 2, then sys.S/� 2 arcsinh 1.

We can now prove our bound on systole length for surfaces of genus g � 1.

Theorem 2.3 There exists a universal constant K < 8 such that every S 2Mg;n

satisfies
sys.S/� 2 log gCK:
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Proof Set `D sys.S/. We begin by recalling the well-known situation where nD 0

(and thus g � 2). As the surface is closed, any open disk D`=2.p/ of radius 1
2
` is

embedded in the surface and thus

area.D`=2.p//D 2�
�
cosh

�
1
2
`
�
� 1

�
� area.S/D 2�.2g� 2/;

which in turn implies
`� 2 log gC 2 log 4:

Suppose now that n� 1. We split the proof into three non-mutually exclusive cases.
The first situation we consider is when there are “many” cusps (how many will be
made explicit); in this case, two of the Dc.r/ have to meet for a “small” r and will
determine a short curve. In the second case, we assume that there are two cusps which
are close to each other and the systole length will be bounded by the length of the curve
surrounding them. In the final situation, there are “few” cusps and we further assume
any two are far away; in this case, we show that there is a cusp with a short loop from
its horoball to itself, which in turn determines a short curve.

Case 1 n�
p

2�g .

If the sets Dr .c/ are pairwise disjoint for different cusps c and each homeomorphic to
a once-punctured disk, then

area
� [

c cusp

Dr .c/

�
D 2ner

� area.S/D 2�.2gC n� 2/I

thus,

er
�
�.2g� 2C n/

n
:

Since n�
p

2�g , this implies

er
�

p
2�.g� 1/
p

g
C�:

So, for some r � log.
p

2�.g � 1/=
p

gC �/, either two Dr .c/ are tangent to each
other or one is tangent to itself. Lemma 2.1 now implies

`� 4 arccosh
�p

2�.g� 1/
p

g
C�

�
:

Case 2 There are distinct cusps c1 and c2 with d.Hc1
;Hc2

/� log.2�.g�1C
p

2�g//.

By Lemma 2.1,
`� 4 arccosh

�p
2�.g� 1C

p
2�g/

�
;

and we are done.

Algebraic & Geometric Topology, Volume 15 (2015)



3416 Federica Fanoni and Hugo Parlier

Case 3 0< n<
p

2�g and any two cusps c1 and c2 satisfy

d.Hc1
;Hc2

/ > log.2�.g� 1C
p

2�g//:

We fix a cusp c . Since any two cusps are far away, for r � log.2�.g� 1C
p

2�g//

the setDr .c/ is disjoint from any other Hc0 . If it is also an embedded, once-punctured
disk, then

area.Dr .c//D 2er
� area.S/ < 4�.g� 1C

p
2�g/;

so

r � log.2�.g� 1C
p

2�g//:

We deduce that, for some r � log.2�.g� 1C
p

2�g//, Dr .c/ is tangent to itself. By
Remark 2.2, if r � log 2 then `� 2 arcsinh 1. Otherwise, by Lemma 2.1, we obtain

`� 2 arccosh.2�.g� 1C
p

2�g/� 1/:

Now any surface with n > 0 will be in one of the three cases detailed above and, as
such, we can deduce

`�max
n
4 arccosh.

p
2�.g� 1/=

p
gC�/; 4 arccosh.

p
2�.g� 1C

p
2�g//;

2 arccosh.2�.g� 1C
p

2�g/� 1/
o

< 2 log gC 8:

Applying the techniques of the above theorem to punctured spheres, one can show
that the systole length of a punctured sphere is bounded by a uniform constant (which
doesn’t depend on the number of cusps). This is also a consequence of a theorem of
Schmutz Schaller, who provided a different bound for the systole length of punctured
surfaces.

Theorem 2.4 [17] For S 2Mg;n with n� 2 we have

sys.S/� 4 arccosh
6g� 6C 3n

n
:

For n � g˛ , Schmutz Schaller’s bound grows roughly like 4.1 � ˛/ log g . So our
bound is stronger for ˛ < 1

2
, while Schmutz Schaller’s is better for ˛ � 1

2
.
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3 Intersection properties of systoles

It is well known, via a simple cutting and pasting argument, that systoles on closed
surfaces pairwise intersect at most once. On surfaces with cusps, this is not necessarily
the case. For instance, on punctured spheres it is not difficult to see that systoles can
intersect twice (the simplest case is a four-times punctured sphere with at least two
systoles — they necessarily intersect and the minimal intersection number between two
distinct curves is 2). This phenomenon also occurs for surfaces with positive genus.
An example of this can be derived from Buser’s hairy torus (see [7, Chapter 5]) with
cusps instead of boundary curves and explicit examples in all genera are given in the
sequel. On the other hand, since systole length is bounded within each moduli space, it
follows from the collar lemma that the intersection number between any two systoles is
also bounded. This can be considerably sharpened: the first main result of this section
will be that two systoles on punctured surfaces can intersect at most twice.

We begin with some notation and well-known preliminary results. A curve is non-
trivial if it represents a non-trivial element of the fundamental group. A non-trivial
curve is essential if it does not bound a cusp. In particular, systoles are the shortest
essential curves of a surface. Given two closed curves ˛ and ˇ , we denote by i.˛; ˇ/
their geometric intersection number (the minimum number of transversal intersection
points among representatives in the isotopy classes Œ˛� and Œˇ�). Two curves are said
to intersect minimally if they intersect minimally among all representatives of their
respective isotopy classes. The unique geodesics in the isotopy classes of simple closed
curves are also simple and intersect minimally.

Let ˛ and ˇ be simple closed geodesics on a surface S with i.˛; ˇ/ � 2 and fix
orientations on them. The curve ˛ divides ˇ into arcs between consecutive intersection
points. We say such an arc is of type I if the orientations at the two intersection points
are different and of type II if the orientations are the same; see Figure 5.

Type I

Type II

˛

˛

ˇ ˇ

Figure 5: The two kinds of arcs
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3418 Federica Fanoni and Hugo Parlier

Note that the orientation at each intersection point depends on the choice of orientations
of ˛ and ˇ , but being of type I or II is independent of the choice of orientations.

Lemma 3.1 If ˛ and ˇ are systoles of a surface S 2Mg;n with i.˛; ˇ/� 2, all arcs
between consecutive intersection points are of type I.

Proof By contradiction, suppose that ˇ contains arcs of type II. If there are at least
two of them, there exists one, say ˇ1 , of length at most 1

2
sys.S/. Since ˇ1 divides ˛

into two arcs, one of the two is of length at most 1
2

sys.S/. Call this arc ˛1 and
consider the curve ˛1[ˇ1 .

If ˛1 [ˇ1 were essential, its geodesic representative would be shorter than sys.S/,
which is impossible. Thus ˛1[ˇ1 must be non-essential. However, one can construct
a curve  homotopic to ˛1[ˇ1 such that j \˛j D 1, so via the bigon criterion (see
for instance Farb and Margalit [9])  and ˛ intersect minimally. Thus

i.; ˛/D 1

and as such  is non-trivial in homology and is therefore essential, a contradiction.

If there is exactly one arc ˇ1 of type II, there should be at least two (consecutive) arcs
ˇ2 and ˇ3 of type I. Then, if `.ˇ1/ �

1
2

sys.S/, we can argue as before to obtain a
contradiction. If not, then `.ˇ2[ˇ3/�

1
2

sys.S/. The arcs ˇ2 , ˇ3 and ˛ determine
an embedded four-holed sphere with a non-trivial curve of length at most sys.S/. By
construction, the geodesic in the isotopy class of this curve is strictly shorter than the
systole, a contradiction.

Proposition 3.2 If ˛ and ˇ are systoles of S 2Mg;n , then i.˛; ˇ/� 2.

Proof Suppose by contradiction that i.˛; ˇ/ > 2. By Lemma 3.1, all arcs between
consecutive intersection points are of type I, so i.˛; ˇ/ is even. Thus there are at least
four intersection points and at least four arcs of ˇ between consecutive intersection
points. This implies that there is an intersection point and two arcs ˇ1 and ˇ2 departing
from it with `.ˇ1[ˇ2/�

1
2

sys.S/. We argue as in the proof of Lemma 3.1: ˇ1 , ˇ2

and ˛ determine an embedded four-holed sphere with a non-trivial curve of length
at most 1

2
sys.S/. By construction, the geodesic in the isotopy class of this curve is

strictly shorter than the systole, a contradiction.

The next proposition shows that if two systoles intersect twice, there is a constraint on
the topological configuration of the two curves.

Algebraic & Geometric Topology, Volume 15 (2015)
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Proposition 3.3 If two systoles ˛ and ˇ intersect twice, one of them bounds two
cusps.

Proof The two curves cut each other into arcs ˛1 , ˛2 and ˇ1 , ˇ2 . Without loss
of generality, we can assume `.˛1/ � `.ˇ1/ �

1
2

sys.S/. Consider 1 D ˛1 [ ˇ1

and 2 D ˛1[ˇ2 . As 1 and 2 do not surround bigons, they cannot be trivial and,
as they can be represented by curves of length strictly less than sys.S/, they must both
bound a cusp. Hence ˇ bounds two cusps.

An obvious consequence of Proposition 3.3 is that systoles on surfaces with at most
one cusp intersect at most once. In the case of tori this can be improved to show that a
surface with twice-intersecting systoles has at least three cusps.

Lemma 3.4 If S 2M1;2 , and ˛ and ˇ are systoles of S , then i.˛; ˇ/� 1.

Proof Suppose two systoles ˛ and ˇ intersect twice. Then sys.S/� 4 arcsinh 1 (see
Gauglhofer and Semmler [10]) and, by Proposition 3.3, one of the two curves bounds
two cusps. Cut the surface along ˛ and consider the one-holed torus component. The
length of the shortest closed geodesic  in the one-holed torus which doesn’t intersect ˛
satisfies (see Parlier [14])

cosh
�

1
2
`. /

�
� cosh

�
1
6
`.˛/

�
C

1
2

and `. /� sys.S/D `.˛/, so

cosh
�

1
2
`.˛/

�
� cosh

�
1
6
`.˛/

�
C

1
2
;

which contradicts `.˛/� 4 arcsinh 1.

On the other hand, we can prove that for every genus there is a punctured surface
with systoles intersecting twice. The constructions will involve gluing ideal hyperbolic
triangles. Any such triangle has a unique maximal embedded disk tangent to all three
sides. We say that two such triangles are glued without shear if their embedded disks
are tangent.

Lemma 3.5 For every g � 0, there exists n.g/ 2N and a surface S 2Mg;n.g/ with
two systoles intersecting twice.

Proof For gD 0, we can set n.0/D 4, as mentioned at the beginning of Section 3: any
four-times punctured sphere with at least two systoles will satisfy the requirement. To
show the existence of such a surface, pick any S 2M0;4 . If it has only one systole  ,

Algebraic & Geometric Topology, Volume 15 (2015)



3420 Federica Fanoni and Hugo Parlier

Figure 6: The triangulation of the square

increase the length of  so that it is still a systole and there is another simple closed
geodesic on the surface of the same length.

For g � 1, we use a building block constructed as follows. Consider a square and a
triangulation of it with 32 triangles, given by first subdividing the square into a grid of
16 squares and then adding one diagonal for all squares, as in Figure 6.

Each of the triangles in the square will be replaced by an ideal hyperbolic triangle and
all gluings will be without shear.

For g D 1, glue opposite sides of the square (again triangles are glued without shear)
to obtain a torus with n.1/D 16 cusps.

For g � 2, consider a polygon obtained by gluing a 1 � .g � 1/ rectangle and a
1� 2.g� 1/ rectangle along the long sides, as in Figure 7.

Think of this polygon as a 4g–gon (with sides corresponding to sides of the squares).
Fix an orientation and choose a starting side, to identify the 4g sides following the
standard pattern a1b1a�1

1
b�1

1
� � � agbga�1

g b�1
g to obtain a genus-g surface. If we now

replace each 1 � 1 square by the building block (always gluing adjacent triangles
without shear), we get a surface of genus g with a decomposition into 32 � 3.g� 1/

ideal triangles. Since it is a triangulation, the number of edges is 3
2
� 32 � 3.g� 1/. By

an Euler characteristic argument, this implies that the surface has n.g/ D 46g � 46

cusps.

g
�

1
2
.g
�

1
/

Figure 7: The polygon for g D 3
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For any g � 1, consider the set Cg of curves surrounding pairs of cusps which are
connected by an edge between vertices of degree 6 in the triangulation of the surface.
By construction, each of these intersects another such curve twice and we defer the
proof that these curves are systoles to Lemma 3.6.

We now prove our claim that the curves in Cg are indeed systoles.

Lemma 3.6 For all g � 1, the curves in Cg are systoles.

Proof Consider the triangulation of the surface. For gD 1, all vertices are of degree 6.
When g � 2, the pasting scheme associates all exterior vertices of the 4g–gon and the
point in the quotient has degree 12g� 6 (to see this, simply apply the hand-shaking
lemma to the graph given by the triangulation). The remaining vertices are all of
degree 6. We denote by � the graph dual to the triangulation. From what we have just
said, for g D 1, cutting the surface along � decomposes the surface into hexagons.
When g � 2, cutting along � decomposes the surface into hexagons and a single
.12g�6/–gon.

Any simple closed oriented geodesic  on the surface can be homotoped to a curve
on � . At every vertex crossed by the curve, the orientations on the surface and on
the curve give us a notion of “going left” or “going right”. We can associate to  a
word w in the matrices L D

�
1
0

1
1

�
and R D

�
1
1

0
1

�
, where each L corresponds to a

left turn and each R to a right turn. This way of understanding curves on “zero shear
surfaces” is fully explained in [6]. In particular, Brooks and Makover show how to
compute the length of these curves in terms of the associated word:

`. /D 2 arccosh
�

1
2

Tr.w/
�
:

Each curve in Cg corresponds to the word w0DRL4RL4 (or LR4LR4 or any cyclic
permutation of these, depending on the choice of an orientation and a starting point
on the curve), which, via a simple computation, has trace 34. To show that the curves
in Cg are systoles, it is enough to show that all other words corresponding to simple
closed geodesics have trace at least 34.

We use the following remark (see for instance [15]):

Remark 3.7 If a word can be written as w D � � �w1 � � �w2 � � �wk � � � , then

Tr.w/� Tr.w�.1/ � � �w�.k//

for any cyclic permutation � of 1; : : : ; k .
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Let  be a simple closed geodesic which is not in Cg . First we observe that we only
need to consider curves represented by circuits in � . Indeed, if  corresponds to a
closed path which contains an essential (ie not corresponding to a curve going around
a cusp) circuit  0 , a word representing  will contain a word representing  0 . By
Remark 3.7,  0 is at most as long as  and we can consider  0 instead. Otherwise, if 
is formed from non-essential circuits, it should contain at least two of them. Note that,
since non-essential circuits surround a cusp, they trace a hexagon or a .12g�6/–gon.
If both these circuits surround hexagons, we are in one of the following situations:

(a) (b)

In case (a) a word associated to the curve contains RL5 � � �RL5 and in case (b) it
contains LR5 � � �RL5 . In both cases, by Remark 3.7 and a simple computation, their
traces are bigger than 34. Now, if one of the two circuits surrounds the vertex of the
triangulation of degree 12g� 6, the curve is even longer.

Suppose then that  is represented by an essential circuit. If it passes through five
consecutive edges of a hexagon (said differently, a corresponding word contains L4 )
and is not in Cg , the following modification of the curve (see Figure 8) provides an
essential circuit. A word of the curve on the left contains LR4L, while the one of the
curve on the right contains R2 , so the trace decreases (again by Remark 3.7) and we
obtain a shorter curve.

We now assume a word w representing  does not contain L4 or R4 and as such it
is made of blocks of type LiRj for 1� i; j � 3. If w is made of four or more such
blocks, then

Trw � Tr..LR/4/ > 34:

Figure 8: Shortening a curve
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Moreover, the length of w is at least 7, as the shortest circuits in � are of length 6

and correspond to curves surrounding cusps. With this in hand, one needs to check
the finite set of words w made of blocks as above, of length at least 7, and of trace at
most 33. To do this one can proceed as follows. The conditions on w give two systems
of equations for the exponents of L and R (a system for the words made of two blocks
as above and one for words made of three blocks). These systems can be solved to
get the set of words we are interested in. It is then straightforward to check that the
curves corresponding to these words do not correspond to simple closed geodesics on
the surface.

4 Kissing number bound

In this section we will prove an upper bound for the kissing number depending on
the systole length. We then deduce a universal upper bound depending only on the
signature of the surface. To do so, we separate the systoles into three sets and we give
separate bounds for each of their cardinalities.

For a surface S , let S.S/ be the set of its systoles and Kiss.S/ WD jS.S/j be the
kissing number of S . We say that ˛ and ˇ bound a cusp if they form a pair of pants
with a cusp. We define:

A.S/ WD f˛ 2S.S/ j ˛ bounds two cuspsg:

B.S/ WD f˛ 2S.S/ nA.S/ j ˛ and ˇ bound a cusp for some ˇ 2S.S/ nA.S/g:

C.S/ WDS.S/ n .A.S/[B.S//:

Note that by Proposition 3.3 two systoles in S.S/ nA.S/ intersect at most once.

4.1 Bounds on jA.S /j

As seen in Lemma 2.1, a curve of length ` bounds two cusps c and c0 if and only if
the distance between Hc and Hc0 is

d.`/D 2 log cosh
�

1
4
`
�
;

To bound jA.S/j we will bound the number of pairs of cusps at distance d.sys.S//.

Lemma 4.1 Let S be a surface with sys.S/D ` and c a cusp of S . There are at most
b2 cosh.1

4
`/c cusps c0 which satisfy d.Hc ;Hc0/D d.`/.
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Proof Suppose c1 and c2 are two cusps such that

d.Hc ;Hc1
/D d.Hc ;Hc2

/D d.`/:

Since sys.S/D `, the distance between Hc1
and Hc2

is at least d.`/. Consider

� the segment ˛ realizing the distance between Hc and Hc1
,

� the segment ˇ realizing the distance between Hc and Hc2
,

� the shortest arc  of @Hc bounded by the endpoints of ˛ and ˇ .

Let ı be the unique geodesic segment freely homotopic with endpoints on @Hc1

and @Hc2
to the curve ˛[ˇ[  . Then its length is at least d.`/:

˛

c



c1

c2

ˇ

ı

By a direct computation on the (non-geodesic) hexagon determined by ˛ , ˇ , ı and
the three horocycles, one can show that

`. /�
1

cosh
�

1
4
`
� :

Since @Hc has length 2, the number of cusps around c at distance d.`/ is bounded
above by

2

1=cosh
�

1
4
`
� ;

which proves the claim as we are bounding an integer.

As a consequence, we get the following:

Proposition 4.2 For S 2Mg;n with sys.S/D `,

jA.S/j � 1
2
n
�
2 cosh

�
1
4
`
�˘
:

Proof There are n cusps, each of which can be surrounded by at most b2 cosh.1
4
`/c

cusps at distance d.`/. The result follows as each curve surrounds two cusps.
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Remark 4.3 We can get another upper bound for A.S/ using the Euler characteristic
as follows.

Consider the set of punctures; if there is a systole bounding two of them, we join
them with a simple geodesic lying in the pair of pants determined by the systole. We
complete this set of geodesics into an ideal triangulation (decomposition into ideal
triangles) of the surface. The number of vertices of the triangulation is the number of
punctures n. If e is the number of edges, the number of triangles is 2

3
e . The Euler

characteristic of the compactified surface is 2g� 2, so

n� eC 2
3
e D 2� 2g:

From how we constructed the triangulation, it is clear that jA.S/j � e , so we get

jA.S/j � 3.nC 2g� 2/:

Interestingly, this bound can also be seen as a corollary of the above proposition. If we
use Schmutz Schaller’s upper bound on systole length (Theorem 2.4) in Proposition 4.2
above, this is exactly the resulting bound.

For surfaces of genus at least one, we will use the bound from the remark above, but
for punctured spheres we will use Proposition 4.2 directly.

4.2 Bound on jB.S /j

Consider a cusp c ; we define two associated sets:

B.c/ WD f˛ 2 B.S/ j ˛ and ˇ bound c for some ˇ 2 B.S/g;

B.c/.2/ WD f.˛; ˇ/ 2 B.S/�B.S/ j ˛ and ˇ bound cg:

Suppose .˛; ˇ/, .; ı/ 2 B.c/.2/ . Then  has to pass through the pair of pants given
by ˛ , ˇ and c , so  must intersect ˛ or ˇ . Since curves in S.S/ nA.S/ pairwise
intersect at most once, i.˛;  /D i.ˇ;  /D 1 (and the same for ı ).

Any curve ˛ 2 B.c/ is at a fixed distance D.`/ from Hc . By a direct computation in
the pair of pants bounded by ˛ and ˇ , one obtains

D.`/D log
�

2
cosh

�
1
2
`
�

sinh
�

1
2
`
� �:

When curves in B.S/ intersect they do so exactly once and we can obtain a lower
bound on their angle of intersection of curves in B.S/. (Note that the lemma holds for
any pair of systoles that intersect once.)
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˛ ˛

h

ˇ
†.˛; ˇ/

ı

Figure 9: The result of cutting the torus T along ˛

Lemma 4.4 Let S be a surface of signature .g; n/¤ .1; 1/. If ˛ and ˇ are systoles
of length ` intersecting once, their angle of intersection satisfies

sin†.˛; ˇ/� sin �` WD
�

2=
p

5; ` < 2 arccosh 3
2
;

p
2 cosh

�
1
2
`
�
C 1=.cosh

�
1
2
`
�
C 1/; `� 2 arccosh 3

2
:

In particular, the angle of intersection is bounded below by a function �` that behaves
like e�`=4 as ` goes to infinity.

Note that [13, Lemma 2.4] also gives a lower bound on the angle of intersection, with
the same order of growth.

Proof Consider the two systoles and the one-holed torus T they determine. Since
.g; n/¤ .1; 1/, the boundary component ı of T is a simple closed geodesic.

As ˛ and ˇ are systoles of S , they are also systoles of T . As such they satisfy the
systole bound for T that depends on the length of ı , namely

cosh
�

1
6
`.ı/

�
� cosh.`/� 1

2
:

We first consider the case when `� 2 arccosh 3
2

. We have cosh.1
2
`/� 1

2
� 1 and the

condition stated above is non-empty. Cut T along ˛ (see Figure 9) and consider the
shortest curve h connecting the two copies of ˛ . By hyperbolic trigonometry, using
cosh.1

6
`.ı//� cosh.1

2
`/� 1

2
, a direct computation provides

cosh h�
4 cosh

�
1
2
`
�2
� cosh

�
1
2
`
�
� 1

cosh
�

1
2
`
�
C 1

:

Now consider one of the two right-angled triangles determined by arcs of ˛ , ˇ and h.
We have

sinh
�

1
2
h
�

sin†.˛; ˇ/
D sinh

�
1
2
`
�
;
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D.`/ D.`/

c

Figure 10: Geodesics around a horoball

which, together with the estimate on h, yields

sin†.˛; ˇ/�

q
2 cosh

�
1
2
`
�
C 1

cosh
�

1
2
`
�
C 1

:

If ` < 2 arccosh 3
2

, we deduce the inequality sin†.˛; ˇ/� 2=
p

5 by arguing as above,
but replacing the estimate cosh.1

6
`.ı//� cosh.1

2
`/� 1

2
by `.ı/� `.

Fix .˛; ˇ/ 2 B.c/.2/ and denote by P the pair of pants they determine with c . As
they form a pair of pants with two boundary curves of the same length, there is an
isometric involution ' of P that sends ˛ to ˇ (a rotation of angle � around the cusp).
Note that, for any .; ı/ 2 B.c/.2/ , the involution sends  \P to ı \P because of
the symmetry of the pair of pants determined by  , ı and p . If we quotient P by '
and we consider the image of B.c/, we get a set of geodesics at distance D.`/ from a
horoball of area 1, all pairwise intersecting with angle at least �` . This observation is
crucial to show the following result.

Lemma 4.5 If .g; n/¤ .1; 1/, the number of elements in B.c/ is bounded above by

m.`/ WD
cosh

�
1
2
`
�

sinh
�

1
2
`
� 2

sin
�

1
2
�`
� :

Proof The situation is as in Figure 10, which locally represents the elements of B.c/

under the quotient by ' . Note that every element in the quotient by ' represents two
elements from B.c/.

The inner circle (which we’ll refer to as the inner horocycle) represents the quotient
horoball of area 1 and the external one is the horocycle at distance D.`/ from the
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horoball of area 1. By looking at the unique orthogonal geodesics between elements
of B.c/=' and the inner horocycle, we can determine a cyclic ordering on the elements
of B.c/=' . Two neighboring geodesics with respect to this ordering determine a subarc
on the inner horocycle as follows. We consider the orthogonal geodesic between them
and the inner horocycle and take the subarc of the horocycle which forms a pentagon
with the two geodesics and the orthogonal (see Figure 10). By a direct computation,
using the lower bound on the angle of intersection, this subarc on the inner horocycle
is of length at least

sinh
�

1
2
`
�

cosh
�

1
2
`
� sin

�
1
2
�`
�
:

These subarcs are all disjoint and are of the same number as the elements of B.c/='

(keep in mind that any two elements of B.c/=' intersect).

From this we deduce an upper bound on jB.c/='j:

1�
sinh

�
1
2
`
�
=cosh

�
1
2
`
��

sin
�

1
2
�`
� :

Now 2jB.c/='j D jB.c/j, which completes the proof.

As a consequence, we obtain an upper bound on jB.S/j.

Proposition 4.6 If S 2Mg;n , .g; n/¤ .1; 1/, has systole of length sys.S/D `, then

jB.S/j � nm.`/:

Proof We have
B.S/D

[
c cusp

B.c/

and, for every cusp c ,
jB.c/j �m.`/:

4.3 Bound on jC.S /j

By definition, elements of C.S/ are systoles that satisfy

� two curves in C.S/ intersect at most once, and

� two disjoint curves in C.S/ do not bound a cusp.

We follow a similar argument to one found in [13] to obtain an upper bound on jC.S/j.
In particular, we will need a collar lemma for systoles.
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Lemma 4.7 Let sys.S/D ` and consider ˛ , ˇ 2 C.S/. If ˛ and ˇ do not intersect,
then they are at distance at least 2r.`/, where

r.`/D arcsinh
1

2 sinh
�

1
4
`
� :

Proof Fix a pair of pants with ˛ and ˇ as boundary and consider the third boundary
component  . Since ˛ and ˇ are in C.S/, they do not bound a cusp, so  is a simple
closed geodesic of length at least `. The result follows by a standard trigonometric
computation.

As a consequence, if ˛ and ˇ in C.S/ pass through the same disk of radius r.`/ then
they intersect.

Moreover, we have seen in Lemma 4.4 that there is a lower bound on the angle of
intersection of systoles intersecting once. With this in hand we prove the following:

Lemma 4.8 If .g; n/¤ .1; 1/, sys.S/D `, and ˛ and ˇ in C.S/ pass through a disk
of center p and radius r.`/, then the distance between p and the point q of intersection
between ˛ and ˇ satisfies

d.p; q/�R.`/;

where

sinh.R.`//D
�

5=
�
8 sinh

�
1
4
`
��
; ` < 2 arccosh 3

2
;�

cosh
�

1
2
`
�
C 1

�
=
�
2 sinh

�
1
4
`
�p

2 cosh
�

1
2
`
�
C 1

�
; `� 2 arccosh 3

2
:

Note that R.`/ is bounded for `� 2 arcsinh 1.

Proof The proof is analogous to the proof of [13, Lemma 2.6]. Fix p˛ 2˛ and pˇ 2ˇ

lying in Dr.`/.p/. We have two triangles of vertices p , p˛ , q and p , pˇ , q , and the
sum of the two angles �˛ and �ˇ at q is the angle of intersection †.˛; ˇ/. Suppose
�˛ �

1
2
†.˛; ˇ/ and consider the angle � of the triangle p , p˛ , q at p˛ ; see Figure 11.

Then
sin.�/

sinh.d.p; q//
D

sin.�˛/
sinh.d.p;p˛//

:

Using �˛ � 1
2
†.˛; ˇ/, d.p;p˛/ < r.`/ and Lemma 4.4, we obtain the result.

We are now in a position to obtain a bound on jC.S/j.

Proposition 4.9 If S 2 Mg;n , g ¤ 0 and .g; n/ ¤ .1; 1/, has systole of length
sys.S/D `, then

jC.S/j � 200
e`=2

`
.2g� 2C n/:
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q
�˛

�ˇ

˛

ˇ

p

pˇ

p˛
�

Figure 11: ˛ and ˇ passing though a disk of radius r.`/

Proof If `� 2 arcsinh 1, then all systoles are pairwise disjoint, so

jC.S/j � Kiss.S/� 3g� 3C n:

We now suppose that ` > 2 arcsinh 1. Consider zS D S n
S

c cusp Dw.`/.c/, where

w.`/D arcsinh
1

sinh
�

1
2
`
�

is the width of a collar around a systole. By the collar lemma, each curve of C.S/ is
contained in zS . We cover zS with disks of radius r.`/. Then the cardinality of C.S/

is bounded above by
F.S/G.S/

H.S/
;

where

F.S/D #fballs of radius r.`/ needed to cover zSg;

G.S/D #fcurves in C.S/ crossing a ball of radius r.`/g;

H.S/D #fnumber of balls of radius r.`/ a curve in C.S/ must crossg:

To bound jC.S/j, we need to give upper bounds for F.S/ and G.S/ and a lower
bound for H.S/.

Upper bound for F .S / We have

F.S/�max #
˚
embedded balls of radius 1

2
r.`/ which are pairwise disjoint

	
�

area. zS/

area
�
ball of radius 1

2
r.`/

� � area.S/

2�
�
cosh

�
1
2
r.`/

�
� 1

� � 8.2g� 2C n/e`=2:

Upper bound for G .S / We proceed as in the proof of [13, Theorem 2.9], by reason-
ing in the universal cover and estimating how many geodesics, pairwise intersecting at
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an angle of at least �` , can intersect a disk of radius r.`/. We obtain

G.S/�
�

2

sinh.R.`/C arcsinh 1/

arcsinh sin.�`/
�

5�

2 arcsinh sin.�`/
:

Lower bound for H .S / To cover a curve of length ` with disks of radius r.`/ we
need at least `=.2r.`//. So

H.S/�
`

2 arcsinh
�
1=
�
2 sinh

�
1
4
`
��� � ` sinh

�
1
4
`
�
:

By putting the three bounds together and considering that sinh.1
4
`/ arcsinh sin.�`/ is

bounded below by 1
3

for ` > 2 arcsinh 1 we obtain the claimed result.

4.4 Proof of main results

Using Propositions 4.2, 4.6 and 4.9, we get an upper bound for the kissing number of a
surface in terms of its signature and its systole length.

Theorem 4.10 If S 2 Mg;n with g � 1, .g; n/ ¤ .1; 1/, has systole of length
sys.S/D `, then

Kiss.S/� 20n cosh
�

1
4
`
�
C 200

e`=2

`
.2g� 2C n/:

As a consequence, we can get a bound on the kissing number which is independent of
the systole length.

Theorem 4.11 There exists a universal constant C (which we can take to be 2� 104 )
such that, for any S 2Mg;n , g � 1, its kissing number satisfies

Kiss.S/� C.gC n/
g

log.gC 1/
:

Proof This follows from the bounds in Theorem 4.10 and bounds on systole lengths.
Precisely, we insert the Schmutz Schaller bound (Theorem 2.4) into the term cosh.1

4
`/

and we use Theorem 2.3 for the e`=2=` term. For .g; n/D .1; 1/, we recall the well-
known fact that Kiss.S/ � 3 (there can be at most 3 distinct curves that pairwise
intersect at most once on a one-holed torus).

Remark 4.12 Przytycki [16] obtained an upper bound for the number of simple
closed curves pairwise intersecting at most once. Using this and our bound on jA.S/j
(Proposition 4.2), one can obtain an upper bound for the kissing number which is
cubic in the Euler characteristic. Our upper bound, on the other hand, is subquadratic
in j�.S/j, like the one for closed surfaces in [13].
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The upper bound of Theorem 4.11 is linear in the number of cusps if we fix the genus.
For punctured spheres we can obtain a more meaningful bound.

Theorem 4.13 For every S 2M0;n , the number of systoles satisfies

Kiss.S/� 7
2
n� 5:

Proof By Proposition 4.2 and Schmutz Schaller’s upper bound for the systole, we
have

jA.S/j �
n

2

j
2.3n�6/

n

k
D

n

2

j
6�

12

n

k
�

5

2
n:

Moreover, systoles are separating, so can only intersect an even number of times. This
implies that systoles in S.S/ nA.S/ are pairwise disjoint and hence part of a pants
decomposition. Note that any pants decomposition of a sphere contains at least two
curves bounding two cusps; indeed, the dual graph to the pants decomposition is a tree,
so it has at least two leaves, which correspond to curves bounding two cusps. This
implies that

jS.S/ nA.S/j � # curves in a pants decomposition� 2D n� 5:

By using short pants decompositions where every curve is of equal length, it is easy to
obtain a family of punctured spheres with a number of systoles that grows linearly in
the number of cusps. Matching the 7

2
n upper bound from this theorem seems much

more challenging.
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Combinatorial cohomology of the space of long knots

ARNAUD MORTIER

The motivation of this work is to define cohomology classes in the space of knots
that are both easy to find and to evaluate, by reducing the problem to simple linear
algebra. We achieve this goal by defining a combinatorial graded cochain complex
such that the elements of an explicit submodule in the cohomology define algebraic
intersections with some “geometrically simple” strata in the space of knots. Such
strata are endowed with explicit co-orientations that are canonical in some sense.
The combinatorial tools involved are natural generalisations (degeneracies) of usual
methods using arrow diagrams.

57M25; 55N33, 57N80

The paper is organised as follows.

In Section 1 we build a prototypical cochain complex which contains all the essential
combinatorics while using the most simple input, namely a finite collection of finite
subsets of R (a coloured leaf diagram). The point of this preliminary is not only
theoretical, it serves to point out clearly that this part of our construction does not
depend on the material introduced later.

In Section 2 we show that the incidence signs of the previous cochain complex are
of a topological nature, as they are an essential ingredient in the computation of the
boundary of the meridian discs of some “geometrically simple” strata in the space
of knots, provided that these discs are correctly oriented. This property canonically
defines a co-orientation of simple strata.

Simple strata are represented by means of degenerated Gauss diagrams, ie whose arrows
are allowed to meet on the base circle. In Section 3, similarly to Polyak and Viro’s
formulas for finite-type invariants, we define cochains by counting subconfigurations
in those diagrams, with weights given by products of writhes. A little twist appears
here: we do not count the signs of arrows that participate in singularities; these signs
contribute implicitly, via the definition of the canonical co-orientation.

At the end of Section 3 we define the maps of the main cochain complex, as a slightly
twisted version of those of Section 1, and construct a Stokes formula relating it with
the boundary maps from Section 2, which model the meridians of simple strata. The
announced result follows.

Published: 12 January 2016 DOI: 10.2140/agt.2015.15.3435

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M25, 55N33, 57N80
http://dx.doi.org/10.2140/agt.2015.15.3435


3436 Arnaud Mortier

Lastly, Section 4 is a review of examples, including new formulas for the low-degree
Vassiliev invariants obtained by integrating 1– and 2–cocycles over some canonical 1–
and 2–chains. In particular we give a method for integrating our 1–cocycle formulas
into knot invariants without any computations, over the two main canonical cycles in
the space of knots; namely the Gramain loop, and the Fox–Hatcher loop.
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1 Cohomology of coloured leaf diagrams in R

1.1 Polygons

A polygon is a finite subset of the oriented based circle S1 DR[f1g. We make no
distinction between a polygon and the corresponding singular 0–chain in C0.S

1;Z2/.
It is said to be even or odd according to the parity of its cardinality; in other words,
odd polygons are those representing the non-trivial homology class in H0.S

1;Z2/.

Let P and P 0 be two disjoint even polygons. Then they have a well-defined (mod 2)
linking number, denoted by lk.P;P 0/2Z2Df˙1g, which is the algebraic intersection
between P 0 and any 1–chain in C1.S

1;Z2/ whose boundary is P . The map lk is
symmetric, and bilinear in the sense that if P and P 0 are disjoint, as well as P and P 00 ,
then:

lk.P;P 0CP 00/D lk.P;P 0/ � lk.P;P 00/:

If P 0 is odd and P has two elements, again with P \P 0 D∅, we extend the notation
by setting

lk.P;P 0/D lk.P 0;P / def
D .�1/]Œmin.P/;max.P/�\P 0

;

where we agree that the point 1 is greater than any real number. Note that the same
formula holds when P 0 is even. The map lk can then be extended by symmetry and
bilinearity to any pair of disjoint polygons at least one of which is even.

Algebraic & Geometric Topology, Volume 15 (2015)
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We define a partial order on the set of polygons by setting

P < P 0 () inf.P / < inf.P 0/:

1.2 Coloured leaf diagrams

A (coloured) leaf diagram in RD S1 n f1g is a finite collection of pairwise disjoint
polygons, none of which contains1. The elements of the polygons are called leaves of
the diagram and two leaves from the same polygon are said to have the same colour. The
terminology is inspired by the fact that such diagrams are meant to later be completed
into tree diagrams by connecting all leaves of a same colour by an abstract tree. We
define two Z–valued complexities associated with a leaf diagram L:

� The Gauss degree deg.L/, which is the total number of leaves minus the number
of colours (polygons) in L.

� The codimension �.L/, or cohomological degree, which is the total number of
leaves minus twice the number of colours in L.

The term “Gauss degree” comes from the theory of chord diagrams, where it denotes
the number of chords. For instance, a leaf diagram with d polygons, all of which have
cardinality 2, has Gauss degree d and codimension 0.

Leaf diagrams are regarded up to orientation-preserving homeomorphisms of the real
line S1nf1g. The Z–module freely generated by equivalence classes of leaf diagrams
of degree d and codimension i is denoted by Li

d
. Note that Li

d
is always finitely

generated and is trivial whenever i is greater than d � 1.

Remark 1.1 Special attention should be paid to polygons with only one leaf. Such
a polygon contributes �1 to the codimension and has no effect on the Gauss degree.
They are actually the only reason why the cohomological degree is not bounded and
N –valued. In our main application for this theory, they are naturally excluded, and
the spaces of diagrams with fixed Gauss degree are finitely generated. However, it
is harmless to allow them in the prototypical cochain complex and there may be a
theoretical interest in studying their meaning and the relations between the main and
“reduced” cohomology theories.

1.3 The " signs and prototypical complex

Let L be a leaf diagram. An edge of L is a closed connected part of the circle that lies
between two neighbouring leaves of L; in particular, an edge cannot contain a leaf in
its interior and it cannot contain 1. An edge is called admissible if its two boundary
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points have different colours. From such an edge, we construct a new leaf diagram Le

in the following way. The polygons of Le are the polygons of L, except for the two
that have a leaf at the boundary of e : those two are merged into a single polygon in
Le and one of the two boundary points of e is removed from it (which one exactly has
no effect on the resulting diagram up to positive homeomorphism of R).

One easily checks the relations

deg.Le/D deg.L/ and �.Le/D �.L/C 1:

Consider the linear maps Li�1
d
! Li

d
defined on each generator by the formula:

L 7!
X

e admissible

Le:

It is easy to see that using Z2 coefficients, these maps turn the collection of spaces Li
d

into a graded cochain complex. Our goal is to define signs to lift this complex over Z.

The global sign Let P be an odd polygon in a leaf diagram L. We define the odd
index of P as the parity of the number of odd polygons in L that are greater than P .
Using the convention that a boolean expression has value �1 when it is true and 1

otherwise, this can be written as

Odd.P;L/ def
D

Y
P 0 odd

.P < P 0/:

We extend this definition to all polygons by setting Odd.P /D 1 whenever P is even.

Let e be an admissible edge in L, bounded by the leaves v and w lying in the polygons
Pv and Pw , respectively. Also, denote by Pvw the polygon of Le that results from
the merging of Pv and Pw .

We define the global sign associated with the edge e in L by

�glo.e;L/
def
D Odd.Pv;L/ �Odd.Pw;L/ �Odd.Pvw;Le/:

This will be the only contribution to the signs in the coboundary maps that depends on
polygons located far from e .

Remark 1.2 When Pv and Pw are both odd, both booleans .Pv<Pw/ and .Pw<Pv/

appear in �glo , which results in a minus sign.
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The local sign From now on, for the sake of lightness, we will not mention that every
sign depends on L, since other diagrams like Le will not contribute any more.

If x is a leaf in L, we denote by Px the polygon that contains it. Define the evenisation
of Px with respect to x as

P .x/
x D

�
PxCx if Px is odd,
Px if Px is even.

As a set, PxCx corresponds to Px n fxg, so that the polygon P
.x/
x is always even.

As previously, let e be an admissible edge in L, bounded by the leaves v and w .
Recall the convention that a boolean expression takes value �1 when it is true and 1

otherwise. We define:

Linking number of e lk.e/D lk.P .v/
v ;P

.w/
w /:

Even index of Pv with respect to e

E.Pv; e/D
�

lk.vC1;Pw/ if Pv is even,
1 otherwise.

Odd consistency of e

 .e/D

�
.v < w/.Pv < Pw/ if both Pv and Pw are odd,
1 otherwise.

The local sign associated with the edge e is

�loc.e;L/D lk.e/ .e/E.Pv; e/E.Pw; e/:

Finally, we set
"L.e/D �loc.e;L/�glo.e;L/;

ıi
d .L/D

X
e admissible

"L.e/ �Le;

and extend this formula into a linear map ıi
d
W Li�1

d
! Li

d
.

Theorem 1.3 For each d � 1, the collection of spaces L�
d

and maps ı�
d

forms a
cochain complex of Z–modules.

Proof Let e and e0 be two edges in a leaf diagram L such that e is admissible. Then
e0 is admissible in Le if and only if e0 is admissible in L and e is admissible in Le0 .
We call such a couple bi-admissible. To prove the theorem, it is enough to show that for
any bi-admissible couple, the contribution of e and e0 in the computation of ı2L is 0
or, in other words, that the product "L.e/"L.e0/"Le0 .e/"Le

.e0/ is always equal to �1.
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Parities of the polygons
Total contribution of �glo to "L.e/"Le0 .e/

Pv Pw Pv0 Pw0

0 0 0 0 .Pvw < Pv0w0/

0 0 0 1 .Pvw < Pw0/

0 0 1 1 .Pvw < Pv0/.Pvw < Pw0/.Pvw < Pv0w0/

0 1 0 1 .Pw < Pw0/

0 1 1 1 .Pw < Pv0/.Pw < Pw0/.Pw < Pv0w0/

1 1 1 1
.Pv < Pv0/.Pw < Pv0/.Pvw < Pv0/.Pv < Pw0/.Pw < Pw0/

� .Pvw < Pw0/.Pv < Pv0w0/.Pw < Pv0w0/.Pvw < Pv0w0/

Table 1: Computation of ı2 when ]fPv;Pw;Pv0 ;Pw0g D 4 . By symmetry,
there are only six cases to consider. Note that the minus sign due to Pv and
Pw being odd in the last line (Remark 1.2) appears twice and cancels out.

If e and e0 are bounded respectively by v , w and v0 , w0 , then .e; e0/ is bi-admissible
if and only if e and e0 are admissible and the leaves v , w , v0 and w0 represent at least
3 different colours. We split the proof into two parts, accordingly.

First, assume that all leaves have pairwise different colours. In this case, every contribu-
tion from �loc appears twice and cancels out. So do the contributions of �glo involving
other polygons than those neighbouring e and e0 . The remaining contributions of �glo

are summarised in Table 1; 0 stands for “even”, 1 for “odd”. We show only the
contribution to "L.e/"Le0 .e/: the contribution to "L.e0/"Le

.e0/ contains exactly the
opposite boolean expressions. So the point is that in each row, there is an odd number
of booleans.

We now assume that v , w , v0 and w0 represent 3 colours, and without loss of generality
that w and w0 share the same one. We need not discuss the special case when w is
actually equal to w0 , since the following computations apply equally well in that case.
Table 2 details the contribution of each factor to the product "L.e/"L.e0/"Le0 .e/"Le

.e0/.
The proof that the product of all contributions is always �1 is straightforward, using
the bilinearity of lk and the formula

lk.aC1; b/D .a< b/ for all a; b 2R:

2 Simple singularities in the space of knot diagrams

2.1 Germs and the associated strata

By the space of long knots K we mean the (arbitrarily high, but finite)-dimensional affine
approximation of the space of all smooth maps R!R3 with prescribed asymptotical
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Parities Contributions

Pv Pw Pv0 lk E

0 0 0 lk.PvCPv0 ; wCw0/ lk.PvCPv0 ; wCw0/ lk.vC1; w0/ lk.v0C1; w/
0 0 1 lk.Pv0Cv0; wCw0/ lk.Pv0 ; wCw0/ lk.wC1; w0/
1 0 1 1 1

0 1 0 lk.PvCPv0 ; wCw0/ lk.PvCPv0 ; wCw0/ lk.vC1; w0/ lk.v0C1; w/
0 1 1 lk.Pv0Cv0; wCw0/ lk.Pv0 ; wCw0/ lk.vC1; v0/
1 1 1 1 1

Parities Contributions

Pv Pw Pv0  �glo

0 0 0 1 1
0 0 1 .v0 <w0/.Pv0 < Pvw/ .Pv0 < Pvw/

1 0 1 1 �1

0 1 0 1 1
0 1 1 .v0 <w0/.Pv0 < Pw/ .Pv0 < Pw/

1 1 1 ˙.Pv < Pw/.Pv0 < Pw/.Pv < Pv0w/.Pv0 < Pvw/

Table 2: Contribution of each factor after obvious simplifications, in the case
Pw DPw0 . By symmetry, there are only six cases to consider. In the last line,
 and �glo have the same contribution up to sign, which is C for  and
� for �glo .

behaviour, as defined by Vassiliev [23]. The discriminant † is the subset of all maps
in K that are not embeddings. A projection pW R3 ! R2 endows K n † with a
stratification, whose strata are defined by certain semi-algebraic varieties in multijet
spaces (see Example 2.4, and see David [5], Wall [25], Fiedler and Kurlin [8] and
references therein for an introduction to stratified spaces and the simplest examples
used in knot theory). Those strata can be represented by Gauss diagrams with additional
information of geometrical nature, ie involving derivatives (see Vassiliev [24]). We will
call such a stratum simple if the only geometric data are the writhes of the crossings,
and geometric otherwise.

Definition 2.1 An abstract germ is the datum of a finite number of complete ori-
ented graphs, together with an embedding of the disjoint union of their vertices into
RD S1 n f1g, such that

(1) each graph has at least two vertices,

(2) no graph has oriented cycles,
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(3) each edge of each graph is decorated with a sign C or �.

An abstract germ  has an underlying leaf diagram L. /, from which it inherits the
terminology of polygons, leaves, colours, edges, as well as the Gauss and cohomological
degrees deg and �. The edges of the graphs in  are called (signed) arrows, while the
word “edge” keeps the same meaning as in Section 1.3.

Condition .2/ above implies that a germ induces a total order on each of its polygons,
and a partial order on the set of all of its leaves, denoted by < . A knot is said to
respect  , and is called a  –knot, if it maps any two leaves with the same colour to a
classical crossing with over/under datum given by the order < , and writhe given by
the sign of the arrow between those leaves. These conditions may be inconsistent, so
that no knot can respect  ; otherwise,  is called a topological germ, or more simply
a germ. In that case the diagram of a generic  –knot is uniquely determined near
each imposed crossing up to local diagram isotopy. Out of the 2.

n
2/ ways to put signs

on a complete graph (consistently oriented) with n leaves, exactly 2n�1.n� 1/! are
topological.

The Z–module freely generated by (topological) germs with cohomological degree i is
denoted by Gi , because we will essentially think of meridians (that is, i–discs transverse
to the stratification) for which i is the dimension.

Remark 2.2 A  –knot may very well have crossings besides those required by  .
However, in a generic  –knot these additional crossings cannot be multiple.

If the leaves of  are fixed, the set of all  –knots in K is an affine subspace of
codimension 2 deg. /, because there are .]P � 1/ affine equations for each poly-
gon P (which are independent if dimK is large enough), and because the writhe
conditions are open, hence 0–codimensional. If the leaves are set free, ie the germ is
regarded up to positive homeomorphism of the real line, then the codimension drops to
2 deg. /� (number of leaves), which is equal to �. /.

Definition 2.3 The �. /–codimensional subspace of all knots in K that respect  up
to positive homeomorphism of the real line is denoted by K and called the simple
stratum associated with  .

In Section 2.3, we will show that a germ  defines canonically a co-orientation of K
(that is, an orientation of its meridian disc). That is the reason for calling it a germ.

Example 2.4 The strata of codimension 1 are described by the classical Reidemeister
moves. R-I and R-II strata are geometric, and R-III is simple. Indeed, choose a basis
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.e1; e2; e3/ of R3 such that e3 is the axis of the projection p . This splits a knot
parametrisation f W R!R3 into three coordinate functions f1;2;3 . Reidemeister strata
are then defined by writhe data together with the conditions (for example):

R-I 9x f 0
1
.x/D f 0

2
.x/D 0:

R-II 9x < y

f1.x/D f1.y/

f2.x/D f2.y/

f3.x/ < f3.y/

and det
�
f 0

1
.x/ f 0

1
.y/

f 0
2
.x/ f 0

2
.y/

�
D 0:

R-III 9y < x < z

f1.x/D f1.y/D f1.z/;

f2.x/D f2.y/D f2.z/;

f3.x/ < f3.y/ < f3.z/:

Note that the conditions do not depend on the choice of a basis for the projection
plane, .e1; e2/; this is a general observation, the stratification depends only on p . Also,
this stratification should not be confused with that of † used by Vassiliev [23] to define
finite-type cohomology classes. That one will not be used in the present paper.

Remark 2.5 When a germ is regarded up to homeomorphism, it may happen that a
knot respects it in several different ways. Note however that a generic  –knot cannot
have more singularities than imposed by  , so that the only source of multiplicity
lies in two-leaved polygons, which give 0–codimensional constraints. Rather than the
strata K , one may consider simplicial chains, whose local weight near a given  –knot
is equal to the number of ways that knot respects  ; this is the implicit choice in
Vassiliev’s calculus [24]. Here, algebraic intersection with such chains will be modelled
by means of the map T ı I which is defined in Section 3.2.

2.2 Boundary of simple strata

The boundary of a stratum K is defined by the generic ways for its constraints to
degenerate. There are essentially six basic ways, from which all others can be built.
They can be interpreted by thinking of a generic  –knot as a knot diagram some of
whose crossings, including all multiple crossings, are coloured in red (as in Figure 1).

Type † Two leaves of  that are consecutive with respect to the order < tend to be
mapped to the same point in R3 . The corresponding piece of boundary lies in †, so it
is harmless for our purposes (namely understanding the cohomology of K n†, which
is the relative homology of .K; †/).

Type 1 One edge of  whose boundary points have the same colour collapses into a
point x , accompanied by the condition f 0

1
.x/D f 0

2
.x/D 0.

Algebraic & Geometric Topology, Volume 15 (2015)
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Type 2-1 Two branches of a red crossing tend to have the same direction in the knot
diagram; from the point of view of  , it results in a writhe not being well-defined
any more, and replaced with either a condition of positive or negative collinearity of
derivatives.

Type 2-2 Two edges of  that bound a bigon in the knot diagram collapse simulta-
neously. This produces the same geometric condition as in Type 2-1.

Type 3-2 One edge whose boundary points have distinct colours collapses.

Type 3-3 Three edges that bound a triangle in the knot diagram collapse simultane-
ously.

Types 1 to 3-3 correspond to generalised Reidemeister moves, in that the crossings
are allowed to be multiple. They are sorted according to how many red crossings they
involve.

Besides these basic types, it can happen that types 2-2, 3-2 and 3-3 are accompanied
by the simultaneous collapsing of an arbitrarily large number of triangles of type 3-3.
Indeed, in all of these cases, one can see on the knot diagram that a number of crossings
are locally present although they may not be imposed by the germ (red). Now these
crossings may also actually be present in the germ, in which case they can either
be regarded as far (which yields a basic type as above) or close, in which case they
participate in the collapsing. Then, these extra crossings may themselves be multiple
crossings from the beginning, and this phenomenon may repeat itself.

We are now ready to define precisely which kind of degeneracies will be of interest in
this paper.

Definition 2.6 We call a degeneracy    0 type 0 if it is of basic type 3-2 together
with finitely many non-multiple extra crossings as above, ie at most two polygons
with more than two leaves can be involved in the collapsing. It may involve type 3-3
degeneracies (it does as soon as there are extra crossings) but it is not regarded as
such. If the two polygons of the underlying type 3-2 degeneracy have m and n leaves,
respectively, then there are at most .m � 1/.n � 1/ extra arrows. Degeneracies of
basic type 3-2 with extra multiple crossings are naturally considered to fall down into
type 3-3. See examples in Figures 1 and 2.

Reidemeister farness We now define a class of germs that will allow us to avoid bad
geometric strata as well as the type 3-3 frenzy described earlier.

Definition 2.7 Let  be a germ. We say that two leaves in  are neighbours if they
are the two boundary points of an edge. Then  is called:
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Figure 1: A type 0 degeneracy with three out of possibly six extra arrows
involved, represented here with dashed lines for the sake of clarity. The result,
a germ with missing arrows, will be called a subgerm in Section 3. It is not a
new kind of stratum, rather it should be thought of as the formal sum of all
ways to complete it into an actual germ. The branches are numbered from the
highest to the lowest. In the underlying type 3-2 degeneracy, only the edge
labelled “1” collapses.

(1) R–I–close if it contains an arrow .v; w/ such that v and w are neighbours.

(2) R–II–close if it contains four distinct leaves v , w , x and y such that
� v and w are neighbours, and so are x and y ;
� v and w have distinct colours;
� v < x and w < y .

(3) R–III–close if it contains six distinct leaves v , w , x , y , z and t such that
� fv;wg, fx;yg and fz; tg are pairs of neighbours;
� v , w and y have pairwise distinct colours;
� v < x , y < z and w < t .

We define R–farness of germs, and therefore of simple strata, as the negation of all of
these properties. In other words,  is R–far if no generic  –knot can be subject to
a generalised Reidemeister move involving only red crossings, that is, basic types 1,
2-2 and 3-3 cannot occur. For instance, the germ in Figure 1 is three times R-III–close.

2.3 Meridian systems and the @i map

Roughly speaking, our goal is to define cohomology classes in the space of knots
as intersection forms with R–far simple strata. This requires us to understand in
which meridian spheres these strata occur. By the previous discussion we mainly
need to consider the meridians of simple strata. The geometric strata resulting from
2-1 degeneracies will later prove to be completely harmless (see Lemma 3.10).

Let f be a knot respecting an i–germ  (that is, a germ with codimension �. /D i ),
and Di

f
a piecewise linear (PL) i–disc about f in K , transverse to the stratification.
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Then the boundary of Di
f

intersects finitely many .i�1/–strata, at points f1; : : : ; fp ,
and can be covered with PL discs Di�1

fk
with pairwise disjoint interiors. Since  is

simple, every meridian stratum k is necessarily simple, and the degeneracy k 

is either of type 0 (see Definition 2.6) or of type 3-3.

Definition 2.8 (Reduced meridian system) The cellular boundary map (over Z)
associated with the above decomposition of @Di

f
depends only on  . It is called the

meridian system of  . The reduced meridian system of  is the induced map with
target restricted to those Ck

such that k  is of type 0. We denote it by

@ W C !
M

0

Ck
:

When i D 0, D0
f

consists of a single point and has a canonical orientation, ie there is a
canonical generator of C Š Z, which we denote by 1 .

We now show that the signs " used to construct the cochain complex from Section 1
provide a combinatorial realisation of this boundary map, and a preferred generator for
each module C .

Definition 2.9 (k –splittings) Let  be a germ and � one of the graphs of  with
n leaves, n� 3. A splitting of  along � is a germ s together with the datum of a
type 0 degeneracy s  resulting in the creation of the graph � . It has to involve two
graphs �1 and �2 with k and nC1�k leaves, respectively (we assume k �nC1�k ),
together with .k�1/.n�k/ two-leaved graphs. If k � 3, s has a favourite edge e.s/

which is the only edge bounded by �1 and �2 that gets shrunk in the degeneracy. In
Figure 1, with k D 3 and nD 6, e.s/ would be the edge labelled “1”, and all visible
crossings should be red, so that the six-vertex graph on the right is complete.

When k D 2, the choice of �1 (and also �2 if nD 3) and therefore e.s/ is not unique;
see an example in Figure 2. However, k is uniquely defined and we have a notion of
k –splitting.

Definition 2.10 Let � be a graph with two leaves in a germ  . We define the
consistency �.�/ to be C1 if the order defined by R and that defined by < agree
on � , and �1 otherwise. We let �w.�/ denote the product of �.�/ with the sign of
the unique arrow in � . The maps � and w are set to C1 for graphs with more than
two leaves.

Lemma 2.11 Let s be a (2–)splitting of  , and let L.s/ be the underlying leaf
diagram of s . Then the sign

�w.�1/�w.�2/"L.s/.e.s//
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does not depend on the choice of �1 and �2 .

This lemma is the key ingredient to show that our signs " are of a topological nature.
It will be proved at the end of this section.

We set
@i. /D

X
all splittings

�w.�1/�w.�2/"L.s/.e.s// � s

and extend this into a linear map @i W Gi ! Gi�1 . The reason for this map to not be
graded with respect to the Gauss degree lies essentially in the bunch of two-leaved
polygons that appear as a result of splitting a germ.

Theorem 2.12 (1) The maps @i and spaces Gi together form a chain complex.

(2) There is a unique collection of maps

� W C ,! G�. /

such that � .1 / D  if �. / D 0, and such that all the following diagrams
commute:

G�. / G�. /�1

C
L

0 Ck

@�./

@

�
L

0 �k

(3) The map � maps C isomorphically onto the submodule Z �G�. / . Hence the
preimage ��1

 . / defines a canonical co-orientation of the simple stratum K .

Figure 9 in Section 4.2 shows the co-orientation of the 2–stratum
1

depending on the signs of the arrows.

Proof The proof of the first point is identical to that of Theorem 1.3. One only has to
notice that the signs �w always appear twice and cancel themselves in the computation
of @ı@, and that the collection of two-leaved polygons that result from a splitting does
not affect the computations, because they are even polygons.

We prove points (2) and (3) simultaneously, by induction on i .
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When iD0, there is nothing to prove. The case iD1 also needs to be treated separately.
Here it suffices to notice that on the two sides of a Reidemeister III move, the sign
�w.�1/�w.�2/"L.s/.e.s// takes opposite values; indeed, such a move switches the
signs lk.P1;P2/, E.P1; e/ and E.P2; e/, and leaves the remaining signs unchanged.
So � is defined uniquely by mapping to  the generator of C that is oriented from
the negative side to the positive side. Point (3) is then satisfied, and it implies that the
direct sum of any collection of maps � is injective.

Now let i � 2 and assume that (2) and (3) hold up to i � 1. The crucial point is the
following:

Lemma 2.13 If i � 2, then in the cell decomposition of a meridian sphere Si�1
 made

of meridian discs, the union of all .i�1/–discs corresponding to type 0 degeneracies is
connected.

Assuming this lemma, consider a germ  2 Gi . By definition, @i lies in
L

0 Ck
,

so by induction (3) it has a unique preimage x by
L

0 �k
. By part (1) of the

theorem and by induction (2), x lies in the kernel of
L

0 @k
. In other words, it

is a relative cycle in .S ;S n
S

0 Dk
/. Also, it has local weight ˙1, so it is a

generator of Hi�1.S ;S n
S

0 Dk
/, which by Lemma 2.13 is canonically isomorphic

to Hi�1.S / Š Hi.D ;S / Š C . By pushing x through these isomorphisms, we
obtain a generator of C , and � is uniquely defined by the fact that it must map this
generator to  . This finishes the proof of Theorem 2.12, up to Lemma 2.13.

Proof of Lemma 2.13 If  has at least two graphs � and � 0 with more than two
leaves, then any two splittings along � and � 0 , respectively, have a piece of boundary
in common. If  has only one graph with n> 2 leaves, then n must be at least 4 so
that i D n� 2� 2. Here, any two 2–splittings sliding different branches of the knot
away have a common piece of boundary, and any k –splitting (k � 3) has a common
boundary piece with n� 1 distinct 2–splittings.

Proof of Lemma 2.11 We first prove the result in one particular case, then proceed by
induction, using a number of “moves” that allow one to join any splitting of any germ.

First note that by symmetry of the formula in f�1; �2g we need not check separately
the case nD 3, even though �2 is not uniquely determined. Figure 2 shows a splitting
C.2; n�1/ of a germ with only one graph, n leaves and only C signs. The orientations
of the arrows in the .n�1/–gon depend on the way to connect virtually the branches
of the .n�1/–crossing; they are not shown because the sign " only depends on the
underlying polygon. One easily sees that �w.�1/ is �1 in C.2; n�1/ for any choice
of �1 , and only the maps lk and E can contribute non-trivially in ". Let P1 and P2

denote the underlying polygons to �1 and �2 (so that ]P1 D 2).
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. . .
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.
.
.

C
C

C

1

Figure 2: The germ C.2; n� 1/ , a 2–splitting of the positive n–branch crossing

Now:

� lk.P1;P2/ is C1 if �1 is the topmost arrow (�1–candidate) in the diagram in
the right of Figure 2, and alternates up to .�1/n for the bottom arrow.

� E.P1; e.s// has the same alternating property and is �1 for the bottom arrow

� If n� 1 is even, E.P2; e.s// has the same value C1 for any choice of �1 (and
this also holds obviously if n� 1 is odd).

This proves that the sign �w.�1/�w.�2/"L.s/.e.s// is .�1/n for any choice of �1 in
C.2; n� 1/.

We now prove the invariance of the result under the following moves:

(1) Adding a bystander graph.

(2) Making one crossing change in the .n�1/–crossing.

(3) Making one crossing change at one of the n� 1 �1–candidates.

(4) Reversing the orientation of a branch of the .n�1/–crossing.

(5) Sliding the branch that was split away from the n–crossing to the other side of
the .n�1/–crossing.

(6) Changing the order in which the n local branches are virtually connected.

(7) Moving the point 1 to an adjacent region.

Note that reversing the orientation of the branch of the knot that was split away can be
formally realised by move (5) followed by n� 1 moves of type (4).

We always neglect the orientation and sign changes on �2 , which are harmless. Move (1)
may only modify the contribution of �glo , but it does so in the same way for all choices
of �1 , essentially because �1 is always even. Move (2) has no effect at all. Move (3)
only changes �.�1/ and w.�1/ into their opposite, so that �w.�1/ remains the same.
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w w w�w 1 1

Move .4/ Move .7/

Figure 3: The effect of moves (4) and (7) on germs

Move (6) commutes with the other moves, so it suffices to see that it does not affect
the result for C.2; n� 1/.

The effect of move (5) on the germ is identical to changing the sign of all �1–candidates,
and then formally applying the effect of n� 1 moves of type (4). So we are left with
the two moves (4) and (7), shown in Figure 3. Move (4) does not affect any signs for
choices of �1 other than the one in the picture; for this one, �w is changed into its
opposite, and so is E.P1; e.s//. If n� 1 is odd, nothing else changes; otherwise, both
the linking number of e.s/ and the even index of P2 are also reversed.

For all choices of �1 except the one visible in Figure 2, the only effect of move (7) is
to change E.P1; e.s//. For the choice of �1 in Figure 2, it changes �, and nothing
else if n� 1 is odd; otherwise it also changes both even indices of P1 and P2 .

3 Main result

We now introduce a degenerate version of arrow diagrams, designed to count subgerms
in the spirit of Polyak and Viro [20]. Subgerms are the algebraic artefact that allows
one to see whether a knot respects a germ, and in how many ways. They also appear
naturally as the result of type 0 degeneracies.

3.1 Tree diagrams

Let P be a polygon in S1 n f1g of cardinality greater than 1. A spanning tree for P

is a maximal collection of ordered pairs .v; w/ with v , w 2 P , still called arrows,
such that the corresponding abstract oriented graph is a tree. The number of arrows in
a spanning tree is always equal to the cardinality of the underlying polygon minus 1.

A tree diagram is a finite collection of pairwise disjoint polygons in S1 nf1g endowed
with spanning trees. We keep denoting such diagrams by the letter “A” to respect the
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tradition of arrow diagrams, and save “T ” for single spanning trees. Tree diagrams
naturally inherit the Gauss and cohomological degrees defined for leaf diagrams,
namely:

� The Gauss degree deg.A/ of a tree diagram is equal to its total number of arrows.

� The cohomological degree �.A/ is the Gauss degree minus the number of colours
(trees).

Again, tree diagrams are regarded up to positive homeomorphisms of the real line
S1 n f1g. The Z–module freely generated by equivalence classes of tree diagrams of
degree d and codimension i is denoted by Ai

d
. Note that Ai

d
is trivial whenever i is

greater than d � 1, and whenever i or d is negative (see Remark 1.1).

The triangle relation Observe that a spanning tree T defines a partial order on the
underlying polygon: say that v <T w if T contains the arrow .v; w/, and extend this
definition by transitivity, which is possible because T is a tree. We say that T is
monotonic if the relation <T is total. Accordingly, a tree diagram is called monotonic if
all of its trees are so. Monotonic spanning trees for a given polygon P are in one-to-one
correspondence with total orders on P . Denote by r.T / the set of all monotonic
spanning trees that correspond to total orders compatible with <T .

Definition 3.1 The triangle relation is the equivalence relation on Ai
d

generated by
the equalities

(3-1) AD
X

T 02r.T /

AT 0 ;

where A is a tree diagram that contains T as a spanning tree and AT 0 is the diagram
obtained from A by replacing T with T 0 . We denote the quotient Z–module by zAi

d .
It is naturally isomorphic to the subspace of Ai

d
spanned by monotonic tree diagrams.

Remark 3.2 This relation originated in the work of Polyak [18; 19] and also Polyak
and Viro [21] on arrow diagrams. It owes its name to the fact that it is locally generated
by the relation schematically depicted in Figure 4.

D C D C

Figure 4: Local triangle relations. Only a part of a spanning tree is shown;
the remaining invisible parts should be identical for all three diagrams in a
given equality.
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Definition 3.3 The Reidemeister farness of monotonic diagrams is defined similarly to
that of germs (see Definition 2.7).The submodule of zAi

d generated by R–far monotonic
diagrams is denoted by zAi

d;far . This definition makes sense since any ˛ 2 zAi

d has a
unique representative involving only monotonic diagrams.

3.2 The pairing of tree diagrams with germs

Definition 3.4 (Partial germs and signed tree diagrams) A partial germ is a leaf
diagram in which every polygon is enhanced into a connected abstract graph with
oriented and signed arrows. The difference with germs is that here the graphs need
not be complete. A partial germ in which every graph is a tree is called a signed tree
diagram.

Partial germs inherit the degrees deg and � from their underlying leaf diagrams. The
corresponding Z–modules of signed tree diagrams are denoted by Ti;d and Ti .

Definition 3.5 A subgerm of a germ  is the result of forgetting an arbitrary number
of its arrows in such a way that every graph corresponding to a polygon with more
than two leaves remains connected, although two-leaved polygons may completely
disappear. This condition means that subgerms must remember the codimension of  ,
but the Gauss degree may drop.

We set I. / to be the formal sum of all subgerms of  that are signed tree diagrams.
It is understood that subgerms are counted with multiplicity if the removal of distinct
sets of arrows yields homeomorphic results. This defines a linear map

IW Gi! Ti :

If � is a signed tree diagram, we define T.�/ as the underlying tree diagram, multiplied
by the product of the signs of all arrows of two-leaved polygons. Again this extends
into a linear map

TW Ti;d !Ai
d :

Remark 3.6 The fact that the map T disregards the signs of arrows associated with
polygons that have more than two leaves should be interpreted this way: for these
polygons, the signs of the arrows have already contributed by entering the co-orientation
defined by germs on their associated strata. In other words, when a simple crossing
merges with others into a multiple crossing, we stop regarding its writhe as making
sense individually. See Lemma 2.11 and Theorem 2.12.
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Definition 3.7 For ˛ 2 zAi

d and  2 Gi , we set

hh˛;  ii D h˛;T ı I. /i;

where h � ; � i is the Kronecker delta on tree diagrams, extended by bilinearity.

We have to prove that this is a good definition, that is:

Lemma 3.8 Let r 2Ai
d

be a triangle relator, ie the difference between the two sides
of (3-1). Then

hhr;  ii D 0 for all  2 Gi :

Proof The result follows immediately from the fact that the graphs of  are complete
and consistently oriented, considering the generating relations from Figure 4.

This elementary proof should be compared with that of Lemma 1.9 of Mortier [16].
There, the result was deeply related to the fact that the germ was topological. Here, all
the topology is confined to the implicit co-orientation associated with germs, and this
lemma also holds for abstract germs.

Definition 3.9 Let c be a PL i–chain in K n† that is transverse to the stratification.
Then c intersects finitely many simple i–strata p , with intersection numbers �p

defined by the co-orientation from Theorem 2.12. For ˛ 2 zAi

d , we set

f˛; cg D

��
˛;
X
p

�pp

��
:

We are now in a position to see why degeneracies of type 2-1 do not deserve particular
attention.

Lemma 3.10 Let � be an almost simple stratum, that is, a boundary component of
a simple i–stratum corresponding to a type 2-1 degeneracy. Let S� be the meridian
sphere of � . Then

f˛;S�g D 0 for all d � 0 and ˛ 2 zAi

d;far:

This means that the cocyclicity condition for R–far cochains is empty around such
strata.
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˙

� C

0

(A) (B)

� � �

� � �

:::

::: :::

:: ::

Irrelevant pieces
of the sphere

Figure 5: Meridian of an almost simple stratum for a simple (A) and multiple
(B) crossing

Proof Denote by a the arrow in the i–germ  that is subject to a 2-1 degeneracy. The
situation is quite different according to whether or not a is part of a multiple crossing.

First assume that a is isolated. Then S� intersects exactly two simple strata 0 and ˙ ,
corresponding respectively to  with the arrow a forgotten, and  with the arrow a

duplicated into two arrows with opposite writhe, which intersect or not depending on
the geometric condition of � . We have precisely the two sides of a usual Reidemeister II
move. Moreover, since the co-orientation of a germ depends only on the configuration
of its graphs with more than two leaves, 0 and ˙ induce opposite orientations on S�
(see Figure 5(A)), so that, up to sign,

f˛;S�g D hh˛; 0� ˙ii:

The result follows by classical arguments.

Now assume that a is part of a multiple crossing, with k � 3 branches (two of which
have tangent projections). This time S� intersects 2k�2 simple i–strata, obtained
from � by duplicating a into two arrows with opposite sign, and then forming two
new multiple crossings by sharing the remaining k � 2 branches among those two.
However, one of the two arrows aC and a� must remain isolated so that subgerms
stand a chance to be R-II–far. Hence, only two diagrams may contribute, C and � , as
indicated by Figure 5(B). One can see in the picture that they have a piece of boundary
in common (in fact, two); that is the key allowing us to compare their orientations.
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Indeed, direct computation shows that C and � induce the same orientation on their
common boundary, hence they induce opposite orientations on S� , and again, up to
sign,

f˛;S�g D hh˛; C� �ii:

Now since ˛ is R-II–far, the isolated duplicate of a must be deleted for a subgerm to
contribute, so that the relevant subgerms in C are also subgerms in � , with the only
difference given by the sign of a. But this sign is disregarded by hh � ; � ii, because a is
a part of a multiple crossing.

3.3 Cohomology of tree diagrams and of the space of knots

Given a tree diagram A, an edge is called admissible if it is so in the underlying leaf
diagram L. For such an edge e there is a natural way to define a tree diagram Ae that
is a lift of Le . Namely, if e is bounded by the leaves v and w , the arrows of Ae are the
arrows of A with w replaced with v every time it appears. This edge-shrinking process
is compatible with the triangle relations. We define a linear map Qıi

d
W zAi�1

d ! zAi

d on
the generators by

Qıi
d .A/D

X
e admissible

�.�v/�.�w/"L.e/ �Ae;

where � is the consistency from Definition 2.10, and �v and �w are the graphs
containing the leaves v and w , respectively.

We are now ready for the main theorem of this paper.

Theorem 3.11 (1) The collection of maps Qıi
d

and sets zAi

d forms a graded, finite
cochain complex. We denote by H i

d;far the submodule of those i th homology
classes in degree d that have a representative cocycle in zAi

d;far .

(2) (Stokes formula) For any d � 0, i � 1, ˛ 2 zAi�1

d;far and  2 Gi ,

hh Qıi
d .˛/;  ii D hh˛; @i. /ii:

(3) There is a natural map

H i
d;far!H i.K n†/

induced by the pairing f � ; � g. For i D 0, the image of this map consists of
invariants induced by homogeneous Goussarov–Polyak–Viro formulas [10] for
long virtual knots. For i D 1, the image consists of arrow-germ formulas as
defined by the author in [16].
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Remark 3.12 The farness constraint could be lightened, by allowing R-III–close
diagrams. In the case i D 0, this is harmless (there are no additional equations) thanks
to Lemma 3:2 of [15], and it yields all GPV invariants [15, Theorem 3:6]. For higher
values of i , it would require us to compute the proper " signs to associate with type
3-3 degeneracies and to consider subgerms whose graphs are not necessarily trees.

One could also think of removing the R-I– and R-II–farness condition; by contrast,
this would require one to handle arbitrary geometric strata, resulting in a far more
complicated story. For iD0 it is pointless, R-I– and R-II–farness is actually a necessary
condition for cocyclicity [15, Lemma 3:4]. For i D 1 it brings no new cohomology
classes [16, Theorem 2:11].

Conjecture 3.13 The image of the map H i
d;far ! H i.K n†/ consists of Vassiliev

cohomology classes of degree at most d .

This conjecture holds when i D 0, when i D 1 and d D 3 (the case of the Teiblum–
Turchin cocycle; see Turchin [22] and Vassiliev [24]), and also over Z2 when d D iC1

(the extreme case of diagrams with only one tree).

Proof of Theorem 3.11 (1) This follows from Theorem 1.3 after noticing that the
additional contribution �.�v/�.�w/ always cancels itself out in Qı ı Qı .

(2) For simplicity we omit the subscripts and superscripts in the maps @i and Qıi
d

.
By linearity we may also assume that ˛ is a tree diagram and  a germ. Note that ˛
cannot be a subgerm of both a k –splitting and an l –splitting of  for k ¤ l , so the
proof can be split according to the at most unique value of k such that the right-hand
side stands a chance to be non-zero when @. / is restricted to k –splittings. As a last
preliminary, note that we prove the formula at the level of Ai

d;far , ie before the quotient
by triangle relations.

If k > 2, then because ˛ is R–far we see that any subgerm of a term in @. / that
contributes non-trivially to the right-hand side must exclude every two-leaved graph that
resulted from the splitting. Similarly, if k D 2, at most one of these graphs may have
survived. Also, if none of them has survived, then the subgerm’s possible contribution
is cancelled out by the corresponding subgerm in the opposite 2–splitting (where the
sliding branch has been pushed in the opposite direction); indeed, according to parity,
the signs of these splittings differ either by E.P1; e.s//, or by E.P1; e.s//, E.P2; e.s//

and lk.e/. Thus we see that for any value of k , we can restrict I.@. // to certain
subgerms such that the corresponding subgerms of  are signed tree diagrams. Note
also that these subgerms have a well-defined preferred edge e.s/.
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We now use a divide and conquer trick. Arrange the non-trivial contributions to the
right-hand side according to which edge of ˛ corresponds to e.s/. This edge must
clearly be admissible in ˛ , so a corresponding arrangement can be realised in the
left-hand side. Now it is easy to see that the contributions in each pack are naturally in
one-to-one correspondence, and that the signs match.

(3) The map ˛ 7! f˛; � g makes tree diagrams into cochains in K . By Theorem 2.12,
Lemma 3.10 and the Stokes formula, it maps cocycles to cocycles and coboundaries to
coboundaries, thus inducing a map H i

d;far!H i.K n†/.

For i D 0, the map Qı1
d

is isomorphic to the map dƒ from [16] restricted to Gauss
degree d , and this isomorphism is compatible with the Stokes formulas. There, it is
proved that Goussarov–Polyak–Viro invariants are exactly the kernel of a certain map
dƒ˚d�˚d I˚d II , and our R–farness condition ensures that the diagrams live in the
kernel of d�˚ d I˚ d II .

For i D 1, we use the result and terminology of [16, Theorem 2:11]. By our R–farness
condition the condition of the theorem is satisfied, and also the cube equations associated
with –strata are empty. Now it is straightforward to check that the tetrahedron
equations associated with –strata yield the kernel of the map Qı2

d
restricted to edges

that are bounded by one leaf from the triangle, and the remaining equations from
–strata are encoded by the restriction of Qı2

d
to the complementary set of edges.

Finally, considering the number of leaves in the polygons, the kernel of Qı2
d

is the
intersection of the kernels of these two restrictions.

4 Examples and comments

An essential aspect of our construction is that it is of a virtual nature. That is, the
equations do not care about the fact that the germs at which we evaluate the bracket
hh˛; � ii may or may not correspond to classical knots. A major benefit is that it makes
the theory simple and computable. Taking care of classicality would be much more
complicated: to the best of our knowledge there is no complete characterisation of
Gauss diagrams of classical knots that do not require actually trying to draw the knot,
although there are some powerful invariants which detect non-classicality in a lot of
cases, such as Manturov’s Gaussian parity [13], the Miyazawa polynomial (see for
instance Kamada [12]) and Dye and Kauffman’s arrow polynomial [6].

On the side of drawbacks, the map H i
d;far ! H i.K n†/ is unlikely to surject onto

the subgroup of Vassiliev cohomology classes. For instance, the Vassiliev invariant of
order 3 given by Polyak and Viro’s formula v3 in [10, Theorem 2] cannot be found
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1 1

1

Figure 6: The 1–cocycle z̨1
3

in H 0
3;far (a virtual version of v3 is constructed by Chmutov and Polyak [4], but its non-

homogeneity makes it of a strongly different nature). However, our cochain complex
produces a formula for v3 , quite unexpectedly, not from H 0

3;far but from H 1
3;far , by

integrating a 1–cocycle over the Fox–Hatcher loop (see Section 4.1). More precisely,
we have the following as a corollary of Theorem 4.2:

Theorem 4.1 The tree diagram z̨1
3

in Figure 6 is an R–far 1–cocycle. Moreover, the
integration of z̨1

3
on the Gramain loop and the Fox–Hatcher loop of a knot K yield

respectively the Gauss diagram formulasZ
rot.K /

z̨
1
3 D

�� 1

;K

��
D v2.K/;Z

FH.K /
z̨

1
3 D

��
C � � ;K

��
D 6v3.K/�w.K/v2.K/;

where w.K/ denotes the blackboard framing of the diagram of K considered. In
particular the map H 1

3;far!H 1.K n†/ has rank at least 1. If Conjecture 3.13 holds,
then this rank is 1 and z̨1

3
is a realisation of the Teiblum–Turchin cocycle over the

integers.

The first line features Polyak and Viro’s formula for v2 [20], while the formula in
the second line is new. As far as we know, this is the first time a Gauss diagram
invariant specific to classical knots is found without using Gauss diagram identities
(as in Östlund [17]). The only step where we did leave the comfortable field of virtual
arguments is when we used the existence of the Fox–Hatcher loop!

Note that the second formula is unbased, which is a general phenomenon when inte-
grating over the Fox–Hatcher loop. It denotes an invariant of closed knots (and hence
of long knots since the two theories are equivalent). The evaluation bracket is then
defined similarly to the based version, but it counts subdiagrams with multiplicity,
which is given by the order of their symmetry group (see [17, Sections 2:2 and 2:4;
14, Section 4:1:2]).
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4.1 Formal integration of 1–cocycles

A deep result due to Hatcher [11] states that the connected component of K n †
corresponding to a non-satellite long knot K has the homotopy type of S1 if K is a
torus knot, and of S1 �S1 if K is hyperbolic. For those knots there are essentially
two interesting elements in H1.KK /: the Gramain loop, rot.K/, which consists of a
rotation of a long knot around its axis, and the Fox rolling, or Hatcher loop, FH.K/,
which consists of sliding the ball at infinity (in S3 ) along the knot.

The Gramain loop does not depend on the Reidemeister moves we use to represent it.
However, the Fox–Hatcher loop depends on a framing choice: indeed, each time one
adds C1 to the framing of K , the ball at infinity makes one positive full spin on itself,
which amounts to a negative spin of K , hence it adds � rot.K/ to FH.K/.

Let A be a monotonic tree diagram of codimension 1, so that its only polygon with
more than two leaves is a triangle T . If the highest (respectively lowest) point of this
triangle with respect to the order <A is also the lowest (resp. highest) of all leaves
in A with respect to the R order, then we define a new diagram

R h
rot A (resp.

R l
rot A) of

codimension 0 by forgetting the arrow containing that point, with sign rule as indicated
in Figure 7. Otherwise, we set

R h
rot AD 0 (resp.

R l
rot AD 0). This defines linear maps

zA1

d !
zA0

d�1 .

With the same notations, let .a; b/ and .b; c/ denote the two arrows of T . We con-
struct two unbased diagrams by replacing the arrow .a; b/ with .a;1/ (resp. .b; c/
with .1; c/) while forgetting the point 1, and give them signs depending only on
the relative position of a, b and c in the cyclic order; see the rule in Figure 8. The
difference is denoted by

R
FH A and defines a map zA1

d !
zA0

d .

� �

1 1
1 1

1 1
1 1

Figure 7: Sign rules for
R h

rot (on the left) and
R l

rot (on the right)
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1
�

Figure 8: Sign rule for
R

FH . It does not depend on the position of the point 1 .

Theorem 4.2 Let ˛ 2 zA1

d;far\Ker ı2
d

. Then for any classical knot K ,

.1/

Z
rot.K /

˛ D

��Z h

rot
˛C

Z l

rot
˛;K

��
:

In particular, the right-hand side defines a finite-type invariant of K of degree at
most d � 1. However,

R h
rot ˛C

R l
rot ˛ might not lie in Ker ı1

d�1
.

.2/

Z
FH.K /

˛ D

��Z
FH
˛;K

��
:

The right-hand side defines a regular invariant of K . Its value on a diagram of K with
trivial blackboard framing defines a finite-type invariant of K of degree at most d .
(Recall that here the bracket on the right counts subdiagrams with their potential
multiplicity due to symmetry.)

This theorem can be proved by analysing the presentation of rot from [7, Figure 144],
and that of FH given by Fox [9] from the viewpoint of Gauss diagrams, as in the proof
of [16, Theorem 3:3]. Reidemeister farness is crucial in the proof, not only for the
theory to work properly, but to have good control of the non-trivial contributions to the
integrals. For example, the 1–cocycle formula from [16, Theorem 3:2], which allows
R-III–close diagrams, is impossible (for us) to integrate directly on the Fox–Hatcher
loop, because of uncontrollable contributions.

Gauss diagram identities This theorem can be useful even when applied to a cocycle
that is trivial in H 1.Kn†/. Indeed, it may happen that the integration of such a cocycle
is not formally zero. When this happens, it means that we have found a Gauss diagram
identity, that is, a formula for the trivial invariant. But since there are no such formulas
for virtual knots, we have there a non-trivial obstruction to classicality.

Among the low-degree examples, we have thereby a new proof that the Gauss diagram
formulas ��

� ;K

��
and

��
�

1

1

;K

��
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vanish for classical knots, which was first stated by Polyak and Viro [20] and proved
by Östlund [17].

4.2 Higher-degree examples

A number of higher-degree formulas come for free as, in general, zAi

iC1;far ŠH i
iC1;far ,

whose rank grows at least quadratically with i . All of those can be proved to be
Vassiliev classes at least over Z2 using Vassiliev’s homological calculus [24]. One
could study their non-triviality by using the results of Budney [1] and Budney and
Cohen [2], which are the state of the art and an excellent sequel to and completion of
Hatcher’s work on the topology of spaces of knots. We study here the cocycles in H 2

3;far .

Our main motivation for computing higher-degree examples lies in reinterpreting a result
of Budney, Conant, Scannell and Sinha [3], which states that it is possible to compute
the invariant v2 by counting an appropriate kind of quadrisecant with appropriate signs.

In the present language, a quadrisecant of a knot is a particular direction of projection
for which the knot respects a germ with one polygon and four leaves. Hence, counting
quadrisecants with signs is precisely what 2–cocycles in H 2

3;far do. More precisely,
given a knot K , consider a sphere in R3 , centred at the origin and with radius large
enough to intersect K only in two points where it is arbitrarily close to its axis.
Each point in that sphere defines a different direction of projection, except for the two
intersection points with the axis of K . So we do not have a 2–cycle, but still a canonical
2–chain, where evaluating our cocycles makes sense since generically the quadrisecants
stay far away from the knot axis during an isotopy of K . We call that 2–chain S1.K/.

The module zA2

3;far has two generators

v2
3 D and Qv2

3 D

1

and both are cocycles.

Theorem 4.3 For any knot K ,

v2.K/D hhv
2
3 ;S1.K/ii D

X
w.a; b/w.c; d/;

where the sum is over all quadrisecants of K of type
1

c b

a d

and w.a; b/ denotes the writhe of the simple crossing between the branches a and b .

Algebraic & Geometric Topology, Volume 15 (2015)



3462 Arnaud Mortier

�pq

�p

�pq

pq

p

pq

qr �r qr

�qr r �qr

1

p

q

r

Figure 9: The meridian of a germ with underlying tree diagram v2
3

. The
numbers p , q , r are the writhes of the arrows as indicated in the middle
diagram. A sign between two diagrams indicates the co-orientation.

One can see that this is a new point of view on [3, Proposition 6:2], with a much
simpler formula to think of. Indeed, the quadrisecants counted by v2

3
are precisely

those which “determine the cycle .1342/” in the language of [3, Section 6].

Proof We begin with the second equality. It is proved by analysing the co-orientation
defined by v2

3
and understanding what orientation it defines on S1.K/. The natural

orientation of the plane in Figure 9 (ie the co-orientation of the codimension-2 stratum
in the middle of the picture), as defined by Theorem 2.12, is counterclockwise if and
only if the product of writhes pqr is C1.

Now we need to draw the picture of Figure 9 on the sphere S1 . For this, observe
the following. Choose a point x on S1 which defines a diagram Kx with exactly
one generic triple point, say f .t1/ >x f .t2/ >x f .t3/; the set of such points is a 1–
submanifold X �S1 . By moving the centre of S1 so that it lies on the line containing
the triple point, the derivatives f 0.t1/, f 0.t2/ and f 0.t3/ project to a generic triple of
vectors v1 , v2 , v3 2 TxS1 .

Fact The direction of TxX lies in the angular region determined by the directions
of v1 and v3 that does not contain the direction of v2 .
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4 3

2

1

3

2

1

p

�p

qr
�qr

Figure 10: Orientation of S1 induced by v2
3

To see this, think of the top and bottom branches as locally spiraling around the medium
branch; see also Figure 10: the zones labelled p and �p contain the directions from
which one sees a triple point between branches 1, 2 and 3.

Figure 10 reads like this. Independently of the direction of the furthest branch (4), we
know that the branch of X that slides 4 away and keeps the triple point f1; 2; 3g lies
in the region bounded by 1 and 3 that does not contain 2. Also, it appears that the
orientation p=�p (defined by the middle horizontal line of Figure 9) depends only
on the orientation of the branch 3 as indicated. It is then easy to see that the splitting
of the remaining triple point is supported by the direction 2, and that the orientation
qr=�qr depends only on the orientation of the branch 2.

To conclude, the relative position of p and qr in Figure 10 is dictated by the sign q

(writhe of the crossing between branches 2 and 3). Hence the orientation induced on
S1 by v2

3
is dictated by the sign pqr � q D pr , which is the result announced.

Using this formula, it is straightforward to see that hhv2
3
;S1.K/ii is a Vassiliev invariant

of degree at most 2; therefore it suffices to check the first equality for the trefoil.
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On the K–theory of subgroups
of virtually connected Lie groups

DANIEL KASPROWSKI

We prove that for every finitely generated subgroup G of a virtually connected
Lie group which admits a finite-dimensional model for EG , the assembly map in
algebraic K–theory is split injective. We also prove a similar statement for algebraic
L–theory which, in particular, implies the generalized integral Novikov conjecture
for such groups.

18F25, 19A31, 19B28, 19G24

1 Introduction

For every group G and every ring R there is a functor KRW Or G!Spectra from the
orbit category of G to the category of spectra, sending G=H to (a spectrum weakly
equivalent to) the K–theory spectrum K.RŒH �/ for every subgroup H � G . By K–
theory we will always mean nonconnective K–theory as constructed by Pedersen and
Weibel [26]. For any such functor F W Or G!Spectra a G –homology theory F can
be constructed via

F.X / WDMapG. � ;XC/^Or G F I

see Davis and Lück [14]. We will denote its homotopy groups by H G
n . � ;F / WD

�nF.X /. Let F be a family of subgroups of G . The K–theoretic assembly map for
F is the map

˛F W H
G
n .EF GIKR/!H G

n .ptIKR/ŠKn.RŒG�/;

induced by the map EF G ! pt. Here EF G denotes the classifying space for the
family F ; see Lück [22]. The assembly map is a helpful tool to relate the K–theory of
the group ring RŒG� to the K–theory of the group rings over H 2 F . The assembly
map can be defined more generally for any small additive G–category instead of R;
see Bartels and Reich [11]. In this article all additive categories will be small.

Analogously, for every additive G–category A with involution and every family of
subgroups F we can define the L–theoretic assembly map

˛F W H
G
n .EF GILh�1iA /!H G

n .ptILh�1iA /:
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The Farrell–Jones conjecture [15] states that the assembly maps ˛Vcyc for the family
of virtually cyclic subgroups in K– and L–theory are isomorphisms for all additive
G –categories A (with involution) and all n2Z. The Farrell–Jones conjecture has been
proven for a large class of groups, for example hyperbolic and CAT(0)–groups (Bartels
and Lück [7; 8], Bartels, Lück and Reich [9; 10] and Wegner [29]), virtually solvable
groups (Wegner [30]), and lattices in virtually connected Lie groups (Bartels, Farrell
and Lück [4] and Kammeyer, Lück and Rüping [19]). The Farrell–Jones conjecture
implies that the assembly maps ˛Fin for the family of finite subgroups are split injective;
see Bartels [2, Theorem 1.3]. The rational split injectivity of the map ˛Fin in L–theory
implies the Novikov conjecture. The integral split injectivity of ˛Fin is called the
generalized integral Novikov conjecture; for more details see Section 6. Kasparov
proved the Novikov conjecture for all discrete subgroups of virtually connected Lie
groups in [20, Theorem 6.9]. More generally, the Novikov conjecture is true for groups
which uniformly embed into a Hilbert space; see Skandalis, Tu and Yu [27]. This
includes all amenable groups and all groups with finite asymptotic dimension. By
Carlsson and Goldfarb [12, Section 3] and Ji [17, Corollary 3.4], discrete subgroups
of virtually connected Lie groups have finite asymptotic dimension, giving a second
proof that the Novikov conjecture holds for these groups. Here we will show that,
in particular, discrete subgroups of virtually connected Lie groups also satisfy the
generalized integral Novikov conjecture.

In [21] the author proved the split injectivity of the assembly map for finitely generated
subgroups G of GLn.C/ which have an upper bound on the Hirsch length of the
unipotent subgroups. For a definition of the Hirsch length see Section 3. The bound on
the Hirsch length exists if and only if G has finite virtual cohomological dimension by
Alperin and Shalen [1]. Since G is virtually torsion-free, this is the case if and only
if there is a finite-dimensional model for EG where we consider G with the discrete
topology; see Lück [22, Theorem 3.1]. In this article we want to extend this theorem
to subgroups of all virtually connected Lie groups. Note that in the theorem we again
consider G with the discrete topology.

Theorem 1.1 Let G be a finitely generated subgroup of a virtually connected Lie
group, and assume there exists a finite-dimensional model for EG . Then the K–
theoretic assembly map

H G
n .EGIKA/!Kn.AŒG�/

is split injective for every additive G –category A.

A similar version holds for L–theory as well, which implies, in particular, the general-
ized integral Novikov conjecture for these groups; see Section 6.
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If G is a discrete subgroup of a virtually connected Lie group H , and K the maximal
compact subgroup of H , then H=K is a finite-dimensional model for EG ; see Lück
[23, Theorem 4.4]. In particular, we get the following corollary.

Corollary 1.2 Let G be a finitely generated discrete subgroup of a virtually connected
Lie group. Then the K–theoretic assembly map

H G
n .EGIKA/!Kn.AŒG�/

is split injective for every additive G –category A.

The condition on the existence of a finite-dimensional model for EG can be reformu-
lated in the following way.

Proposition 1.3 A finitely generated subgroup G of a virtually connected Lie group
admits a finite-dimensional model for EG if and only if there exists N 2N such that
every finitely generated abelian subgroup of G has rank at most N .

The rank of an abelian group A is defined as rk.A/ WD dimQ.A˝Z Q/ or, equivalently,
as the cardinality of a maximal linearly independent subset of A. The statement that
every finitely generated abelian subgroup of G has rank at most N is equivalent to the
statement that every abelian subgroup of G has rank at most N . For a proof of the
proposition, see Section 3.

In Section 7, we prove that Theorem 1.1 and its L–theoretic analog also hold without
the assumption that G is finitely generated.

Acknowledgments: I would like to thank Johannes Ebert for helpful discussions, and
Henrik Rüping and the referee for useful comments and suggestions. This work was
partially supported by the SFB 878 “Groups, Geometry and Actions” and the Max
Planck Society.

2 Lie groups

A Lie group is virtually connected if it has only finitely many connected components.
For the rest of this section let H be a virtually connected Lie group with Lie algebra h

(which we identify with TeH ). The Lie group H acts on itself by conjugation;

cW H ! Aut.H /; g 7! .h 7! ghg�1/:

Taking the derivative yields a map

AdW H ! Aut.h/; g 7!De.c.g//:

Algebraic & Geometric Topology, Volume 15 (2015)
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Since Aut.h/ is a Lie subgroup of GL.h/, Ad gives a representation of H . The kernel
of the representation Ad is the centralizer CH .H0/ of the unit component H0 of H .

By definition of the centralizer, the group CH .H0/\H0 is abelian, and since H is
virtually connected the centralizer CH .H0/ is, therefore, virtually abelian. For every
subgroup G of H we obtain a short exact sequence

1! CH .H0/\G!G! Ad.G/! 1;

with virtually abelian kernel and linear quotient. We will use this sequence to extend
the results of [21] to general virtually connected Lie groups. Before we can do so, we
first need to prove Proposition 1.3, which will be done in the next chapter.

3 A bound on the rank of abelian subgroups

In the proof of Proposition 1.3, a bound on the Hirsch length of the finitely generated
nilpotent subgroups is needed. First we review some facts about nilpotent groups to see
that this is the same as a bound on the ranks of the finitely generated abelian subgroups.

Let G be a group. Define G1 WD G and, recursively, GnC1 WD ŒGn;G�. The series
G DG1 �G2 � � � � is called the lower central series of G . A group G is nilpotent if
there exists c 2N with GcC1 D 1. The smallest such c is called the nilpotency class
of G ; we denote it by c.G/. The upper central series 1DZ0.G/�Z1.G/� � � � of
G is recursively defined by

ZiC1.G/ WD fg 2G j 8h 2G W Œg; h� 2Zi.G/g:

If G is nilpotent, then Zc.G/.G/DG and the length of the upper and lower central
series agree. For any normal subgroup H �G the quotient G=H is again nilpotent.

The Hirsch length h.G/ of G is

h.G/ WD rk.G1=G2/C � � �C rk.Gc�1=Gc/C rk.Gc/;

where rk.H / denotes the rank of an abelian group H ; ie rk.H / WD dimQ.H ˝Z Q/.

Let n.G/ denote

maxfrk.A/ jA E G an abelian normal subgroupg:

Let H be and G be a group acting on H . G acts nilpotently if there is a series

1DH0 �H1 � � � � �Hn DH
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of G–invariant normal subgroups of H such that the induced action on Hi=Hi�1 is
trivial. In the special case where H D G and the action is by conjugation, G acts
nilpotently on itself if and only if G is nilpotent.

Proposition 3.1 Let G be finitely generated nilpotent. Then h.G/� n.G/.n.G/C1/
2

.

The proposition is proved in Möhres [25, Theorem 2] for torsion-free nilpotent groups
instead of finitely generated nilpotent groups. For the convenience of the reader we
give a proof. For this we need the following well-known statements about nilpotent
groups.

Lemma 3.2 A subgroup of a finitely generated nilpotent group is finitely generated.

Proof The statement follows by induction on the nilpotency class.

Lemma 3.3 [28, Theorem 1.3] Let G be nilpotent and N E G a nontrivial normal
subgroup. Then N \Z.G/ is nontrivial, where Z.G/ denotes the center of G .

Lemma 3.4 Let G be nilpotent and A a maximal abelian normal subgroup. Then
CG.A/DA, where CG.A/ is the centralizer of A in G .

Proof Since A E G is normal, so is CG.A/. Suppose A¤ CG.A/. Then CG.A/=A

is a nontrivial normal subgroup of G=A, and H WD CG.A/=A\Z.G=A/ is nontrivial
by the previous lemma. Let C Dhci be a cyclic subgroup of H . Then C E Z.G=A/E
G=A and, since C lies in the center, it is a normal subgroup of G=A. Let c0 2 CG.A/

be a preimage of c ; then the preimage of C is hA; c0i. This is abelian and normal in
G ; hence, A was not maximal with this property.

Lemma 3.5 Let Tr.n;Z/ � GLn.Z/ denote the subgroup of unitriangular matrices;
ie every element of Tr.n;Z/ has 1’s on the diagonal and 0’s below the diagonal. If
G � GLn.Z/ acts nilpotently on Zn , then it is unipotent and conjugate to a subgroup
of Tr.n;Z/.

Proof Since Tr.n;Z/ is unipotent, it suffices to prove that G is conjugate to a subgroup
of it. Let

0DH0 E H1 E H2 E : : :E Hk D Zn

be a sequence of G–invariant subspaces and let G act trivially on Hi=Hi�1 for all
i D 1; : : : ; k . The lemma is obvious for k D 1, and we will prove it by induction on k .
Let H 0 WD fz 2Zn j 9 l 2Z W lz 2H1g. Let z 2H 0 and l 2Z with lz 2H1 . For every
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g 2G we have lg.z/D g.lz/D lz and thus also g.z/D z ; ie G acts trivially on H 0 .
By construction, Zn=H 0 is torsion-free, and we obtain a splitting Zn ŠH 0˚Zn=H 0 .
The sequence

0DH 0=H 0 E H2CH 0=H 0 E � � �E Hk CH 0=H 0 D Zn=H 0

consists of G –invariant subspaces, and G acts trivially on the quotients. By induction
there is a basis of Zn=H such that G � GL.Zn=H / is unitriangular. Using this basis
together with a basis of H 0 yields a basis of Zn for which G lies in Tr.n;Z/.

Proof of Proposition 3.1 Let n WDn.G/ and A be a maximal abelian normal subgroup.
Then A again is finitely generated by Lemma 3.2, and AŠ Zn˚F with F a finite
group. The group G acts by conjugation on A and, since CG.A/DA, the induced map
G=A! Aut.A/ is injective. Since F is finite, the projection to Aut.Zn/D GLn.Z/
has finite kernel. The group G is nilpotent, and thus it acts nilpotently on Zn (by
conjugation). This implies that the image G=A in GLn.Z/ is conjugate to a subgroup
of the unitriangular matrices Tr.n;Z/. Since h.Tr.n;Z//D n.n� 1/=2, we have

h.G/� h.A/C h.ker.Aut.A/! GLn.Z///C h.Tr.n;Z//

D nC 0C
n.n� 1/

2
D

n.nC 1/

2
:

A direct corollary of Proposition 3.1 is the following.

Corollary 3.6 Let G be a group. Then G has a bound on the Hirsch length of its
finitely generated nilpotent subgroups if and only if it has a bound on the rank of its
finitely generated abelian subgroups.

Before we can prove Proposition 1.3 we need the following lemma.

Lemma 3.7 Let A be a (countable) abelian group with finite rank, then there is a
finite-dimensional model for EA.

Proof Let rk A D n. Then there exists a subgroup B � A isomorphic to Zn . The
quotient Q WDA=B has rank 0 and thus is a torsion group. For n 2N let Fn �Q be
finite subgroups with Fn � FnC1 and QD

S
n2N Fn . Define a Q–CW-complex X

by taking
`

n2N Q=Fn as the zero skeleton and for every n 2N adding a 1–cell with
stabilizer Fn between the 0–cells Q=Fn and Q=FnC1 . This defines a 1–dimensional
model X for EQ. Let pW A! Q be the quotient map. For every finite subgroup
F � Q, the preimage p�1.F / is finitely generated abelian of rank n and thus has
Rn as an n–dimensional model for Ep�1.Q/. Therefore, the proof of Lück [22,
Theorem 3.1] shows that A has a model for EA of dimension nC 1.
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Let G be a subgroup of GLn.C/ and assume there exists N 2N such that the rank
of every finitely generated unipotent subgroup of G is at most N . Then, by Alperin
and Shalen [1], the virtual cohomological dimension of G is bounded and therefore
admits a finite-dimensional model for EG by [22, Theorem 6.4]. Using this, we now
can prove Proposition 1.3.

Proof of Proposition 1.3 Let G be a subgroup of a virtually connected Lie group H

such that there exists a finite dimensional model X for EG . Then, in particular, X is
a model for EA for every abelian subgroup A�G and rk A� dim X .

For the other direction, let G be a finitely generated subgroup of a virtually connected
Lie group H such that there exists a bound on the rank of the finitely generated abelian
subgroups of G . Then, by Corollary 3.6, G has also a bound on the Hirsch length of its
finitely generated nilpotent subgroups. Let G0 WDG \H0 , and consider the extension

1! CH .H0/\G0!G0! Ad.G0/! 1

from Section 2. Since CH .H0/\G0 is contained in the center of G0 , Ad.G0/ also
has a bound on the Hirsch length of its finitely generated nilpotent subgroups and,
thus, on the finitely generated unipotent subgroups. By the above it admits a finite
dimensional model for E Ad.G0/. And since also K WDCH .H0/\G0 has finite rank,
there is a finite dimensional model for EK by Lemma 3.7. Consider the extensions

1!K!G0! Ad.G0/! 1;

1!G0!G! F ! 1;

with F finite. The group G0 is finitely generated since finite index subgroups of finitely
generated groups are again finitely generated. Thus Ad.G0/ is virtually torsion-free
by Selberg’s lemma, and we can use [22, Theorem 3.1] to obtain a finite dimensional
model for EG from these sequences.

Remark 3.8 Using the results of the author from [21], the short exact sequence

1! CH .H0/\G!G! Ad.G/! 1

implies that G has fqFDC, which also is defined in [21]. In particular, if G has a bound
on the order of the finite subgroups, then the main result of [21] directly implies the split
injectivity of the K–theoretic assembly map and a similar result in L–theory. Since
we do not know if this always holds, we use a different approach using inheritance
properties; see Sections 4 and 5.
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4 Inheritance properties

To use the short exact sequence from Section 2 we want to show the following inheri-
tance property.

Proposition 4.1 Assume there is a short exact sequence of groups

1! J !G
�
�!Q! 1

such that for every virtually cyclic subgroup V �Q the preimage ��1.V / satisfies the
Farrell–Jones conjecture. Furthermore, assume that the assembly map

H G
n .EQIKB/!Kn.BŒQ�/

is split injective for every n 2 Z and every additive Q–category B . Then the K–
theoretic assembly map

H G
n .EGIKA/!Kn.AŒG�/

is split injective for every n 2 Z and every additive G –category A.

Proof Let A be an additive G –category. The fact that ��1.V / satisfies the Farrell–
Jones conjecture for every virtually cyclic subgroup V �Q implies that the natural map
H G

n .EVcycGIKA/! H G
n .E��VcycGIKA/ is an isomorphism, by Bartels and Lück

[6, Lemma 2.2], where ��Vcyc WD fK � G j �.K/ 2 Vcycg. Here we used that the
projection EVcycG�E��VcycG!E��VcycG is a model for the natural map EVcycG!

E��VcycG . Furthermore, the natural map H G
n .EGIKA/!H G

n .EVcycGIKA/ is split
injective by Bartels [2]. Now the commutative diagram

H G
n .EGIKA/ //

� _

��

H G
n .E��FinGIKA/

��
H G

n .EVcycGIKA/
Š // H G

n .E��VcycGIKA/

implies that the map H G
n .EGIKA/! H G

n .E��FinGIKA/ is split injective, where
��Fin WD fK �G j �.K/ 2 Fing. By Bartels and Reich [11, Corollary 4.3] the split
injectivity for Q implies that the assembly map H G

n .E��FinGIKA/!Kn.AŒG�/ is
split injective. Combining these results yields the proposition.

To apply the above proposition for the short exact sequence from the previous section,
we need the following.
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Lemma 4.2 The class of virtually solvable groups is closed under group extensions.

The idea of the proof is taken from math.stackexchange.com; see [13].

Proof Let
1!N !G

p
�!Q! 1

be a short exact sequence, and let N and Q be virtually solvable. Let Q0 �Q be a
solvable subgroup with ŒQ WQ0� <1; then ŒG W p�1.Q0/� <1. Thus we can assume
that Q is solvable. We will first consider the case that N is finite. Since N is normal
in G , G acts on N by conjugation, which induces a map cW G ! Aut.N /. The
centralizer CG.N / of N in G is the kernel of c . Since the class of solvable groups is
closed under extension, and CG.N /\N is abelian, the exact sequence

1! CG.N /\N ! CG.N /! p.CG.N //! 1

shows that CG.N / is solvable. The group N is finite; thus CG.N / has finite index
in G .

Now let N be any virtually solvable group. And let S be the set of all normal, solvable,
finite-index subgroups of N , ordered by inclusion. This is not empty, and we can
choose K to be a maximal element of S . For every g 2G also gKg�1K is a solvable,
normal, finite-index subgroup of N . Since K was maximal, it therefore has to be
normal in G . From the short exact sequence

1!N=K!G=K!Q! 1;

it follows from the first case that G=K is virtually solvable. Since K is solvable, the
sequence

1!K!G!G=K! 1

implies that G is virtually solvable.

5 Proof of Theorem 1.1

For this section let H be a virtually connected Lie group and G � H a finitely
generated subgroup such that there exists a finite dimensional model for EG . The
proof of Theorem 1.1 follows easily from the statements of the previous section.

Proof of Theorem 1.1 Let � WD Ad.G/ be the image of G under AdW H ! GL.h/.
Since CH .H0/\G\H0 is contained in the center of G , the preimage of any unipotent
subgroup U of Ad.G\H0/ is a nilpotent subgroup of G\H0 . By Corollary 3.6 and
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Proposition 1.3 there is a bound on the Hirsch length of the nilpotent subgroups of
G \H0 and, in particular, there is a bound on the Hirsch length of U . Since G \H0

has finite index in G , this implies that there also is a bound on the Hirsch length of the
unipotent subgroups of � . Now we can apply the following:

[21, Corollary 3] Let F be a field of characteristic zero, and let � be a finitely
generated subgroup of GLn.F / with a global upper bound on the Hirsch rank of its
unipotent subgroups. Then the K–theoretic assembly map

H�
� .EGIKA/!H�

� .ptIKA/ŠK�.AŒ��/

is split injective for every additive � –category A.

Note that [21, Corollary 3] is stated only for rings instead of additive � –categories,
but by [21, Theorem 8.1] it is true for any additive � –category.

Furthermore, by Wegner [30], every virtually solvable group satisfies the Farrell–Jones
conjecture. Using this and Lemma 4.2, we see that the sequence

1! CH .H0/\G!G! Ad.G/! 1

satisfies the conditions of Proposition 4.1. Therefore, the assembly map

H G
� .EGIKA/!K�.AŒG�/

is split injective for every additive G –category A.

6 L–theory

Most of the statements from the previous sections also hold for L–theory. For the
rest of the section let G be a finitely generated subgroup of a virtually connected
Lie group H with a finite dimensional model for EG , and let Q be the image of G

under AdW H ! GL.h/. Furthermore, let � denote Ad jG , and let A be an additive
G –category with involution. As above we obtain the commutative diagram

H G
n .EGILh�1iA / //

��

H G
n .E��FinGILh�1iA /

��
H G

n .EVcycGIL
h�1i

A /
Š // H G

n .E��VcycGIL
h�1i

A /;

and the lower horizontal map is still an isomorphism by Bartels and Lück [6, Lemma 2.2]
and Wegner [30]. But for the vertical map on the left to be injective we need that for
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every virtually cyclic subgroup V �G there is an i0 2N such that for every i � i0
we have K�i.AŒV �/D 0; see Bartels [2]. Then it remains to show that

H G
n .E��FinGILh�1iA /!Lh�1in .AŒG�/

is split injective. By Bartels and Reich [11, Proposition 4.2 and Corollary 4.3], this
follows if

H Q
n .EGILh�1iind� A/!Lh�1in ..ind� A/ŒQ�/

is split injective. See [11] for the definition of ind� A. To apply [21, Theorem 9.1] as
above, we need the further assumption that for every finite subgroup H �Q there is
an i0 2N such that for every i � i0 we have

0DK�i..ind� A/ŒH �/ŠK�i.AŒ��1.H /�/:

Since ��1.H / is virtually abelian, we obtain the following version of the main theorem
for L–theory.

Theorem 6.1 Let G be a finitely generated subgroup of a virtually connected Lie
group, and assume there exists an N 2 N such that every finitely generated abelian
subgroup of G has rank at most N. Let A be an additive G –category with involution.
Assume further that for every virtually abelian subgroup H of G there is an i0 2 N
such that for every i � i0 we have K�i.AŒH �/ D 0; then the L–theoretic assembly
map

H G
n .EGILh�1iA /!Lh�1in .A.ŒG�/

is split injective.

For torsion-free groups G the integral Novikov conjecture states that the assembly map

H G
n .EGILh�1iZ /!Lh�1in .ZŒG�/

is injective. It is known that the integral Novikov conjecture is false for groups
containing torsion. Following Ji [18], we say that G satisfies the generalized integral
Novikov conjecture if the assembly maps

H G
n .EGILh�1iZ /!Lh�1in .ZŒG�/; H G

n .EGIKZ/!Kn.ZŒG�/

are injective. By Lück and Reich [24, Propostion 2.20], the relative rational assembly
map

H G
n .EGILh�1iZ /˝Z Q!H G

n .EGILh�1iZ /˝Z Q

is injective. Observe that, since the Z=2–Tate cohomology groups vanish rationally,
there is no difference between the various decorations in L–theory as can be seen using
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the Rothenberg sequence. Therefore, by [24, Proposition 1.53], the injectivity of the
rational assembly map

H G
n .EGILh�1iZ /˝Z Q!Lh�1in .ZŒG�/˝Z Q

implies the Novikov conjecture about the homotopy invariance of higher signatures. In
particular, the generalized integral Novikov conjecture implies the (classical) Novikov
conjecture.

We will show that K�n.ZŒG�/ D 0 for n > 1 and any virtually abelian group A.
Therefore, Theorem 6.1 implies the generalized integral Novikov conjecture for the
groups G appearing in the theorem; ie we get the following corollary.

Corollary 6.2 Let G be a finitely generated subgroup of a virtually connected Lie
group, and assume there exists an N 2 N such that every finitely generated abelian
subgroup of G has rank at most N . Then G satisfies the generalized integral Novikov
conjecture.

By Farrell and Jones [16, Theorem 2.1], for every virtually cyclic group V and n> 1,

K�n.ZŒV �/D 0:

Let G be a group and let X be a finite G –CW-complex with virtually cyclic stabilizers.
By induction on the dimension of X we prove that

H G
�n.X IKZ/D 0

for every n> 1. For dim X D 0, we have

H G
�n.X IKZ/Š

M
x2X

K�n.ZŒGx �/D 0;

where the stabilizers Gx are virtually cyclic by assumption. Assume the above holds
for m and let dim X DmC 1. Then we have the exact sequence

0DH G
�n.X

.m/
IKZ/!H G

�n.X IKZ/!H G
�n.X;X

.m/
IKZ/;

and
H G
�n.X;X

.m/
IKZ/Š

M
c2Cm

K�n�m�1.ZŒGc �/D 0;

where Cm denotes the set of m–cells of X and Gc the (virtually cyclic) stabilizer of
the cell c . Since every virtually abelian group A satisfies the Farrell–Jones conjecture,
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we have
K�n.ZŒA�/ŠH A

�n.X IKZ/Š colim
K

H A
�n.AKIKZ/D 0;

where X is an A–CW-complex model for EVcycA, and the colimit is taken over all
finite subcomplexes K �X .

7 Inheritance under colimits

In this section we want to show that Theorem 1.1 and Theorem 6.1 hold without the
assumption that G is finitely generated.

By Bartels, Echterhoff and Lück [3, Lemma 2.4 and Lemma 6.2] for every system G˛
of finitely generated subgroups of G such that colim˛ G˛ ŠG , the assembly map

H G
n .EGIKA/!Kn.AŒG�/

is the colimit of the assembly maps

H G˛
n .EG˛IKA/!Kn.AŒG˛ �/;

for any additive G –category A. The same statement holds in L–theory for any additive
G–category with involution. Note that the statement in [3] is formulated for rings
with G–action instead of additive G–categories, but the statement for G–categories
holds in the same way. Furthermore, a finite-dimensional model for EG gives a finite-
dimensional model for EG˛ by restricting the action to G˛ . So taking the colimit over
all finitely generated subgroups proves that injectivity holds without the assumption
that G is finitely generated. For the construction of a splitting we need to see that the
splittings for the finitely generated subgroups are natural with respect to the structure
maps of the colimit. In the proof of Theorem 1.1 and Theorem 6.1 the assumption that
G is finitely generated is only needed to apply [21, Corollary 3] and its L–theoretic
analog, respectively. So it suffices to see that the splittings constructed in [21] are
natural with respect to the structure maps of the colimit.

We will use the definitions of controlled categories and bounded mapping spaces from
[21, Sections 5 and 7]. In the following let X denote a finite dimensional simplicial
model for EG . By Bartels, Farrell, Jones and Reich [5, Section 6] the assembly map

H G
n .EGIKA/!Kn.AŒG�/

can be identified with the map

colim
K�X fin.

�nC1.KAG.GK/1/G! colim
K�X fin.

�n.KAG.GK/0/
G :
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Now consider the diagram

colim
K�X fin.

�nC1.KAG.GK/1/G

f

��

// colim
K�X fin.

�n.KAG.GK/0/
G

j

��

colim
K�X fin.

�nC1 Mapbd
G .X;KAG.GK/1/

h

// colim
K�X fin.

�n Mapbd
G .X;KAG.GK/0/:

By [21, Remark 7.7] the map f is an isomorphism and the map h is an isomorphism
in the situation of [21, Corollary 3].

Let � ! ƒ be an injective group homomorphism. For every ƒ–set J and every
subcomplex K �X we can define a map

� bdY
J

A�.�K/1
��
!

� bdY
J

Aƒ.ƒK/1
�ƒ

as follows. A controlled module .Mj / 2 .
Qbd

J A�.�K//� is sent to .M 0
j /j with

.M 0
j /h0;x;t WD

L
Œh�2ƒ=�.Mh�1j /h�1h0;h�1x;t and analogously on morphisms. This

map is well defined since .Mj / is � –invariant. The above maps induce a map

Mapbd
� .X;KA�.�K//!Mapbd

ƒ .X;KAƒ.ƒK//

for every finite subcomplex K �X , and in the special case where J D fptg we obtain
a map

.KA�.�K/1/� ! .KAƒ.ƒK/1/ƒ:

The same maps can be constructed with A�.�K/1 and Aƒ.ƒK/1 replaced by
A�.�K/0 and Aƒ.ƒK/0 , respectively. So they induce maps from the above diagram
for � to the same diagram for ƒ. We will omit the technical proofs that the maps of
the diagram are natural with respect to these maps and that under the identification
with the assembly map they correspond to the structure maps of the colimit from [5].
This shows that the splitting f �1 ıh�1 ıj is natural with respect to the structure maps
of the colimit.

Now let us consider the L–theoretic version. For [21, Remark 7.7] it was used that the
category �Y

j2J

KAG.GK/1
�G

'

Y
Œj �2GnJ

KAGj
G
.GK/1
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is weakly equivalent to�
K
Y
j2J

AG.GK/1
�G

'K
Y

Œj �2GnJ

AGj
G
.GK/1

for every G –set J with finite stabilizers and every finite subcomplex K �X , where
Gj is the stabilizer of j 2 J . Let H �G be finite; then

Kn.A
Gj
G
.G=H /1/Š

Y
Gj nG=H

Kn.A
Gj
G
.Gj=.Gj\H //1/Š

Y
Gj nG=H

Kn�1.AŒGj\H �/:

If for each finite subgroup H � G there exists N 2 N such that for each n � N

the groups K�nAŒH � vanish, then by induction on the cells this implies that for
every finite subcomplex K �X there exists N 2N such that for n�N the groups
K�n.A

Gj
G
.GK/1/ vanish. Therefore, under this assumption, L–theory commutes

with the above product, and we get that the map

�W Mapbd
G .X;LAG.GK/1/!MapG.X;LAG.GK/1/

is an isomorphism. Also, under the above assumption,

 W .LAG.GK/1/G!MapG.X;LAG.GK/1/

is an isomorphism; see [21, Section 9]. Since  factors over � , the map

.LAG.GK/1/G!Mapbd
G .X;LAG.GK/1/

is an isomorphism as well. Therefore, we obtain the naturality of the splitting as in the
case for K–theory.
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McCool groups of toral relatively hyperbolic groups

VINCENT GUIRARDEL

GILBERT LEVITT

The outer automorphism group Out.G/ of a group G acts on the set of conjugacy
classes of elements of G. McCool proved that the stabilizer Mc.C/ of a finite set of
conjugacy classes is finitely presented when G is free. More generally, we consider
the group Mc.H/ of outer automorphisms ˆ of G acting trivially on a family of
subgroups Hi , in the sense that ˆ has representatives ˛i that are equal to the identity
on Hi .

When G is a toral relatively hyperbolic group, we show that these two definitions
lead to the same subgroups of Out.G/ , which we call “McCool groups” of G. We
prove that such McCool groups are of type VF (some finite-index subgroup has a
finite classifying space). Being of type VF also holds for the group of automorphisms
of G preserving a splitting of G over abelian groups.

We show that McCool groups satisfy a uniform chain condition: there is a bound,
depending only on G, for the length of a strictly decreasing sequence of McCool
groups of G. Similarly, fixed subgroups of automorphisms of G satisfy a uniform
chain condition.

20F28; 20F65, 20F67

1 Introduction

Mapping class groups of punctured surfaces may be viewed as subgroups of Out.Fn/

for some n (with Fn denoting the free group of rank n). Indeed, they consist of
automorphisms of Fn fixing conjugacy classes corresponding to punctures. More
generally, the group of automorphisms of Fn fixing a finite number of conjugacy
classes was studied by McCool [30], who proved in particular that such groups are
finitely presented. We therefore define:

Definition 1.1 Let G be a group. Let C be a set of conjugacy classes Œci � of elements
of G. We denote by Mc.C/ the subgroup of Out.G/ consisting of outer automorphisms
fixing each Œci �. If C is finite, we say that Mc.C/ is an elementary McCool group of G

(or of Out.G/).
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Work on automorphisms suggests a more general definition:

Definition 1.2 Let G be a group. Let HD fHig be an arbitrary family of subgroups
of G. We say that ' 2 Aut.G/ and its image ˆ 2 Out.G/ act trivially on H if ' acts
on each Hi as conjugation by some gi 2G. Note that ˆ acts trivially if and only if it
has representatives 'i 2 Aut.G/ with 'i equal to the identity on Hi .

We denote by Mc.H/ or McG.H/ the subgroup of Out.G/ consisting of all ˆ acting
trivially on H .

If H is a finite family of finitely generated subgroups, we say that Mc.H/ is a McCool
group of G (or of Out.G/).

Elementary McCool groups correspond to McCool groups with H a finite family of
cyclic groups. Mc.H/ does not change if we replace the Hi by conjugate subgroups,
so it is really associated to a family of conjugacy classes of subgroups.

For a topological analogy, one may think of Mc.H/ as the group of automorphisms of
G D �1.X / induced by homeomorphisms of X equal to the identity on subspaces Yi

with �1.Yi/DHi .

McCool groups are relevant for automorphisms for the following reason (see Guirardel
and Levitt [25]). Consider a splitting of a group yG as a graph of groups in which G is
a vertex group and the Hi are the incident edge groups. Then any element of McG.H/
extends “by the identity” to an automorphism of yG. Topologically, if X is a vertex
space in a graph of spaces yX and edge spaces are attached to subspaces Yi �X, then
any homeomorphism of X equal to the identity on the Yi extends to yX by the identity.

In this paper we will consider McCool groups when G is a toral relatively hyperbolic
group: G is torsion-free and hyperbolic relative to a finite set of finitely generated
abelian subgroups. This includes in particular torsion-free hyperbolic groups, limit
groups and groups acting freely on Rn –trees.

We will show (Corollary 1.6) that in this case any Mc.H/ is an elementary McCool
group Mc.C/; in other words, it is equivalent for a subgroup of Out.G/ to be an
elementary McCool group Mc.C/, or to be a McCool group Mc.H/ with H a finite
family of finitely generated groups, or to be Mc.H/ with H arbitrary. We will not
always make the distinction in the statements given below.

It was proved by McCool [30] that (elementary) McCool groups of a free group are
finitely presented. Culler and Vogtmann [9, Corollary 6.1.4] proved that they are of
type VF: they have a finite-index subgroup with a finite classifying space (ie there
exists a classifying space which is a finite complex). We proved in [25] that Out.G/

Algebraic & Geometric Topology, Volume 15 (2015)
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is of type VF if G is toral relatively hyperbolic (in particular, Out.G/ is virtually
torsion-free). Our first main results extend this to certain naturally defined subgroups
of Out.G/.

Theorem 1.3 If G is a toral relatively hyperbolic group, then any McCool group
Mc.H/� Out.G/ is of type VF.

Theorem 1.4 If G is a toral relatively hyperbolic group and T is a simplicial tree
on which G acts with abelian edge stabilizers, then the group of automorphisms
Out.T /� Out.G/ leaving T invariant is of type VF.

Our most general result in this direction (Corollary 6.3) combines these two theorems;
it implies in particular that Mc.H/\Out.T / is of type VF if T is as above and H is
any family of subgroups each of which fixes a point in T .

Remark Some of these results may be extended to groups which are hyperbolic
relative to virtually polycyclic subgroups, but with the weaker conclusion that the
automorphism groups are of type F1 (see Guirardel and Levitt [17]). On the other
hand, one can show that, if there exists a hyperbolic group which is not residually finite,
then there exists a hyperbolic group with Out.G/ not virtually torsion-free (hence
not VF).

Our second main result is the following:

Theorem 1.5 Let G be a toral relatively hyperbolic group. McCool groups of G

satisfy a uniform chain condition: there exists C D C.G/ such that, if

Mc.H0/© Mc.H1/© � � �© Mc.Hp/

is a strictly decreasing chain of McCool groups in Out.G/, then p � C .

This is based, among other things, on the vertex finiteness we proved in [24]: if G

is toral relatively hyperbolic, then all vertex groups occurring in splittings of G over
abelian groups lie in finitely many isomorphism classes.

The chain condition, proved in Section 5 for McCool groups Mc.H/ with H a finite
family of finitely generated groups, implies:

Corollary 1.6 Let G be a toral relatively hyperbolic group. If H is a (possibly infinite)
family of (possibly infinitely generated) subgroups Hi �G, there exists a finite set of
conjugacy classes C such that Mc.H/DMc.C/. In particular, any Mc.H/ is a McCool
group and any McCool group is an elementary McCool group Mc.C/.

Algebraic & Geometric Topology, Volume 15 (2015)
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The chain condition also implies that no McCool group Mc.H/�Out.G/ is conjugate
to a proper subgroup. Note, however, that McCool groups may fail to be co-Hopfian
(they may be isomorphic to proper subgroups). To illustrate the variety of McCool
groups, we show:

Proposition 1.7 Out.Fn/ contains infinitely many non-isomorphic McCool groups
if n� 4; it contains infinitely many non-conjugate McCool groups if n� 3.

It may be shown that the bounds on n are sharp (see the appendix). We will also show
in the appendix that, if G is a torsion-free, one-ended hyperbolic group, then Out.G/
only contains finitely many McCool groups up to conjugacy.

Say that J �G is a fixed subgroup if there is a family of automorphisms ˛i 2Aut.G/
such that J D

T
i Fix˛i , with Fix˛ D fg 2G j ˛.g/D gg. The chain condition also

implies:

Theorem 1.8 Let G be a toral relatively hyperbolic group. There is a constant
c D c.G/ such that, if J0   J1   � � �   Jp is a strictly ascending chain of fixed
subgroups, then p � c .

This was proved by Martino and Ventura [29] for G free, with c.Fn/D 2n. In [18],
we will apply Theorems 1.3 and 1.8 to the study of stabilizers for the action of Out.G/
on spaces of R–trees.

As explained above, one does not get new groups by allowing the set C in Definition 1.1
to be infinite or by considering arbitrary subgroups as in Definition 1.2. The following
definition provides a genuine generalization.

Definition 1.9 Let G be a group, and C a finite set of conjugacy classes Œci �. We write
C�1 for the set of classes Œc�1

i �. Let �Mc.C/ be the subgroup of Out.G/ consisting
of automorphisms leaving C [ C�1 globally invariant; it contains Mc.C/ as a normal
subgroup of finite index. We say that �Mc.C/ is an extended elementary McCool group
of G.

More generally, if H is a finite family of subgroups, one can define finite extensions
of Mc.H/ by allowing the Hi to be permuted or the action on Hi to be only “almost”
trivial.

Proposition 1.10 Given a toral relatively hyperbolic group G, there exists a number
C such that, if a subgroup �M � Out.G/ contains a group Mc.H/ with finite index,
then the index Œ �M WMc.H/� is bounded by C .

In particular, for C finite, the index of Mc.C/ in �Mc.C/ is bounded by a constant
depending only on G.

Algebraic & Geometric Topology, Volume 15 (2015)



McCool groups of toral relatively hyperbolic groups 3489

It follows that extended elementary McCool groups satisfy a uniform chain condition
as in Theorem 1.5 (see Corollary 6.4). We also have:

Corollary 1.11 Let G be a toral relatively hyperbolic group. Let A be any subgroup
of Out.G/ and let CA be the (possibly infinite) set of conjugacy classes of G whose
A–orbit is finite. The image of A in the group of permutations of CA is finite and
its order is bounded by a constant depending only on G. In other words, there is a
subgroup A0 �A of bounded finite index such that every conjugacy class in G is fixed
by A0 or has infinite orbit under A0 .

When G is free, one may take for A0 the intersection of A with a fixed finite-index
subgroup of Out.G/ (independent of A); see Handel and Mosher [26].

One may also consider subgroups of Aut.G/.

Definition 1.12 Let H be a family of (conjugacy classes of) subgroups, and H0 <G

another subgroup. Let Ac.H;H0/ � Aut.G/ be the group of automorphisms acting
trivially on H (in the sense of Definition 1.2) and fixing the elements of H0 .

Proposition 1.13 If G is a non-abelian, toral relatively hyperbolic group, then the
group Ac.H;H0/ is an extension

1 �!K �! Ac.H;H0/ �!Mc.H0/ �! 1;

where Mc.H0/�Out.G/ is a McCool group and K is the centralizer of H0 (isomorphic
to G or to Zn for some n� 0).

Corollary 1.14 Theorems 1.3 and 1.5 also hold in Aut.G/: groups of the form
Ac.H;H0/ are of type VF and satisfy a uniform chain condition.

Theorems 1.3 and 1.4 are proved in Section 3 and Theorem 1.5 is proved in Section 5.
All other results are proved in Section 6.

Acknowledgements Guirardel acknowledges support from ANR-11-BS01-013, the
Institut Universitaire de France and the Lebesgue Center of Mathematics. Levitt
acknowledges support from ANR-10-BLAN-116-03.
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2 Preliminaries

In this paper, G will always denote a toral relatively hyperbolic group. Any non-trivial
abelian subgroup A of G is contained in a unique maximal abelian subgroup. The
maximal abelian subgroups are malnormal (G is CSA), finitely generated and there
are finitely many non-cyclic ones up to conjugacy. Two subgroups of A which are
conjugate in G are equal.

The center of a group H will be denoted by Z.H /. We write NK .H / for the normalizer
of a group H in a group K , with N.H /DNG.H /. Centralizers are called ZK .H /.

We say that ˆ 2 Out.G/ preserves a subgroup H, or leaves H invariant, if its repre-
sentatives ' 2Aut.G/ map H to a conjugate. If ' 2Aut.G/ equals the identity on H,
we say that it fixes H.

Definition 2.1 If H is a family of subgroups, we let Out.GIH/�Out.G/ be the group
of automorphisms preserving each H 2H , and �Out.GIH/ the group of automorphisms
preserving H globally (possibly permuting groups in H).

We denote by
Out.GIH.t//DMc.H/� Out.G/

the group of automorphisms acting trivially on groups in H (as in Definition 1.2).

We write
Out.GIH.t/;K/ WD Out.GIH.t//\Out.GIK/;

Out.GIH;K/ WD Out.GIH[K/:

Remark Out.GIH.t// and Mc.H/ denote the same group. The notation Out.GIH.t//
is more flexible and will be convenient in Section 3.

We will often view a set of conjugacy classes CDfŒci �g as a family of cyclic subgroups
HDfhciig since Mc.C/DMc.H/. Note that Out.GIH/ is larger than Mc.C/DMc.H/
since ci may sent to a conjugate of c�1

i .

For example, suppose that H <G DZn is the subgroup generated by the first k basis
elements and HD fH g. Then Out.G/D GL.n;Z/, the group Out.GIH/ consists of
block triangular matrices, and Out.GIH.t//DMc.H/ is the group of matrices fixing
the first k basis vectors.

There are inclusions Out.GIH.t//� Out.GIH/� �Out.GIH/. Note that Out.GIH.t//
has finite index in Out.GIH/ and �Out.GIH/ if H is a finite family of cyclic groups.
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Given a family H and a subgroup J, we denote by HjJ the J–conjugacy classes of
subgroups of J conjugate to a group of H . We view HjJ as a family of subgroups
of J, each defined up to conjugacy in J. In the next subsection we will define a closely
related notion HkJ when J DGv is a vertex stabilizer in a tree.

If C is a set of conjugacy classes Œci �, viewed as a set of cyclic subgroups, CjJ is the
set of J–conjugacy classes of elements of J representing elements in C .

Now suppose that subgroups of J which are conjugate in G are conjugate in J ; this
holds for instance if J is malnormal (in particular if J is a free factor) and also if J

is abelian. In this case we may view HjJ as a subset of H; it is finite if H is.

2.1 Trees and splittings

A tree will be a simplicial tree T with an action of G without inversions. A tree T is
relative to H (resp. C ) if any group in H (resp. any element representing a class in C )
fixes a point in T .

Two trees are considered to be the same if there is a G–equivariant isomorphism
between them. In this paper, all trees will have abelian edge stabilizers.

Unless mentioned otherwise, we assume that the action is minimal (there is no proper
invariant subtree). We usually assume that there is no redundant vertex (if T n fxg has
two components, some g 2 G interchanges them). If a finitely generated subgroup
H �G acts on T with no global fixed point, there is a smallest H–invariant subtree,
called the minimal subtree of H.

The tree T is trivial if there is a global fixed point (minimality then implies that T is
a point). An element or a subgroup of G is elliptic if it fixes a point in T . Conjugates
of elliptic subgroups are elliptic, so we also consider elliptic conjugacy classes.

An action of G on a tree T gives rise to a splitting of G, ie a decomposition of G as
the fundamental group of the quotient graph of groups � D T=G. Conversely, T is
the Bass–Serre tree of �. All definitions given here apply to both splittings and trees.
In particular, a splitting is relative to H if every H 2H has a conjugate contained in a
vertex group.

Minimality implies that the graph � is finite. There is a one-to-one correspondence
between vertices (resp. edges) of � and G–orbits of vertices (resp. edges) of T . We
denote by V the set of vertices of � and by Gv the group carried by a vertex v 2 V .
We also view v as a vertex of T with stabilizer Gv . Similarly, we denote by e an edge
of � or T , by Ge the corresponding group (always abelian in this paper) and by E

the set of non-oriented edges of �.
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Edge groups being abelian, hence relatively quasiconvex, every vertex group Gv is
toral relatively hyperbolic (see for instance [25]).

The edge groups carried by edges of � incident to a given vertex v will be called the
incident edge groups of Gv . We denote by Incv the family of incident edge groups
(we view it as a finite family of subgroups of Gv , each well defined up to conjugacy).

If H is a finite family of subgroups of G and v is a vertex stabilizer of T , we denote
by HkGv

the family of subgroups H �Gv which are conjugate to a group of H and fix
no other point in T . Two such groups are conjugate in Gv if they are conjugate in G

(see [25, Lemma 2.2], where the notation HjGv
is used instead), so we may also view

HkGv
as a subset of H (it contains some of the groups of H having a conjugate in Gv ),

or as a finite family of subgroups of Gv , each well-defined up to conjugacy (HkGv
may

be smaller than HjGv
because we do not include subgroups of edge groups).

Any splitting of Gv relative to Incv extends to a splitting of G. If T is relative to H ,
any splitting of Gv relative to Incv[HkGv

is relative to HjGv
and extends to a splitting

of G relative to H .

If C is a set of conjugacy classes, we view CkGv
as the subset of C consisting of classes

having a representative that fixes v and no other vertex. In particular, CkGv
is finite if

C is.

A tree T 0 is a collapse of T if it is obtained from T by collapsing each edge in a
certain G–invariant collection to a point; conversely, we say that T refines T 0. In terms
of graphs of groups, one passes from � D T=G to � 0 D T 0=G by collapsing edges;
for each vertex v0 2 � 0, the vertex group Gv0 is the fundamental group of the graph of
groups �v0 occurring as the preimage of v0 in �.

All maps between trees will be G–equivariant. Given two trees T and T 0, we say
that T dominates T 0 if there is a map f W T ! T 0 or, equivalently, if every subgroup
which is elliptic in T is also elliptic in T 0 ; in particular, T dominates any collapse T 0.
We sometimes say that f is a domination map. Minimality implies that it is onto.

Two trees belong to the same deformation space if they dominate each other. In other
words, a deformation space D is the set of all trees having a given family of subgroups
as their elliptic subgroups. We say that D dominates D0 if trees in D dominate those
in D0.

2.2 JSJ decompositions [21; 22]

Let H be a family of subgroups of G. Recall that a tree T is relative to H if all groups
of H are elliptic in T .
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We denote by HCab the family obtained by adding to H all non-cyclic abelian subgroups
of G.

The group G is freely indecomposable relative to H if it does not split over the trivial
group relative to H ; equivalently, G cannot be written non-trivially as A�B with every
group of H contained in a conjugate of A or B (if H is trivial, we also require G¤Z,
as we consider Z as freely decomposable). Non-cyclic abelian groups being one-ended,
being freely indecomposable relative to H is the same as being so relative to HCab.

Let A be another family of subgroups (in this paper, A consists of the trivial group
or is the family of all abelian subgroups). Once H and A are fixed, we only consider
trees relative to H , with edge stabilizers in A. We also assume that trees are minimal.

A tree T (with edge stabilizers in A, relative to H) is universally elliptic (with respect
to H) if its edge stabilizers are elliptic in every tree. It is a JSJ tree if, moreover,
it dominates every universally elliptic tree. The set of JSJ trees is called the JSJ
deformation space (over A relative to H). All JSJ trees have the same vertex stabilizers,
provided one restricts to stabilizers not in A.

When A consists of the trivial group, the JSJ deformation space is called the Grushko
deformation space (relative to H). The group G has a relative Grushko decomposition
G D G1 � � � � � Gn � Fp , with Fp free, every H 2 H contained in some Gi (up
to conjugacy) and Gi freely indecomposable relative to HjGi

. Vertex stabilizers of
the relative Grushko deformation space D are precisely conjugates of the Gi . The
deformation space is trivial (it only contains the trivial tree) if and only if G is freely
indecomposable relative to H . Writing G D fG1; : : : ;Gng, note that Out.GIH[ G/
has finite index in Out.GIH/, because automorphisms in Out.GIH/ leave D invariant
and therefore permute the Gi (up to conjugacy).

Now suppose that A consists of all abelian subgroups and G is freely indecomposable
relative to a family H . Then [22, Theorem 11.1] the JSJ deformation space relative
to HCab contains a preferred tree Tcan ; this tree is invariant under �Out.GIH/ (the
group of automorphisms preserving H).

It is obtained as a tree of cylinders. We describe this construction in the case that will be
needed here (see [23, Proposition 6.3] for details). Let T be any tree with non-trivial
abelian edge stabilizers, relative to all non-cyclic abelian subgroups. Say that two
edges e and e0 belong to the same cylinder if their stabilizers commute. Cylinders are
subtrees intersecting in at most one point.

The tree of cylinders Tc is defined as follows. It is bipartite, with vertex set V0[V1 .
Vertices in V0 are vertices of T belonging to at least two cylinders. Vertices in V1 are
cylinders of T . A vertex v 2 V0 is joined to a vertex Y 2 V1 if v (viewed as a vertex
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of T ) belongs to Y (viewed as a subtree of T ). Equivalently, one obtains Tc from T

by replacing each cylinder Y by the cone on its boundary (points of Y belonging to at
least one other cylinder).

The tree Tc only depends on the deformation space D containing T and it belongs
to D . Like T , it has non-trivial abelian edge stabilizers and is relative to all non-cyclic
abelian subgroups. It is minimal if T is minimal, but vertices in V1 may be redundant
vertices.

The stabilizer of a vertex v1 2 V1 is a maximal abelian subgroup. The stabilizer of
a vertex in V0 is non-abelian and is the stabilizer of a vertex of T . The stabilizer of
an edge v0v1 with vi 2 Vi is an infinite abelian subgroup; it is a maximal abelian
subgroup of Gv0

(but it is not always maximal abelian in Gv1
).

The �Out.GIH/–invariant tree Tcan mentioned above is the tree of cylinders of JSJ
trees relative to HCab. It is a JSJ tree and the tree of cylinders of Tcan is Tcan itself.

Let �can D Tcan=G be the quotient graph of groups and let v 2 V0=G be a vertex with
Gv non-abelian. If Gv does not split over an abelian group relative to incident edge
groups and to HkGv

, it is universally elliptic (with respect to both H and HCab ) and
we say that Gv (or v ) is rigid; otherwise, it is flexible.

A key fact here is that every flexible vertex v of �can is quadratically hanging (QH). The
group Gv is the fundamental group of a compact (possibly non-orientable) surface †,
and incident edge groups are boundary subgroups of �1.†/ (ie fundamental groups of
boundary components of †); in particular, incident edge groups are cyclic. At most
one incident edge group is attached to a given boundary component (groups carried
by distinct incident edges are non-conjugate in Gv ). If H is conjugate to a group
of H , then H \Gv is contained in a boundary subgroup. Conversely, every boundary
subgroup is an incident edge group or has a finite-index subgroup which is conjugate
to a group of H .

As Szepietowski [34] does, we denote by PMC.†/ the group of isotopy classes of
homeomorphisms of † mapping each boundary component to itself in an orientation-
preserving way. We view PMC.†/ as a subgroup of Out.�1.†//DOut.Gv/; indeed,
PMC.†/D Out.GvI Inc.t/v ;H

.t/
kGv

/.

2.3 Automorphisms of trees

There is a natural action of Out.G/ on the set of trees, given by precomposing the
action on T with an automorphism of G. We denote by Out.T / the stabilizer of a
tree T . We write Out.T;H/ for Out.T /\Out.GIH/, and so on.
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If T is a point, Out.T /DOut.G/. If G is abelian and T is not a point, then T is a line
on which G acts by integral translations and Out.T / is the group of automorphisms
of G preserving the kernel of the action.

We now study Out.T / in the general case, following Levitt [27].

We always assume that edge stabilizers are abelian. This implies that all vertex or
edge stabilizers H have the property that the normalizer N.H / acts on H by inner
automorphisms; indeed, N.H / is abelian if H is abelian and is equal to H if H is
not abelian.

One first considers the action of Out.T / on the finite graph � D T=G. We always
denote by Out0.T / the finite-index subgroup consisting of automorphisms acting
trivially.

We study it through the natural map

�D
Y
v2V

�vW Out0.T / �!
Y
v2V

Out.Gv/

recording the action of automorphisms on vertex groups (see [27, Section 2]); recall
that V is the vertex set of �. Since N.Gv/ acts on Gv by inner automorphisms, �v.ˆ/
is simply defined as the class of ˛jGv

, where ˛ 2 Aut.G/ is any representative of
ˆ 2 Out0.T / leaving Gv invariant.

The image of � is contained in
Q
v2V Out.GvI Incv/ (the family of incident edge

groups at a given v is preserved). It contains the subgroup
Q
v2V Out.GvI Inc.t/v /

because automorphisms of Gv acting trivially on incident edge groups extend “by the
identity” to automorphisms of G preserving T .

The kernel of � is the group of twists T , a finitely generated abelian group when no
edge group is trivial (bitwists as defined in [27] belong to T because the normalizer of
an abelian subgroup is its centralizer). We therefore have an exact sequence

1 �! T �! Out0.T /
�
�!

Y
v2V

Out.GvI Incv/:

Now suppose that T is relative to families H and K (ie each Hi and Kj fixes a point
in T ). A trivial but important remark is that T � Out.GIH.t/;K.t//. As pointed out
in [25, Lemma 2.10], we haveY

v2V

Out.GvI Inc.t/v ;H
.t/
kGv

;KkGv
/� �

�
Out0.T /\Out.GIH.t/;K/

�
�

Y
v2V

Out.GvI Incv;H
.t/
kGv

;KkGv
/
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(see Section 2.1 for the definition of HkGv
; groups of HkGv

that are conjugate in G

are necessarily conjugate in Gv ).

The fact noted above that the image of Out0.T / by � contains
Q
v2V Out.GvI Inc.t/v /

expresses that automorphisms ˆv 2 Out.Gv/ acting trivially on incident edge groups
may be combined into a global ˆ 2 Out.G/. In Section 3.2.4 we will need a more
general result, where we only assume that the ˆv have compatible actions on edge
groups.

Given an edge e of �, there is a natural map �eW Out0.T /! Out.Ge/, defined in the
same way as �v above. If v is an endpoint of e , the inclusion of Ge into Gv induces a
homomorphism �v;eW Out.GvI Incv/!Out.Ge/ with �eD �v;e ı�v (it is well-defined
because the normalizer NGv

.Ge/ acts on Ge by inner automorphisms).

Lemma 2.2 Consider a family of automorphisms ˆv 2 Out.GvI Incv/ such that, if
eD vw is any edge of �, then �v;e.ˆv/D �w;e.ˆw/. There exists ˆ 2Out0.T / such
that �v.ˆ/Dˆv for every v .

We leave the proof to the reader. The lemma applies to any graph of groups such
that, for every vertex or edge group H, the normalizer N.H / acts on H by inner
automorphisms. ˆ is not unique: it may be composed with any element of T .

In Section 3.2.4 we will have a family of automorphisms ˆe 2 Out.Ge/ and we will
want ˆ 2 Out0.T / such that �e.ˆ/D ˆe for every e . By the lemma, it suffices to
find automorphisms ˆv 2 Out.GvI Incv/ inducing the ˆe .

2.4 Rigid vertices

We now specialize to the case when T D Tcan is the canonical JSJ decomposition
relative to HCab discussed in Section 2.2.

If v is a QH vertex, the image of Out0.T / \ Out.GIH.t// in Out.Gv/ contains
PMC.†/D Out.GvI Inc.t/v ;H.t/kGv

/ with finite index (see [25, Proposition 4.7]).

If v is a rigid vertex, then Gv does not split over an abelian group relative to Incv[HkGv
.

By the Bestvina–Paulin method and Rips theory, one deduces that the image of
Out0.T /\Out.GIH.t// in Out.Gv/ is finite if H is a finite family of finitely generated
subgroups (see [25, Theorem 3.9 and Proposition 4.7]).

Lemma 2.3 Let H and K be finite families of finitely generated subgroups, with each
group in K abelian. Assume that G is one-ended relative to H[K and let Tcan be the
canonical JSJ tree relative to .H[K/Cab.
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The image of
Out0.T /\Out.GIH.t/;K/

by �vW Out0.T / ! Out.Gv/ is finite if v is a rigid vertex of Tcan . Its image by
�eW Out0.T /! Out.Ge/ is finite if e is any edge.

Proof Define KZ by removing all non-cyclic groups from K . Being freely indecom-
posable relative to H[K is the same as being freely indecomposable relative to H[KZ ,
and a tree is relative to .H[K/Cab if and only if it is relative to .H[KZ/

Cab. We
may therefore view Tcan as the canonical JSJ tree relative to .H[KZ/

Cab.

Let v be a rigid vertex. The group Out.GIH.t/;K/ is contained in Out.GIH.t/;KZ/,
which contains Out.GIH.t/;K.t/Z / with finite index. As explained above, the image
of Out0.T /\Out.GIH.t/;K.t/Z / in Out.Gv/ is finite [25, Proposition 4.7]. The first
assertion of the lemma follows.

Since Tcan is bipartite, every edge e is incident to a vertex v which is QH or rigid. In
the first case Ge is cyclic, so there is nothing to prove. In the second case the map
�eW Out0.T /! Out.Ge/ factors through Out.Gv/ and the second assertion follows
from the first.

3 Finite classifying space

In this section, we prove that McCool groups of a toral relatively hyperbolic group
have type VF (Theorem 1.3) and that so does the stabilizer of a splitting (Theorem 1.4).
In the course of the proof, we will describe the automorphisms of a given maximal
abelian subgroup which are restrictions of an automorphism of G belonging to a given
McCool group (Proposition 3.10).

We start by recalling some standard facts about groups of type VF.

A group has type F if it has a finite classifying space and type VF if some finite-index
subgroup is of type F. A key tool for proving that groups have type F is the following
statement:

Theorem 3.1 (See for instance Geoghegan [15, Theorem 7.3.4]) Suppose that G

acts simplicially and cocompactly on a contractible simplicial complex X. If all point
stabilizers have type F, so does G. In particular, being of type F is stable under
extensions.

If G has a finite-index subgroup acting as in the theorem, then G has type VF. In
particular:
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Corollary 3.2 Given an exact sequence 1!N !G!Q! 1, suppose that Q has
type VF and G has a finite-index subgroup G0 < G such that G0 \N has type F.
Then G has type VF.

Remark 3.3 Suppose that G acts on X as in Theorem 3.1. If point stabilizers are
only of type VF, one cannot claim that G has type VF, even if G is torsion-free. This
subtlety was overlooked in [20, Theorem 5.2] (we will give a corrected statement in
Corollary 3.8) and it introduces technical complications (which would not occur if we
only wanted to prove that the groups under consideration have type F1 ). In particular,
to study the stabilizer of a tree with non-cyclic edge stabilizers in Section 3.2.3, we
have to prove more precise versions of certain results (such as the “moreover” in
Theorem 3.4).

3.1 McCool groups are VF

In this subsection we prove the following strengthening of Theorem 1.3:

Theorem 3.4 Let G be a toral relatively hyperbolic group. Let H and K be two
finite families of finitely generated subgroups, with each group in K abelian. Then
Out.GIH.t/;K/ is of type VF.

Moreover, if groups in H are also abelian, then there exists a finite-index subgroup
Out1.GIH;K/�Out.GIH;K/ such that Out1.GIH;K/\Out.GIH.t/;K/ is of type F.

Recall (Definition 2.1) that Out.GIH.t/;K/ consists of classes of automorphisms acting
trivially on each group Hi 2H (ie as conjugation by some gi 2G ) and leaving each
Kj 2 K invariant up to conjugacy.

It will follow from Corollary 1.6 that the main assertion of Theorem 3.4 holds if H is
an arbitrary family of subgroups (see Corollary 6.3), but finiteness is needed at this
point in order to apply Lemma 2.3.

Convention 3.5 In this subsection, a superscript 1, as in Out1.GIH;K/, always
indicates a subgroup of finite index. The superscript 0 refers to a trivial action on a
quotient graph of groups (see Section 2.3).

3.1.1 The abelian case The following lemma deals with the case when G D Zn.

Lemma 3.6 Let H and K be finite families of subgroups of Zn. Consider the subgroup
A D Out.ZnIH.t/;K/ of GL.n;Z/ consisting of matrices acting as the identity on
groups Hi 2 H and leaving each Kj 2 K invariant. Then A is of type VF. More
precisely, every torsion-free subgroup of finite index A0 �A is of type F.
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Recall that GL.n;Z/ is virtually torsion-free, so groups such as A0 exist.

Proof The set of endomorphisms of Zn acting as the identity on Hi and preserving Kj

is a linear subspace defined by linear equations with rational coefficients. It follows
that the groups A and A0 are arithmetic: they are commensurable with a subgroup of
GL.n;Z/ defined by Q–linear equations. By Borel and Serre [7], every torsion-free
arithmetic subgroup of GL.n;Q/ is of type F.

To deduce Theorem 3.4 when G is abelian, we simply define Out1.GIH;K/ as any
torsion-free, finite-index subgroup of Out.GIH;K/.

If G is not abelian, we shall distinguish two cases.

3.1.2 The one-ended case We first assume that G is freely indecomposable relative
to H[K : one cannot write G D A �B with each group of H[K contained in a
conjugate of A or B . We then consider the canonical tree Tcan as in Section 2.2 (it is
a JSJ tree relative to H , K and to non-cyclic abelian subgroups). It is invariant under
Out.GIH;K/, so Out.GIH;K/� Out.Tcan/.

We write Out0.Tcan/ for the finite-index subgroup consisting of automorphisms acting
trivially on the finite graph �can D Tcan=G and

Out0.GIH;K/D Out.GIH;K/\Out0.Tcan/;

which has finite index in Out.GIH;K/.

Recall that non-abelian vertex stabilizers Gv of Tcan (or vertex groups of �can ) are
rigid or QH. Also recall from Section 2.3 that, for each vertex v , there is a map
�vW Out0.Tcan/! Out.GvI Incv/, with Incv the family of incident edge groups (see
Section 2.1).

We define a subgroup Outr .GIH;K/�Out.GIH;K/ by restricting to automorphisms
ˆ 2 Out0.GIH;K/ and imposing conditions on the image of ˆ by the maps �v :

� If Gv is rigid, we ask that �v.ˆ/ be trivial.

� If Gv is abelian, we fix a torsion-free subgroup of finite index Out1.Gv/�Out.Gv/
and we ask that �v.ˆ/ belong to Out1.Gv/.

� If Gv is QH, it is the fundamental group of a compact surface †. Each boundary
component is associated to an incident edge or a group in H[K (see Section 2.2), so
�v.ˆ/ preserves the peripheral structure of �1.†/ and may therefore be represented by
a homeomorphism of †. Since groups in H[K , and their conjugates, only intersect Gv
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along boundary subgroups, the image of Out0.GIH;K/ by �v contains the mapping
class group

PMC.†/D Out.GvI Inc.t/v ;H
.t/
kGv

;K.t/
kGv

/

(see Section 2.2); the index is finite. We fix a finite-index subgroup PMC;1.†/ of
type F and we require �v.ˆ/ 2 PMC;1.†/. In particular, ˆ acts trivially on all
boundary subgroups of †.

Let Outr .GIH;K/ consist of automorphisms ˆ2Out0.GIH;K/ whose images �v.ˆ/
satisfy the above conditions. These automorphisms act trivially on edge stabilizers.

It follows from Lemma 2.3 that Outr .GIH;K/\Out.GIH.t/;K/ always has finite
index in Out.GIH.t/;K/. If groups in H are abelian, then Outr .GIH;K/ has finite
index in Out.GIH;K/. It therefore suffices to prove that

O WD Outr .GIH;K/\Out.GIH.t/;K/

is of type F (this argument, based on Lemma 2.3, is the only place where we use the
assumptions on H and K).

Every edge of Tcan has an endpoint v with Gv rigid or QH, so elements of O act
trivially on edge stabilizers of Tcan . Consider an abelian vertex stabilizer Gv . Elements
in �v.O/ are the identity on incident edge groups and groups in HkGv

, and leave groups
in KkGv

invariant. By Lemma 3.6 these conditions define a group Bv�Out.Gv/ which
is of type VF and Cv WD Bv \Out1.Gv/ is a group of type F containing �v.O/.

Recall from Section 2.3 the exact sequence

1 �! T �! Out0.Tcan/
�
�!

Y
v2V

Out.GvI Incv/:

We claim that the image of O by � is a direct product
Q
v2V Cv , with Cv as above if

Gv is abelian, Cv D PMC;1.†/ if v is QH, and Cv trivial if v is rigid. The image
is contained in the product. Conversely, given a family .ˆv/v2V , with ˆv 2 Cv , the
automorphisms ˆv act trivially on incident edge groups, so there is ˆ 2 Out0.Tcan/

with �v.ˆ/Dˆv . Since ˆv acts trivially on Incv [HkGv
and preserves KkGv

, this
automorphism is in O . This proves the claim.

It follows that �.O/ is of type F. The group of twists T is contained in O , because
twists act trivially on vertex groups and T is relative to H[K , so we can conclude
that O is of type F by Theorem 3.1 if we know that T is of type F. The group T
is a finitely generated abelian group. It is torsion-free, hence of type F, as shown in
[25, Section 4] (alternatively, one can replace Outr .GIH;K/ by its intersection with a
torsion-free, finite-index subgroup of Out.G/, which exists by [25, Corollary 4.4]).
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This proves Theorem 3.4 in the freely indecomposable case. To prove it in general, we
need to study automorphisms of free products.

3.1.3 Automorphisms of free products In this subsection, G does not have to be
relatively hyperbolic.

Let G D fGig be a family of subgroups of G. We have defined Out.GIG/ as au-
tomorphisms leaving the conjugacy class of each Gi invariant and Out.GIG.t// as
automorphisms acting trivially on each Gi .

More generally, consider a group of automorphisms Qi �Out.Gi/ and QD fQig. We
would like to define Out.GIG.Q//�Out.GIG/ as the automorphisms ˆ acting on each
Gi as an element of Qi . To be precise, given ˆ2Out.GIG/, choose representatives 'i

of ˆ in Aut.G/ with 'i.Gi/DGi . We say that ˆ belongs to Out.GIG.Q// if every
'i represents an element of Qi . This is well-defined (independent of the chosen 'i ) if
each Gi is a free factor (more generally, if the normalizer of Gi acts on Gi by inner
automorphisms).

The goal of this subsection is to show:

Proposition 3.7 Let GDG1�� � ��Gn�Fp , with Fp free of rank p , and let GDfGig.
Assume that all groups Gi and Gi=Z.Gi/ have type F.

Let QD fQig be a family of subgroups Qi �Out.Gi/. If every Qi is of type VF, then
Out.GIG.Q// has type VF.

More precisely, there exists a finite-index subgroup Out1.GIG/� Out.GIG/, indepen-
dent of Q, such that, if every Qi is of type F, then Out1.GIG/\Out.GIG.Q// has
type F.

The “more precise” assertion implies the first one, since Out.GIG.Q0// has finite index
in Out.GIG.Q// if every Q0i is a finite-index subgroup of Qi .

Assume that Gi and Gi=Z.Gi/ have type F. The proposition says in particular that
the Fouxe-Rabinovitch group Out.GIG.t// is of type VF, and that Out.GIG/ is of
type VF if every Out.Gi/ is. If we consider the Grushko decomposition of G, then
Out.GIG/ has finite index in Out.G/ and we get:

Corollary 3.8 (Correcting [20, Theorem 5.2]) Let G DG1 � � � � �Gn �Fp , with Fp

free and Gi non-trivial, not isomorphic to Z and not a free product. If every Gi and
Gi=Z.Gi/ has type F and every Out.Gi/ has type VF, then Out.G/ has type VF.
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Proof of Proposition 3.7 We prove the “more precise” assertion, so we assume that
Qi � Out.Gi/ has type F. We shall apply Theorem 3.1 to the action of Out.GIG.Q//
on the outer space defined in [20]. We let D be the Grushko deformation space relative
to G , ie the JSJ deformation space of G over the trivial group relative to G (see
Section 2.2). Trees in D have trivial edge stabilizers and non-trivial vertex stabilizers
are conjugates of the Gi .

Like ordinary outer space [9], the projectivization �D of D is a complex consisting
of simplices with missing faces and the spine of �D is a simplicial complex. It is
contractible for the weak topology [19].

The group Out.GIG/ acts on D , hence on the spine, and the action of the Fouxe-
Rabinovitch group Out.GIG.t//�Out.GIG.Q// is cocompact because there are finitely
many possibilities for the quotient graph T=G for T 2D . In order to apply Theorem 3.1,
we just need to show that stabilizers are of type F.

Out.GIG/ also acts on the free group (isomorphic to Fp ) obtained from G by killing
all the Gi (it may be viewed as the topological fundamental group of � D T=G

for any T 2 D). In other words, there is a natural map Out.GIG/ ! Out.Fp/.
We fix a torsion-free, finite-index subgroup Out1.Fp/ � Out.Fp/ and we define
Out1.GIG/� Out.GIG/ as the pullback of Out1.Fp/.

Given T 2 D , we let S be its stabilizer for the action of Out1.GIG/ and SQ its
stabilizer for the action of Out1.GIG/ \ Out.GIG.Q//. We complete the proof by
showing that SQ has type F.

We first claim that S equals Out0.T /, the group of automorphisms of G leaving T

invariant and acting trivially on � DT=G. Clearly Out0.T /�S . Conversely, we have
to show that any ˆ2S acts as the identity on �. First, ˆ fixes all vertices of � carrying
a non-trivial group Gv , because Gv is a Gi (up to conjugacy) and the Gi are not
permuted. In particular, by minimality of T , all terminal vertices of � are fixed. Also,
by our definition of Out1.GIG/, the image of ˆ in Out.�1.�// is trivial or has infinite
order. The claim follows because any non-trivial symmetry of � fixing all terminal
vertices maps to a non-trivial element of finite order in Out.�1.�// if � is not a circle.

The map � (see Section 2.3) maps S onto
Q

i Out.Gi/, and the image of SQ is
Q

i Qi ,
a group of type F. The kernel is the group of twists T , which is contained in SQ , so
it suffices to check that T has type F. Since edge stabilizers are trivial, T is a direct
product

Q
i Ki , with KiDG

ni

i =Z.Gi/; here ni is the valence of the vertex carrying Gi

in � and the center Z.Gi/ is embedded diagonally (see [27]). There are exact sequences

1 �!G
ni�1
i �!G

ni

i =Z.Gi/ �!Gi=Z.Gi/ �! 1;

so the assumptions of the proposition ensure that T is of type F.
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3.1.4 The infinitely ended case We can now prove Theorem 3.4 in full generality.
We let G DG1 � � � � �Gn �Fp be the Grushko decomposition of G relative to H[K
(see Section 2.2) and G D fGig. Each Gi is toral relatively hyperbolic, so has type F
by Dahmani [10]. Its center is trivial if Gi is nonabelian, so Gi=Z.Gi/ also has type F.
This will allow us to use Proposition 3.7.

Lemma 3.9 Let Q D fQig with Qi D Out.Gi IH
.t/
jGi
;KjGi

/ and let R D fRig with
Ri D Out.Gi IHjGi

;KjGi
/. Then

Out.GIG.Q//D Out.GIH.t/;K/\Out.GIG/;

Out.GIG.R//D Out.GIH;K/\Out.GIG/:

Moreover, Out.GIG.Q// has finite index in Out.GIH.t/;K/ and Out.GIG.R// has
finite index in Out.GIH;K/.

Proof If ˆ belongs to Out.GIG.Q//, it belongs to Out.GIH.t/;K/, because every
group in H[K has a conjugate contained in some Gi . Conversely, automorphisms in
Out.GIH.t/;K/ preserve the Grushko deformation space relative to H[K and therefore
permute the Gi , so Out.GIG/\Out.GIH.t/;K/ has finite index in Out.GIH.t/;K/. If
' 2Aut.G/ leaves Gi invariant and maps a non-trivial H �Gi to a conjugate gHg�1,
then g 2Gi because Gi is a free factor. This shows

Out.GIH.t/;K/\Out.GIG/� Out.GIG.Q//;

completing the proof for Out.GIG.Q//. The proof for Out.GIG.R// is similar.

The first assertion of Theorem 3.4 now follows immediately from the one-ended case
together with Proposition 3.7, since Out.GIH.t/;K/ contains Out.GIG.Q// with finite
index. There remains to prove the “moreover”.

Each Gi is freely indecomposable relative to HjGi
[ KjGi

, so we may apply the
“moreover” of Theorem 3.4 to Gi . We get a finite-index subgroup R1

i �Ri such that
Q1

i WDR1
i \Qi has type F. Let R1 D fR1

i g and Q1 D fQ1
i g.

By Proposition 3.7, there is a finite-index subgroup Out1.GIG/�Out.GIG/ such that
Out1.GIG/\Out.GIG.Q1// has type F. Now write

Out1.GIG/\Out.GIG.Q
1//D Out1.GIG/\Out.GIG.R

1//\Out.GIG.Q//:

By Lemma 3.9, we may replace the last term Out.GIG.Q// by Out.GIH.t/;K/. Defin-
ing

Out1.GIH;K/ WD Out1.GIG/\Out.GIG.R
1//;
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we have shown that Out1.GIH;K/\Out.GIH.t/;K/ has type F. There remains to
check that Out1.GIH;K/ is a finite-index subgroup of Out.GIH;K/.

Since Out1.GIG/ has finite index in Out.GIG/ and R1
i is a finite-index subgroup

of Ri , the group Out1.GIH;K/ has finite index in Out.GIG/\Out.GIG.R//, which
equals Out.GIG.R// and has finite index in Out.GIH;K/ by Lemma 3.9.

This completes the proof of Theorem 3.4.

3.1.5 The action on abelian groups We study the action of Out.G/ on abelian sub-
groups. The result of this subsection (Proposition 3.10) will be needed in Section 3.2.4.

A toral relatively hyperbolic group has finitely many conjugacy classes of non-cyclic
maximal abelian subgroups. Fix a representative Aj in each class. Automorphisms of G

preserve the set of Aj (up to conjugacy), so some finite-index subgroup of Out.G/ maps
to
Q

j Out.Aj /. We shall show in particular that the image of a suitable finite-index
subgroup Out0.G/ � Out.G/ is a product of McCool groups

Q
j Out.Aj I fFj g

.t// �Q
j Out.Aj /.

This product structure expresses the fact that automorphisms of non-conjugate maximal
non-cyclic abelian subgroups do not interact. Indeed, consider a family of elements

ĵ 2 Out.Aj / and suppose that each ĵ , taken individually, extends to an auto-
morphism ŷj 2 Out0.G/; then there is ˆ 2 Out0.G/ inducing all ĵ simultaneously.

In fact, we will work with two (possibly empty) finite families H and K of abelian
subgroups and we will restrict to Out.GIH.t/;K/. We shall therefore define a finite-
index subgroup Out0.GIH.t/;K/� Out.GIH.t/;K/.

First assume that G is freely indecomposable relative to H[K . As in Section 3.1.2, we
consider the canonical JSJ tree Tcan , we restrict to automorphisms ˆ2Out.GIH.t/;K/
acting trivially on �can D Tcan=G and we define Out0.GIH.t/;K/ by imposing condi-
tions on the action on non-abelian vertex groups Gv : if Gv is QH, the action should
be trivial on all boundary subgroups of † (ie �v.ˆ/ 2 PMC.†/); if Gv is rigid, then
�v.ˆ/ should be trivial. We have explained in Section 3.1.2 why this defines a subgroup
of finite index Out0.GIH.t/;K/ in Out.GIH.t/;K/. Note that Out0.GIH.t/;K/ acts
trivially on edge groups of Tcan .

If G is not freely indecomposable relative to H[K , let GDG1�� � ��Gn�Fp be the rel-
ative Grushko decomposition. To define Out0.GIH.t/;K/, we require that ˆ maps Gi

to Gi (up to conjugacy) and the induced automorphism belongs to Out0.Gi IH
.t/
jGi
;KjGi

/

as defined above.
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Elements of Out0.GIH.t/;K/ leave every Aj invariant (up to conjugacy) and we
denote by

� W Out0.GIH.t/;K/ �!
Y
j

Out.Aj /

the natural map.

We can now state:

Proposition 3.10 Let H and K be two finite families of abelian subgroups and let
Out0.GIH.t/;K/ be the finite-index subgroup of Out.GIH.t/;K/ defined above.

There are subgroups Fj �Aj such that the image of � W Out0.GIH.t/;K/!
Q

j Out.Aj /

equals
Q

j Out.Aj I fFj g
.t/;KjAj

/.

Recall that the Aj are representatives of conjugacy classes of non-cyclic maximal
abelian subgroups.

Proof The Aj are contained (up to conjugacy) in factors Gi of the Grushko decom-
position relative to H[K and the Gi are invariant under Out0.GIH.t/;K/. Since any
family of automorphisms ˆi 2 Out0.Gi IH

.t/
jGi
;KjGi

/ extends to an automorphism
ˆ 2 Out0.GIH.t/;K/, we may assume that G is freely indecomposable relative
to H[K .

Let Tcan be as above. If Aj is contained in a rigid vertex stabilizer, then Out0.GIH.t/;K/
acts trivially on Aj and we define Fj D Aj . If not, Aj is a vertex stabilizer Gv .
Vertex stabilizers adjacent to v are rigid or QH and, because of the way we defined it,
Out0.GIH.t/;K/ leaves Aj invariant and acts trivially on incident edge groups. It also
acts trivially on the groups belonging to HjAj

.

Defining Fj as the subgroup of Aj generated by incident edge groups and groups
in HjAj

, we have proved that the image of � is contained in
Q

j Out.Aj I fFj g
.t/;KjAj

/.
Conversely, choose a family ĵ 2Out.Aj I fFj g

.t/;KjAj
/. As explained in Section 2.3,

there exists ˆ 2 Out0.Tcan/ acting trivially on cyclic, rigid and QH vertex stabilizers
and inducing ĵ on Aj . We check that ˆ acts trivially on any H 2H . Such a group
H fixes a vertex v 2 Tcan . If Gv is cyclic, rigid or QH, the action of ˆ on H is trivial.
If not, Gv is (conjugate to) an Aj and the action is trivial because H � Fj. A similar
argument shows that ˆ preserves K up to conjugacy, so ˆ 2 Out.GIH.t/;K/. Since
ˆ acts trivially on rigid and QH vertex stabilizers, ˆ 2 Out0.GIH.t/;K/.
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3.2 Automorphisms preserving a tree

We now study the stabilizer of a tree. The following theorem clearly implies Theorem 1.4.

Theorem 3.11 Let G be a toral relatively hyperbolic group. Let T be a simplicial tree
on which G acts with abelian edge stabilizers. Let K be a finite family of abelian sub-
groups of G, each of which fixes a point in T . Then Out.T;K/DOut.T /\Out.GIK/
is of type VF.

The group Out.T;K/ is the subgroup of Out.G/ consisting of automorphisms leaving
T invariant and mapping each group of K to a conjugate (in an arbitrary way). The tree
T is assumed to be minimal, but it may be a point, it may have trivial edge stabilizers,
and non-cyclic abelian subgroups need not be elliptic.

Theorem 3.4 proves Theorem 3.11 when T is a point. Also note that, if G is abelian
and T is not a point, then T is a line on which G acts by integral translations and
Out.T;K/ is of type VF because it equals Out.GIK[fN g/, with N the kernel of the
action of G on T .

Thus, we assume from now on that G is not abelian. We will prove Theorem 3.11
when T has cyclic edge stabilizers before treating the general case. This special case is
much easier because Out.Ge/ is finite for every edge stabilizer Ge and we may apply
[27, Proposition 2.3].

3.2.1 Cyclic edge stabilizers In this subsection we prove Theorem 3.11 when all
edge stabilizers Ge of T are cyclic (possibly trivial); this happens in particular if G is
hyperbolic.

As in Section 2.3, we consider the exact sequence

1 �! T �! Out0.T /
�
��!

Y
v2V

Out.GvI Incv/:

The image of � contains
Q
v2V Out.GvI Inc.t/v / and the index is finite because all groups

Out.Ge/ are finite (see [27], where Out.GvI Inc.t/v / is denoted by PMCG.Gv/). The
preimage of

Q
v2V Out.GvI Inc.t/v / is thus a finite index subgroup Out1.T /�Out.T /.

We want to prove that Out.T;K/ is of type VF, so we restrict the preceding discussion
to Out.T;K/. Let

Out1.T;K/D Out1.T /\Out.GIK/;

a finite-index subgroup. We show that Out1.T;K/ is of type VF (this will not use the
assumption that edge stabilizers are cyclic).
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The image of Out1.T;K/ by � is contained in
Q
v2V Out.GvI Inc.t/v ;KkGv

/, with KkGv

as in Section 2.1 and, arguing as in Section 2.3, one sees that equality holds. On the
other hand, Out1.T;K/ contains T because twists act trivially on vertex stabilizers,
hence on K since groups of K are elliptic in T . We therefore have an exact sequence

1 �! T �! Out1.T;K/ �!
Y
v2V

Out.GvI Inc.t/v ;KkGv
/ �! 1:

Vertex stabilizers are toral relatively hyperbolic, so the product is of type VF by
Theorem 3.4 applied to the Gv . We conclude the proof by showing that T is of type F.
This will imply that Out1.T;K/, and hence Out.T;K/, is VF.

We claim that T is isomorphic to the direct product of a finitely generated abelian
group and a finite number of copies of non-abelian vertex groups Gv . We use the
presentation of T given in [27, Proposition 3.1]. It says that T can be written as a
quotient

T D
Y
e;v

ZGv
.Ge/=hRV ;REi;

the product being taken over all pairs .e; v/ where e is an edge incident to v ; here
RE D

Q
e Z.Ge/ is the group of edge relations and RV D

Q
v Z.Gv/ is the group of

vertex relations, both embedded naturally in
Q

e;v ZGv
.Ge/. Every group ZGv

.Ge/ is
abelian, unless Ge is trivial and Gv is non-abelian. In this case ZGv

.Ge/DGv and
it is not affected by the edge and vertex relations since both Z.Gv/ and Z.Ge/ are
trivial. Our claim follows.

It follows that T is of type F provided that it is torsion-free. One may show that this
is always the case, but it is simpler to replace Out1.T;K/ by its intersection with a
torsion-free, finite-index subgroup of Out.G/.

3.2.2 Changing T We shall now prove Theorem 3.11 in the general case.

The first step, carried out in this subsection, is to replace T by a better tree �T (satisfying
the second assertion of the lemma below). When all edge stabilizers are non-trivial,�T may be viewed as the smallest common refinement (called lcm in [22]) of T and
its tree of cylinders (see Section 2.2). Here is the construction of �T .

Consider edges of T with non-trivial stabilizer. We say that two such edges belong to
the same cylinder if their stabilizers commute. Cylinders are subtrees and meet in at
most one point. A vertex v with all incident edge groups trivial belongs to no cylinder.
Otherwise v belongs to one cylinder if Gv is abelian and to infinitely many cylinders if
Gv is not abelian. To define �T , we shall refine T at vertices x belonging to infinitely
many cylinders.
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Given such an x , let Sx be the set of cylinders Y such that x 2 Y . We replace x by
the cone Tx on Sx : there is a central vertex, again denoted by x , and vertices .x; sY /

for Y 2 Sx , with an edge between x and .x; sY /. Edges e of T incident to x are
attached to Tx as follows: if the stabilizer of e is trivial, we attach it to the central
vertex x ; if not, e is contained in a cylinder Y and we attach e to the vertex .x; sY /,
noting that Ge leaves Y invariant.

Performing this operation at each x belonging to infinitely many cylinders yields a
tree �T . The construction being canonical, there is a natural action of G on �T , and
Out.T /� Out.�T /.
Lemma 3.12 (1) Edge stabilizers of �T are abelian, �T is dominated by T , and

Out.�T /D Out.T /.

(2) Let Gv be a non-abelian vertex stabilizer of �T . Non-trivial incident edge stabi-
lizers Ge are maximal abelian subgroups of Gv . If e1 and e2 are edges of �T
incident to v with Ge1

and Ge2
equal and non-trivial, then e1 D e2 .

Proof Let Y be a cylinder in Sx (viewed as a subtree of T ). The setwise stabilizer
GY of Y is the maximal abelian subgroup of G containing stabilizers of edges of Y .
The stabilizer of the vertex .x; sY / of �T , and also of the edge between .x; sY / and x ,
is Gx \GY ; it is non-trivial (it contains the stabilizer of edges of Y incident to x )
and is a maximal abelian subgroup of Gx . This proves that edge stabilizers of �T are
abelian, since the other edges have the same stabilizer as in T .

Every vertex stabilizer of T is also a vertex stabilizer of �T , so T dominates �T . Edges
of �T which are not edges of T (those between .x; sY / and x ) are characterized as
those having non-trivial stabilizer and having an endpoint v with Gv non-abelian. One
recovers T from �T by collapsing these edges, so Out.�T /� Out.T /.

Consider two edges e1 and e2 incident to v in �T , with the same non-trivial stabilizer.
They join v to vertices .v; sYi

/ and we have seen that Ge1
DGe2

is maximal abelian
in Gv . The groups GY1

and GY2
are equal because they both contain Ge1

DGe2
. Edges

of Yi have stabilizers contained in GYi
, so have commuting stabilizers. Thus Y1D Y2 ,

so e1 D e2 .

Remark 3.13 If Ge1
and Ge2

are conjugate in Gv , rather than equal, we conclude
that e1 and e2 belong to the same Gv–orbit. On the other hand, edges belonging to
different Gv–orbits may have stabilizers which are conjugate in G (but not in Gv ).
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3.2.3 The action on edge groups In Section 3.2.1 we could neglect the action of
Out0.T / on edge groups because all groups Out.Ge/ were finite. We now allow edge
stabilizers of arbitrary rank, so we must take these actions into account. We write
Out0.T;K/D Out0.T /\Out.GIK/.

Recall that, for each edge e of �DT=G, there is a natural map �eW Out0.T /!Out.Ge/

(see Section 2.3). The collection of all these maps defines a map

 W Out0.T;K/ �!
Y
e2E

Out.Ge/;

the product being over all non-oriented edges of �. We denote by Q the image of
Out0.T;K/ under  , so that we have the exact sequence

1 �! ker �! Out0.T;K/ �!Q �! 1:

Lemma 3.14 If T satisfies the second assertion of Lemma 3.12, then the group Q is
of type VF.

This lemma will be proved in the next subsection. We first explain how to deduce
Theorem 3.11 from it. The first assertion of Lemma 3.12 implies that the theorem
holds for T if it holds for �T , so we may assume that T satisfies the second assertion
of Lemma 3.12.

The kernel of  is the group discussed in Section 3.2.1 under the name Out1.T;K/, but
now (contrary to Convention 3.5) Out1.T;K/ may be of infinite index in Out.T;K/;
indeed, Out.T;K/ is virtually an extension of Out1.T;K/ by Q. To avoid confusion,
we use the notation ker rather than Out1.T;K/.

We proved in Section 3.2.1 that ker is of type VF and, by the lemma, Q is of type VF,
but this is not quite sufficient (see Remark 3.3). We shall now construct a finite-index
subgroup Out2.T;K/�Out0.T;K/ such that ker \Out2.T;K/ has type F. Applying
Corollary 3.2 to Out0.T;K/ then completes the proof of Theorem 3.11.

We argue as in Section 3.2.1. Recall from Section 2.3 the exact sequence

1 �! T �! Out0.T;K/
�
��!

Y
v2V

Out.GvI Incv;KkGv
/

whose restriction to ker is the exact sequence

1 �! T �! ker 
�
��!

Y
v2V

Out.GvI Inc.t/v ;KkGv
/ �! 1:
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Using the “more precise” statement of Theorem 3.4 we get, for each v2V , a finite-index
subgroup Out1.GvI Incv;KkGv

/� Out.GvI Incv;KkGv
/ such that

Out1.GvI Incv;KkGv
/\Out.GvI Inc.t/v ;KkGv

/

is of type F. Define the finite-index subgroup Out2.T;K/�Out0.T;K/ as the preimage
of
Q
v2V Out1.GvI Incv;KkGv

/ under � intersected with a torsion-free, finite-index
subgroup of Out.G/.

Restricting the exact sequence above, we get an exact sequence

1 �! T 0 �! ker \Out2.T;K/
�
��!L �! 1;

where L has finite index in the product of the groups

Out1.GvI Incv;KkGv
/\Out.GvI Inc.t/v ;KkGv

/;

hence has type F. The group T 0 is a torsion-free, finite-index subgroup of T , so has
type F as in Section 3.2.1. We conclude that ker \ Out2.T;K/ has type F. As
explained above, this completes the proof of Theorem 3.11 (assuming Lemma 3.14).

3.2.4 Proof of Lemma 3.14 There remains to prove Lemma 3.14. We let Ej be
representatives of conjugacy classes of maximal abelian subgroups containing a non-
trivial edge stabilizer. Note that Ej is allowed to be cyclic and maximal abelian
subgroups of G containing no non-trivial Ge are not included.

Inside each Ej we let Bj be the smallest direct factor containing all edge groups
included in Ej (it equals Ej if Ej is cyclic). It is elliptic in T , because it is an abelian
group generated (virtually) by elliptic subgroups.

Each automorphism ˆ2Out0.T;K/ induces an automorphism of Ej , which preserves
Bj and all the edge groups it contains. This defines a map

 0W Out0.T;K/ �!
Y
j

Out.Bj /

having the same kernel as the map  W Out0.T;K/ !
Q

e2E Out.Ge/ defined in
Section 3.2.3. Thus, it suffices to prove that the image of Out0.T;K/ by  0 is of
type VF. We do so by finding a finite-index subgroup Out1.T;K/ (not the same as in
Section 3.2.1) whose image is a product

Q
j Qj with each Qj of type VF.

Consider a non-abelian vertex group Gv . Define Incv;Z � Incv by keeping only the
incident edge groups which are infinite cyclic, and denote by Enc.v/ the set of edges
e of � with origin v and Ge non-cyclic (if e is a loop, we subdivide it so that it
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counts twice in Enc.v/). By Lemma 3.12 and Remark 3.13, the edge groups Ge for
e 2Enc.v/ are non-conjugate maximal abelian subgroups of Gv .

We apply Proposition 3.10, describing the action on non-cyclic maximal abelian sub-
groups, to Out.GvI Inc.t/

v;Z;KkGv
/. We get a subgroup Out0.GvI Inc.t/

v;Z;KkGv
/ of finite

index and a subgroup Fve � Ge for each edge e 2 Enc.v/ such that the image of
Out0.GvI Inc.t/

v;Z;KkGv
/ in

Q
e2Enc.v/

Out.Ge/ is
Q

e2Enc.v/
Out.GeI fF

v
e g
.t/;KjGe

/.

We let Out1.T;K/� Out0.T;K/ be the subgroup consisting of automorphisms acting
trivially on cyclic edge stabilizers and acting on non-abelian vertex stabilizers as an
element of Out0.GvI Inc.t/

v;Z;KkGv
/. It has finite index because

Out.GvI Inc.t/
v;Z;KkGv

/� �v.Out0.T;K//� Out.GvI Incv;Z;KkGv
/;

with all indices finite.

We now define Qj � Out.Bj / as consisting of automorphisms ĵ such that

(1) if Ge is a cyclic edge stabilizer contained in Bj , then ĵ acts trivially on Ge ;

(2) if Bj contains a non-cyclic Ge and v is an endpoint of e with Gv non-abelian,
then ĵ acts trivially on Fve ;

(3) non-cyclic edge stabilizers and abelian vertex stabilizers contained in Bj are
ĵ –invariant;

(4) ĵ extends to an automorphism of Ej leaving KjEj
invariant; in particular,

subgroups of Bj conjugate to a group of K are ĵ –invariant.

This definition was designed so that the image of Out1.T;K/ by  0 is contained
in
Q

j Qj . We claim that equality holds:

Lemma 3.15 The image of Out1.T;K/ by  0 equals
Q

j Qj .

Proof We fix automorphisms ĵ 2 Qj � Out.Bj / and we have to construct an
automorphism ˆ 2 Out1.T;K/. By (1) and (3) above, the ĵ induce automorphisms
ˆe of edge stabilizers (each non-trivial edge group Ge lies in a unique Ej , so there is
no ambiguity in the definition of ˆe ). As explained after Lemma 2.2, it suffices to find
automorphisms ˆv of vertex groups inducing the ˆe . We distinguish several cases.

If Gv is contained in some Bj (up to conjugacy), it is ĵ –invariant by (3), so we let
ˆv be the restriction.

If Gv is abelian but not contained in any Bj , we may assume that some incident Ge

is non-cyclic (otherwise we let ˆv be the identity). This Ge is contained in some Bj ,
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and Gv �Ej . In fact, Gv DEj : since Gv is not contained in Bj , it fixes only v , and
Ej fixes v because it commutes with Gv . We may thus extend ĵ to Gv using (4).

If Gv is not abelian, we construct ˆv in Out0.GvI Inc.t/
v;Z;KkGv

/ as follows. If
e2Enc.v/, the automorphism ˆe acts trivially on Fve by (2), and preserves KjGe by (4).
Thus, the collection of automorphisms ˆe lies in

Q
e2Enc.v/

Out.GeI fF
v
e g
.t/;KjGe

/.
Proposition 3.10 guarantees that Out0.GvI Inc.t/

v;Z;KkGv
/ contains an automorphism

ˆv inducing ˆe for all e 2 Enc.v/ (and acting trivially on all cyclic incident edge
groups).

We have now constructed automorphisms ˆv2Out.Gv/ inducing the ˆe , so Lemma 2.2
provides an automorphism ˆ2Out0.T / whose image in

Q
j Out.Bj / is the product of

the ĵ because Bj is virtually generated by edge stabilizers. We show ˆ2Out1.T;K/.
By construction it acts trivially on cyclic edge groups and acts on non-abelian vertex
stabilizers as an element of Out0.GvI Inc.t/

v;Z;KkGv
/. We just have to check that ˆ

leaves any K 2 K invariant.

The group K is contained in some Gv . If K is contained in some Bj , it is ˆ–invariant
by (4). Otherwise, K fixes no edge. If Gv is abelian, we have seen that either all
incident edge groups are cyclic (and ˆv is the identity) or Gv equals some Ej and
our choice of ˆv using (4) guarantees that K is invariant. If Gv is not abelian,
then K belongs to KkGv

because it fixes no edge. It is invariant because we chose
ˆv 2 Out0.GvI Inc.t/

v;Z;KkGv
/.

We have seen that the group Q of Lemma 3.14 is isomorphic to the image of Out0.T;K/
under  0, hence contains

Q
j Qj with finite index. To show that Q is of type VF,

there remains to show that each Qj is of type VF.

We defined Qj inside Out.Bj / by four conditions. As in Lemma 3.6, the first three
define an arithmetic group. To deal with the fourth one, we consider the group zQj

consisting of automorphisms of Ej that leave Bj and KjEj
invariant with the restriction

to Bj satisfying the first three conditions. This is an arithmetic group. It consists of
block-triangular matrices and one obtains Qj by considering the upper-left blocks of
matrices in zQj . It follows that Kj is arithmetic, as the image of an arithmetic group
by a rational homomorphism [6, Theorem 6], hence of type VF by Lemma 3.6.

This completes the proof of Lemma 3.14, and hence of Theorem 3.11.

4 A finiteness result for trees

The goal of this subsection is Proposition 4.8, which gives a uniform bound for the size
of certain sets of relative JSJ decompositions of G. This an essential ingredient in the
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proof of the chain condition for McCool groups. We will have to restrict to root-closed
(RC) trees, which are introduced in Definitions 4.3 and 4.7 (they are closely related to
the primary splittings of Dahmani and Groves [11]).

Definition 4.1 Let H be a subgroup of a group G. Its root closure e.H;G/, or simply
e.H /, is the set of elements of G having a power in H. If e.H /DH, we say that H

is root-closed.

If G is toral relatively hyperbolic and H is abelian, e.H / is a direct factor of the
maximal abelian subgroup containing H, and H has finite index in e.H /. Also note
that, given h 2G and n� 2, there exists at most one element g such that gn D h.

The following fact is completely general:

Lemma 4.2 Let T be a tree with an action of an arbitrary group. The following are
equivalent:

� Vertex stabilizers of T are root-closed.

� Edge stabilizers of T are root-closed.

Proof If gn fixes an edge eDvw , it fixes v and w . If vertex stabilizers are root-closed,
g fixes v and w , hence fixes e , so edge stabilizers are root-closed.

Conversely, if gn fixes a vertex v , then g is elliptic, hence fixes a vertex w . Edges
between v and w (if any) are fixed by gn, hence by g if edge stabilizers are root-closed.
Thus g fixes v .

We now go back to a toral relatively hyperbolic group G.

Definition 4.3 A tree T is an RC tree if

� all non-cyclic abelian subgroups fix a point in T ;

� edge stabilizers of T are abelian and root-closed.

When G is hyperbolic, RC trees are the Zmax –trees of Dahmani and Guirardel [12]:
non-trivial edge stabilizers are maximal cyclic subgroups.

Lemma 4.4 (1) Let T be an RC tree with all edge stabilizers non-trivial. Its tree of
cylinders Tc (see Section 2.2) is an RC tree belonging to the same deformation
space as T .

Algebraic & Geometric Topology, Volume 15 (2015)



3514 Vincent Guirardel and Gilbert Levitt

(2) If T1 and T2 are RC trees relative to some family H and edge stabilizers of T1

are elliptic in T2 , there is an RC tree �T1 relative to H which refines T1 and
dominates T2 . Moreover, the stabilizer of any edge of �T1 fixes an edge in T1 or
in T2 .

Proof Non-triviality of edge stabilizers ensures that Tc is defined. The vertex stabiliz-
ers of Tc are vertex stabilizers of T or maximal abelian subgroups, so are root-closed.
The deformation space does not change because T is relative to non-cyclic abelian
subgroups (see [23, Proposition 6.3]). This proves (1).

We define a refinement �T1 of T1 dominating T2 as in [21, Lemma 3.2], by blowing up
each vertex v of T1 into a Gv–invariant subtree of T2 . We just have to check that its
edge stabilizers are root-closed. As in the proof of [12, Lemma 4.9], an edge stabilizer
of �T1 is an edge stabilizer of T1 or is the intersection of a vertex stabilizer of T1 with
an edge stabilizer of T2 , so is root-closed.

Proposition 4.5 Let G be toral relatively hyperbolic. In each of the following two
cases, there is a bound for the number of orbits of edges of a minimal tree T with
abelian edge stabilizers:

(1) T is bipartite: each edge has exactly one endpoint with abelian stabilizer (redun-
dant vertices are allowed).

(2) T is an RC tree with no redundant vertex.

Here and below, the bound has to depend only on G (it is independent of the trees
under consideration).

Case 1 applies in particular to trees of cylinders.

Proof We cannot apply Bestvina and Feighn’s accessibility theorem [3] directly
because T does not have to be reduced in the sense of [3]: � D T=G may have a
vertex v of valence 2 such that an incident edge carries the same group as v . We say
that such a v is a non-reduced vertex. The assumptions rule out the possibility that �
contains long segments consisting of non-reduced vertices (as in the example at the top
of [3, page 450]).

If T is bipartite, consider all non-reduced vertices of � and collapse exactly one of the
incident edges. This yields a reduced graph of groups, and at most half of the edges of
� are collapsed, so [3] gives a bound.
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If T is an RC tree with no redundant vertex, every non-reduced vertex v of � D T=G

has exactly two adjacent edges ev and fv , whose groups satisfy Gev
  Gv D Gfv

.
Among all edges incident to a non-reduced vertex, consider the set Em consisting of
those with Ge of minimal rank. No two edges of Em are adjacent at a non-reduced
vertex, because T is an RC tree. Now collapse the edges in Em .

If I D e1[e2[� � �[ek is a maximal segment in the complement of the set of vertices
of � having degree 3 or carrying a non-abelian group, we never collapse adjacent
edges ei and eiC1 (and we do not collapse e1 if k D 1; we may collapse e1 and e3

if k D 3). It follows that at least one third of the edges of � remain after the collapse.

Repeat the process. Denote by M the maximal rank of abelian subgroups of G. After
at most M steps one obtains a graph of groups which is reduced in the sense of [3],
hence has at most N edges for some fixed N . The number of edges of � is bounded
by 3MN .

Proposition 4.6 Given a toral relatively hyperbolic group G, there exists a number M

such that, if T1! T2! � � � ! Tp is a sequence of maps between RC trees belonging
to distinct deformation spaces, then p �M.

Proof There are two steps:

� The first step is to reduce to the case when no edge stabilizer is trivial. Consider
the tree T i (possibly a point) obtained from Ti by collapsing all edges with non-trivial
stabilizer. A map Ti ! TiC1 cannot send an arc with non-trivial stabilizer to the
interior of an edge with trivial stabilizer, so T i dominates T iC1 . Vertex stabilizers of
T i are free factors; there are finitely many possibilities for their isomorphism type.

Using Scott’s complexity, it is shown in [16, Section 2.2] that the number of times that
the deformation space Di of T i differs from that of T iC1 is uniformly bounded. We
may therefore assume that DD Di is independent of i .

Let H1; : : : ;Hk be representatives of conjugacy classes of non-trivial vertex stabilizers
of trees in D . They are free factors of G, hence toral relatively hyperbolic, and k is
bounded.

Consider the action of Hj on its minimal subtree T
j
i � Ti (we let T

j
i be any fixed

point if the action is trivial). It is an RC tree and no edge stabilizer is trivial. The
deformation space of Ti is completely determined by D and the deformation spaces
Dj

i of the trees T
j
i (viewed as trees with an action of Hj ). It therefore suffices to

bound (by a constant depending only on Hj ) the number of times that Dj
i changes in

a sequence T
j
1
! T

j
2
! � � � ! T

j
p , so we may continue the proof under the additional

assumption that the Ti have non-trivial edge stabilizers.

Algebraic & Geometric Topology, Volume 15 (2015)



3516 Vincent Guirardel and Gilbert Levitt

� Now that edge stabilizers are non-trivial, the tree of cylinders of Ti is defined. By
the first assertion of Lemma 4.4, we may assume that it equals Ti .

Since all trees are trees of cylinders, we may assume, by [23, Proposition 4.11], that all
domination maps Ti! TiC1 send vertex to vertex and map an edge to either a point
or an edge. Such a map may collapse an edge to a point, or identify edges belonging to
different orbits, or identify edges in the same orbit. The first two phenomena are easy
to control, since they decrease the number of orbits of edges; controlling the third one
requires more care (and restricting to RC trees).

We associate a complexity .n;�s/ to each Ti , with n the number of edges of Ti=G and
s the sum of the ranks of its edge groups; complexities are ordered lexicographically.
We claim that the complexity of TiC1 is strictly smaller than that of Ti . This gives the
required uniform bound on p , since n (hence also s ) is bounded by the first case of
Proposition 4.5.

Let fi W Ti! TiC1 be a domination map as above. Complexity clearly cannot increase
when passing from Ti to TiC1 . If n does not decrease, no edge of Ti is collapsed
in TiC1 . Since Ti and TiC1 belong to distinct deformation spaces, there exist distinct
edges e and e0 identified by fi . They have to belong to the same orbit (otherwise n

decreases), so e0Dge for some g2G. The group hg;Gei fixes the edge fi.e/Dfi.e
0/

of TiC1 , so is abelian. It has rank bigger than the rank of Ge because Ge is root-closed
and g …Ge . Thus s increases, and the complexity decreases.

Let A be the family of all abelian subgroups. Let H be a family of subgroups of G.
A JSJ tree (over A) relative to H may be defined as a tree T such that T is relative
to H , edge stabilizers of T are elliptic in every tree which is relative to H , and T

dominates every tree satisfying the previous conditions (all trees are assumed to have
abelian edge stabilizers). This motivates the following definition, where we require
that T be an RC tree (compare [12, Section 4.4]). Recall that HCab is obtained by
adding all non-cyclic abelian subgroups to H .

Definition 4.7 Let G be a toral relatively hyperbolic group and H a family of sub-
groups. A tree T is an RC JSJ tree relative to HCab if

(1) T is relative to HCab and is an RC tree;

(2) edge stabilizers of T are elliptic in every (not necessarily RC) tree with abelian
edge stabilizers which is relative to HCab ;

(3) T dominates every tree satisfying (1) and (2).

We will construct RC JSJ trees in Section 5. Note that non-cyclic edge stabilizers
always satisfy (2).
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Proposition 4.8 Let G be a toral relatively hyperbolic group. Let H1� � � ��Hi � � � �

be an increasing sequence (finite or infinite) of families of subgroups with G freely
indecomposable relative to H1 . For each i , let Ui be an RC JSJ tree relative to HCab

i .
There exists a number q , depending only on G, such that the trees Ui belong to at most
q distinct deformation spaces.

Proof Let Ui be as in the proposition. Note that Ui satisfies condition (1) of
Definition 4.7 with respect to HCab

j if j � i and condition (2) with respect to HCab
j

if j � i . But cyclic edge stabilizers of Ui do not necessarily satisfy (2) with respect to
HCab

j if j < i .

In general, there is no domination map Ui!UiC1 , so we cannot apply Proposition 4.6
directly. The easy case is when, for each i , every cyclic edge stabilizer of UiC1 is
contained in an edge stabilizer of Ui . Indeed, this implies that UiC1 satisfies condition
(2) with respect to HCab

i (not just to HCab
iC1

). By condition (3), Ui dominates UiC1 , so
Proposition 4.6 applies.

Next, assume that there is an RC tree T relative to H1 such that, for all i , there is
a domination map T ! Ui that collapses no edge. Each cyclic edge stabilizer Ge

of UiC1 contains an edge stabilizer Ge0 of T (take for e0 any edge whose image
contains a subarc of e ). Since G is freely indecomposable relative to H1 and T is
relative to H1 , one has Ge0 ¤ 1, and Ge0 DGe because Ge0 is root-closed. Since the
map T ! Ui collapses no edge, Ge fixes an edge in Ui and we conclude as above.

We now construct such a tree T . By condition (2) of Definition 4.7, edge stabilizers
of U1 are elliptic in U2 , so by Lemma 4.4 there is an RC tree T1 relative to H1 which
refines U1 and dominates U2 ; we remove redundant vertices of T1 if needed. Edge
stabilizers of T1 fix an edge in U1 or U2 , so are elliptic in U3 and one may iterate.
One obtains RC trees Ti relative to H1 such that Ti refines Ti�1 and dominates UiC1 .
By Proposition 4.5, all trees Ti for i large enough are equal to a fixed RC tree T .
We have no control over how large i has to be, but we have a uniform bound for the
number of orbits of edges of T .

By construction, there are domination maps fi W T ! Ui , but fi may collapse some
G–invariant set of edges. There are only a bounded number of possibilities for the
set Ei of edges of T that are collapsed by fi , so we may assume that E D Ei is
independent of i . Collapsing all edges of E then gives a tree T as wanted.

5 The chain condition

We prove Theorem 1.5. In this section we only consider groups of the form Out.GIH.t//,
so we use the simpler notation Mc.H/. Since we do not yet know that every Mc.H/ is

Algebraic & Geometric Topology, Volume 15 (2015)



3518 Vincent Guirardel and Gilbert Levitt

a McCool group, we assume that every Hi is a finite set of finitely generated subgroups
(this is needed to apply Lemma 2.3).

Since Mc.H0/ D Mc.H [H0/ if Mc.H/ � Mc.H0/, we may assume Hi � HiC1 .
We will use the following procedure several times. We associate an invariant to each
family Hi and we show that, as i varies, the number of distinct values of the invariant
is bounded (by which we mean that there is a bound depending only on G ). We then
continue the proof under the additional assumption that the value of the invariant is
independent of i .

� The first invariant is the Grushko deformation space Di relative to Hi (see
Section 2.2). The assumption Hi � HiC1 implies that Di dominates DiC1 . As
in the proof of Proposition 4.6, it follows from [16] that the number of times that Di

changes is bounded. We may therefore assume that Di is constant.

Let G1; : : : ;Gn be the free factors in a Grushko decomposition GDG1�� � ��Gn�Fp

relative to Hi (they do not depend on i up to conjugation since Di is constant).
The subgroup of Mc.Hi/ consisting of automorphisms sending each factor Gj to a
conjugate has bounded index and it is determined by the McCool groups McGj

.Hi jGj
/,

so we are reduced to the case when G is freely indecomposable relative to Hi .

� We then consider the canonical JSJ tree Ti (over abelian subgroups) relative to
HCab

i , ie to Hi and all non-cyclic abelian subgroups (see Section 2.2); it is Mc.Hi/–
invariant. We cannot use Proposition 4.8 to say that the number of distinct Ti is
bounded, because they are not RC trees, so we shall now replace Ti by an RC JSJ tree
Ui .

Any edge e of Ti joins a vertex v1 whose stabilizer is a maximal abelian subgroup to
a vertex v0 with non-abelian stabilizer. The group Ge is a maximal abelian subgroup
of Gv0

, but not necessarily of Gv1
. Let Ge be the root-closure of Ge in Gv1

(hence
also in G ). As in [12, Section 4.3], we can fold all edges in the Ge –orbit of e together.
Doing this for all edges of Ti yields an RC tree Ui which is Mc.Hi/–invariant.

This construction may also be described in terms of graphs of groups, as follows.
We now view e D v0v1 as an edge of Ti=G. Subdivide it by adding a midpoint u

carrying Ge . This creates two edges v0u and uv1 , carrying Ge and Ge , respectively.
Do this for every edge e of Ti=G. Collapsing all edges uv1 yields Ti=G, whereas
collapsing all edges v0u yields Ui=G.

The quotient graph Ui=G is the same as Ti=G, but labels are different. Edge groups
are replaced by their root-closure and non-abelian vertex groups have gotten bigger
(roots have been adjoined: each fold replaces some Gv0

by Gv0
�Ge

Ge ). Just like Ti ,
the tree Ui is equal to its tree of cylinders because folding only occurs within cylinders;
in particular, Ui is determined by its deformation space.
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Note that Ui may have redundant vertices and is not necessarily minimal (this happens
if Ti=G has a terminal vertex carrying an abelian group, and the incident edge group
has finite index). In this case we replace Ui by its minimal subtree.

We claim that Ui is an RC JSJ tree relative to HCab
i , in the sense of Definition 4.7. It

satisfies conditions (1) and (2) since its edge stabilizers are finite extensions of edge
stabilizers of Ti . Any tree satisfying these two conditions is dominated by Ti because
Ti is a JSJ tree. But any RC tree dominated by Ti is also dominated by Ui (with
notations as above, e and ge must have the same image if g 2Ge ).

� Proposition 4.8 lets us assume that Ui is a fixed tree U. It is invariant under
every Mc.Hi/. We let Out0.U / be the finite-index subgroup of Out.U / consisting
of automorphisms preserving U and acting trivially on � D U=G. The number of
edges of � is uniformly bounded, by Proposition 4.5, so the index of Out0.U / in
Out.U / is bounded and it is enough to prove the chain condition for Mc0.Hi/ WD

Mc.Hi/\Out0.U /.

Let V be the set of vertices of � . As recalled in Section 2.3, there are maps
�vW Out0.U /! Out.Gv/ and a product map �W Out0.U /!

Q
v2V Out.Gv/. Since

U is relative to Hi , the group of twists T D ker � is contained in Mc0.Hi/.

Lemma 5.1 There exist subgroups Out1.Gv/�Out.Gv/, independent of i , such that

(1)
Q
v2V Out1.Gv/ is contained in �.Mc0.Hi// for every i ;

(2) the index of Out1.Gv/ in �v.Mc0.Hi// is uniformly bounded.

This lemma implies Theorem 1.5 because Mc0.Hi/ contains ��1.
Q
v2V Out1.Gv//

with bounded index.

Proof of Lemma 5.1 Let Hi;v WD .Hi/kGv
be the set of (conjugacy classes of) sub-

groups of Gv which are conjugate to an element of Hi and which fix no other point
in T (see Section 2.1). Since two such subgroups are conjugate in Gv if and only if
they are conjugate in G, we may view Hi;v as a subset of Hi .

Since, as explained in Section 2.3, �.Mc0.Hi// contains
Q
v2V Mc.Incv [Hi;v/, it

suffices to fix v 2V and to construct Out1.Gv/ with Out1.Gv/�Mc.Incv[Hi;v/ and
the index of Out1.Gv/ in �v.Mc0.Hi// uniformly bounded. We distinguish several
cases:

� First suppose that Gv ' Zk is abelian, so Out.Gv/D Aut.Gv/D GL.k;Z/. Let
Ai be the root-closure of the subgroup of Gv generated by incident edge groups and
subgroups in Hi;v . It is a direct factor and increases with i , so we may assume that
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it is independent of i . We define Out1.Gv/ � Out.Gv/ as the subgroup consisting
of automorphisms equal to the identity on Ai . It is equal to Mc.Incv [Hi;v/ and
contained in �v.Mc0.Hi//. We must show that the index is bounded.

The group Ai is invariant under �.Mc0.Hi// and we have to bound the order of the
image of Mc0.Hi/ in Out.Ai/. Any incident edge group Ge of Gv contains an edge
stabilizer Ge of Ti with finite index, and the image of the map �eW Mc0.Hi/!Out.Ge/

is finite by Lemma 2.3. Since Ai is generated by incident edge groups and elements
which are fixed by Mc0.Hi/, this implies that the image of Mc0.Hi/ in Out.Ai/ is
finite. Its cardinality is uniformly bounded because there is a bound for the order of
finite subgroups of GL.k;Z/, so the index of Out1.Gv/ in �v.Mc0.Hi// is bounded.

� We now consider a non-abelian vertex stabilizer Gv . It follows from the way Ui

was constructed that Gv is, for each i , the fundamental group of a graph of groups ƒi;v .
This graph is a tree. It has a central vertex vi , which may be viewed as a vertex of
Ti=G with Gvi

non-abelian. All edges e join vi to a vertex ue carrying a root-closed
abelian group, and the index of Ge in Gue

is finite. The graph of groups ƒi;v is
invariant under the action of Mc0.Hi/ on Gv .

We say that Gv (or v ) is rigid with sockets or QH with sockets, depending on the type
of vi as a vertex of Ti (since the number of vertices of Ti=G is bounded, we may
assume that this type is independent of i ).

� If Gv is rigid with sockets, we define Out1.Gv/ as the trivial group and we have to
explain why �v.Mc0.Hi// is a finite group of bounded order. Assume first that U DTi

(ie U is also a regular JSJ tree). Lemma 2.3 then implies that �v.Mc0.Hi// is a finite
subgroup of Gv , but we need to bound its order only in terms of G (independently
of the sequence Hi ). To get this uniform bound, we note that there are only finitely
many possibilities for Gv up to isomorphism by [24]. Moreover, Out.Gv/ is virtually
torsion-free by [25, Corollary 4.5], so there is a bound for the order of its finite
subgroups.

In general (ie without assuming U D Ti ), we study �v.Mc0.Hi// through its action
on the graph of groups ƒi;v as in Section 2.3 (note that edges are not permuted). The
group of twists is trivial because edge groups are maximal abelian in Gvi

and terminal
vertex groups are abelian (see [27, Proposition 3.1]), so we only have to control the
action of Mc0.Hi/ on vertex groups of ƒi;v .

Applying Lemma 2.3 to the JSJ decomposition Ti , we get finiteness of the image of
Mc0.Hi/ in Out.Gvi

/ and in Out.Ge/ for every edge e of Ti , and hence of ƒi;v . The
action of an automorphism on the edge groups of ƒi;v determines the action on the
abelian vertex groups because they contain the incident edge group with finite index.
This proves that �v.Mc0.Hi// is finite, and boundedness follows as above.
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� There remains the case when Gv is QH with sockets. The group Gvi
is then

isomorphic to the fundamental group of a compact surface †i and incident edge groups
are boundary subgroups. The topology of †i may vary with i , but the number of
boundary components of †i is bounded (by a simple accessibility argument, or because
the rank of Gvi

as a free group is bounded, by [24]).

If J is a subgroup of G, denote by Ui.J / the set of elements of J that are HCab
i –

universally elliptic (ie elliptic in every G–tree with abelian edge stabilizers which
is relative to Hi and to non-cyclic abelian subgroups). We view it as a union of
J–conjugacy classes. Since Hi �HiC1 , we have Ui.J /� UiC1.J /. We shall show
that the sequence Ui.Gv/ stabilizes.

We first study Ui.Gvi
/: we claim that Ui.Gvi

/ is the union of the conjugacy classes of
boundary subgroups of Gvi

D �1.†i/. Indeed, any boundary subgroup is an incident
edge group of vi (up to conjugacy) or has a finite-index subgroup conjugate to a
group in Hi (otherwise, G would be freely decomposable relative to Hi ; see [21,
Proposition 7.5]). It follows that Ui.Gvi

/ contains all boundary subgroups (incident
edge groups are HCab

i –universally elliptic because Ti is a JSJ tree relative to HCab
i ).

Conversely, by [21, Proposition 7.6], any g 2 Ui.Gvi
/ is contained in a boundary

subgroup of �1.†i/. This proves our claim and shows, in particular, that Ui.Gvi
/ is

the union of a bounded number of conjugacy classes of maximal cyclic subgroups
Lj .i/ of Gvi

.

We now consider Ui.Gv/. The HCab
i –universally elliptic elements of Gv are contained

(up to conjugacy) in Gvi
or in one of the terminal vertex groups of ƒi;v , so Ui.Gv/ is

the union of the conjugates of the root-closures (in Gv ) of the groups Lj .i/. Since
Hi �HiC1 , we have Ui.Gv/� UiC1.Gv/. As Ui.Gv/ is the union of the conjugates
of a bounded number of cyclic subgroups, we may assume that Ui.Gv/D U.Gv/ does
not depend on i .

Elements of �v.Mc0.Hi// send each cyclic group in U.Gv/ to a conjugate (conjugacy
classes are not permuted because the action on Ti=G is trivial). They act trivially on
groups in Hi;v , but they may map an element g belonging to a terminal vertex group
of ƒv;i to g�1 (geometrically, they correspond to homeomorphisms of †i which may
reverse orientation on boundary components).

We define Out1.Gv/�Out.Gv/ as the group of automorphisms acting trivially on each
cyclic group in U.Gv/ (geometrically, we restrict to homeomorphisms of †i equal
to the identity on the boundary). It is contained in Mc.Incv [Hi;v/, because Ui.Gv/

contains the incident edge groups of Gv in U, hence contained in �v.Mc0.Hi//, and
the index is bounded in terms of the number of conjugacy classes of cyclic subgroups
in U.Gv/.
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Remark 5.2 Groups of the form Out.GIH/, with H a finite family of abelian
groups, do not satisfy the descending chain condition: consider G D Z2 D hx;yi

and Hi D fhx;y
2i

ig.

6 Proof of the other results

We first note the following consequence of the chain condition:

Proposition 6.1 If C is an infinite family of conjugacy classes, there exists a finite
subfamily C0 � C such that Mc.C/DMc.C0/.

Recall that Mc.C/ is the group of outer automorphisms fixing all conjugacy classes
belonging to C .

Proof Write C as an increasing union of finite families Ci and note that Mc.C/ is the
intersection of the descending chain Mc.Ci/.

To prove Corollary 1.6, saying in particular that every McCool group is an elementary
McCool group, we need the following fact:

Lemma 6.2 Let G be a toral relatively hyperbolic group. Let H be a subgroup
and ˛ 2Aut.G/. If ˛.h/ and h are conjugate in G for every h 2H, then ˛ acts on H

as conjugation by some g 2G.

Proof We may assume that there is a non-trivial h 2H such that ˛.h/D h. If H is
abelian, malnormality of maximal abelian subgroups implies that ˛ is the identity on H.
If not, the result follows from [31, Lemma 5.2] (which is valid for any homomorphism
'W H !G, not just automorphisms of H ); see also [2, Corollary 7.4].

Corollary 1.6 Let G be a toral relatively hyperbolic group. If H is any family of
subgroups of G, there exists a finite set of conjugacy classes such that Mc.H/DMc.C/.

Recall that Mc.H/ is also denoted by Out.GIH.t//. We favor the notation Mc.H/ in
this subsection.

Proof Given an arbitrary family H , let CH be the set of all conjugacy classes having
a representative belonging to some Hi . By Lemma 6.2, Mc.H/DMc.CH/. We apply
Proposition 6.1 to get Mc.H/DMc.C/ with C finite.

Together with Theorem 3.11, this implies our most general finiteness result.

Algebraic & Geometric Topology, Volume 15 (2015)



McCool groups of toral relatively hyperbolic groups 3523

Corollary 6.3 Let G be a toral relatively hyperbolic group. Let H be an arbitrary
collection of subgroups of G. Let K be a finite collection of abelian subgroups of G.
Let T be a simplicial tree on which G acts with abelian edge stabilizers, with each
group in H[K fixing a point.

Then the group Out.T;H.t/;K/DOut.T /\Out.GIH.t/;K/ of automorphisms leaving
T invariant, acting trivially on each group of H and sending each K 2K to a conjugate
(in an arbitrary way) is of type VF.

Proof By Corollary 1.6, we may write Out.GIH.t//DMc.C/ for some finite family
of conjugacy classes Œci �, with each ci belonging to a group of H and hence elliptic
in T . Defining LD fhciig, we see that Mc.C/ is a finite-index subgroup of Out.GIL/,
so Out.T;H.t/;K/ is a finite-index subgroup of Out.T;K[L/. By Theorem 3.11, this
group has type VF and therefore so does Out.T;H.t/;K/.

Proposition 1.7 and Theorem 1.8 will be proved at the end of the section.

Proposition 1.10 Given a toral relatively hyperbolic group G, there exists a number
C such that, if a subgroup �M � Out.G/ contains a group Mc.H/ with finite index,
then the index Œ �M WMc.H/� is bounded by C .

Proof By Corollary 1.6, we may write Mc.H/DMc.C0/ for some finite set C0. Let C
be the orbit of C0 under �M. Since Mc.C0/ fixes C0, this is a finite �M–invariant collection
of conjugacy classes. We thus have

Mc.C/�Mc.C0/� �M � �Mc.C/

and it suffices to bound the index Œ �Mc.C/ WMc.C/�.

As in the beginning of Section 5, let GDG1�� � ��Gn�Fr be a Grushko decomposition
of G relative to C and let GDfG1; : : : ;Gng. The group �Mc.C/ permutes the conjugacy
classes of the groups in G . Since the cardinality of G is bounded and G has finitely
many free factors up to isomorphism, we may assume that G is one-ended relative
to C .

We now consider the JSJ decomposition Tcan over abelian groups relative to C and
non-cyclic abelian groups. It is invariant under �Mc.C/, so we may study �Mc.C/ through
its action on Tcan (see Section 2.3).

The number of edges of �can D Tcan=G being bounded by the first case of Proposition
4.5, we may replace �Mc.C/ and Mc.C/ by their subgroups �Mc0.C/ and Mc0.C/ acting
trivially on �. The group of twists T is contained in Mc0.C/, so as in the proof of
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Lemma 5.1 it suffices to construct Out1.Gv/�McGv
.Incv [ CkGv

/ with the index of
Out1.Gv/ in �v. �Mc0.C// uniformly bounded. We distinguish the same cases as in the
proof of Lemma 5.1.

If Gv is abelian, isomorphic to Zk with k � 2, let H < Gv be the set of elements
whose orbit under �v. �Mc0.C// is finite. This is a subgroup of Gv , isomorphic
to some Zp , which is invariant under �v. �Mc0.C// and contains the incident edge
groups by Lemma 2.3. We define Out1.Gv/ D McGv

.fH g/. It is contained in
McGv

.Incv [ CkGv
/. The image of �v. �Mc0.C// in Aut.H / D GL.p;Z/ is finite,

and its order bounds the index of Out1.Gv/ in �v. �Mc0.C//. This concludes the proof
in this case, since there is a bound for the order of finite subgroups of GL.p;Z/.

If Gv is rigid, we let Out1.Gv/ be trivial. The image of �Mc0.C/ in Out.Gv/ is finite
by Lemma 2.3, and bounded by [24] as in the proof of Lemma 5.1.

If Gv D �1.†/ is QH, we define Out1.Gv/ D PMC.†/ D McGv
.Incv [ CkGv

/.
Elements of �v. �Mc0.C// may reverse orientation, or permute boundary components
of †.

Corollary 6.4 Extended elementary McCool groups �Mc.C/ of G satisfy a uniform
chain condition.

Proof Given a descending chain �Mc.Ci/, define C0i D C0[ � � � [ Ci and note that

Mc.C0i/D
\
j�i

Mc.Cj /� �Mc.Ci/D
\
j�i

�Mc.Cj /� �Mc.C0i/:

The corollary follows from Theorem 1.5, since by Proposition 1.10 the index of Mc.C0i/
in �Mc.C0i/ is bounded.

We now prove Corollary 1.11, stating that, for any A< Out.G/, there is a subgroup
A0 <A of bounded finite index such that, for the action of A0 on the set of conjugacy
classes of G, every orbit is a singleton or is infinite.

Proof of Corollary 1.11 Let CA be the (possibly infinite) set of conjugacy classes
of G whose A–orbit is finite. Partition CA into A–orbits and let Cp be the union of the
first p orbits. The image of A in the group of permutations of Cp is contained in that
of �Mc.Cp/, so by Proposition 1.10 its order is bounded by some fixed C . This C also
bounds the order of the image of A in the group of permutations of CA .

Algebraic & Geometric Topology, Volume 15 (2015)



McCool groups of toral relatively hyperbolic groups 3525

Recall that Ac.H;H0/� Aut.G/ is the group of automorphisms acting trivially on H
(in the sense of Definition 1.2, ie by conjugation) and fixing the elements of H0 .
Proposition 1.13 states that, if G is non-abelian, then Ac.H;H0/ is an extension

1 �!K �! Ac.H;H0/ �!Mc.H0/ �! 1

with Mc.H0/� Out.G/ a McCool group and K the centralizer of H0 . Corollary 1.14
states that the groups Ac.H;H0/ are of type VF and satisfy a uniform chain condition.

Proof of Proposition 1.13 Let H0DH[fH0g. Map Ac.H;H0/�Aut.G/ to Out.G/.
The image is Mc.H0/. The kernel K is the set of inner automorphisms equal to the
identity on H0 . Since G has trivial center, it is isomorphic to the centralizer of H0 .

Proof of Corollary 1.14 The group Mc.H0/ has type VF by Theorem 1.3. The group
K is abelian or equal to G, so has type F because G does [10]. Proposition 1.13 and
Corollary 3.2 imply that Ac.H;H0/ has type VF. Moreover, a chain of centralizers
has length at most 2 since the centralizer of H0 is trivial, G or a maximal abelian
subgroup. The uniform chain condition for McCool groups (Theorem 1.5) then implies
the uniform chain condition for groups of the form Ac.H;H0/.

We now deduce the bounded chain condition for fixed subgroups.

Proof of Theorem 1.8 Let J0   J1   � � �  Jp be a strictly ascending chain of fixed
subgroups. Let Ac.∅;Ji/ be the subgroup of Aut.G/ consisting of automorphisms
equal to the identity on Ji . Since Ji is a fixed subgroup, Ac.∅;Ji/© Ac.∅;JiC1/.
Corollary 1.14 then gives a bound on the length of the chain.

Remark One can adapt the arguments of Section 5 to prove Theorem 1.8 directly
(without passing through McCool groups).

We now prove Proposition 1.7, saying that Out.Fn/ contains infinitely many non-
isomorphic McCool groups for n � 4 and infinitely many non-conjugate McCool
groups for n� 3.

Proof of Proposition 1.7 Let H be the free group on three generators a, b , c .
Given a non-trivial element w 2 ha; bi, let Pw be the cyclic HNN extension Pw D

ha; b; c; t j tct�1 D wi. It is free of rank 3, with basis a, b , t . Let 'w be the
automorphism of Pw fixing a and b and mapping t to wt (it equals the identity on H

since it fixes cD t�1wt ). The image ˆw of 'w in Out.Pw/ preserves the Bass–Serre
tree T of the HNN extension (it belongs to its group of twists T ).

Algebraic & Geometric Topology, Volume 15 (2015)



3526 Vincent Guirardel and Gilbert Levitt

We apply this construction with w D akbk for k a positive integer. As k varies, the
cyclic subgroups hˆwi are pairwise non-conjugate in Out.Pw/' Out.F3/, as seen
by considering the action on the abelianization.

We shall now prove the second assertion of the proposition for n D 3, by showing
that hˆwi is a McCool group of Pw , namely hˆwi DMcPw

.fH g/� Out.F3/. The
extension to n> 3 is straightforward, by adding generators to H.

Consider splittings of Pw over abelian (ie cyclic) subgroups relative to H. The tree
T is a JSJ tree because its vertex stabilizers are universally elliptic [21, Lemma 4.7];
in particular, Pw is freely indecomposable relative to H. Moreover, T equals its tree
of cylinders (up to adding redundant vertices) because w is not a proper power, so
T is the canonical JSJ tree Tcan . The McCool group McPw

.fH g/ therefore leaves T

invariant and it is easily checked using [27] that McPw
.fH g/D T D hˆwi.

To prove the first assertion of the proposition, consider Rw D Pw � hdi ' F4 , the
family HDfH; hdig and the McCool group McRw

.H/�Out.F4/. The decomposition
Rw D Pw � hdi is a Grushko decomposition of Rw relative to H because Pw is
freely indecomposable relative to H. This decomposition is invariant under McRw

.H/
because it is a one-edge splitting (see [14, Corollary 1.3]).

The stabilizer Out.T / of the Bass–Serre tree T in Out.Rw/ is naturally isomorphic to

Aut.Pw/�Aut.hdi/' Aut.Pw/�Z=2Z

(see [27]); the natural map Out.T /! Out.Pw/ kills the factor Z=2Z and coincides
with the quotient map Aut.Pw/! Out.Pw/ on the other factor. The McCool group
McRw

.H/ is isomorphic to the preimage of McPw
.fH g/D hˆwi in Aut.Pw/, hence

to the mapping torus

Qw D ha; b; t;u j uaD au; ub D bu; utu�1
D akbk ti:

The abelianization of Qw is Z3 �Z=kZ, so the isomorphism type of Qw changes
when k varies. This proves the first assertion of the proposition for n D 4. The
extension to larger n is again straightforward.

Appendix: Groups with finitely many McCool groups

In this appendix we describe cases when Out.G/ only contains finitely many McCool
subgroups. In particular, we show that the values of n given in Proposition 1.7 are
optimal.
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Proposition A.1 If G is a torsion-free, one-ended hyperbolic group, then Out.G/
only contains finitely many McCool groups up to conjugacy.

Proposition A.2 Out.F2/ only contains finitely many McCool groups up to conju-
gacy.

Proposition A.3 Out.F3/ only contains finitely many McCool groups up to isomor-
phism.

The proof of Proposition A.1 requires the fact that Out.G/, and, more generally,
extended McCool groups �Mc.C/, only contain finitely many conjugacy classes of finite
subgroups. This will appear in [17].

Proof of Proposition A.1 We assume that Out.G/ contains infinitely many non-
conjugate elementary McCool groups Mc.Ci/ and we derive a contradiction (this
implies the proposition, by Corollary 1.6).

It is proved in [33, Corollary 4.9] that there are only finitely many minimal actions of
G on trees with cyclic edge stabilizers, up to the action of Out.G/, so we may assume
that the canonical cyclic JSJ tree relative to Ci (the tree Tcan of Section 2.2) is a given
tree T . This tree is invariant under all groups Mc.Ci/, so Mc.Ci/ � Out.T /. In this
proof, we cannot restrict to Out0.T /.

Given a vertex v of T , we define Ci;v as the restriction Ci jGv
if Gv is cyclic and as

CikGv
if Gv is not cyclic (recall from Section 2.1 that conjugacy classes represented by

elements fixing an edge of T do not belong to CikGv
). The tree being bipartite, Ci is

the disjoint union of the Ci;v .

We say that v is used if Ci;v is non-empty. Since there are finitely many G–orbits
of vertices, we may assume that usedness is independent of i ; we let Vu be a set of
representatives of orbits of used vertices. We may also assume that the type of vertices
with non-cyclic stabilizer (rigid or QH) is independent of i (QH vertices with † a pair
of pants are rigid; we do not consider them as QH).

We claim that QH vertices Gv of T are not used. Indeed, any boundary subgroup of
Gv is an incident edge stabilizer of T : otherwise, Gv would split as a free product
relative to Incv , contradicting one-endedness of G. Elements in Ci are universally
elliptic (relative to Ci ) and the only universally elliptic subgroups of Gv are contained
in boundary subgroups of Gv because Gv is flexible (see [21, Proposition 7.6]), so
CikGv

is empty.
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For v 2 Vu , define Outi.Gv/� Out.Gv/ as the set of automorphisms which fix each
conjugacy class in Ci;v and leave the set of incident edge stabilizers globally invariant.
Any automorphism in Mc.Ci/ is an automorphism of T which leaves Gv invariant
(up to conjugacy) and induces an automorphism belonging to Outi.Gv/. Conversely,
any automorphism of T satisfying these properties for every v 2 Vu lies in Mc.Ci/.
This means that Mc.Ci/ is completely determined by the knowledge of the groups
Outi.Gv/ for v 2 Vu .

We complete the proof by showing that there are only finitely many possibilities for
each Outi.Gv/. This is clear if Gv is cyclic, and QH vertices are not used, so there
remains to consider the case where Gv is rigid.

In this case, Outi.Gv/ is finite by Lemma 2.3 (otherwise Gv would have a cyclic
splitting relative to Incv and Ci;v , contradicting rigidity). Since Gv is hyperbolic,
Out.Gv/ has finitely many conjugacy classes of finite subgroups [17]. We deduce
that there are finitely many possibilities for Outi.Gv/, up to conjugacy in Out.Gv/.
Unfortunately, this is not enough to get finiteness for Mc.Ci/ up to conjugacy in Out.G/,
because the conjugator may fail to extend to an automorphism of G.

To remedy this, we consider Mc.Incv/ and �Mc.Incv/, with Incv the family of incident
edge groups as in Section 2.1 and �Mc.Incv/D �Out.GvI Incv/ the set of outer automor-
phisms of Gv preserving Incv (see Definition 2.1; edge groups may be permuted and
the generator of an edge group may be mapped to its inverse).

The group Outi.Gv/�Out.Gv/ is finite and contained in �Mc.Incv/ (but not necessarily
in Mc.Incv/). By [17], �Mc.Incv/ has only finitely many conjugacy classes of finite
subgroups. It follows that there are only finitely many possibilities for Outi.Gv/ up to
conjugation by an element of �Mc.Incv/, hence also up to conjugation by an element
of Mc.Incv/ since Mc.Incv/ has finite index in �Mc.Incv/.

We may therefore assume that Outi.Gv/ is independent of i if Gv is cyclic and v 2Vu ,
and that all groups Outi.Gv/ are conjugate by elements of Mc.Incv/ if v 2 Vu is rigid.
Any element of Mc.Incv/ extends “by the identity” to an automorphism of G which
leaves T invariant and acts trivially (as conjugation by an element of G ) on Gw if w is
not in the orbit of v . Since Mc.Ci/ is determined by the groups Outi.Gv/ for v 2 Vu ,
we conclude that all groups Mc.Ci/ are conjugate in Out.G/.

Proof of Proposition A.2 We view Out.F2/'GL.2;Z/ as the mapping class group
of a punctured torus † (with orientation-reversing maps allowed). Let c be a peripheral
conjugacy class (representing the commutator of basis elements of F2 ).

We consider a McCool group Mc.H/ � Out.F2/. We may assume that Mc.H/ is
infinite. By the classification of elements of GL.2;Z/ or by the Bestvina–Paulin
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method and Rips theory, F2 then splits over a cyclic group relative to H and c (see for
instance [25, Theorem 3.9]). Such a splitting is dual to a non-peripheral simple closed
curve  �†.

If there are two different splittings, they are dual to curves  and  0 whose union
fills †, so H only contains peripheral subgroups. It follows that Mc.H/ is either
Out.F2/' GL.2;Z/ or SL.2;Z/. If the splitting is unique, Mc.H/ fixes  (viewed
as an unoriented curve up to isotopy). Since the splitting dual to  is relative to H ,
the Dehn twist T around  is contained in Mc.H/. The stabilizer Stab. / of 
in the mapping class group contains hT i with finite index (the index is 4 because
a homeomorphism may reverse the orientation of † and/or of  ). We thus have
hT i �Mc.H/� Stab. /, with both indices finite. Finiteness of Mc.H/ up to conju-
gacy follows, since  is unique up to the action of the mapping class group.

The remainder of this appendix is devoted to the proof of Proposition A.3. We first
record a few useful facts.

Lemma A.4 Fix n. Up to isomorphism, Out.Fn/ only contains finitely many virtually
solvable subgroups.

Proof Virtually solvable subgroups are virtually abelian [1; 5]. More precisely,
they contain Zk with k � 2n� 3 as a subgroup of bounded index (see [5, Proof of
Theorem 1.1, page 94]). This implies finiteness, for instance by [32, Theorem 8.6].

Lemma A.5 Let A be virtually cyclic and B be virtually Fn for some n. Up to
isomorphism, there are only finitely many groups which are extensions of A by B .

Proof This follows from standard extension theory [8, Sections III.10 and IV.6], noting
that Out.A/ is finite and B has a finite-index subgroup with trivial H 2 .

Proof of Proposition A.3 Now consider a McCool group Mc.H/ � Out.F3/. The
first step is to reduce to the case where F3 is freely indecomposable relative to H . If
this does not hold, let � be a Grushko decomposition relative to H (see Section 2.2).
It is not unique; we choose one with as few edges as possible.

If all vertex groups are cyclic, groups in H are generated (up to conjugacy) by powers
of elements belonging to some fixed basis of F3 , and finiteness holds. Otherwise, there
is a vertex group Gv ' F2 . Our choice of � implies that � has a single edge (it is an
HNN extension, or an amalgam F2 �Z with a finite-index subgroup of Z belonging
to H). It follows that � is Mc.H/–invariant [14; 28] and Mc.H/ is determined by its
image in Out.F2/. This image is the McCool group Mc.HjF2

/, so finiteness follows
from Proposition A.2.

Algebraic & Geometric Topology, Volume 15 (2015)



3530 Vincent Guirardel and Gilbert Levitt

We continue the proof under the assumption that F3 is freely indecomposable relative
to H . Let �can be the canonical Mc.H/–invariant cyclic JSJ decomposition relative
to H (see Section 2.2). Vertex groups Gv are cyclic, rigid or QH.

One easily checks the formula
P
v.rk Gv � 1/D 2. In particular, rk Gv � 3 for all v

and, if some Gv is isomorphic to F3 , then all other vertex groups are cyclic.

If Gv ' �1.†/ is a QH vertex group, it is isomorphic to F2 or F3 , so there are 9

possibilities for the compact surface †:

(1) Pair of pants.

(2) Sphere with 4 boundary components.

(3) Projective plane with 2 boundary components.

(4) Projective plane with 3 boundary components.

(5) Torus with 1 boundary component.

(6) Torus with 2 boundary components.

(7) Klein bottle with 1 boundary component.

(8) Klein bottle with 2 boundary components.

(9) Non-orientable surface of genus 3 with 1 boundary component.

Each incident edge group Ge is (up to conjugacy) a boundary subgroup of �1.†/.
Conversely, there are two possibilities for a boundary subgroup C . If it is an incident
edge group, it equals Ge for a unique incident edge. If not, we say that the corresponding
boundary component of † is free; in this case, some finite-index subgroup of C belongs
to H .

As in Section 2.3, the finite-index subgroup Mc0.H/ of Mc.H/ acting trivially on
�can maps to

Q
v Out.Gv/ with kernel the group of twists T . The image in Out.Gv/ is

finite if Gv is cyclic or rigid, and virtually the mapping class group of † if Gv is QH,
and T is isomorphic to some Zk (see [25, Section 4.3]).

By mapping class group, we mean the group of isotopy classes of homeomorphisms of
a compact surface † mapping each boundary component to itself in an orientation-
preserving way. We denote it by PMC.†/ as in Section 2.2.

By Lemma A.4, we may assume that there is a QH vertex v with PMC.†/ non-
solvable. As explained above, there are 9 possibilities for †. Cases 1, 3 and 7 are
ruled out because PMC.†/ is virtually cyclic (see [34], or argue as in the proof of
Proposition A.2, noting that a finite-index subgroup of PMC.†/ fixes a conjugacy
class of F2 which is not a power of the commutator).
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If �can is trivial (ie if the QH subgroup Gv is the whole group), Mc.H/ is the mapping
class group of †. We therefore assume that �can is non-trivial.

Lemma A.6 If Gv has rank 3, then † has a free boundary component.

Proof This follows from [4, Lemma 4.1], a generalization of the standard fact that
a cyclic amalgam A �hci B of free groups is free only if c belongs to a basis in A

or B .

This lemma rules out case 9.

Now suppose that all vertices of �can other than v are terminal vertices carrying Z (by
Lemma A.6, this holds in cases 6 and 8). In this case the group of twists T is trivial
(see [27, Proposition 3.1]). The group Mc.H/ contains PMC.†/ with finite index
and there are finitely many possibilities: they depend on whether edges of �can may be
permuted and whether elements in edge groups may be mapped to their inverse.

We must now deal with cases 2, 4 and 5. We start with 4. The only possibility left
is that �can has two vertices v and w joined by 2 edges, with Gw cyclic. Every
automorphism leaving �can invariant maps Gv to itself (up to conjugacy), and we
consider the natural map from Mc.H/ to Out.Gv/. As above, the image contains
PMC.†/ with finite index and there are finitely many possibilities. The kernel is the
group of twists T , which is isomorphic to Z. Since PMC.†/ is isomorphic to F3 by
[34, Theorem 7.5], we conclude by Lemma A.5.

The argument in case 2 is similar. Besides v and w , there may be another vertex w0,
with Gw0 cyclic and a single edge between v and w0. The group PMC.†/ is again
free; it is isomorphic to F2 (see for instance [13, Section 4.2.4]).

In case 5 (a once-punctured torus), there is a single edge incident to v . Collapsing all
other edges yields a Mc.H/–invariant decomposition as an amalgam F3DGv �haiGw
with Gw 'F2 . By the standard fact recalled above, a belongs to a basis of Gw (and is
equal to a commutator in Gv ). The group Mc.H/ acts trivially on the graph underlying
this amalgam and the map � (see Section 2.3) maps Mc.H/ to Out.Gv/�Out.Gw/,
with kernel the group of twists T , isomorphic to Z. The image in Out.Gv/ is isomorphic
to GL.2;Z/ or SL.2;Z/.

We now consider the image L of Mc.H/ in Out.Gw/. It preserves the conjugacy class
of hai. If L is finite (necessarily of order at most 6), then Mc.H/ maps onto GL.2;Z/
or SL.2;Z/ with virtually cyclic kernel K ; there are finitely many possibilities for K up
to isomorphism (it maps to L with cyclic kernel), and we conclude by Lemma A.5. As
explained in the proof of Proposition A.2, if L is infinite, it is virtually cyclic, contains
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a “Dehn twist” Ta and has index at most 4 in the stabilizer of the conjugacy class of
hai in Out.Gw/. Since Mc.H/ is determined by its image in Out.Gv/�Out.Gw/ and
this image contains SL.2;Z/� hTai, this leaves only finitely many possibilities.
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A generating set for the palindromic Torelli group

NEIL J FULLARTON

A palindrome in a free group Fn is a word on some fixed free basis of Fn that
reads the same backwards as forwards. The palindromic automorphism group …An

of the free group Fn consists of automorphisms that take each member of some
fixed free basis of Fn to a palindrome; the group …An has close connections with
hyperelliptic mapping class groups, braid groups, congruence subgroups of GL.n;Z/ ,
and symmetric automorphisms of free groups. We obtain a generating set for the
subgroup of …An consisting of those elements that act trivially on the abelianisation
of Fn , the palindromic Torelli group PIn . The group PIn is a free group analogue
of the hyperelliptic Torelli subgroup of the mapping class group of an oriented surface.
We obtain our generating set by constructing a simplicial complex on which PIn

acts in a nice manner, adapting a proof of Day and Putman. The generating set leads
to a finite presentation of the principal level 2 congruence subgroup of GL.n;Z/ .

20F65, 57M07, 57MXX

1 Introduction

Let Fn be the free group of rank n on some fixed free basis X . The palindromic
automorphism group of Fn , denoted …An , consists of automorphisms of Fn that take
each member of X to some palindrome, that is, a word on X that reads the same
backwards as forwards. Collins [8] introduced the group …An and proved that it is
finitely presented, giving an explicit presentation. Glover and Jensen [15] obtained
further results about …An , utilising a contractible subspace of the auter space of Fn

on which …An acts cocompactly, with finite stabilisers. For instance, they calculate
that the virtual cohomological dimension of …An is n� 1. The group …An is a free
group analogue of the hyperelliptic mapping class group of an oriented surface; we
develop this analogy later in this introduction.

In this paper, we are primarily concerned with the intersection of …An with the Torelli
subgroup of Fn , that is, the subgroup of automorphisms of …An that act trivially on
the abelianisation of Fn . We denote this intersection by PIn , and refer to it as the
palindromic Torelli group of Fn . Little appears to be known about the group PIn :
Collins [8] first observed that it is non-trivial, and Jensen, McCammond and Meier
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3536 Neil J Fullarton

[17, Corollary 6.3] showed that PIn is not of finite homological type for n � 3.
In Section 2, we introduce non-trivial members of PIn (n � 3) known as doubled
commutator transvections and separating �–twists. The main theorem of this paper
establishes that these generate PIn .

Theorem A The group PIn (n�3) is generated by doubled commutator transvections
and separating �–twists.

In order to prove Theorem A, we establish finite generating sets for the subgroups of
…An consisting of automorphisms that fix each member of some specified subset of
the free basis X . These generating sets, which are given precisely in the statement of
Proposition 2.2, are obtained by utilising Stallings’ graph folding algorithm.

Let �nŒ2� denote the principal level 2 congruence subgroup of GL.n;Z/, that is, the
kernel of the surjection GL.n;Z/!GL.n;Z=2/ that reduces matrix entries mod 2. In
Section 2, we discuss a short exact sequence with kernel the palindromic Torelli group
and quotient �nŒ2�. For 1 � i ¤ j � n, let Sij 2 �nŒ2� be the matrix that has 1s on
the diagonal and 2 in the .i; j / position, with 0s elsewhere, and let Oi 2 �nŒ2� differ
from the identity only in having �1 in the .i; i/ position. The following corollary of
Theorem A provides a finite presentation of �nŒ2� for n� 4.

Corollary 1.1 The principal level 2 congruence group �nŒ2� (n� 4) is generated by

fSij ;Oi j 1� i ¤ j � ng;

subject to the defining relators

(1) Oi
2 ,

(2) ŒOi ;Oj �,

(3) .OiSij /
2 ,

(4) .Oj Sij /
2 ,

(5) ŒOi ;Sjk �,

(6) ŒSki ;Skj �,

(7) ŒSij ;Skl �,

(8) ŒSji ;Ski �,

(9) ŒSkj ;Sji �Ski
�2 ,

(10) .Sij Sik
�1SkiSjiSjkSkj

�1/2 ,

where 1� i; j ; k; l � n are pairwise different.

We note that in the proof of Theorem A it becomes apparent that not every relator
of type 10 is needed. In fact, for each choice of three indices i , j and k , we need
only select one such word (and disregard the others, for which the indices have been
permuted).

We also derive the following similar presentation for �nŒ2� when nD 2 or 3; however,
these are acquired independently of Theorem A. Indeed, the presentation of �3Œ2� is
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used to obtain a generating set for PI3 , which forms the base case of an inductive
proof of Theorem A.

Proposition 1.2 The principal level 2 congruence group �nŒ2� .nD2;3/ is generated by

fSij ;Oi j 1� i ¤ j � ng;

subject to the defining relators in the statement of Corollary 1.1 of types

� (1)–(4) for nD 2,

� (1)–(6), (8)–(10) for nD 3.

A key tool in the proof of Proposition 1.2 is an “even” version of the division algorithm
for the integers. This is the observation that under certain circumstances, the quotient
q 2 Z given when dividing a 2 Z by b 2 Z may be chosen to be even, if we sacrifice
control of the sign of the remainder r 2 Z. More details of this procedure are given in
the proofs of Lemma 2.4 and Theorem 5.1.

A similar presentation for �nŒ2� was recently found independently by Kobayashi [18],
and was also known to Margalit and Putman. As Margalit and Putman pointed out, this
is a natural presentation for �nŒ2�, as relators of types (6)–(9) bear a strong resemblance
to the Steinberg relations that hold between the transvections generating SL.n;Z/; see
Milnor [22, Section 5].

A comparison with mapping class groups While …An is defined entirely alge-
braically, it may viewed as a free group analogue of a subgroup of the mapping class
group of an oriented surface. Let Sg and S1

g denote the compact, connected, oriented
surfaces of genus g with 0 and 1 boundary components, respectively. We shall use S

to denote such a surface, with or without boundary. Recall that the mapping class
group of the surface S , denoted Mod.S/, consists of isotopy classes of orientation-
preserving self-homeomorphisms of S , where isotopies are required to fix any boundary
component pointwise at all times. For a self-homeomorphism f of S , we denote its
isotopy class by Œf �.

A hyperelliptic involution of the surface S is an order-2 homeomorphism of the surface
that acts as �I on H1.S;Z/; see Brendle and Margalit [4, Sections 2 & 4]. Let s

denote the homeomorphism of S1
g seen in Figure 1. By capping the boundary with a

disk, the map s induces a homeomorphism of Sg , which we also denote s , by an abuse
of notation. The map s is an example of a hyperelliptic involution of S1

g (and Sg ).
We note that the mapping class of any hyperelliptic involution in Mod.Sg/ (g � 1) is
conjugate to Œs�; see Farb and Margalit [12, Proposition 7.15].
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: : :x1

x2

x2g�1

x2g

s

A

Figure 1: The involution s rotates the surface by � radians. Under the
Nielsen embedding, we may view the braid group B2g � SMod.S1

g / as a
subgroup of …A2g � Aut.F2g/ .

: : :

c1 c2 c2g

Figure 2: The standard symmetric chain in S1
g . The Dehn twists about

c1; : : : ; c2g generate SMod.S1
g /Š B2gC1 .

The hyperelliptic mapping class group of the surface Sg , denoted SMod.Sg/, is the
centraliser of Œs� in Mod.Sg/. Although Œs� 62Mod.S1

g/, as s does not fix the boundary
of S1

g , we define the hyperelliptic mapping class group of S1
g , denoted SMod.S1

g/, to
be the group of isotopy classes of the centraliser of s in HomeoC.S1

g/ [12, Chapter 9].

An obvious analogue of a hyperelliptic involution in Aut.Fn/ is an order-2 member
of Aut.Fn/ that acts as �I on H1.Fn;Z/D Zn . An example of such an involution
in Aut.Fn/ is the automorphism � that inverts each member of the free basis X . An
analogy between s and � is strengthened by two observations. Firstly, Glover and
Jensen [15, Proposition 2.4] showed that any hyperelliptic involution in Aut.Fn/ is
conjugate to �. Secondly, the action of s on �1.S

1
g/D F2g , with free basis as seen in

Figure 1, is to invert each member of the free basis, as � does. It is easily verified that
…An is the centraliser of � in Aut.Fn/ [15, Section 2], so we may think of …An as
being a free group analogue of the hyperelliptic mapping class groups SMod.Sg/ and
SMod.S1

g/.

The comparison between …An and SMod.S1
g/ is made more precise using the classical

Nielsen embedding Mod.S1
g/ ,! Aut.F2g/. Take the 2g oriented loops seen in

Figure 1 as a free basis for �1.S
1
g/. Observe that s acts on these loops by switching
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x1

x2

x3

C

Figure 3: The Dehn twist about the symmetric, separating curve C maps to a
separating �–twist in PI2g under the Nielsen embedding. Note that we only
depict a genus-one subsurface of S1

g , and that x2 has a different orientation
than in Figure 1.

their orientations. In order to use Nielsen’s embedding into Aut.F2g/, we must take
these loops to be based on the boundary; we surger using the arc A to achieve this.
The group SMod.S1

g/ is isomorphic to the braid group B2gC1 by the Birman–Hilden
theorem [3], and is generated by Dehn twists about the curves in the standard, symmetric
chain on S1

g , seen in Figure 2. The Dehn twists about the 2g� 1 curves c2; : : : ; c2g

generate the braid group B2g . Taking the loops seen in Figure 1 as our free basis X , a
straightforward calculation shows that the images of these 2g� 1 twists in Aut.F2g/

lie in …A2g . Specifically, the twist about ciC1 is taken to the automorphism Qi of
the form

xi 7! xiC1; xiC1 7! xiC1xi
�1xiC1; xj 7! xj

for 1 � i < 2g and j ¤ i; i C 1. This shows that …An contains the braid group Bn

as a subgroup, when n is even. This embedding of Bn is a restriction of one studied
by Perron and Vannier [24] and Crisp and Paris [9]. When n is odd, we also have
Bn ,!…An , since discarding Q1 gives a generating set for B2g�1 inside …A2g�1 �

Aut.F2g/.

Palindromic and hyperelliptic Torelli groups The main focus of our study in this
paper is the palindromic Torelli group PIn . This group arises as a natural analogue of
a subgroup of SMod.S1

g/. The Torelli subgroup of Mod.S1
g/, denoted I1

g , consists
of mapping classes that act trivially on H1.S

1
g ;Z/. There is non-trivial intersection

between I1
g and SMod.S1

g/; we define SI1
g WD SMod.S1

g/\I1
g to be the hyperelliptic

Torelli group. Brendle, Margalit and Putman [5] recently proved a conjecture of
Hain [16], also stated by Morifuji [23], showing that SI1

g is generated by Dehn twists
about separating simple closed curves of genus one and two that are fixed by s .
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Our generating set for PIn compares favourably with Brendle, Margalit and Putman’s
for SI1

g , in the following way. We shall see in Section 2 that any Dehn twist about
a symmetric separating curve of genus one that lies in the pre-image of the Nielsen
embedding discussed above, maps to a separating �–twist in PI2g . In fact, up to
conjugation by …A2g , this is the definition of a separating �–twist. The Dehn twist
about the curve C shown in Figure 3 is an example of such a mapping class. Note that
the Dehn twist about C is one of the generators of Brendle, Margalit and Putman. We
shall see in Proposition 3.7 that doubled commutator transvections do not suffice to
generate PIn , so we observe that our generating set involves Brendle, Margalit and
Putman’s generators in a significant way. Thus, the similarity between SI1

g and PIn

is not just a superficial comparison of definitions: the Nielsen embedding gives rise to
a deeper connection between these two groups.

One way in which the analogy between PIn and SI1
g breaks down, however, is their

behaviour when …An and SMod.S1
g/ are abelianised, to .Z=2/3 and Z, respectively.

An immediate corollary of Theorem A is that PIn vanishes in the abelianisation
of …An . In contrast, the image of SI1

g in the abelianisation of SMod.S1
g/ is 4Z,

which may be shown by calculating the images of Brendle, Margalit and Putman’s
generators in the abelianisation of SMod.S1

g/.

Palindromes in right-angled Artin groups In forthcoming work with Anne Thomas
[14], we extend Collins’ definition of palindromic automorphisms to the right-angled
Artin group setting. We obtain generating sets for the analogously defined palin-
dromic automorphism group and palindromic Torelli group of an arbitrary right-angled
Artin group.

Approach of the paper To prove Theorem A, we employ a standard, geometric
technique: we find a sufficiently connected complex on which PIn acts with sufficiently
connected quotient, and use a theorem of Armstrong [1] to conclude that PIn is
generated by the action’s vertex stabilisers. This approach is modelled on a proof of
Day and Putman [11], which recovers Magnus’ finite generating set for the Torelli
subgroup of Aut.Fn/.

Conventions We apply functions from right to left. For g; h 2 G a group, we let
Œg; h�D ghg�1h�1 . In a graph, we denote an edge between vertices x and y by x�y .
In a group G , we will also conflate a relation P DQ with the relator PQ�1 when
this is unambiguous.

Outline of the paper In Section 2, the definitions of the palindromic automorphism
group and palindromic Torelli group of a free group are given, along with some
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elementary properties of these groups. In Section 3, we introduce the complex of partial
�–bases of Fn , and use it to obtain a generating set for PIn . In Section 4, we prove
key results about the connectivity of the complexes involved in the proof of Theorem A.
In Section 5, we obtain a finite presentation for �3Œ2� used in the base case of our
inductive proof of Theorem A.

Acknowledgements The results in this paper formed part of the author’s PhD the-
sis [13]. The author thanks his PhD supervisor Tara Brendle for her guidance, and
for introducing him to the palindromic Torelli group. The author is grateful for the
hospitality of the Institute for Mathematical Research at Eidgenössische Technische
Hochschule Zürich, where part of this work was completed. The author also thanks
Ruth Charney and Karen Vogtmann for helpful discussions, and Thomas Church, Dan
Margalit, Luis Paris, Andrew Putman, Richard Wade and Liam Watson for useful
comments on an earlier version of this paper. The author is grateful to the referee for
numerous constructive comments.

2 The palindromic automorphism group

Let Fn be the free group of rank n, on some fixed free basis X WD fx1; : : : ;xng.
For a word w D l1 � � � lk on X˙1 , let wrev denote the reverse of w ; that is, we have
wrev D lk � � � l1 . Such a word w is said to be a palindrome on X if wrev D w . For
example, x1 , x2

2 and x2x�1
1

x2 are all palindromes on X .

An automorphism ˛ 2Aut.Fn/ is said to be palindromic (with respect to the fixed free
basis X ) if for each xi 2 X the word ˛.xi/ may be written as a palindrome on X .
Such automorphisms form a subgroup of Aut.Fn/ which we call the palindromic
automorphism group of Fn and denote by …An . That …An is a group is easily shown
by verifying that …An is the centraliser in Aut.Fn/ of the automorphism � which
inverts each member of X . The following proposition gives us information about the
form of the palindromes ˛.xi/.

Proposition 2.1 Let ˛ 2…An and xi 2 X . Then ˛.xi/D w
rev�.xi/

�iw , where w
is a word on X˙1 , � is a permutation of X and �i 2 f˙1g.

Proof For a palindrome p D wrevx
�i

i w 2 Fn of odd length (w 2 Fn , xi 2 X ,
�i 2 f˙1g), let c.p/Dxi . The following argument is implicit in the work of Collins [8].

Let ˛ 2 …An . Since ˛.X / is a free basis, its image under the natural surjection
Fn ! .Z=2/n must suffice to generate .Z=2/n . If some ˛.xi/ is of even length,
it will have zero image, and so the image of ˛.X / could not generate .Z=2/n . If
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c.˛.xi//D c.˛.xj // for some i ¤ j , then ˛.xi/ and ˛.xj / will have the same image
in .Z=2/n , and so again ˛.X / could not generate ˛.Z=2/n .

Finite generation of …An Collins first studied the group …An , giving a finite pre-
sentation for it. For i ¤ j , let Pij 2…An map xi to xj xixj and fix xk with k ¤ i .
For each 1 � j � n, let �j 2…An map xj to x�1

j and fix xk with k ¤ j . We refer
to Pij as an elementary palindromic automorphism and to �j as an inversion. We let
�˙1.X / denote the group generated by the inversions and the permutations of X . The
group generated by all elementary palindromic automorphisms and inversions is called
the pure palindromic automorphism group of Fn , and is denoted P…An .

Collins showed that …An Š E…An Ì�˙1.X / for n� 2, where E…An D hPij i. The
group �˙1.X / acts on E…An in the natural way, and a defining set of relations for
E…An is given by

(1) ŒPik ;Pjk �D 1,

(2) ŒPij ;Pkl �D 1,

(3) Pij PjkPik D P�1
ik

PjkPij ,

where i; j ; k; l are pairwise different and the obviously undefined relators are omitted
in the nD 2 and nD 3 cases.

We remark that, as noted by Collins [8], this presentation of E…An is very similar to
one given for the pure symmetric automorphism group of Fn , P†An , which consists
of automorphisms taking each x 2 X to a conjugate of itself. This similarity is not
entirely surprising, as we may think of a palindrome yxy as a conjugate yxy�1 ,
working “mod 2” (x;y 2 X ). The embedding Bn ,! …An discussed in Section 1
bears a striking resemblance to Artin’s faithful representation of Bn into †An , the full
symmetric automorphism group, whose members take each x 2X to some conjugate [2,
Corollary 1.8.3]; this similarity arises via the branched double cover map S1

g!D2gC1

[12, Figure 9.13].

Using graph folding techniques of Stallings, we obtain a new proof of finite generation
of …An , as well as finding generating sets for certain fixed-point subgroups of …An .
We first introduce the notation and terminology of Wade [26] regarding graph folding.

Let Rn denote the wedge of n copies of S1 at a point o. We canonically identify
�1.Rn; o/ with Fn by selecting an orientation of each S1 , and labelling the i th copy
of S1 by xi 2X . We shall let xxi denote the edge obtained by reversing the orientation
of xi .
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s

t

t 0

t

fi f 0i

Figure 4: The two types of folding that may occur for our graph morphism � .
Wade [26] refers to the top fold as a type 1 fold, and to the bottom as a type 2
fold. The edges are labelled suggestively: we will demand that s; t 2 T and
fi 62 T .

Now, let Y be a finite graph of rank n with basepoint b . We will view our graphs as
combinatorial objects, rather than topological ones. In particular, morphisms between
graphs must take edges to edges, rather than edge-paths. A free basis for the (free)
fundamental group �1.Y; b/ is obtained in the usual way, by selecting a maximal
tree T in Y , then choosing an orientation of the edges f1; : : : ; fn in Y but not T . To
be consistent with Wade, we canonically orient an edge e of T by declaring its initial
vertex i.e/ to be the one closer to the basepoint b under the edge-path metric on T .

Suppose � W Y !Rn is a morphism of graphs that induces an isomorphism of funda-
mental groups. The morphism � , together with the choice of basepoint b , maximal
tree T and an ordering L of the (oriented) edges of Y n T form a branding of the
graph Y . A graph Y together with a 4-tuple G D .b;T;L; �/ form a branded graph
with branding G .

Each branded graph Y with branding G D .b;T;L; �/ yields an automorphism BG 2

Aut.Fn/, as follows. For each xi in the free basis X of Fn , we have

BG.xi/D ��.yi/;

where fy1; : : : ;yng is the free basis of �1.Y; b/ arising from the choices of b , T

and L in the branding G , and ��W �1.Y; b/! �1.Rn; o/ is the map induced by � .

If the morphism � maps a pair of edges e1 and e2 with i.e1/ D i.e2/ to the same
edge l of Rn , then � factors through the quotient graph Y 0 of Y obtained by folding
e1 and e2 together: that is, the graph obtained by identifying e1 with e2 , and also
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their terminal vertices, t.e1/ and t.e2/, with each other. In particular, if qW Y ! Y 0

is the quotient map obtained by the folding, then there is a unique graph morphism
� 0W Y 0!Rn such that � D � 0 ı q . While Stallings considered more general foldings,
since we require � to induce an isomorphism of fundamental groups, only two types
of folding may arise for us, which are shown in Figure 4.

If we insist that the edges s and t seen in Figure 4 lie in T , and that the edge fi does
not, carrying out either type of fold induces a branding G0 of the folded graph Y 0 (it
is non-trivial to verify that the image of T in Y 0 is a maximal tree; we leave this to
Wade). It may also be the case that we wish to carry out a fold of type 1 or type 2, but
that s or t does not lie in T . Before folding, we must change the maximal tree so that
the relevant edges lie in the new tree. This defines a new branding G00 of Y . In either
case, it may be shown via a careful consideration of �1.Y; b/ (see [26, Propositions 3.2
and 3.3]) that BG D BG0 �W 0 and BG D BG00 �W 00 , where W 0 and W 00 are specified
Whitehead automorphisms of Fn . These are automorphisms which fix some x 2X and
send each xi 2X n fxg to one of xi , xix

�i , x�i xi or x�i xix
��i for some �i 2 f˙1g.

Stallings’ folding algorithm allows us to repeatedly fold the graph Y and its quotients,
beginning with the morphism � W Y !Rn , then continuing to fold via � 0W Y 0!Rn ,
and so on. This procedure eventually terminates when we exhaust the edges we are
able to fold; in this case, Stallings showed that the quotient graph is Rn , and so
the morphism  W Rn! Rn obtained by repeatedly folding via � simply permutes
and perhaps inverts the n loops in Rn . This folding procedure allows us to write
the automorphism BG we began with as a product of Whitehead automorphisms and
permutations and inversions of X .

With the details of folding established, we now put the algorithm to use to find generators
for …An .

Proposition 2.2 Fix 0 � k � n, and let …An.k/ consist of automorphisms which
fix x1; : : : ;xk . (Our convention is that …An.0/D…An ). A finite generating set for
…An.k/ is �

�˙1.X /\…An.k/
�
[fPij j i > kg:

Proof The idea behind this proof was inspired by a proof of Wade [26, Theorem 4.1].

We begin by introducing some terminology. Let �W S ! T be an isomorphism of
finite trees. For a vertex or edge r of S , denote by r 0 the image of r under � . Choose
a distinguished vertex v of S , of valence 1. An arch of S at v (see Figure 5) is the
graph formed by gluing S to T along v and v0 , then, for each vertex r 2 S , adding
some number of edges (possibly zero) between r and r 0 (we allow r D v ). We refer
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v

Figure 5: An example of an arch, with base point v . The dashed edges
indicate the bridges that have been added to the trees that were glued together
at the base point.

to these new edges as bridges. The image of v in the arch forms a natural base point,
and any edge with v as one of its endpoints is called a stem. By a wedge of arches we
mean a collection of arches glued together at their base points. Note that each of the
trees Si and Ti of each arch sit inside Y as subgraphs, and Y is the union of these
subgraphs, together with any bridges inside each arch.

Let � W Y !Rn be a graph morphism, with Y a wedge of arches. We call � symmetric
if for each edge si in each tree Si in each arch of Y we have �.s0i/D �.xsi/. We shall
define two new types of folding that we may carry out to any symmetric morphism
� W Y !Rn , with the resulting morphism � 0W Y 0!Rn on the folded graph Y 0 also
being symmetric.

Let ˛ 2 …An.k/. We may realise ˛ as a morphism of graphs � W Z ! Rn , where
Z is the result of subdividing each S1 of Rn into the appropriate number of edges,
and “spelling out” the word ˛.xi/ on the i th copy of S1 . Precisely, the j th edge
of the oriented, subdivided S1 corresponding to ˛.xi/ is mapped to the loop in Rn

corresponding to the j th letter of ˛.xi/, correctly oriented. Note that Z is a wedge of
arches, and � is symmetric by construction. We thus have ˛ D BG , where G is the
branding of Z arising from the maximal tree that excludes the (appropriately ordered)
middle subdivided edge of each copy of S1 . We now use graph folding to write ˛ as
a product of permutations, inversions and elementary palindromic automorphisms.

Let � W Y ! Rn be symmetric, for some wedge of arches Y , built out of trees Si ,
Ti (1� i � k ). Since � is symmetric, foldings of Y come together in natural pairs.
Consider folds of type 1. For instance, if we are able to fold together two edges hi 2Si

and hj 2 Sj since �.hi/D �.hj / (allowing i D j ), then we will also be able to fold
together h0i and h0j , as they will also both have the same image under � , namely
�. xhi/D �. xhj /. We call this pair of folds a type A 2–fold.
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s s

fj

fk

fl fl

fk

fj

Figure 6: The two adjacent solid edges are folded onto fj . The dashed edges
represent edges excluded from the graph’s chosen maximal tree. In order to
record what effect this type B 2–fold has on the branded graph’s associated
automorphism, we must swap fj into the maximal tree, in place of the stem s .

We may also have a sequence of edges .hj�1; hj ; hjC1/ mapped under � to the
sequence .xx;x; xx/ where x is an oriented edge of Rn , hj�1 2 Si , hjC1 D h0

j�1
and

hj is a bridge. We fold hj�1 and hjC1 onto hj , and call this pair of folds a type B
2–fold. Such a fold is seen in Figure 6.

Doing either of these 2–folds to Y yields another, different wedge of arches, Y 0 , say.
A type B 2–fold simply removes an edge of valence one from Si (and its corresponding
edge in Ti ) by folding it onto a bridge, producing new trees S 0i and T 0i which we use
to construct Y 0 as a wedge of arches. A type A 2–fold similarly alters the trees Si ,
Sj , Ti and Tj , producing new trees S 0i and T 0i in a description of Y 0 as a wedge of
arches. The morphism � 0W Y 0!Rn induced by the folding of Y is again symmetric:
any edges si and s0i that were not folded still satisfy � 0.s0i/D �

0.xsi/ by construction
of � 0 , but so do the images of any folded edges, given how we decompose Y 0 as a
wedge of arches using the new trees S 0i and T 0i .

In order to see what effect these 2–folds have on ˛ 2…An , we must keep track of a
preferred maximal tree T we define on each wedge of arches Y . The edges of Y not
in T are the bridges coming from each arch. In order to carry out a type B 2–fold we
must swap the bridge fj (seen in Figure 6) into the maximal tree. Let pi.fj / denote
the unique reduced path in T joining the base point to the initial vertex of fj . Apart
from one degenerate case, which we deal with separately, we may always swap fj into
the maximal tree T by excluding the stem appearing in pi.fj / . Using calculations of
Wade [26, Propositions 3.2 and 3.3], it is straightforward to verify that the effect of
swapping maximal trees in this way, doing a type B 2–fold, then swapping back to the
maximal tree where all bridges are excluded is to carry out an elementary palindromic
automorphism P

�k

ij to some members of X . Precisely, let � W Y1!Rn be a symmetric
morphism of graphs, where Y1 has branding G1 and let G2 be the induced branding of
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the graph Y2 obtained by carrying out the above series of tree swaps and folds. Then

�G1
D �G2

�P;

where �Gi
is the automorphism of Fn associated to Gi (i D 1; 2) and P is a product

of elementary palindromic automorphisms.

The only degenerate case of the above is when one (and hence both) of the edges we
want to fold onto a bridge is a stem. In this case, we do one of two things. If the bridge
is a loop at the base point v , we carry out two type 2 folds. Otherwise, we change
maximal trees as before then fold one of the stems onto the bridge with a type 1 fold.
This causes the other stem to become a loop, around which we fold the bridge using a
type 2 fold. As before, the automorphism of Fn associated to these sequences of steps
is a product of elementary palindromic automorphisms.

Carrying out a sequence of 2–folds of types A and B eventually produces a map
Rn ! Rn , and so we complete the folding algorithm by applying the appropriate
automorphism from �˙1.X /. Since ˛ 2…An.k/, the graph Z we constructed has
a single loop at the base point for each xi (1 � i � k ), as ˛.xi/ D xi , so the first
k ordered loops of Rn were not subdivided to form Z . Thus, while folding such a
graph Y , we only need Collins’ generators that fix the first k members of the free
basis X . The proposition is thus proved.

Corollary 2.3 The group P…An.k/ of pure palindromic automorphisms that fix
x1; : : : ;xk .0� k � n/ is generated by the set fPij , �i j i > kg.

The principal level 2 congruence subgroup of GL.n;Z/ Recall that �nŒ2� denotes
the principal level 2 congruence subgroup of GL.n;Z/, that is, the kernel of the map
GL.n;Z/ ! GL.n;Z=2/ given by reducing matrix entries mod 2. Let Sij be the
matrix with 1s on the diagonal, 2 in the .i; j / position and 0s elsewhere, and let Oi

be the matrix which differs from the identity matrix only in having a �1 in the .i; i/
position. The following lemma verifies a well-known generating set for �nŒ2� (see,
for example, McCarthy and Pinkall [21, Corollary 2.3]). We include a proof here to
introduce the idea of an “even division algorithm”, which we utilise in the proof of
Theorem 5.1.

Lemma 2.4 The set fOi ;Sij j 1� i ¤ j � ng generates �nŒ2�.

Proof Observe that we may think of the matrices Sij as corresponding to carrying out
“even” row operations, that is, adding an even multiple of one matrix row to another.
Let u be the first column of some matrix in �nŒ2�, and denote by u.i/ the i th row of u.
Let v1 be the standard column vector with a 1 in the first entry and 0s elsewhere.
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Claim The column u can be reduced to ˙v1 using even row operations.

We use induction on ju.1/j. For ju.1/j D 1, the claim is obvious. Now suppose
ju.1/j> 1. As in the proof of Proposition 2.1, we deduce that there must be some u.j/

which is not a multiple of u.1/ . By the division algorithm, there exist q; r 2 Z such
that u.j/ D qju.1/j C r , with 0 � r < ju.1/j. If q is not even, we instead write
u.j/D .qC1/ju.1/jC .r �ju.1/j/. Note that if q is odd, then r ¤ 0, since u.1/ is odd
and u.j/ is even, and so �ju.1/j < r � ju.1/j. Depending on the parity of q , we do
the appropriate number of even row operations to replace u.j/ with r or r � ju.1/j.
In both cases, we have replaced u.j/ with an integer of absolute value smaller than
ju.1/j. It is clear that now we may reduce the absolute value of u.1/ by either adding
or subtracting twice the (new) j th row from the first row, and so by induction we have
proved the claim.

We now induct on n to prove the lemma. It is clear that �1Œ2�D hO1i. Using the above
claim, we may assume that we have reduced M 2 �nŒ2� to the form�

˙1 �

0 N

�
;

where N 2�n�1Œ2�. Our aim is to further reduce M to the identity matrix using the set
of matrices in the statement of the lemma. By induction, we may assume that N can
be reduced to the identity matrix using the appropriate members of fSij ;Oi j i; j > 1g.
Then we simply use even row operations to fix the top row, and finish by applying O1

if necessary.

By Lemma 2.4, the restriction of the canonical map Aut.Fn/! GL.n;Z/ gives the
short exact sequence

1 �! PIn �! P…An �! �nŒ2� �! 1;

since Pij maps to Sji and �i maps to Oi .

The rest of the paper is concerned with finding a generating set for the palindromic
Torelli group PIn . In order to describe our generating set, we introduce some termi-
nology.

Let Y be the image of the free basis X under some automorphism ˛ 2…An . The set
Y is also a free basis for Fn , whose members are palindromes on X ; thus, we refer to
Y as a �–basis. An automorphism � 2 PIn is a doubled commutator transvection
if, for some y1 , y2 , y3 in some �–basis Y , � maps y1 to Œy2;y3�

revy1Œy2;y3�,
and fixes the other members of Y . Observe that � 2 PIn is a doubled commutator
transvection if and only if � is conjugate in …An to the commutator �1 WD ŒP12;P13�.
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An automorphism � 2 PIn is a separating �–twist if, for some y1 , y2 , y3 in some
�–basis Y , � is given by

�.yi/D

8̂̂̂<̂
ˆ̂:

d revy1d if i D 1;

d�1y2.d
rev/�1 if i D 2;

d revy3d if i D 3;

yi otherwise;

where d D y1
�1y2

�1y3
�1y1y2y3 2Fn . It is a straightforward, if lengthy, calculation

to verify that � 2 PIn is a separating �–twist if and only if � is conjugate in …An to
the automorphism

�2 WD .P23P13
�1P31P32P12P21

�1/2 2 PIn:

The definition of a separating �–twist may seem unwieldy; however, it belies a hidden
geometry. The automorphism �2 is the image in PIn under the Nielsen embedding
of the Dehn twist about the curve C seen in Figure 3. We call such automorphisms
separating �–twists to reflect this geometric interpretation.

Theorem A states that doubled commutator transvections and separating �–twists
suffice to generate PIn . To prove this, we construct a new complex on which PIn

acts in a suitable way. We then apply a theorem of Armstrong [1] to conclude that PIn

is generated by the action’s vertex stabilisers. In the following section, we define the
complex and use it to prove Theorem A.

3 The complex of partial �–bases

Day and Putman [11] use the complex of partial bases of Fn , denoted Bn , to derive
a generating set for IAn . We build a complex modelled after Bn , and follow their
approach to find a generating set for PIn .

Fix X WD fx1; : : : ;xng as a free basis of Fn . A �–basis, as discussed above, is a
set of palindromes on X which also forms a free basis of Fn . A partial �–basis
is a set of palindromes on X which may be extended to a �–basis. The complex of
partial �–bases of Fn , denoted B�

n , is defined to be the simplicial complex whose
.k � 1/–simplices correspond to partial �–bases fw1; : : : ; wkg. We postpone until
Section 4 the proof of the following theorem on the connectedness of B�

n .

Theorem 3.1 For n� 3, the complex B�
n is simply connected.

Our complex B�
n is not a subcomplex of Bn , as the vertices of Bn are taken to be

conjugacy classes, rather than genuine members of Fn . We remove this technicality, as
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it can be shown that two odd-length palindromes are conjugate if and only if they are
equal. Given this, it is clear, however, that B�

n is isomorphic to a subcomplex of Bn .

There is an obvious simplicial action of …An on B�
n . This action is, by definition,

transitive on the set of k–simplices, for each 0 � k < n. Further, PIn acts without
rotations, that is, if � 2 PIn stabilises a simplex s of B�

n , then it fixes s pointwise.
Following work of Charney [7] on related complexes, we obtain that the quotient of B�

n

by PIn is highly connected.

Theorem 3.2 For n� 3, the quotient B�
n =PIn is .n� 3/–connected.

The proof of this theorem is discussed in Section 4.

Theorems 3.1 and 3.2 allow us to apply the following theorem of Armstrong [1] to the
action of PIn on B�

n , for n � 4. The statement of the theorem is as given by Day
and Putman [11].

Theorem 3.3 Let G act simplicially on a simply connected simplicial complex X ,
without rotations. Then G is generated by the vertex stabilisers of the action if and
only if X=G is simply connected.

We analyse the vertex stabilisers of PIn using an inductive argument. It is known that
PI1 D 1 and PI2 D 1; the latter equality follows from the fact that IA2 D Inn.F2/

and Inn.Fn/\…AnD 1 for n� 1. We treat the nD 3 case differently, as the quotient
B�

3
=PI3 is not simply connected, and so does not allow us to apply Armstrong’s

theorem directly. This treatment is postponed until Section 5.

A Birman exact sequence We require a version of the free group analogue of the
Birman exact sequence, as developed by Day and Putman [10]. Recall that P…An.k/

consists of the pure palindromic automorphisms fixing x1; : : : ;xk .

Proposition 3.4 For 0� k � n, there exists the split short exact sequence

1 �! Jn.k/ �! P…An.k/ �! P…An�k �! 1;

where Jn.k/ is the normal closure in P…An.k/ of the set fPij j i > k; j � kg.

Proof A map ��W P…An.k/ ! P…An�k is induced by the map � W Fn ! Fn�k

that trivialises each x1; : : : ;xk . Let fykC1; : : : ;yng be a free basis for Fn�k , where
�.xi/ D yi for k C 1 � i � n. Denote by Qij and �i the elementary palindromic
automorphism sending yi to yj yiyj and the inversion sending yi to yi

�1 , respectively
(kC 1� i ¤ j � n).
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By Corollary 2.3, we know that P…An.k/ is generated by the set

S WD fPij ; �i j i > k; 1� j � ng:

If j � k , then ��.Pij / is trivial. If i; j � kC1, then ��.Pij /DQij and ��.�i/D �i ,
so we have that �� is surjective, by examining Collins’ generators for P…An�k . Indeed,
the map �� has a section, taking Qij to Pij and �i to �i , which we know is well-
defined by Collins’ finite presentation for P…An�k . Thus, we obtain a split short exact
sequence via the epimorphism �� .

All that is left to establish is the kernel of �� . Notice that we have a presentation
for P…An�k in terms of the generating set ��.S/: explicitly, we add the relations
��.Pij /D 1 for j � k to Collins’ relations on the set fQij ; �ig. It is a standard fact
(see, for example, Magnus, Karrass and Solitar [20, proof of Theorem 2.1]) that the
kernel of �� is the normal closure in P…An.k/ of the obvious lifts of the defining
relators on ��.S/. The only defining relators with non-trivial lifts in P…An.k/ are
the relators ��.Pij / with j � k , thus the kernel is Jn.k/ as in the statement of the
proposition.

Our “Birman kernel” Jn.k/ is rather worse behaved than the analogous Birman kernel
of Day and Putman. Their kernel, denoted Kn;k;l , is finitely generated, whereas it may
be shown by adapting the proof of their Theorem E that Jn.k/ is not. This difference is
due in part to the fact that their version of P…An.k/ need only fix each of x1; : : : ;xk

up to conjugacy. The lack of finite generation of Jn.k/ is, however, not an obstacle to
the goal of the current paper; we only require that Jn.k/ is normally generated by a
finite set.

Our Birman exact sequence projects into GL.n;Z/ in an obvious way, made precise
in the following lemma. Let vi denote the image of xi 2 Fn under the abelianisation
map. We denote by �nŒ2�.k/ the members of �nŒ2� which fix v1; : : : ; vk 2Zn , and by
Hn.k/ the group Hom.Zn�k ; .2Z/k/.

Lemma 3.5 Fix 0� k � n. Then there exists the commutative diagram

1 // Jn.k/ //

����

P…An.k/ //

����

P…An�k

s

ii

//

����

1

1 // Hn.k/ // �nŒ2�.k/ // �n�k Œ2�

t

ii

// 1

of split short exact sequences, where s and t are the obvious splitting homomorphisms.
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Proof The top row is given by Proposition 3.4. A generating set for �nŒ2�.k/ follows
from the proof of Lemma 2.4; it is precisely the image in GL.n;Z/ of fPij ; �i j i > kg,
the generating set of P…An.k/ given by Corollary 2.3. The bottom row then follows by
an argument similar to the proof of Proposition 3.4, noting that the kernel is generated
by the images of Pij .i > k , j � k/. It is straightforward to verify that this kernel
is Hom.Zn�k ; .2Z/k/. Intuitively, ˛ 2Hom.Zn�k ; .2Z/k/ encodes how many (even)
multiples of vj .1� i � k/ are added to each vi .k < j � n/.

The only vertical map left to consider is the right-most one. Its existence and surjectivity
follow from Lemma 2.4. It is clear that all the arrows commute, and that the splitting
homomorphisms s and t are compatible with the commutative diagram, so the proof
is complete.

A generating set for Jn.1/\PIn By mapping P…An.k/ into �nŒ2�.k/ then con-
jugating the normal subgroup Hn.k/, we obtain a homomorphism ˛k W P…An.k/!

Aut.Hn.k//. Setting k D 1, we obtain the following lemma.

Lemma 3.6 The group Jn.1/\PIn is normally generated in Jn.1/ by the set˚
ŒPij ;Pi1�; ŒPij ;Pj1�P

2
i1 j 1< i ¤ j � n

	
:

Proof By Lemma 3.5, there is a short exact sequence

1 �! Jn.1/\PIn �! Jn.1/ �!Hn.1/ �! 1:

The set Y WD f�Pj1�
�1 j� 2P…An.1/; 1< j �ng generates Jn.1/ by Proposition 3.4.

Let aj denote the image of Pj1 in GL.n;Z/. A direct calculation verifies that the set
faj g is a free abelian basis for Hn.1/.

For � 2 P…An.1/, let x� denote the image of � in �nŒ2�.1/, and let xY denote the
image of Y . The set of relations˚

Œai ; aj �D 1; x�ai
x��1
D ˛1.�/.ai/ j 1< i ¤ j � n; � 2 P…An.1/

	
;

together with the generating set xY , forms a presentation for Hn.k/. It is clear that the
image of any member of Y in Hn.1/ is a word on the free abelian basis faig, and that
this word is determined by the homomorphism ˛1 .

The group Jn.1/\ PIn is normally generated in Jn.1/ by the obvious lifts of the
(infinitely many) relators in the given presentation for Hn.1/. The relators of the form
Œai ; aj � have trivial lift, and so are not required in the generating set. Let C be the
finite generating set for P…An.1/ given by Corollary 2.3. It can be shown that the
obvious lift of the finite set of relators

D WD f Ncaj Nc
�1˛1.c/.aj /

�1
j c 2 C˙1; 1< j � ng
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suffices to normally generate Jn.1/\PIn . This may be seen using a simple induction
argument on the length of a given expression of � 2 P…An.1/ on C˙1 .

All that remains is to verify that the obvious lift of D is the set given in the statement
of the lemma; this is a straightforward calculation.

We now prove Theorem A using the action of PIn on B�
n .

Proof of Theorem A Recall that the set of doubled commutator transvections in PIn

is precisely the conjugacy class of ŒP12;P13� in …An , and that the set of separating
�–twists in PIn is precisely the conjugacy class of

.P23P13
�1P31P32P12P21

�1/2

in …An .

The group PIn acts on B�
n simplicially and without rotations. Combining Theorems

3.1, 3.2 and 3.3, we conclude that, for n� 4, PIn is generated by the vertex stabilisers
of the action on B�

n .

Let PIn.1/ denote the stabiliser of the vertex x1 . Since …An acts transitively on the
vertices of B�

n , the stabiliser in PIn of any vertex is conjugate in …An to PIn.1/.
Lemma 3.5 gives us the split short exact sequence

1 �! Jn.1/\PIn �! PIn.1/ �! PIn�1 �! 1:

We induct on n. By the above split short exact sequence, to generate PIn.1/ it suffices
to combine a generating set of Jn.1/\PIn.1/ with a lift of one of PIn�1 .

We begin with the base case, nD 3. In Section 5, we verify that the presentation of
�3Œ2� given in Corollary 1.1 is correct when nD 3. Given the short exact sequence

1 �! PI3 �! P…A3 �! �3Œ2� �! 1;

we may take the obvious lifts of the relators in this presentation as a normal generating
set for PI3 in P…A3 . Relators 1–7 are trivial when lifted. Relator 8 lifts to ŒPij ;Pik �

and relator 9 lifts to ŒPjk ;Pij �Pik
�2 , which equals Pik ŒPij ;Pik �Pik

�1 . Thus the lifts
of relators 8 and 9 are conjugate to ŒP12;P13� in …A3 . Finally, relator 10 lifts to

.P23P13
�1P31P32P12P21

�1/2;

so the base case n D 3 is true, as each relator lifts to either a doubled commutator
transvection, a separating �–twist or the identity automorphism.

Now suppose n > 3. By induction, the group PIn�1 is generated by the purported
generating set. We lift this generating set to PIn.1/ in the obvious way.
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By Lemma 3.6, we need only add in Jn.1/–conjugates of the words ŒPij ;Pi1� and
ŒPij ;Pj1�P

2
i1

, for 1 < i ¤ j � n. The former are clearly conjugate in …An to the
doubled commutator transvection ŒP12;P13�. For the latter, observe that

ŒPij ;Pj1�P
2
i1 D ŒPij ;P

�1
i1 �;

which again is conjugate in …An to ŒP12;P13�, so we are done.

Theorem A allows us to conclude that PIn is normally generated in …An by the
automorphisms �1 D ŒP12;P13� and

�2 D .P23P13
�1P31P32P12P21

�1/2:

Let �n � …An denote the symmetric group on X . The presentation for �nŒ2� Š

P…An=PIn given in Corollary 1.1 follows from Theorem A by adding the �n–orbits
of �1 and �2 to Collins’ presentation for P…An as relators, then applying the obvious
Tietze transformations.

We now demonstrate that the presence of separating �–twists in our generating set for
PIn is necessary.

Proposition 3.7 For n� 3, the group generated by doubled commutator transvections
is a proper subgroup of PIn .

Proof Let D denote the subgroup of PIn generated by doubled commutator transvec-
tions. In other words, D is the normal closure of �1 D ŒP12;P13� in …An . Then the
�n–orbit of �1 is a normal generating set for D in P…An . Adding the members of
this orbit to the presentation of P…An as relators yields a finite presentation Q of
P…An=D , which may be altered using Tietze transformations so that it looks like the
presentation in Corollary 1.1, with relator 10 (and relator 7, if nD 3) removed (where
we interpret Sij and Oi as formal symbols, rather than matrices). We shall show that
the relations of Q are not a complete set of relations on the generating set fSij ;Oig

for �nŒ2�Š P…An=PIn , and so conclude that D¤ PIn .

It is easily shown that for

� WD .S32S31
�1S13S23S21S12

�1/2;

the image of �2 in �nŒ2�, is trivial, but we shall show that � is non-trivial in the group
presented by Q. Observe that by trivialising all the generators of �nŒ2� except for S12

and S21 , we surject �nŒ2� onto the free Coxeter group generated by the images of S12

and S21 , say A and B , respectively. This is easily verified by examining the relators
of Q. The image of � under this map is ABAB ¤ 1, and so � is non-trivial in the
group presented by Q. Therefore D is a proper subgroup of PIn .
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Note that in the proof of Proposition 3.7 we also showed that relators 1–9 of Corollary 1.1
are not a sufficient set of relators that hold between the Oi and Sjk , as relator 10 is
not a consequence of the others. This allows us to conclude that the quotient space
B�

3
=PI3 is not simply connected.

Corollary 3.8 The complex B�
3
=PI3 is not simply connected.

Proof By Theorem 3.3, the complex B�
3
=PI3 is simply connected if and only if

PI3 is generated by the vertex stabilisers of the action of PI3 on B�
3

. As in the
proof of Theorem A, the group generated by the vertex stabilisers of this action may
be normally generated in …A3 by the group PI3.1/. The same calculations as in the
proof of Theorem A show that PI3.1/ is the normal closure of the doubled commutator
transvection ŒP12;P13�. However, Proposition 3.7 showed that this normal closure is a
proper subgroup of PI3 , so the quotient B�

3
=PI3 is not simply connected.

4 The connectivity of B�
n and its quotient

In this section, we determine the levels of connectivity of B�
n and B�

n =PIn . The
former is found to be simply connected, following the same approach as Day and
Putman [11], while the latter is shown to be closely related to a complex already studied
by Charney [7], which is .n� 3/–connected.

The connectivity of B�
n First, we recall the definition of the Cayley graph of a

group. Let G be a group with finite generating set S . The Cayley graph of G

with respect to S , denoted Cay.G;S/, is the graph with vertex set G and edge set
f.g;gs/ j g 2 G; s 2 S˙1g, where an ordered pair .x;y/ indicates that vertices x

and y are joined by an edge. If s 2 S has order 2, we identify each pair of edges
.g;gs/ and .g;gs�1/ for each g 2 G , to ensure that the Cayley graph is simplicial.
Similarly, we also insist that the identity element of G is excluded from S .

We establish Theorem 3.1 by constructing a map ‰ from the Cayley graph of …An

to B�
n and demonstrating that the induced map of fundamental groups is both surjective

and trivial. We require the Cayley graph of …An with respect to a particular generating
set, which we now describe. Assume that n� 3. For 1� i ¤ j < n, let tij permute xi

and xj , fixing xk with k ¤ i; j . Using the symmetric group action on X , we deduce
from Proposition 2.2 that we may generate …An using the set

Z WD ftij ; �2; �3;P21;P23;P31;P34 j 1� i ¤ j � ng:

We may use the symmetric group action on X to streamline the presentation of …An

given in Section 2, to obtain the following list of defining relators for …An on the
generating set Z :
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(1) tij D tji ,

(2) tij
2 D 1,

(3) utij u�1 D tu.i/u.j/ ,

(4) �2
2 D 1,

(5) .�2�3/
2 D 1,

(6) Œ�2;P31�D 1,

(7) .�2P21/
2 D 1,

(8) .�3P23/
2 D 1,

(9) P23P31P21 D P21
�1P31P23 ,

(10) ŒP21;P31�D 1,

(11) ŒP21;P34�D 1,

(12) �3 D t23�2t23 ,

(13) P31 D t23P21t23 ,

(14) P23 D t13P21t13 ,

(15) P34 D t14t23P21t23t14 ,

(16) P21 D wP21w
�1 for w 2W ,

(17) �2 D v�2v
�1 for v 2 V ,

where 1� i ¤ j � n, u 2 ftij g, and W and V are the sets of words on ftij g that fix
both x1 and x2 , and only x2 , respectively. The relations of type 16 and 17 arise due
to the streamlining of the presentation of …An D E…An Ì�˙1.X / given in Section 2.
Note that relations 1–3 are a complete set of relations for the symmetric group, when
generated by the transpositions ftij g [25].

We now consider the Cayley graph Cay.…An;Z/. Observe that for each z 2Z either
z.x1/D x1 or fx1; z.x1/g forms a partial �–basis for Fn . This allows us to construct
a map of complexes from the star of the vertex 1 in Cay.…An;Z/ to B�

n , by mapping
an edge z 2Z˙1 to the edge v1�z.v1/ (which may be degenerate). Using the actions
of …An on Cay.…An;Z/ and B�

n , we can extend this map to a map of complexes
‰W Cay.…An;Z/ ! B�

n . Explicitly, ‰ takes a vertex z1 � � � zr of Cay.…An;Z/

(zi 2Z˙1 ) to the vertex z1 � � � zr .x1/.

Proof of Theorem 3.1 This proof is modelled on Day and Putman’s proof of [11,
Theorem A]. Let

‰�W �1.Cay.…An;Z/; 1/! �1.B
�
n ;x1/

be the map of fundamental groups induced by ‰ . Explicitly, the image of a loop
z1 � � � zk (zi 2Z˙1 ) in �1.Cay.…An;Z/; 1/ under ‰� is

x1� z1.x1/� z1z2.x1/� � � � z1z2 � � � � zk.x1/D x1:

We first show that ‰� is the trivial map, then show that it is also surjective.

Recall that the Cayley graph C of a group G with presentation hX j Ri forms the
1–skeleton of its Cayley complex, which we obtain by attaching disks along the loops
in C corresponding to all conjugates in G of the words in R. It is well-known that
the Cayley complex of a group G is simply connected [19, Proposition 4.2]. We now
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verify that the loops in �1.Cay.…An;Z/; 1/ corresponding to the relators in the above
streamlined presentation for …An have trivial image under ‰� . This allows us to
extend ‰ to a map from the (simply connected) Cayley complex of …An (rel Z ), and
so conclude that ‰� is trivial.

Note that in the following we confuse a relator with the loop in �1.Cay.…An;Z/; 1/

to which it corresponds. Many of the relators 1–17 map to x1 in B�
n , as they are words

on members of Z that fix x1 . The only ones we need to check are 1–3 and 14–17.
Relators 1–3 map into the contractible simplex spanned by x1; : : : ;xn , so are trivial.
Relators 14 and 15 are mapped into the simplices x1�x3 and x1�x4 , respectively.
We rewrite relators 16 and 17 as P21w D wP21 and �2v D v�2 . It is clear, then, that
relators of type 16 map into the contractible subcomplex of B�

n spanned by x1; : : : ;xn

and x1x2x1 , and relators of type 17 map into the contractible subcomplex spanned by
x1;x2

˙1; : : : ;xn . All relators have now been dealt with, so we conclude that ‰� is
the trivial map.

We argue as in Day and Putman’s proof [11] for the surjectivity of ‰� . We represent a
loop ! 2 �1.B

�
n ;x1/ as

x1 D w0�w1� � � � �wk D x1;

for some k � 0. We will demonstrate that for any such path (not necessarily with
wk D x1 ), there exist �1; : : : ; �k 2…An.1/ such that

wi D �1t12�2t12 � � ��i t12.x1/

for 0 � i � k . We use induction. In the case k D 0, there is nothing to prove. Now
suppose k > 0. Consider the subpath

w0�w1� � � � �wk�1:

By induction, to prove the claim all we need find is �k 2…An.1/ such that

wk D �1t12 � � ��k t12.x1/:

We know that wk�1D �1t12 � � ��k�1t12.x1/ and wk form a partial �–basis, therefore
so do x1 and .�1t12 � � ��k�1t12/

�1.wk/. By construction, the action of …An is
transitive on the set of two-element partial �–bases, so there exists �k 2 …An.1/

mapping x2 to .�1t12 � � ��k�1t12/
�1.wk/. Therefore

wk D �1t12 � � ��k t12.x1/;

as required.

Now we define
�kC1 D .�1t12 � � ��k t12/

�1;
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so that
R WD �1t12 � � ��k t12�kC1 D 1

is a relation in …An . Observe that since wk D x1 , we have �kC1 2…An.1/. Also,
the generating set Z contains a subset that generates …An.1/, by Proposition 2.2. We
are thus able to write

�i D zi
1 � � � z

i
pi
;

for some zi
j 2 Z˙1 (1 � i � k C 1, 1 � j � pi ), each of which fixes x1 . We see

that R 2 �1.Cay.…An;Z/; 1/ maps to ! 2 �1.B
�
n ;x1/. Removing repeated vertices,

R maps to
x1��1t12.x1/� � � � ��1t12 � � ��k t12.x1/D x1;

which equals ! by construction. Hence ‰� is surjective as well as trivial, and hence
�1.B

�
n ;x1/D 1.

The connectivity of B�
n=PIn A complex analogous to B�

n may be defined when
working over Zn rather than Fn . We write Bn.Z/ for the complex of partial bases
of Zn , whose .k � 1/–simplices correspond to subsets fu1; : : : ;ukg of free abelian
bases of Zn . Writing members of Zn multiplicatively, there is an analogous notion of
an odd palindrome on some fixed free abelian basis V , and so also of a partial �–basis.
The complex of partial �–bases of Zn is defined in the obvious way, and denoted
B�

n .Z/. Just as …An acts transitively on the set of �–bases of Fn , so does �nŒ2� act
transitively on the set of �–bases of Zn , as we now verify.

Lemma 4.1 The group �nŒ2� acts transitively on the set of �–bases of Zn .

Proof By definition, any �–basis is of the form fM v1; : : : ;M vng, for M 2 �nŒ2�

and fv1; : : : ; vng the standard basis of Zn , where vi has 1 in the i th position and 0s
elsewhere. Thus, we have a well-defined action of �nŒ2� on the set of �–bases of Zn

by left-multiplication of basis elements, which is transitive, as every �–basis lies in
the same orbit as fv1; : : : ; vng.

We first show that B�
n =PIn ŠB�

n .Z/, then show that B�
n .Z/ is .n� 3/–connected

using a related complex studied by Charney. To prove the former, the following lemma
is required.

Lemma 4.2 Fix fu1; : : : ;ung as a �–basis for Zn , and let �W Fn ! Zn be the
abelianisation map. Let zU D f Qu1; : : : ; Qukg be a partial �–basis of Fn such that
�. Qui/Dui for each 1� i �k . Then we can extend zU to a �–basis of Fn , f Qu1; : : : ; Qung,
such that �. Qui/D ui for 1� i � n.
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Proof Extend f Qu1; : : : ; Qukg to a full �–basis of Fn , f Qu1; : : : ; Quk ; Qu
0
kC1

; : : : ; Qu0ng, and
define u0j D �. Qu

0
j / for kC 1� j � n. Then fu1; : : : ;uk ;u

0
kC1

; : : : ;u0ng is a �–basis
for Zn . By Lemma 4.1, the group �nŒ2� acts transitively on the set of �–bases of Zn ,
so there exists � 2 �nŒ2�.k/ such that �.u0j /D uj for kC 1� j � n. By Lemma 3.5,
� lifts to some Q� 2 P…An.k/, and the �–basis f Qu1; : : : ; Quk ; Q�. Qu

0
kC1

/; : : : ; Q�. Qu0n/g

projects onto fu1; : : : ;ung as desired.

Now we establish an isomorphism of simplicial complexes B�
n =PIn ŠB�

n .Z/.

Theorem 4.3 The spaces B�
n =PIn and B�

n .Z/ are isomorphic as simplicial com-
plexes.

Proof Let �W Fn ! Zn be the abelianisation map, and define a map of simplicial
complexes ˆW B�

n !B�
n .Z/ on simplices by fw1; : : : ; wkg 7! f�.w1/; : : : ; �.wk/g

for 1 � k � n. The map ˆ is surjective: by Lemma 4.2, each �–basis of Zn is the
image of some �–basis of Fn , and �–bases of Zn correspond to maximal simplices
of B�

n .Z/.

It is clear that the map ˆ is invariant under the action of PIn on B�
n , and so ˆ factors

through B�
n =PIn . To establish the theorem, all we need do is show that the induced

map from B�
n =PIn!B�

n .Z/ is injective. In other words, we must show that if two
simplices s; s0 of B�

n have the same image under ˆ, then s and s0 differ by the action
of some member of PIn .

Suppose that sD fw1; : : : ; wkg and s0D fw0
1
; : : : ; w0

k
g have the same image under ˆ.

We may assume that �.wi/ D �.w
0
i/ for 1 � i � k . Let ˆ.s/ D f xw1; : : : ; xwkg, and

extend this partial �–basis of Zn to a full �–basis W Df xw1; : : : ; xwng. By Lemma 4.2,
we may extend fw1; : : : ; wkg to fw1; : : : ; wng and fw0

1
; : : : ; w0

k
g to fw0

1
; : : : ; w0ng

such that both of these full �–bases map onto W . Define � 2…An by �.wi/D w
0
i

for 1� i � n. By construction, �.s/D s0 and � 2 PIn , so the theorem is proved.

This more explicit description of B�
n =PIn as B�

n .Z/ enables us to investigate the
quotient’s connectivity.

Proof of Theorem 3.2 By a unimodular sequence in Zn , we mean an (ordered)
sequence .u1; : : : ;uk/� .Z

n/k whose entries form a basis of a direct summand of Zn .
Observe that this is just an ordered version of the notion of a partial basis of Zn . The set
of all such sequences of length at least one form a poset under subsequence inclusion.
Charney considers (among others) the subposet of sequences .u1; : : : ;uk/ such that
each ui is congruent to a standard basis vector vj under mod 2 reduction of the entries
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of ui . We denote by Xn the poset complex given by the subposet of such sequences.
Theorem 2.5 of Charney [7] says that Xn is .n� 3/–connected.

Let B�
n .Z/

� denote the barycentric subdivision of B�
n .Z/. Label each vertex of

B�
n .Z/

� by the partial �–basis associated to the simplex of B�
n .Z/ to which the

vertex corresponds. Define a simplicial map hW Xn ! B�
n .Z/

� by .u1; : : : ;uk/ 7!

fu1; : : : ;ukg. We may think of h as “forgetting the order” of each unimodular sequence.
Comparing the definitions of Xn and B�

n .Z/, it is not immediately clear that h is
well-defined, as there might be some vertex .u1; : : : ;uk/ of Xn such that fu1; : : : ;ukg

extends to a full basis of Zn , but not a full �–basis. However, viewing the full basis
of Zn as a matrix in �nŒ2�, a straightforward column operations argument shows that
this cannot be the case, so h is well-defined.

We see that h induces a map �i.Xn/! �i.B
�
n .Z/

�/ for i � 0, and show that the
induced map is surjective. Set a consistent lexicographical order on the vertices of
B�

n .Z/
� , and view ! 2�i.B

�
n .Z/

�/ as a simplicial i–sphere. The chosen lexicograph-
ical ordering allows us to lift ! to �i.Xn/, so the induced maps are surjective. The
statement of the theorem follows immediately, since �i.Xn/D 1 for 0� i � n� 3.

5 A presentation for �3Œ2�

In order to apply Armstrong’s theorem [1], it must be the case that B�
n =PInŠB�

n .Z/
is simply connected. However, as we have seen from Corollary 3.8, the space B�

3
.Z/

has non-trivial fundamental group. The case nD 3 forms the base case of our inductive
proof of Theorem A, so we require an alternative approach to find a generating set
for PI3 . Our approach is to find a specific finite presentation of �3Œ2�, and use the
short exact sequence

1 �! PI3 �! P…A3 �! �3Œ2� �! 1

to lift the relators in the presentation of �3Œ2� to a normal generating set for PI3 .

The augmented partial �–basis complex for Z3 By adding simplices to the com-
plex B�

3
.Z/, we obtain a simply connected complex that �3Œ2� acts on. This action

allows us to present �3Œ2�.

Recall that Bn.Z/ is the partial basis complex of Zn . We represent its vertices by
column vectors uD .u.1/; : : : ;u.n//T . For use in the proof of Theorem 5.1, we follow
Day and Putman [11] and define the rank of u to be ju.n/j, and denote it by R.u/. Let
Y denote the full subcomplex of B3.Z/ spanned by B�

3
.Z/ and vertices u for which

u.1/ and u.2/ are odd and u.3/ is even. We call Y the augmented partial �–basis
complex for Z3 . We now demonstrate that Y is simply connected.
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Theorem 5.1 The complex Y is simply connected.

Proof By Theorem 2.5 of Charney [7], we know that B�
3
.Z/ is 0–connected, and

hence so is Y . To show that Y is simply connected, we adapt the proof of Theorem B
of Day and Putman [11].

Let u be a vertex of a simplicial complex C . The link of u in C , denoted lkC .u/, is
the full subcomplex of C spanned by vertices joined by an edge to u. Let v3 2 Z3

be the standard basis vector with third entry 1 and 0s elsewhere. Observe that for any
vertex u 2 Y we have lkY.u/Š lkY.v3/. This is because the group generated by �3Œ2�

and the matrix

E D

241 0 0

1 1 0

0 0 1

35
acts simplicially on Y and transitively on the 0–skeleton of Y . This action is transitive
on vertices because �3Œ2� acts transitively on the vertices of B�

3
.Z/, and any vertex of

Y nB�
3
.Z/ may be taken to a vertex of B�

3
.Z/ by acting on it with E .

We begin by establishing that lkY.v3/ is connected (and hence, by the above, so is the
link of any vertex of Y ). By considering what the columns of M 2 GL.3;Z/ whose
final column is v3 must look like, we see that a necessary and sufficient condition
for .u.1/;u.2/;u.3//T to be a member of lkY.v3/ is that .u.1/;u.2//T is a vertex of
B2.Z/. The link lkY.v3/ may thus be described as follows: it has one vertex for each
pair .a; b/, where a is a vertex of B2.Z/ and b 2 2Z, with vertices .a; b/ and .c; d/
joined by an edge if and only if a and c are joined by an edge in B2.Z/. Hence lkY.v3/

is connected, though note that its fundamental group is an infinite-rank free group.

Now, let ! 2 �1.Y; v3/. We represent ! by the sequence of vertices

w0�w1� � � � �wr ;

where wi (1� i � r ) are vertices of Y , and w0Dwr Dv3 . Our goal is to systematically
homotope this loop so that the rank of each vertex in the sequence is 0. Such a loop
may be contracted to the vertex v3 , and so is trivial in �1.Y/.

Consider a vertex wi for some 1< i < r , with R.wi/¤ 0. Since lkY.wi/ is connected,
there is some path

wi�1� q1� q2� � � � � qs �wiC1

in lkY.wi/, as seen in Figure 7. Fix attention on some qj (1� j � s ). By the division
algorithm, there exist aj ; bj 2Z such that R.qj /Daj �R.wi/Cbj , with 0�bj <R.wi/.
As in the proof of Lemma 2.4, we wish to ensure that aj is even, if possible. In all but
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. . .

. . .

wi

wi�1 wiC1

q1 qs

Qq1 Qqs

Figure 7: We find two homotopic paths that bound a disk inside lkY.wi/ ,
where the “upper” path seen here is constructed so that R. Qqj / <R.qj / for
1� j � s .

one case, we will be able to rewrite the division algorithm as R.qj /DAj �R.wi/CBj ,
for some Aj ;Bj 2Z such that Aj is even and 0�jBj j<R.wi/. We do a case-by-case
parity analysis. Note that since qj and wi are joined by an edge, R.qj / and R.wi/ can-
not both be odd, otherwise qj and wi would both map to the same member of .Z=2/3

when we reduce their entries mod 2. This would prohibit fqj ; wig from extending to a
basis J of Z3 , otherwise the image of J in .Z=2/3 would generate despite only having
two members. If R.qj / and R.wi/ have different parities and aj is odd, we may take
Aj DajC1 and Bj Dbj�R.wi/. In that case, jBj j<R.wi/, since bj must be odd and
hence non-zero. If both R.qj / and R.wi/ are even, we may still do this, unless bj D 0.

We now associate to each qj a new vertex, Qqj , defined by

Qqj D

8<:
qj � aj �wi if aj even,
qj �Aj �wi if aj odd, bj ¤ 0;

qj � aj �wi if aj odd, bj D 0:

Note that R. Qqj / D 0 when bj D 0, and under the conditions given, Qqj is always
well-defined as a vertex of Y . The path

wi�1� q1� � � � � qs �wiC1

is homotopic inside lkY.wi/ to the path

wi�1� Qq1� � � � � Qqs �wiC1;

as seen in Figure 7. By construction, R. Qqj / <R.wi/. Iterating this procedure contin-
ually homotopes ! until it is inside the contractible (full) subcomplex spanned by v3

and lkY.v3/, and hence is trivial. Therefore �1.Y/D 1.
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v1 v2

v1C v2

v3

Figure 8: The quotient complex of Y under the action of �3Œ2� . We have
labelled its vertices using representatives from the vertex set of Y .

The complex B�
3
.Z/ is not simply connected It may be tempting to try to use the

method in the above proof to show that B�
3
.Z/ is simply connected; however, we

know by Corollary 3.8 that B�
3
.Z/ has non-trivial fundamental group. The obstruction

to the above proof going through occurs when defining Qqj in the case that aj is odd
and bj D 0, as Qqj 62B

�
3
.Z/. When aj is odd and bj D 0, there is no even multiple

of wi that can be added to qj to decrease its rank, so this method of homotoping loops
to a point will not work.

Presenting �3Œ2� Let �3Œ2�.w1; : : : ; wk/ denote the stabiliser of the ordered tuple
.w1; : : : ; wk/ of vertices of Y . Having demonstrated that Y is simply connected, we
now turn our attention to the obvious action of �3Œ2� on Y . This action is simplicial,
does not invert edges, and the quotient complex under the action is contractible, as
seen in Figure 8. The quotient lifts to a subcomplex W of Y via the vertex labels seen
in Figure 8. This subcomplex is what Brown [6] refers to as a fundamental domain
for the action, and so a theorem of Brown [6, Theorem 3] allows us to conclude that
�3Œ2� is the free product of the stabilisers of the vertices of W modulo edge relations,
which identify the copies of the edge stabiliser �3Œ2�.a; b/ inside the vertex stabilisers
�3Œ2�.a/ and �3Œ2�.b/, where a; b 2 fv1; v2; v3; v1C v2g are distinct.

We obtain a finite presentation for �3Œ2�.v1/ using the semi-direct production decom-
position of �3Œ2�.v1/ given by Lemma 3.5 (noting that �2Œ2� Š P…A2 ). The group
�3Œ2�.v1/ is generated by the set fO2;O3;S23;S32;S12;S13g, with a complete list of
relators given by all relators of the form 1–9 (excluding 7, as it is not defined when
nD 3) seen in Corollary 1.1. By permuting the indices accordingly, we also obtain
finite presentations for the stabiliser groups �3Œ2�.v2/ and �3Œ2�.v3/. Identifying the
edge stabiliser subgroups of these three groups appropriately, we obtain the presentation
seen in Corollary 1.1 without relators 7 and 10; we denote this presentation by P .
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We now see that the effect of identifying the edge stabiliser subgroups of �nŒ2�.v1Cv2/

with the corresponding copies inside the other three vertex stabiliser groups is to include
one additional relator: relator 10. Since �3Œ2�.v1C v2/ and �3Œ2�.v1/ are conjugate
inside GL.3;Z/, we take a formal presentation for �3Œ2�.v1C v2/ by adding a “hat”
to each of the symbols in the presentation of �3Œ2�.v1/.

The members of �3Œ2�.v1C v2/ are not, however, strings of formal symbols, but are
members of �3Œ2�. To express them as such, we observe that

�3Œ2�.v1C v2/DE21 ��3Œ2�.v1/ �E21
�1;

where E21 is the elementary matrix with 1 in the .2; 1/ position. In Table 1 we see
the conjugates of the generators of �3Œ2�.v1/ by E21 . These give expressions for the
formal symbols generating �3Œ2�.v1C v2/. For example,

yS12 DE21S12E21
�1
DO1O2S21S12

�1:

Generator M of �3Œ2�.v1/ The conjugate yM DE21 �M �E21
�1

O2 S21O2

O3 O3

S12 O1O2S21S12
�1

S13 S13S23

S23 S23

S32 S32S31
�1

Table 1: The conjugates of the generating set of �3Œ2�.v1/ by E21

Let fi be the edge joining v1Cv2 to vi (1� i � 3), and let Ji be the stabiliser of fi .
We consider these each in turn. Observe that

J2 DE21 ��3Œ2�.v1; v2/ �E21
�1;

so J2 is generated by fO3;S13S23;S23g. We have expressed those three generators
in terms of the generators of �3Œ2�.v1/. To obtain the relations corresponding to this
edge stabiliser, we must express them using the generators of �3Œ2�.v1C v2/, and set
them to be equal accordingly. Consulting Table 1, we get the edge relations

yO3 DO3; yS13 D S13S23 and yS23 D S23:

Note that these relations simply reiterate the expressions we had already determined for
yO3 , yS13 and yS23 . Similarly, as we obtain J3 by conjugating �3Œ2�.v1; v3/ by E21 ,

the edge relations arising from the edge f3 are

yO2 D S21O2; yS12 DO1O2S21S12
�1 and yS32 D S32S31

�1:
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Finally, to obtain J1 , we conjugate �3Œ2�.v1; v2/ by the elementary matrix E12 . We
obtain that J1 is generated by fO3;S13;S13S23g, which gives edge relations yO3DO3 ,
S13 D

yS13
yS�1

23
and yS13 D S13S23 . Note that these relations all arise as consequences

of the edge relations coming from the edges f2 and f3 , so are not required.

We now use these edge relations to replace the formal relators defining �3Œ2�.v1C v2/

with words on the generating set fSij ;Okg. Using Tietze transformations and Brown’s
Theorem 3 [6], we may then conclude that a complete presentation for �3Œ2� is obtained
by adding these relators to the presentation P . For example, the relator yO2

2
becomes

.S21O2/
2 . All but one of these additional relators are consequences of ones already

in P . The one relator that is not is Œ yS13; yS32� yS
�2
12

, which becomes

ŒS13S23;S32S31
�1�.O1O2S21S12

�1/�2:

Using the other relations in �3Œ2�, this word may be rewritten in the form of relator 10
in Corollary 1.1; we have thus verified that the presentation given in Corollary 1.1 is
correct when nD 3. This proves Proposition 1.2.
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Character varieties of double twist links

KATHLEEN L PETERSEN

ANH T TRAN

We compute both natural and smooth models for the SL2.C/ character varieties of
the two-component double twist links, an infinite family of two-bridge links indexed
as J.k; l/ . For each J.k; l/ , the component(s) of the character variety containing
characters of irreducible representations are birational to a surface of the form C �C ,
where C is a curve. The same is true of the canonical component. We compute
the genus of this curve, and the degree of irrationality of the canonical component.
We realize the natural model of the canonical component of the SL2.C/ character
variety of the J.3; 2mC 1/ link as the surface obtained from P 1 �P 1 as a series of
blow-ups.

57M25; 57N10, 14J26

1 Introduction

Given a complete orientable finite-volume hyperbolic 3–manifold with cusps, the
SL2.C/ character variety of M , X.M /, is an affine complex algebraic set associated
to representations �1.M / ! SL2.C/. Thurston [14] showed that any irreducible
component of such a variety containing the character of a discrete faithful representation
has complex dimension equal to the number of cusps of M . Such components are
called canonical components and are denoted X0.M /. Character varieties have been
fundamental tools in studying the topology of M (we refer the reader to Shalen [13] for
more), and canonical components encode a wealth of topological information about M ,
including containing subvarieties associated to Dehn fillings of M and identifying
boundary slopes of essential surfaces; see Culler and Shalen [3].

We consider the two-component double twist links J.k; l/ and compute the character
varieties of their complements in S3 . As pictured in Figure 1, the integers k and l

determine the number of half-twists in the boxes; positive numbers correspond to
right-handed twists and negative numbers correspond to left-handed twists. The link
J.k; l/ is a two-component link when kl is odd and a knot when kl is even. Macasieb,
Petersen and van Luijk [8] determined and analyzed character varieties of the J.k; l/

knots. In this paper, we extend this work to the two-component J.k; l/ links. These
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k

l

Figure 1: The link J.k; l/ is the result of �1=k and �1= l surgery on the
four-component link pictured on the left.

are hyperbolic exactly when jkj and jl j are greater than one; the J.˙1; l/D J.l;˙1/

links are torus links. We will now exclusively consider the hyperbolic J.k; l/ links.

In Definition 3.5 we define the Chebyshev polynomials Sj which are used through-
out the paper. Our first theorem establishes natural models for the SL2.C/ char-
acter varieties of the double twist links. With �1.k; l/ D �1.S

3 � J.k; l//, let
Xirr.k; l/ denote the closure of the set of all irreducible characters �� of representations
�W �1.k; l/! SL2.C/. Let X0.k; l/ denote a canonical component. In fact, a conse-
quence of this work is that for a given double twist link, there is only one canonical
component. For this natural model, we use the presentation for �1.k; l/ in Section 3
with x D ��.a/, y D ��.b/ and z D ��.ab�1/. The vanishing set of the characters
of reducible representations �1.k; l/! SL2.C/ is well-known and is given by

xyzC 4�x2
�y2

� z2

in C3.x;y; z/. These are all characters of abelian representations.

Theorem 1.1 Let k D 2mC 1 and l D 2nC 1. A natural model for the algebraic set
Xirr.k; l/ is the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.x;y; z/, where

t D .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

The expression t is the trace of �.ˇ/, with the loop ˇ as pictured in Figure 2. In terms
of the presentation for the fundamental group in Section 3, the loop ˇ corresponds to
the word wk .

Algebraic & Geometric Topology, Volume 15 (2015)
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Our next theorem establishes smooth models for these algebraic sets.

Theorem 1.2 Let kD2mC1 and lD2nC1. The algebraic set Xirr.k; l/ is birational
to C.k; l/�C , where the curve C.k; l/�C2.t; z/ is given by

C.k; l/D fSn.t/Sm�1.z/�Sn�1.t/Sm.z/D 0g:

If k ¤ l then C.k; l/ is smooth and irreducible as considered in P1.t/�P1.z/, and
X0.k; l/DXirr.k; l/ is birational to C.k; l/�C .

The curve C.3; 3/D C.�3;�3/ is given by t D z . If k D l and jl j > 3 then C.l; l/

is the union of exactly two components: C0.l; l/, given by t D z , and C1.l; l/, the
scheme-theoretic complement of C0.l; l/ in C.l; l/. Both are smooth and irreducible
as considered in P1.t/ � P1.z/. The algebraic set Xirr.k; l/ is given by the union
X0.l; l/[X1.l; l/, where X0.l; l/ is birational to C0.l; l/�C and X1.l; l/ is birational
to C1.l; l/�C .

We next compute some invariants of these algebraic sets. Since Xirr.k; l/ is birational
to the product of a curve C.k; l/ and C , we compute the genus of this curve.

Theorem 1.3 Let k D 2mC 1 and l D 2nC 1 with jkj; jl j > 1. When k ¤ l the
genus of C.k; l/ is ��

jkj
2

˘
� 1

���
jlj
2

˘
� 1

�
:

The genus of C0.l; l/ is zero, and when jl j> 3 the genus of C1.l; l/ is
��
jlj
2

˘
� 2

�2 .

The degree of irrationality of an irreducible n–dimensional complex algebraic set X

is defined to be the minimal degree of any rational map from X to a dense subset of
Cn . This is denoted  .X / and is a birational invariant. When X is a curve this is
called the gonality of X . See Petersen and Reid [11] for a discussion on how gonality
and genus behave in families of Dehn fillings. In light of this, since J.k; l/ is �1=k

and �1= l filling of the four-component link in Figure 1, we compute the degree of
irrationality of the surfaces X0.k; l/ and X1.l; l/.

Theorem 1.4 Let k D 2mC1 and l D 2nC1. The degree of irrationality of X0.k; l/

is min
˚�
jkj
2

˘
;
�
jlj
2

˘	
when k¤ l . The degree of irrationality of X0.l; l/ is 1, and when

jl j> 3 the degree of irrationality of X1.l; l/ is
�
jlj
2

˘
� 1.

Finally, we study the J.3; 2mC1/ links realizing X0.3; 2mC1/ as a series of blow-ups
of P1 �P1 and show the following.
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Theorem 1.5 The desingularization of the natural model for the canonical component
of the SL2.C/ character variety of the double twist link J.3; 2mC 1/ is the conic
bundle over the projective line P1 which is isomorphic to the surface obtained from
P1 �P1 by repeating a one-point blow-up 9m times if m� 1, and �.6C 9m/ times
if m��2. Equivalently, it is isomorphic to the surface obtained from P2 by repeating
a one-point blow-up 1C 9m times if m� 1, and �.5C 9m/ times if m� �2.

Remark 1.6 For m� 1, the link J.3; 2mC 1/ is obtained by 1=m Dehn surgery on
the magic manifold. Hence Theorem 1.5 confirms Conjecture 3.1.3 in Landes’ thesis [7].

Acknowledgement This work was partially supported by a grant from the Simons
Foundation (number 209226 to Kathleen Petersen).

2 Character varieties

We will define our notation, but refer the reader to [8] for a detailed discussion
of character varieties. Let M be a complete finite-volume hyperbolic 3–manifold.
The SL2.C/ character variety of M is the set of all characters of representations
�W �1.M /! SL2.C/. The character associated to � is ��W �1.M /!C , defined by
��. /D tr �. /.

Let X.M / denote the SL2.C/ character variety, that is

X.M /D f�� j �W �1.M /! SL2.C/g:

The characters of reducible representations themselves form an algebraic set, which is
a subset of X.M /. We will call this set Xred.M /. The closure of the set of characters
of irreducible representations will be denoted by Xirr.M /. Any irreducible component
of X.M / which contains the character of a discrete faithful representation is contained
in Xirr.M / and is called a canonical component and denoted X0.M /.

Thurston [14] showed that the complex dimension of any canonical component equals
the number of cusps of M . Canonical components encode much of the topology of M ,
often seen through the trace functions. Canonical components containing subvarieties
corresponding to Dehn fillings of M and their ideal points can be used to determine
essential surfaces in M (see [3]).

When M has only one cusp X0.M / is a curve. Several infinite families of these have
been studied. (See [1; 8; 16], for explicit computations. See [10] and [2] for examples
of families of manifolds with many components in their character varieties.) When M

has at least two cusps the algebraic geometry becomes more demanding, and only a

Algebraic & Geometric Topology, Volume 15 (2015)
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few solitary examples have been computed. Landes [6; 7] computed a smooth model
for the canonical component of the SL2.C/ character variety of the complement of
the Whitehead link, a two-component link. (She explicitly showed that it is a rational
surface homeomorphic to the projective plane blown up at 10 points.) Harada [5]
computed the character varieties of the four arithmetic two-bridge link complements
(including the Whitehead link and the figure-8 knot). Our computation of the character
varieties of the double twist links is the first result to compute character varieties for
infinitely many 3–manifolds with two cusps.

3 Double twist links

Let J.k; l/ be the double twist link indicated in the right-hand side of Figure 1. This
link is �1=k and �1= l filling on two components of the four-component link shown
in the left-hand side of Figure 1. This is a knot when kl is even and a two-component
link when kl is odd. The link J.k; l/ corresponds to the continued fraction Œk;�l �. It
is hyperbolic, unless jkj or jl j is 1. Let X.k; l/ denote the SL2.C/ character variety
of S3�J.k; l/.

In [8] the character varieties of the J.k; l/ knots were computed. We now consider the
J.k; l/ links with two components, so both k and l are odd. Suppose k D 2mC 1

and l D 2nC 1. The link group of J.k; l/ is �1.k; l/ D �1.S
3 � J.k; l// and has

presentation
�1.k; l/D ha; b j aw

n
kb D wnC1

k
i;

where wk D .ab�1/mab.a�1b/m [8].

Definition 3.1 Let Fa;b D ha; bi be the free group on two letters a and b . For a
word u in Fa;b let  �u denote the word obtained from u by writing the letters in u in
reversed order.

We begin by simplifying the presentation of the link group.

Lemma 3.2 With wk D .ab�1/mab.a�1b/m and r D wn
k
.ab�1/m , we have

�1.k; l/D ha; b j r D
 �r i:

Proof We can rewrite the presentation of �1.k; l/ as

�1.k; l/D ha; b j aw
n
kb D .ab�1/mab.a�1b/mwn�1

k .ab�1/mab.a�1b/mi

D ha; b j wn
k D .b

�1a/mb.a�1b/mwn�1
k .ab�1/ma.ba�1/mi

D ha; b j wn
k.ab�1/m D .b�1a/mb.a�1b/mwn�1

k .ab�1/mai:

Algebraic & Geometric Topology, Volume 15 (2015)
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Let c D .ab�1/ma and d D b.a�1b/m . Then wk D cd . It follows that

b.a�1b/mwn�1
k .ab�1/maD d.cd/n�1c D .dc/n D

 ���
.cd/n D

 �
wn

k :

Hence

�1.k; l/D
˝
a; b j wn

k.ab�1/m D
 ������

.ab�1/m
 �
wn

k

˛
D

˝
a; b j wn

k.ab�1/m D
 ��������

wn
k.ab�1/m

˛
:

Since r D wn
k
.ab�1/m , the lemma follows.

With coordinates x D tr �.a/, y D tr �.b/ and z D tr �.ab�1/, the character variety of
the free group Fa;b is isomorphic to C3Œx;y; z� by the Fricke–Klein–Vogt theorem
[4; 17]. Consider a word u in Fa;b . Define the polynomial Pu 2 CŒx;y; z� to be
Pu.x;y; z/D tr �.u/. It follows that for every word u in Fa;b the polynomial Pu is
the unique polynomial such that for any representation �W Fa;b ! SL2.C/ we have
tr �.u/D Pu.x;y; z/.

We now consider representations �W �1.k; l/! SL2.C/. By Lemma 3.2 the group
�1.k; l/ has a presentation with two generators and one relation and therefore is a
quotient of Fa;b . First, we establish some notation which we will use throughout the
manuscript.

Definition 3.3 Let k D 2mC 1 and l D 2nC 1. For �W �1.k; l/! SL2.C/ define

x D tr �.a/; y D tr �.b/ and z D tr �.ab�1/;

and for a word u in Fa;b define the polynomial Pu.x;y; z/ D tr �.u/ 2 CŒx;y; z�.
Further, let t D Pwk

and

'.x;y; z/D Prab �P �
r ab

:

For every representation �W �1.k; l/! SL2.C/, we consider x;y and z as functions
of � . Using the presentation above for �1.k; l/ with two generators and one relation,
we conclude that Prab D P �

r ab
, which is simply '.x;y; z/ D 0, in X.k; l/. In

fact, by [16, Theorem 1] X.k; l/ is exactly the zero set of '.x;y; z/. (See also [12,
Theorem 2.1]). Moreover, because of the format of the defining word, P �

r ab
D Pbar

[16, Theorem 1]. (That is, these polynomials in C3Œx;y; z� are identical.) Therefore,
'.x;y; z/D Prab �Pbar . We summarize this discussion in the following proposition.

Proposition 3.4 The polynomial '.x;y; z/ is given by Prab �Pbar . The character
variety X.k; l/ is the zero set of '.x;y; z/ in C3.x;y; z/.
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We wish to obtain a nice format for ' . We introduce a family of Chebyshev polynomials,
often called the Fibonacci polynomials, that will be essential to our computation of ' .
(These are slightly different polynomials than were used in [8]; the indices are shifted
by one.)

Definition 3.5 Let Sj .!/ be the Chebyshev polynomials defined by

S0.!/D 1; S1.!/D ! and SjC1.!/D !Sj .!/�Sj�1.!/

for all integers j .

It is elementary to verify the following lemmas.

Lemma 3.6 With ! D � C ��1 we have

Sj .!/D
�jC1���j�1

����1
:

The degree of Sj is j if j > �1 and �j � 2 if j < �1.

Lemma 3.7 Suppose the sequence ffj gj2Z satisfies the recurrence relation fjC1 D

!fj �fj�1 for all integers j . Then fj D Sj .!/f0�Sj�1.!/f�1 .

The following lemma can be verified by using Lemma 3.6.

Lemma 3.8 We have

(a) S2
j .!/CS2

j�1
.!/�!Sj .!/Sj�1.!/D 1,

(b) S2
j .!/�S2

j�1
.!/D S2j .!/,

(c) Sm�1.!/
�
!C .!2� 4/Sm�1.!/Sm.!/

�
CSm.!/D S3m.!/.

We now simplify the polynomial ' by writing the trace polynomials in terms of these
Chebyshev polynomials.

Proposition 3.9 We have

t D .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:
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Proof By definition, t D Pwk
. By applying Lemma 3.7 twice, we have

Pwk
D P.ab�1/mab.a�1b/m

D S2
m.z/PabCS2

m�1.z/P.ab�1/�1ab.a�1b/�1

�Sm.z/Sm�1.z/.P.ab�1/�1abCPab.a�1b/�1/

D S2
m.z/PabCS2

m�1.z/Pba�Sm.z/Sm�1.z/.Pb2 CPa2/

D .S2
m.z/CS2

m�1.z//.xy � z/�Sm.z/Sm�1.z/.x
2
Cy2

� 4/:

The proposition follows.

Proposition 3.10 The polynomial '.x;y; z/ 2C3Œx;y; z� is

'.x;y; z/D .xyzC 4�x2
�y2

� z2/
�
Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

�
;

where t is as in Proposition 3.9.

Proof As mentioned above, by [16, Theorem 1] X.k; l/ is the zero set of '.x;y; z/
and P �

r ab
D Pbar . By applying Lemma 3.7 we have

Prab �Pbar D Pwn
k
.ab�1/mab �Pbawn

k
.ab�1/m

D Sn.t/.P.ab�1/mab �Pba.ab�1/m/

�Sn�1.t/.Pw�1
k
.ab�1/mab �Pbaw�1

k
.ab�1/m/

D Sn.t/.P.ab�1/mab �Pba.ab�1/m/

�Sn�1.t/.P.a�1b/m �Pab.a�1b/m.ba/�1/;

where

P.ab�1/mab �Pba.ab�1/m D Sm.z/.Pab �Pba/

�Sm�1.z/.P.ab�1/�1ab �Pba.ab�1/�1/

D�Sm�1.z/.Pb2 �Pbaba�1/

D Sm�1.z/.xyzC 4�x2
�y2

� z2/;

P.a�1b/m �Pab.a�1b/m.ba/�1 D Sm.z/.P1�Pab.ba/�1/

�Sm�1.z/.P.a�1b/�1 �Pab.a�1b/�1.ba/�1/

D Sm.z/.xyzC 4�x2
�y2

� z2/:

Hence

Prab �Pbar D .xyzC 4�x2
�y2

� z2/.Sn.t/Sm�1.z/�Sn�1.t/Sm.z//:
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The character variety X.k; l/ is clearly reducible. The set of reducible characters,
Xred.k; l/, can easily be determined, as in [1], for example. We have the following,
from which Theorem 1.1 follows immediately.

Proposition 3.11 The vanishing set of

xyzC 4�x2
�y2

� z2

in C3.x;y; z/ is the set of characters of reducible representations �1.k; l/! SL2.C/.

A natural model for the algebraic set Xirr.k; l/ is the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.x;y; z/, where t is as in Proposition 3.9.

In light of this, we wish to understand the vanishing set of the difference Sn.t/Sm�1.z/�

Sn�1.t/Sm.z/. The equation Sn.t/Sm�1.z/D Sn�1.t/Sm.z/ can be written as

Sn.t/

Sn�1.t/
D

Sm.z/

Sm�1.z/

when Sn�1.t/Sm�1.z/¤ 0, so we can think of it as lying in a product of projective
lines. We will make use of this approach when proving smoothness and irreducibility.

Definition 3.12 Let V .k; l/ be the vanishing set of Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.x;y; z/.

By Proposition 3.11 the components of X.k; l/ containing characters of irreducible
representations, those included in Xirr.k; l/, are contained in V .k; l/ and V .k; l/ is a
natural model for this set.

4 The structure of V.k; l/

The set V .k; l/ is the closure of the set of characters of irreducible representations.
The equation Sn.t/Sm�1.z/�Sn�1.t/Sm.z/ is relatively simple, except that t itself
is a function of the natural variables x;y , and z . Explicitly, by Proposition 3.9,

t D .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

We will show that there is a relatively simple model for Xirr.k; l/ up to birational
equivalence.
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Definition 4.1 Let uD xSm.z/�ySm�1.z/ and v D ySm.z/�xSm�1.z/.

It follows that

t D uv� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

By the definitions of u and v ,

x D
uSm.z/C vSm�1.z/

S2
m.z/�S2

m�1
.z/

and y D
vSm.z/CuSm�1.z/

S2
m.z/�S2

m�1
.z/

:

We will show that this substitution of u and v for x and y corresponds to a birational
map, simplifying the definition of t . Then we will show that substituting t for u

is another birational map, thus eliminating the problem of having nested variables.
This has the fortunate consequence that the equation Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

contains no u, so we can conclude that the algebraic set V .k; l/ is birational to the
product of a curve and C .

Definition 4.2 Let U.k; l/ be the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.u; v; z/, where

t D uv� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

Before showing that V .k; l/ is birational to U.k; l/ we prove a lemma.

Lemma 4.3 On V .k; l/, S2
m.z/�S2

m�1
.z/D 0 only for a set of codimension one.

Proof By definition Sj .z/ is a Chebyshev polynomial, and by Lemma 3.8 we have
that S2

m.z/�S2
m�1

.z/D S2m.z/. Moreover, letting z D � C ��1 , we can write

S2m.� C �
�1/D

�2mC1���2m�1

����1
:

Therefore, if S2
m.z/�S2

m�1
.z/D 0 then �2mC1 � ��2m�1 D 0 and so �4mC2 D 1.

It follows that
� D e2� is=.4mC2/

D e� is=.2mC1/

for some 0� s � 4mC 2. When s D 2r is even (1� r �m),

z D � C ��1
D 2Re.�/D 2 cos

�
2�r

2mC1

�
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and z is a root of Sm.z/CSm�1.z/. When s D 2r C 1 is odd (0� r �m� 1),

z D 2 cos
�
.2rC1/�

2mC1

�
and z is a root of Sm.z/�Sm�1.z/.

First, we will show that Sm.z/� Sm�1.z/ D 0 only for a set of dimension one on
V .k; l/. By Lemma 3.8,

S2
m.z/CS2

m�1.z/� zSm.z/Sm�1.z/D 1:

Since Sm.z/D Sm�1.z/, we obtain S2
m.z/D 1=.2� z/ and

t D�S2
m.z/..x�y/2C 2z� 4/D

1

z� 2
..x�y/2C 2.z� 2//D

.x�y/2

z� 2
C 2:

We conclude that
.x�y/2 D .z� 2/.t � 2/:

On V .k; l/, Sn.t/Sm�1.z/�Sn�1.t/Sm.z/D 0. Since Sm.z/D Sm�1.z/ we get

Sm.z/.Sn.t/�Sn�1.t//D 0:

Since z is as above, we see that Sm.z/ ¤ 0 since S2
m.z/ D 1=.2 � z/. Hence

Sn.t/�Sn�1.t/D 0. It follows that

t D 2 cos
�
.2sC1/�

2nC1

�
;

where 0� s � n� 1. We conclude that

.x�y/2 D 4
�

cos
�
.2rC1/�

2mC1

�
� 1

��
cos

�
.2sC1/�

2nC1

�
� 1

�
:

This defines x�y explicitly, and therefore determines a set of dimension one in V .k; l/.
Since the dimension of V .k; l/ is two, this is a codimension-one set.

We complete the proof by showing that Sm.z/ C Sm�1.z/ D 0 only for a set of
dimension one on V .k; l/. Note that z D 2 cos

�
2�r

2mC1

�
, where 1� r �m. We have

S2
m.z/CS2

m�1.z/� zSm.z/Sm�1.z/D 1:

Since Sm.z/D�Sm�1.z/, we obtain S2
m.z/D 1=.2C z/ and

t D S2
m.z/..xCy/2� 2z� 4/D

1

2C z
..xCy/2� 2.zC 2//D

.xCy/2

2C z
� 2:

We conclude that
.xCy/2 D .t C 2/.zC 2/:

Algebraic & Geometric Topology, Volume 15 (2015)



3580 Kathleen L Petersen and Anh T Tran

On V .k; l/ we have Sn.t/Sm�1.z/�Sn�1.t/Sm.z/D 0, and hence

Sm.z/.Sn.t/CSn�1.t//D 0:

Since z is as above, we conclude that Sn.t/CSn�1.t/D0. This means tD2 cos
�

2�s
2nC1

�
(where 1� s � n). Hence

.xCy/2 D 4
�

cos
�

2�r

2mC1

�
C 1

��
cos

�
2�s

2nC1

�
C 1

�
:

This defines x C y explicitly, and therefore determines a set of dimension one in
V .k; l/. Since the dimension of V .k; l/ is two, this is a codimension-one set.

The next result now easily follows.

Proposition 4.4 The set V .k; l/�C3.x;y; z/ is birational to U.k; l/�C3.u; v; z/.

Proof As discussed above, the substitution defines a rational map between V .k; l/

and U.k; l/, namely

.x;y; z/ 7!

�
xSm.z/CySm�1.z/

S2
m.z/�S2

m�1
.z/

;
ySm.z/CxSm�1.z/

S2
m.z/�S2

m�1
.z/

; z

�
;

with inverse

.u; v; z/ 7!
�
uSm.z/� vSm�1.z/; vSm.z/�uSm�1.z/; z

�
:

It suffices to see that S2
m.z/ � S2

m�1
.z/ D 0 only for a set of codimension one on

V .k; l/, which follows from Lemma 4.3.

We now wish to perform one more birational transformation.

Definition 4.5 Let W .k; l/ be the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.t; v; z/.

For each odd integer l , let W0.l; l/ denote the component of W .l; l/ given by tD z and
if jl j> 3 let W1.l; l/ denote the projective closure of the scheme-theoretic complement
of W0.l; l/ in W .l; l/.

First, we prove a lemma.

Lemma 4.6 On U.k; l/, v D 0 only for a set of dimension zero.
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Proof If v D 0 then since

t D uv� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/

we conclude that

t D�z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

The defining polynomial for U.k; l/ is Sn.t/Sm�1.z/�Sn�1.t/Sm.z/. Upon substi-
tuting the above polynomial in ZŒz� for t we see that this defining polynomial can be
expressed as a polynomial in ZŒz�. As a result, this has a finite number of roots. For
each of these z values, there is one associated t , and hence we have a finite number of
points on U.k; l/ where v D 0.

Now we are prepared to show the following.

Proposition 4.7 The set U.k; l/�C3.u; v; z/ is birational to W .k; l/�C3.t; v; z/.

Proof Since t is linear in u, we define the rational map from C3.u; v; z/ to C3.t; v; z/

by this replacement. That is, define the rational map

.u; v; z/ 7!

�
.uC z.S2

m.z/CS2
m�1

.z//� 4Sm.z/Sm�1.z//

v
; v; z

�
which has rational inverse

.t; v; z/ 7!
�
tv� z.S2

m.z/CS2
m�1.z//C 4Sm.z/Sm�1.z/; v; z

�
:

The result now follows from Lemma 4.6.

Definition 4.8 Let C.k; l/ be the curve given by the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C2.t; z/. For each odd integer l , let C0.l; l/ denote the component of C.l; l/ given
by t D z and if jl j> 3 let C1.l; l/ denote the projective closure of the scheme-theoretic
complement of C0.l; l/ in C.l; l/.

With this definition, the surface W .k; l/ is a product of the curve C.k; l/ and C . We
have shown that V .k; l/ is birational to W .k; l/, which is equivalent to the following,
proving the first portion of Theorem 1.2.

Theorem 4.9 The algebraic set Xirr.k; l/ is birational to W .k; l/, which is, in turn,
isomorphic to C.k; l/�C .
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5 Smoothness and irreducibility of W.k; l/

We will show that if k ¤ l then W .k; l/ is smooth and irreducible, and if k D l

then W .l; l/ has two irreducible components. Since W .k; l/ is the product of C.k; l/

and C , we will focus on the curve C.k; l/. Our proof is similar to [8], but with small
modifications. Recall that kD 2mC1 and l D 2nC1. The equation Sn.t/Sm�1.z/D

Sn�1.t/Sm.z/ can be written as

Sn.t/

Sn�1.t/
D

Sm.z/

Sm�1.z/

when Sn�1.t/Sm�1.z/¤ 0.

Definition 5.1 Let

hj D Sj=Sj�1; �j D S 0j Sj�1�Sj S 0j�1 and Hn D S 00j Sj�1�S 00j�1Sj :

We can rewrite the defining equation for W .k; l/ as hn.t/ D hm.z/, and with this
notation the derivative is h0j D�j=S

2
j�1

.

The following lemma can be verified by using Lemma 3.6.

Lemma 5.2 We have

(a) .!2� 4/�j .!/D S2j .!/� .2j C 1/,

(b) .!2� 4/2Hj .!/D .2j � 2/!S2j .!/� .4j C 2/S2j�1.!/C .4j C 2/! .

We will need the following lemma (see [8, Lemma 2.6]) to connect smoothness and
irreducibility.

Lemma 5.3 Let C � P1 �P1 be a smooth projective curve of bidegree .a; b/ with
a; b > 0. Then C is irreducible and its genus is .a� 1/.b� 1/.

The proof of smoothness will follow from comparing valuations at potential critical
points. We begin with a few lemmas. In the case that mn < 0 we use the following
lemma.

Lemma 5.4 Let ! 2C be a root of �n . If n> 0 then jhn.!/j> 1, and if n< 0 then
jhn.!/j< 1.
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Proof Suppose that �n.!/ D 0. By Lemma 5.2, S2n.!/ D 2n C 1. We have
Sn�1.!/ 6D 0 (otherwise

Sn.!/S
0
n�1.!/D S 0n.!/Sn�1.!/��n.!/D 0;

which cannot occur, since Sn�1 is separable and relatively prime to Sn in CŒ!�).
Hence hn.!/ D Sn.!/=Sn�1.!/ is well-defined. Write ! D � C ��1 . We have
S2n.!/D 2nC 1, ie

�2nC1
� ��.2nC1/

D .2nC 1/.� � ��1/:

Assume n > 0. Then �2nC1� ��.2nC1/ and � � ��1 are in the same half-plane. It
follows that �2nC1� �2nC1 and � � � are in the same half-plane. Since both these
values are purely imaginary, we conclude .�2nC1� �2nC1/.� � �/� 0, with equality
if and only if �2nC1 is real.

Let ˛ D �� D j� j2 > 0. We have

j�nC1
� ��.nC1/

j
2
� j�n

� ��n
j
2

D .�nC1
� ��.nC1//.�nC1

� ��.nC1//� .�n
� ��n/.�n

� ��n/

D .˛nC1
C˛�.nC1/

� .˛n
C˛�n//� .�2nC1

� �2nC1/.� � �/=�nC1�nC1

D .˛� 1/.˛2nC1
� 1/=˛nC1

� .�2nC1
� �2nC1/.� � �/=˛nC1

� 0:

Equality holds if and only if j� j2 D ˛ D 1 and �2nC1 is real, so if and only if
�2nC1 D˙1. If �2nC1 D˙1, the equation �2nC1���.2nC1/ D .2nC 1/.� ���1/

implies that � D ��1 , so � D˙1 and ! D˙2. If ! D˙2 then

jhn.!/j D jSn.!/=Sn�1.!/j D .nC 1/=n> 1:

The proof for n< 0 is similar. In that case �2nC1� �2nC1 and � � � are in opposite
half-planes and (˛� 1/.˛2nC1� 1/� 0.

In the remaining case (mn> 0) we can use non-archimedean places instead of complex
absolute values. For any root ! of �n , we have S2n.!/D 2nC 1. It follows that

h2
n.!/� 1D

�
Sn.!/

Sn�1.!/

�2

� 1D
S2n.!/

S2
n�1

.!/
D

2nC 1

S2
n�1

.!/
:

Lemma 5.5 For any field F with characteristic not dividing 2n, the polynomial Sn�1

is separable over F and we have .�n;Sn�1/D .1/ in F Œ!�.

Proof We have .�nC1��n�1/Sn�1 D �
2n� 1, and the reduction of this polynomial

to F is separable. It follows that Sn�1 is separable over F , ie .Sn�1;S
0
n�1

/ D .1/.
Since �n D S 0nSn�1�SnS 0

n�1
, we have .�n;Sn�1/D .SnS 0

n�1
;Sn�1/D .1/.
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Lemma 5.6 Let p be a prime dividing 2nC 1. Let K be a number field containing a
root ! of �n . Let v be a valuation on K with v.p/D 1. Then v.Sn�1.!//D 0.

Proof The polynomial �n is monic, so ! is an algebraic integer. Let p be the prime
associated with v , and Fp be its residue field. Then the characteristic p of Fp does not
divide 2n, so by Lemma 5.5 the reduction of Sn�1.!/ to Fp is not 0. This implies
v.Sn�1.!//D 0.

We now address smoothness.

Proposition 5.7 Let k and l be any odd integers with k ¤ l . Then C.k; l/ is smooth
over Q.

Proof Suppose P D .t0; z0/ is a singular point on the affine part of C.k; l/. Then
Sn�1.t0/ 6D 0 and Sm�1.z0/ 6D 0. (If Sn�1.t0/D 0 then Sm�1.z0/D 0. Since P is a
singular point, we also have S 0

n�1
.t0/D 0 and S 0

m�1
.z0/D 0. This is impossible since

Sj is separable.) Then C.k; l/ can be given around P by hn.t/D hm.z/. The fact that
P is a singular point is then equivalent to the fact that t0 and z0 are critical points for
hn and hm , respectively. (We have �n.t0/D�m.z0/D 0, ie h0n.t0/D h0m.z0/D 0.)

First, consider the case when kl < 0. The points at infinity are smooth by [8,
Lemma 5.6]. The proposition follows from Lemma 5.4. That is, the values of hk at
its critical points are all different from each other, and they are also different from the
values of hl at all its critical points when k 6D l .

Now, assume that kl > 0 but k ¤ l . Assume P .t0; z0/ is a singular point over Q of
the standard affine part of C.k; l/. Let K be the number field Q.t0; z0/. We have
�n.t0/D�m.z0/D 0 and C.k; l/ is given around P by hn.t0/D hm.z0/. It follows
that h2

n.t0/� 1D h2
m.z0/� 1, ie

(�)
2nC 1

S2
n�1

.t0/
D

2mC 1

S2
m�1

.z0/
:

Let p be any prime such that vp.2nC1/ 6D vp.2mC1/. By symmetry we may assume
vp.2nC1/> vp.2mC1/. Let p be any prime of K above p , and let v be the valuation
on K associated to p , normalized so that v restricts to vp on Q. By Lemma 5.6,
we have

v

�
2nC 1

S2
n�1

.t0/

�
D v.2nC 1/ > v.2mC 1/� v

�
2mC 1

S2
m�1

.z0/

�
:

This contradicts the equality (�), and we conclude that no singular point P exists on
the affine part. By [8, Lemma 5.6] there are no singular points at infinity.
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Proposition 5.8 Let l be any odd integer. Then the curve C1.l; l/ is smooth over Q.

Proof Let F D Sn.t/Sn�1.z/�Sn�1.t/Sn.z/ and G D F=.z� t/. Then C1.l; l/ is
defined by G.t; z/D 0. Any singular point of C1.l; l/ is also a singular point of C.l; l/.
By [8, Lemma 5.6] we find that C.l; l/ is smooth at all points at infinity, so C1.l; l/ is as
well. Assume that P D .t0; z0/ is a singular point of the standard affine part of C1.l; l/.
Then P is also a singular point of C.l; l/. Note that �n.t0/D0 and �n.z0/D0, and we
may rewrite F.P /D0 as hn.t0/Dhn.z0/. Recall .!2�4/�n.!/DS2n.!/�.2nC1/.

Since S2
n .!/� !Sn.!/Sn�1.!/C S2

n�1
.!/ D 1 and S2

n .!/� S2
n�1

.!/ D S2n.!/,
we have

hn.!/C h�1
n .!/D !C

1

Sn.!/Sn�1.!/

and

hn.!/� h�1
n .!/D

S2n.!/

Sn.!/Sn�1.!/
:

Since hn.t0/D hn.z0/ and S2n.t0/D S2n.z0/D 2nC 1, we conclude that t0 D z0 .

Recall that Hn D S 00n Sn�1�SnS 00
n�1

. By l’Hôpital’s rule, we have

�Hn.t0/D Fzz.t0; t0/

D lim
z!t0

Fz.t0; z/

z� t0
D 2 lim

z!t0

F.t0; z/

.z� t0/2
D 2 lim

z!t0

G.t0; z/

z� t0

D 2Gz.t0; t0/:

The fact that C1.l; l/ is singular at P D .t0; t0/ implies that 0DGz.P /D�
1
2
Hn.t0/.

Hence, by Lemma 5.2 we have

.2n� 2/t0S2n.t0/� .4nC 2/S2n�1.t0/C .4nC 2/t0 D .t
2
0 � 4/2Hn.t0/D 0:

Since S2n.t0/D 2nC 1, we obtain S2n�1.t0/D nt0 . Since

S2
2n.t0/� t0S2n.t0/S2n�1.t0/CS2

2n�1.t0/D 1;

we conclude that t0 D ˙2. This is a contradiction, since �n.˙2/ 6D 0 by direct
calculation. We are done.

Proposition 5.9 The algebraic set C.k; l/ is smooth and has one irreducible compo-
nent if k ¤ l . The curve C.3; 3/D C.�3;�3/ is given by t D z . If k D l and jl j> 3

then C.k; l/ has two irreducible components, C0.l; l/ and C1.l; l/. Both C0.l; l/ and
C1.l; l/ are smooth.
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Proof By Lemma 5.3 it suffices to show that C.k; l/ is smooth. If k¤ l , then C.k; l/

is smooth by Proposition 5.7. If k D l then C1.l; l/ is smooth by Proposition 5.8. The
proposition follows since C0.l; l/ is given by t D z and is smooth.

We have shown that if k ¤ l then Xirr.k; l/ is a single irreducible component. When
kD l and jl j> 3, we have shown that Xirr.k; l/ comprises two irreducible components,
and we now identify the canonical component.

Lemma 5.10 If k¤ l then X0.k; l/ is birational to C0.k; l/�C . The curve C.3; 3/D

C.�3;�3/ is given by t D z and X0.3; 3/ is birational to C.3; 3/�C . If k D l and
jl j > 3 then X0.l; l/ is birational to C0.l; l/ �C and there is one more irreducible
component of Xirr.l; l/, birational to C1.l; l/�C .

Proof By Theorem 4.9, Xirr.k; l/ is birational to C.k; l/�C . Proposition 5.9 shows
that X0.k; l/DXirr.k; l/ when k ¤ l .

By the definition of C0.l; l/ it suffices to show that t D z corresponds to the canonical
component. By construction, z D ��.ab�1/ corresponds to the loop ˛ pictured in
Figure 2. Moreover, t D ��.wk/ corresponds to the loop ˇ pictured in the figure.
When k D l the symmetry induced by flipping the four-plat upside down swaps these
loops. On the level of the character variety this symmetry induces the identity t D z .
(The symmetry acts trivially on x D ��.a/ and y D ��.b/.) For any discrete faithful
representation, t D z must hold on the level of characters since the loops corresponding
to z and t must have the same length (since they are swapped by the symmetry). The
symmetry sends each meridian to a loop freely homotopic to itself, with the reverse
orientation, and does the same for each longitude. Therefore, the symmetry induces a
symmetry on any Dehn filling of the link. We conclude that t D z must be satisfied by
all Dehn fillings as well. By work of Thurston [14], all but finitely many Dehn fillings
of one cusp of the link are on canonical components, and so are dense in X0.k; l/. (See
[9] and also [8, Section 2.3]) The fact that there are exactly two irreducible components
in this case follows from Proposition 5.9.

We summarize this section in the following theorem.

Theorem 1.2 Let kD2mC1 and lD2nC1. The algebraic set Xirr.k; l/ is birational
to C.k; l/�C , where the curve C.k; l/�C2.t; z/ is given by

C.k; l/D fSn.t/Sm�1.z/�Sn�1.t/Sm.z/D 0g:

If k ¤ l then C.k; l/ is smooth and irreducible as considered in P1.t/�P1.z/, and
X0.k; l/DXirr.k; l/ is birational to C.k; l/�C .

Algebraic & Geometric Topology, Volume 15 (2015)



Character varieties of double twist links 3587

a b

˛ k

l

ˇ

k�2

l�2

Figure 2: Meridian loops on double twist links and the four-plat presentation

The curve C.3; 3/D C.�3;�3/ is given by t D z . If k D l and jl j > 3 then C.l; l/

is the union of exactly two components: C0.l; l/, given by t D z , and C1.l; l/, the
scheme-theoretic complement of C0.l; l/ in C.l; l/. Both are smooth and irreducible
as considered in P1.t/ � P1.z/. The algebraic set Xirr.k; l/ is given by the union
X0.l; l/[X1.l; l/, where X0.l; l/ is birational to C0.l; l/�C and X1.l; l/ is birational
to C1.l; l/�C .

We conclude this section with a few remarks about symmetries. The proof of Lemma
5.10 relied on analysis of the symmetry which flips the four-plat upside down. For
all k and l , the link complement S3�J.k; l/ has a non-trivial symmetry group. In
the case when k ¤ l this is generated by two involutions. The first is the flip about
a vertical axis through the k half-twists. (In the left projection in Figure 2 this axis
is the vertical axis through the middle of the diagram.) The second symmetry is the
analogous symmetry through an axis through the l half-twists. (In the left projection
in Figure 2 this axis is a circle through the middle of the l half-twists which goes
horizontally through the k box.)

These symmetries both take the loop corresponding to a to a loop freely homotopic
to the loop corresponding to b�1 , and fix the free homotopy class of the un-oriented
loop corresponding to ab�1 . Since they are involutions, the effect on the character
variety is that x D ��.a/ is sent to y D ��.b/D ��.b

�1/ and z D ��.ab�1/ is fixed.
By definition, t D ��.wk/ is given by

.xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

We conclude that these symmetries fix t . Therefore, the induced action of the symmetry
group on C3Œx;y; z� when k ¤ l is given by .x;y; z/ 7! .y;x; z/. (This is the action
of an index-two subgroup when k D l .)
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Recall that

'.x;y; z/D .xyzC 4�x2
�y2

� z2/
�
Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

�
:

The abelian component of the character variety is given by .xyzC 4�x2�y2� z2/

and is preserved by this action. As there are points on this component where x¤ y , we
conclude that the action preserves this component set-wise but not point-wise. (For ex-
ample, the point .2;�2; 2/ is sent to .�2; 2; 2/.) The set of irreducible representations
is given by .Sn.t/Sm�1.z/�Sn�1.t/Sm.z//. Since t and z are fixed, this component
(or in the case when k D l , these two components) is fixed by these symmetries. When
k ¤ l , since x¤ y for infinitely many representations on this component, we conclude
that the action preserves this component set-wise but not point-wise. Similarly, when
k D l these symmetries preserve both z D t and the other component set-wise but not
point-wise.

We conclude that even the non-geometric representations algebraically preserve this
symmetry. However, when k D l the additional symmetry fixes the un-oriented free
homotopy class of loops corresponding to a and similarly for b , but takes the un-
oriented loop corresponding to ab�1 to a loop freely homotopic to one corresponding
to wk . This is not freely homotopic to .ab�1/˙1 . It is this that induces the factoring
of the defining equation, ' . In this case, when jl j > 3 there is a component which
corresponds to necessarily non-geometric representations which do not algebraically
preserve this symmetry.

6 Further invariants

We have shown in Theorem 1.2 that, when k¤ l , X0.k; l/ is birational to C0.k; l/�C ,
and that C0.k; l/ is smooth and irreducible in P1 � P1 . We have also shown that
Xirr.l; l/ is birational to the union of C0.l; l/�C and C1.l; l/�C . We now compute
the genus of these curves, and the degree of irrationality of X0.k; l/ and X1.l; l/.

Lemma 6.1 When k ¤ l the bidegree of C.k; l/ is
��
jkj
2

˘
;
�
jlj
2

˘�
. The bidegree of

C1.l; l/ is
��
jlj
2

˘
� 1;

�
jlj
2

˘
� 1

�
.

Proof By Lemma 3.6, S�1 D 0 and the degree of Sj is j when j > 0 and �j � 2

when j < �1. Therefore, the bidegree of C.k; l/ is .a; b/, where aD n if n> 0 and
a D �n� 1 if n < �1, and b D m if m > 0 and b D �m� 1 if m < �1. This is
equivalent to aD

�
jkj
2

˘
and bD

�
jlj
2

˘
. The computation for C1.l; l/ follows from this

using the definition of C1.l; l/.
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Theorem 1.3 Let jkj; jl j> 1. When k ¤ l the genus of C.k; l/ is��
jkj
2

˘
� 1

���
jlj
2

˘
� 1

�
:

The genus of C0.l; l/ is zero, and for jl j> 3 the genus of C1.l; l/ is
��
jlj
2

˘
� 2

�2 .

Proof The result follows from the following, by Lemma 6.1. If C is a smooth
projective curve in P1�P1 of bidegree .a; b/ then the genus is .a�1; b�1/ (see [8]).

Definition 6.2 Let X be an irreducible (affine or projective) complex variety of
dimension n. The degree of irrationality of X ,  .X /, is the minimal degree of any
rational map from X to a dense subset of Cn . When X is a curve, this is also called
the gonality of X .

The gonality, in its relation to character varieties and Dehn filling, is discussed at
length in [11]. Moreover, the gonality of the components of the SL2.C/ and PSL2.C/
character varieties are computed (Theorem 9.2, Theorem 9.4). We now compute the
degree of irrationality of our sets.

Theorem 1.4 The degree of irrationality of X0.k; l/ is min
˚�
jkj
2

˘
;
�
jlj
2

˘	
when k¤ l .

The degree of irrationality of X0.l; l/ is 1, and the degree of irrationality of X1.l; l/ is�
jlj
2

˘
� 1.

Proof The degree of irrationality of a surface of the form C � C is equal to the
gonality of C ; see [18, Proposition 1] and [15]. (If C is a non-singular projective
curve then C �C is a non-singular projective surface since the fibers have genus zero.)
Following [11, Lemma 9.1] if C is a smooth irreducible curve in P1�P1 of bidegree
.a; b/ with ab ¤ 0 then the gonality of C is minfa; bg. The result now follows from
Lemma 6.1.

7 Desingularization of X0.3; 2m C 1/

The simplest subfamily of the hyperbolic two-component double twist links is when
kD 3 (so nD 1). This family includes the Whitehead link 52

1
D .8=3/ which is J.3; 3/,

and 62
2
D .10=3/ which is J.3;�3/. In this section we first determine the singular points

of the natural model of X0.3; l/, where lD2mC1 in Proposition 7.5. In Proposition 7.7
we determine the degenerate fibers of the map �W S! P1 , .x W y W u; z Ww/ 7! .z Ww/.
We then show in Theorem 1.5 that the desingularization of the natural model for
X0.3; 2mC 1/ is a series of blowups of P1 �P1 .
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By Theorem 1.2, X0.3; l/D Xirr.3; l/ is birational to C.3; l/�C , where C.3; l/ is
given by tSm�1.z/D Sm.z/ in C2.t; z/. Since this defining polynomial is linear in t

we conclude that C.3; l/ is itself birational to C and X0.3; l/ is indeed birational
to C2 . The Whitehead link, J.�3;�3/D J.3; 3/ is a degenerate case of the J.3; l/

links, where X0.3; 3/DXirr.3; 3/ is given by t D z up to birational equivalence.

We begin by homogenizing the defining polynomial for X0.3; l/, where l D 2mC 1.
Recall that

t D .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

Since S2
m.z/CS2

m�1
.z/� zSm.z/Sm�1.z/D 1, this simplifies to

t D xy � zC .xyzC 4�x2
�y2

� z2/Sm.z/Sm�1.z/:

The defining polynomial for the natural model of X0.3; l/ is tSm�1.z/� Sm.z/ in
CŒx;y; z�. We now homogenize it.

Definition 7.1 Let Tj D Tj .z; w/D w
j Sj .z=w/.

The following is a direct consequence of the Chebyshev identity

S2
j .!/CS2

j�1.!/�!Sj .!/Sj�1.!/D 1:

Lemma 7.2 We have

T 2
j Cw

2T 2
j�1� z Tj Tj�1 D w

2j :

It is now elementary to determine the homogenous defining polynomial.

Lemma 7.3 The homogenization of the defining polynomial tSm�1.z/� Sm.z/ in
P2 �P1 D f.x W y W u; z W w/g is

F D
�
.xyw�u2z/w2m

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/TmTm�1

�
Tm�1

�u2w2mTm:

We now determine the singular points in the projective closure of our natural model
in P2 � P1 . To find singular points, we consider solutions .x W y W u; z W w/ of
F D Fx D Fy D Fu D Fz D Fw D 0.

First, we compute these partial derivatives; the results are elementary to verify by direct
calculations.

Algebraic & Geometric Topology, Volume 15 (2015)



Character varieties of double twist links 3591

Lemma 7.4 The first-order partials of F as in Lemma 7.3 are given by the following:

Fx D .yw
2m
C .yz� 2xw/TmTm�1/w Tm�1;

Fy D .xw
2m
C .xz� 2yw/TmTm�1/w Tm�1;

Fu D�2u
�
.zw2m

C .z2
� 4w2/TmTm�1/Tm�1Cw

2mTm

�
;

Fz D
�
�u2w2m

C .xyw� 2u2z/TmTm�1

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/.TmTm�1/z

�
Tm�1

C
�
.xyw�u2z/w2m

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/TmTm�1

�
� .Tm�1/z �u2w2m.Tm/z;

Fw D
�
.2mC 1/xyw2m

� 2mu2zw2m�1
C .xyzC 8u2w� 2x2w� 2y2w/TmTm�1

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/.TmTm�1/w

�
Tm�1

C
�
.xyw�u2z/w2m

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/TmTm�1

�
� .Tm�1/w �u2.2mw2m�1TmCw

2m.Tm/w/:

We can now determine the singular points.

Proposition 7.5 The singular points .x W y W u; z W w/ 2 P2 �P1 of F are

� .1 W 0 W 0; 1 W 0/; .0 W 1 W 0; 1 W 0/,

� .1 W 0 W 0; z W 1/; .0 W 1 W 0; z W 1/, where z is a root of Sm�1.z/,

� .1 W 1 W 0; z W 1/, where z is a root of Sm.z/�Sm�1.z/,

� .1 W �1 W 0; z W 1/, where z is a root of Sm.z/CSm�1.z/.

The number of singularities is 4m if m� 1, and is �.2C 4m/ if m� �2.

Proof We break the analysis down into cases.

First, we consider the case when .w W z/D .0 W 1/. We have Fx D Fy D 0, F D�u2

and Fu D�2u. Hence uD 0. Now we have Fz D 0 and Fw D xy . Thus xy D 0. In
this case, there are two singular points, .1 W 0 W 0; 1 W 0/ and .0 W 1 W 0; 1 W 0/.

Next, we consider the case when w D 1. First we assume that Sm�1.z/D 0. Then

Fx D Fy D 0; F D�u2Sm.z/; Fu D�2uSm.z/:

Since Sm.z/ 6D 0, we have u D 0. Then Fz D xyS 0
m�1

.z/ and Fw D xy.Tm�1/w .
Since S 0

m�1
.z/ 6D 0, we must have xy D 0. In this case, the singular points are

.1 W 0 W 0; z W 1/; .0 W 1 W 0; z W 1/, where z is a root of Sm�1.z/.
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Finally, we assume that w D 1 and Sm�1.z/ 6D 0. We have

Fx D yC .yz� 2x/Sm.z/Sm�1.z/D y.S2
m.z/CS2

m�1.z//� 2xSm.z/Sm�1.z/;

Fy D xC .xz� 2y/Sm.z/Sm�1.z/D x.S2
m.z/CS2

m�1.z//� 2ySm.z/Sm�1.z/:

If x and y are not simultaneously equal to 0, we must have S2
m.z/�S2

m�1
.z/D 0.

We first consider the subcase when x D y D 0, so .x W y W u/D .0 W 0 W 1/. Then, by
Lemma 3.8,

F D Sm�1.z/
�
�zC .4� z2/Sm�1.z/Sm.z/

�
�Sm.z/D�S3m.z/:

Since S3m.z/ is separable in CŒz�, there are no singular points in this case.

Therefore, we may assume that xy ¤ 0 and S2
m.z/�S2

m�1
.z/D 0. We consider the

cases that Sm.z/�Sm�1.z/D 0 and Sm.z/CSm�1.z/D 0 separately.

First assume that Sm.z/�Sm�1.z/D 0. Then Fx D Fy D 0 is equivalent to x D y .
Since S2

m.z/D 1=.2� z/, we have F D u2Sm.z/ and Fu D 2uSm.z/. Hence uD 0.
Now we have

Fz D
�
Sm.z/Sm�1.z/C .z� 2/.Sm.z/Sm�1.z//

0
�
x2Sm�1.z/:

From S2
m.z/CS2

m�1
.z/� zSm.z/Sm�1.z/D 1 and Sm.z/D Sm�1.z/ we get

.z� 2/.S 0m.z/CS 0m�1.z//D�Sm.z/:

It follows that Fz D 0. We have

Fw D
�
.2mC 1/C .z� 4/Sm.z/Sm�1.z/C .z� 2/.TmTm�1/w

�
x2Sm�1.z/:

From T 2
mCw

2T 2
m�1
�z TmTm�1Dw

2m (by Lemma 7.2) and Sm.z/D Sm�1.z/ we
get

.2� z/
�
.Tm/wC .Tm�1/w

�
Sm.z/C 2S2

m.z/D 2m:

It follows that

.2mC 1/C .z� 4/Sm.z/Sm�1.z/C .z� 2/.TmTm�1/w D 1C .z� 2/S2
m.z/D 0:

Hence Fw D 0. The corresponding singular points are .1 W 1 W 0; z W 1/, where z is a
root of Sm.z/�Sm�1.z/.

Finally, assume that xy D 0 and Sm.z/C Sm�1.z/ D 0. Similar to the above, the
singular points are .1 W 1 W 0; z W 1/, where z is a root of Sm.z/CSm�1.z/.

Definition 7.6 Let S D Z.F / � P2 � P1 be the vanishing set of F and zS be the
desingularization of S .
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Now we determine the degenerate fibers; we determine all .z W w/ 2 P1 such that
F D Fx D Fy D Fu D 0 has at least one solution .x W y W u/ 2 P2 .

Proposition 7.7 The degenerate fibers of �W S! P1 , .x W y W u; z Ww/ 7! .z Ww/, are

� ��1.1 W 0/D f.x W y W u/ 2 P2 j u2 D 0g,

� ��1.z W 1/D f.x W y W u/ 2 P2 j u2 D 0g, where z is a root of Sm�1.z/,

� ��1.z W1/Df.x Wy Wu/2P2 j .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//D0g,
where z is a root of S3m.z/,

� ��1.z W 1/D f.x W y W u/ 2 P2 j .x�y/2� .2� z/u2 D 0g, where z is a root of
Sm.z/�Sm�1.z/,

� ��1.z W 1/D f.x W y W u/ 2 P2 j .xCy/2� .2C z/u2 D 0g, where z is a root of
Sm.z/CSm�1.z/.

Proof We break the analysis down into cases.

First, we consider the case when .z W w/D .0 W 1/. We have Fx D Fy D 0, F D�u2

and Fu D�2u. Hence uD 0. Note that ��1.1 W 0/D f.x W y W u/ 2 P2 j u2 D 0g.

Next, we consider the case when w D 1. First we assume that Sm�1.z/D 0. Then

Fx D Fy D 0; F D�u2Sm.z/; Fu D�2uSm.z/:

Hence uD 0. In this case ��1.z W 1/D f.x W y W u/ 2 P2 j u2 D 0g.

Finally, we assume that w D 1 and Sm�1.z/ 6D 0. Note that if x and y are not
simultaneously equal to 0, we must have S2

m.z/�S2
m�1

.z/D 0.

We first consider the subcase when x D y D 0, so .x W y W u/D .0 W 0 W 1/. Then

Fx D Fy D 0; F D�S3m.z/; Fu D�2S3m.z/:

Hence S3m.z/D 0. In this case

��1.z W 1/D
˚
.x W y W u/ 2 P2

j .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//D 0
	
:

As a result we may assume that xy ¤ 0. Therefore

Sm.z/�Sm�1.z/D 0 or Sm.z/CSm�1.z/D 0:

If Sm.z/�Sm�1.z/ D 0 then F D Fx D Fy D Fu D 0 is equivalent to x D y and
uD 0. In this case

��1.z W 1/D f.x W y W u/ 2 P2
j .x�y/2� .2� z/u2

D 0g:
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If Sm.z/CSm�1.z/D 0 then F D Fx D Fy D Fu D 0 is equivalent to x D�y and
uD 0. In this case

��1.z W 1/D f.x W y W u/ 2 P2
j .xCy/2� .2C z/u2

D 0g:

Next, we consider desingularization. Since S is birational to P1 �P1 , we can blow
down zS over P1 some number of times so that it becomes a fiber bundle P1 �P1

over P1 .

Definition 7.8 In the following, let � denote the Euler characteristic of a surface. Let
Ssing be the set of singular points of S and Nsing D jSsingj. Furthermore, let N be
such that zS is obtained from P1 �P1 by N one-point blow-ups.

We have
�. zS/D �.S �Ssing/CNsing �.P

1/D �.S/CNsing

(see [5, Lemma 2.2]).

By definition, zS is obtained from P1 � P1 by N one-point blow-ups. Then since
�.P1 �P1/D 4, using P1 �P1 in place of S in the above, we have

�. zS/D �.P1
�P1/CN D 4CN:

It follows that N D �.S/CNsing� 4. We summarize this as a lemma.

Lemma 7.9 We have N D �.S/CNsing� 4.

Proposition 7.10 The Euler characteristic of S is �.S/D
�

4C 5m if m� 1;

�5m if m� �2:

Proof Let 'W S ,! P2 �P1 Ü P1 �P1 be the rational map defined by

.x W y W u; z W w/ 7! .x W y; z W w/:

Let P be the set of points .0 W 0 W 1; z W 1/ where z is a root of S3m.z/. The map ' is
not defined at points in P . Let U WD S �P . We now determine '.U /.

Write F DGCu2H , where

G D
�
xyw2mC1

C .xyzw�x2w2
�y2w2/TmTm�1

�
Tm�1;

H D
�
�zw2m

C .4w2
� z2/TmTm�1

�
Tm�1�w

2mTm:
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Note that '.U / is the collection of all points .x W y; z Ww/ 2 P1�P1 except those for
which F.x Wy; z Ww/2CŒu� is a nonzero constant. The polynomial F.x Wy; z Ww/2CŒu�
is a nonzero constant whenever H D 0 and G 6D 0, which is equivalent to

w D 1; S3m.z/D 0 and .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z// 6D 0:

Hence '.U / D P1 �P1 �Q, where Q is the set of points .x W y; z W 1/ 2 P1 �P1

satisfying S3m.z/D 0 and

.xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z// 6D 0:

Note that �.Q/D 0.

Let L be the set of points .x W y; z W 1/ 2 P1 �P1 satisfying S3m.z/D 0 and

.xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//D 0:

Note that fG DH D 0g � P1 �P1 is equal to L. Hence

�.L/D �.'�1.L//D

�
6m if m� 1;

�.6mC 4/ if m� �2:

Recall that

G D
�
xyw2m

C .xyz�x2w�y2w/TmTm�1

�
wTm�1:

Since T 2
mCw

2T 2
m�1
� zTmTm�1 D w

2m , we have

G D .xTm�ywTm�1/.yTm�xwTm�1/wTm�1:

Let B WD Z.G/ be the zero set of G in P1 �P1 . Then B D B1[B2[B3 , where

B1 D Z.w/D P1
� f.1 W 0/g;

B2 D Z.Tm�1/D P1
� f.z W 1/ j Sm�1.z/D 0g;

B3 D Z.xTm�ywTm�1/[Z.yTm�xwTm�1/

are subsets in P1 �P1 .

We have B3 D B31[B32 , where

B31 D Z.xTm�ywTm�1/ and B32 D Z.yTm�xwTm�1/:

Note that .x Wy; z Ww/2B31\B32 if and only if xDy and TmDwTm�1 , or xD�y

and Tm D�wTm�1 . Hence

B31\B32 D f.1 W 1; z W 1/ j Sm.z/�Sm�1.z/D 0g

[ f.1 W �1; z W 1/ j Sm.z/CSm�1.z/D 0g:
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It follows that

�.B31\B32/D

�
2m if m� 1;

�.2mC 2/ if m� �2:

Then

�.B3/D �.B31/C�.B32/��.B31\B32/D

�
4� 2m if m� 1;

6C 2m if m� �2:

We have B1\B2 D∅, B1\B3 D f.1 W 0; 1 W 0/; .0 W 1; 1 W 0/g, and

B2\B3 D f.1 W 0; z W 1/; .0 W 1; z W 1/ j Sm�1.z/D 0g:

Hence

�.B/D �.B1/C�.B2/C�.B3/��.B1\B2/��.B1\B3/

��.B2\B3/C�.B1\B2\B3/

D

�
2C .2m� 2/C .4� 2m/� 0� 2� .2m� 2/C 0D 4� 2m if m� 1;

2� .2mC 2/C .6C 2m/� 0� 2C .2mC 2/C 0D 6C 2m if m� �2:

It follows that

�.U /D 2�.P1
�P1

� .B tQ//C�.B �L/C�.'�1.L//

D 2�.P1
�P1/��.B/� 2�.Q/��.L/C�.'�1.L//

D

�
4C 2m if m� 1;

2� 2m if m� �2:

Then

�.S/D �.U /C�.P /D

�
.4C 2m/C 3mD 4C 5m if m� 1;

.2� 2m/� .3mC 2/D�5m if m� �2:

Proposition 7.10 and Proposition 7.5 along with the fact that

N D �.S/CNsing� 4

give

N D �.S/CNsing� 4D

�
.4C 5m/C 4m� 4D 9m if m� 1;

.�5m/C .�.2C 4m//� 4D�.6C 9m/ if m� �2:

This calculation completes the proof of Theorem 1.5.
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The L2–Alexander torsion is symmetric

JÉRÔME DUBOIS

STEFAN FRIEDL

WOLFGANG LÜCK

We show that the L2 –Alexander torsion of a 3–manifold is a symmetric function.
This can be viewed as a generalization of the symmetry of the Alexander polynomial
of a knot.

57M27; 57Q10

1 Introduction

An admissible triple .N; �;  / consists of an irreducible, orientable, compact 3–
manifold N ¤S1�D2 with empty or toroidal boundary, a class �¤ 02H 1.N IZ/D
Hom.�1.N /;Z/ and a homomorphism  W �1.N /!G such that � factors through  .
In [4; 5] we used the L2 –torsion (see for example Lück [14]) to associate to an
admissible triple .N; �;  / the L2 –Alexander torsion � .2/.N; �;  / which is a function

� .2/.N; �;  /W R>0!R�0

that is well defined up to multiplication by a function of the type t 7! tm for some
m 2 Z. We recall the definition in Section 6.

The goal of this paper is to show that the L2 –Alexander torsion is symmetric. In order
to state the precise symmetry result we need to recall that given a 3–manifold N the
Thurston norm [16] of some � 2H 1.N IZ/D Hom.�1.N /;Z/ is defined as

xN .�/ WDminf��.S/ j S �N properly embedded surface dual to �g:

Here, given a surface S we define its complexity as ��.S/ WD ��.S 0/, where S 0 is
the result of deleting all components from S that are disks or spheres. Thurston [16]
showed that xN is a (possibly degenerate) norm on H 1.N IZ/. Now we can formulate
the main result of this paper.

Published: 12 January 2016 DOI: 10.2140/agt.2015.15.3599

http://msp.org
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Theorem 1.1 Let .N; �;  / be an admissible triple. Then for any representative � of
� .2/.N; �;  / there exists an n 2 Z with n� xN .�/ mod 2 such that

�.t�1/D tn
� �.t/ for any t 2R>0:

It is worth looking at the case that N D S3 n �K is the complement of a tubular
neighborhood �K of an oriented knot K � S3 . We denote by �K W �1.N /! Z the
epimorphism sending the oriented meridian to 1. Let  W �1.N /!G be a homomor-
phism such that �K factors through  . We define

� .2/.K;  / WD � .2/.S3
n �K; �K ;  /:

If we take  D id to be the identity, then we showed in [4] that

� .2/.K; id/D�.2/
K
.t/ �maxf1; tg;

where �.2/
K
.t/W R>0!R�0 denotes the L2 –Alexander invariant of Li and Zhang [12;

13], which was also studied by Dubois and Wegner [6; 7] and Aribi [1; 2].

If we take  D�K , then we showed in [4] that the L2 –Alexander torsion � .2/.K; �K / is
fully determined by the Alexander polynomial �K .t/ of K and that in turn � .2/.K; �K /

almost determines the Alexander polynomial �K .t/. In this sense the L2 –Alexander
torsion can be viewed as a “twisted” version of the Alexander polynomial, and at least
morally it is related to the twisted Alexander polynomial of Wada [20] and to the
higher-order Alexander polynomials of Cochran [3] and Harvey [10]. We refer to [5]
for more on the relationship and similarities between the various twisted invariants.

If K is a knot, then any Seifert surface is dual to �K and it immediately follows that
x.�K / � maxf2 � genus(K) � 1; 0g. In fact an elementary argument shows that for
any non-trivial knot we have the equality x.�K /D 2 � genus(K)� 1. In particular the
Thurston norm of �K is odd. We thus obtain the following corollary to Theorem 1.1.

Theorem 1.2 Let K � S3 be an oriented non-trivial knot and let  W �1.N /!G be
a homomorphism such that �K factors through  . Then there exists an odd n with

� .2/.K;  /.t�1/D tn
� � .2/.K;  /.t/ for any t 2R>0:

The proof of Theorem 1.1 has many similarities with the proof of the main theorem in
Friedl, Kim and Kitayama [9], which in turn builds on the ideas of Turaev [17; 18; 19].
In an attempt to keep the proof as short as possible we will on several occasions refer
to [9] and [17] for definitions and results.
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Conventions All manifolds are assumed to be connected, orientable and compact. All
CW–complexes are assumed to be finite and connected. If G is a group then we equip
CŒG� with the involution given by complex conjugation and by Ng WD g�1 for g 2G .
We extend this involution to matrices over CŒG� by applying the involution to each entry.
Given a ring R we will view all modules as left R–modules, unless we say explicitly
otherwise. Furthermore, given a matrix A 2Mm;n.R/ we denote by AW Rm! Rn

the R–homomorphism of left R–modules obtained by right multiplication with A and
thinking of elements in Rm as the only row in a .1;m/–matrix.

Acknowledgments The second author gratefully acknowledges the support provided
by the SFB 1085 Higher Invariants at the University of Regensburg, funded by the
Deutsche Forschungsgemeinschaft (DFG). The paper is also financially supported by
the Leibniz Prize of the third author granted by the DFG. We are also grateful to the
referees for carefully reading an earlier version of this paper.

2 Euler structures

In this section we recall the notion of an Euler structure of a pair of CW–complexes and
manifolds which is due to Turaev. We refer to [17; 18; 9] for full details. Throughout
this paper, given a space X , we denote by H1.X / the first integral homology group
viewed as a multiplicative group.

2A Euler structures on CW–complexes

Let X be a CW–complex of dimension m and let Y be a proper subcomplex. We
denote by pW zX ! X the universal covering of X and we write zY WD p�1.Y /. An
Euler lift is a set of cells in zX such that each cell of X nY is covered by precisely one
of the cells in the Euler lift.

Using the canonical left action of � D �1.X / on zX we obtain a free and transitive
action of � on the set of cells of zX n zY lying over a fixed cell in X nY . If c and c0

are two Euler lifts, then we can order the cells such that c D fcij g and c0 D fc0ij g and
such that for each i and j the cells cij and c0ij lie over the same i –cell in X nY . In
particular there exist unique gij 2 � such that c0ij D gij � cij . We denote the projection
map �!H1.X / by ‰ . We define

c0=c WD

mY
iD0

Y
j

‰.gij /
.�1/i
2H1.X /:

Algebraic & Geometric Topology, Volume 15 (2015)
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We say that c and c0 are equivalent if c0=c 2H1.X / is trivial. An equivalence class
of Euler lifts will be referred to as an Euler structure. We denote by Eul.X;Y / the set
of Euler structures. If Y D∅ then we will also write Eul.X /D Eul.X;Y /.

Given g 2 H1.X / and e 2 Eul.X;Y / we define g � e 2 Eul.X;Y / as follows: pick
representatives c for e and zg 2 �1.X / for g , then act on one i –cell of c by g.�1/i .
The resulting Euler lift represents an element in Eul.X;Y / which is independent of the
choice of the cell. We denote by g � e the Euler structure represented by this new Euler
lift. This defines a free and transitive H1.X /–action on Eul.X;Y /, with .g �e/=eD g .

If .X 0;Y 0/ is a cellular subdivision of .X;Y /, then there exists a canonical H1.X /–
equivariant bijection � W Eul.X;Y /! Eul.X 0;Y 0/ which is defined as follows. Let
e 2 Eul.X;Y / and pick an Euler lift for .X;Y / which represents e . There exists
a unique Euler lift for .X 0;Y 0/ such that the cells in the Euler lift of .X 0;Y 0/ are
contained in the cells of the Euler lift of .X;Y /. We denote by �.e/ the Euler structure
represented by this Euler lift. This map equals the map of Turaev [17, Section 1.2].

2B Euler structures of smooth manifolds

Let N be a manifold and let @0N � @N be a union of components of @N such
that �.N; @0N /D 0. A triangulation of N is a pair .X; t/ where X is a simplicial
complex and t W jX j ! N is a homeomorphism. Throughout this section we write
Y WD t�1.@0N /. For the most part we will suppress t from the notation. Following [17,
Section I.4.1] we consider the projective system of sets fEul.X;Y /g.X ;t/ , where .X; t/
runs over all C 1 –triangulations of N and where the maps are the H1.N /–equivariant
bijections between these sets induced either by C 1 –subdivisions or by smooth isotopies
in N . We define Eul.N; @0N / by identifying the sets fEul.X;Y /g.X ;t/ via these
bijections. We refer to Eul.N; @0N / as the set of Euler structures on .N; @0N /.
For a C 1 –triangulation X of N we get a canonical H1.N /–equivariant bijection
Eul.X;Y /! Eul.N; @0N /.

3 The L2–torsion of a manifold

3A The L2–torsion of a chain complex

First we recall some key properties of the Fuglede–Kadison determinant and the
definition of the L2 –torsion of a chain complex of free based left CŒG�–modules.
Throughout the section we refer to [14] and to [4] for details and proofs.

We fix a group G . Let A be a k � l –matrix over CŒG�. There exists the notion of A

being of determinant class. (To be more precise, we view the k� l –matrix A as a map
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N .G/l !N .G/k , where N .G/ is the von Neumann algebra of G , and then there is
the notion of being of determinant class.) We treat this entirely as a black box, but we
note that if G is residually amenable, eg a 3–manifold group [11] or solvable, then by
[8] any matrix over QŒG� is of determinant class. If the matrix A is not of determinant
class then for the purpose of this paper we define detN .G/.A/D 0. On the other hand,
if A is of determinant class, then we define

detN .G/.A/ WD Fuglede–Kadison determinant of A 2R>0 .

Here we do not assume that A is a square matrix. In an attempt to keep the paper as
short as possible we will not provide the (somewhat lengthy) definition of the Fuglede–
Kadison determinant. Instead we summarize a few key properties in the following
theorem which is a consequence of [14, Example 3.12] and [14, Theorem 3.14].

Theorem 3.1 .1/ If A is a square matrix with complex entries such that the usual
determinant det.A/ 2C is non-zero, then detN .G/.A/D jdet.A/j.

.2/ The determinant does not change if we swap two rows or two columns.

.3/ Right multiplication of a column by ˙g , g 2G does not change the determinant.

.4/ For any matrix A over CŒG� we have detN .G/.A/D detN .G/.At /.

Note that (2) implies that when we study Fuglede–Kadison determinants of homomor-
phisms we can work with unordered bases. Now let

C� D .0! Cl

@l
�! Cl�1

@l�1
���! � � �

@2
�! C1

@1
�! C0! 0/

be a chain complex of free left CŒG�–modules. We refer to [14] for the definition
of the L2 –Betti numbers b

.2/
i .C�/ 2 R�0 . Now suppose that the chain complex is

equipped with bases Bi � Ci , i D 0; : : : ; l . If one of the L2 –Betti numbers b.2/i .C�/

is non-zero or if one the boundary maps is not of determinant class, then we define the
L2 –torsion � .2/.C�;B�/ WD 0. Otherwise we define the L2 –torsion to be

� .2/.C�;B�/ WD

lY
iD1

detN .G/.Ai/
.�1/i
2R>0;

where the Ai denote the boundary matrices corresponding to the given bases. This
definition is the multiplicative inverse of the exponential of the L2 –torsion as defined
in [14, Definition 3.29].

Algebraic & Geometric Topology, Volume 15 (2015)
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3B The twisted L2–torsion of CW–complexes and manifolds

Let .X;Y / be a pair of CW–complexes and let e2Eul.X;Y /. We denote by pW zX!X

the universal covering of X and we write zY WD p�1.Y /. The deck transformation
turns C�. zX ; zY / naturally into a chain complex of left ZŒ�1.X /�–modules.

Now let G be a group and let 'W �.X /! GL.d;CŒG�/ be a representation. We view
elements of CŒG�d as row vectors. Right multiplication via '.g/ thus turns CŒG�d

into a right ZŒ�1.X /�–module. We consider the chain complex

C
'
� .X;Y ICŒG�

d / WDCŒG�d ˝ZŒ�1.X /� C�.
zX ; zY /

of left CŒG�–modules. Let e 2Eul.X;Y /. We pick an Euler lift fcij g that represents e .
Throughout this paper we denote by v1; : : : ; vd the standard basis for CŒG�d . We
equip the chain complex C

'
� .X;Y ICŒG�

d / with the basis provided by the vk ˝ cij .
Therefore we can define

� .2/.X;Y; '; e/ WD � .2/
�
C
'
� .X;Y ICŒG�

d /; fvk ˝ cij g
�
2R�0:

Lemma 3.2 .1/ The number � .2/.X;Y; '; e/ is well defined.

.2/ If g 2H1.X /, then

� .2/.X;Y; ';ge/D detN .G/.'.g
�1// � � .2/.X;Y; '; e/:

.3/ If .X 0;Y 0/ is a cellular subdivision of .X;Y / and if e0 2 Eul.X 0;Y 0/ is the
Euler structure corresponding to e , then

� .2/.X 0;Y 0; '; e0/D � .2/.X;Y; '; e/:

The proofs are completely analogous to the proofs for ordinary Reidemeister torsion as
given in [18; 9]. In the interest of space we will not provide the proofs.

Finally let N be a manifold and let @0N � @N be a union of components of @N with
�.N; @0N /D0. Let G be a group and let 'W �.N /!GL.d;CŒG�/ be a representation.
Let e 2 Eul.N; @0N /. Recall that for any C 1 –triangulation f W X ! N we get a
bijection Eul.X;Y / f��!Eul.N; @0N /. We define

� .2/.N; @0N; '; e/ WD � .2/.X;Y; ' ıf�; f
�1
� .e//:

By Lemma 3.2(3) and the discussion in [17] the invariant � .2/.N; @0N; '; e/ 2R�0 is
well defined, ie independent of the choice of the triangulation.
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4 Duality for torsion of manifolds equipped with Euler
structures

4A The algebraic duality theorem for L2–torsion

Let G be a group and let V be a right CŒG�–module. We denote by V the left CŒG�–
module with the same underlying abelian group but with the module structure given by
p �V v WD v �V Np for p 2 CŒG� and v 2 V . If V is a left CŒG�–module then we can
consider HomCŒG�.V;CŒG�/, the set of all left CŒG�–module homomorphisms. Since
the range CŒG� is a CŒG�–bimodule we can naturally view HomCŒG�.V;CŒG�/ as a
right CŒG�–module.

In the following let C� be a chain complex of length m of left CŒG�–modules with
boundary operators @i . Suppose that C� is equipped with a basis Bi for each Ci .
We denote by C # the dual chain complex whose chain groups are the CŒG�–left
modules C #

i WD HomCŒG�.Cm�i ;CŒG�/ and where the boundary map @#
i W C

#
iC1
! C #

i

is given by .�1/m�i@�m�i�1 . This means that for any c 2 Cm�i and d 2 C #
iC1

we
have @#

i .d/.c/D .�1/m�id.@m�i.c//. We denote by B#
� the bases of C # dual to the

bases B� .

Lemma 4.1 If � .2/.C�;B�/D 0, then � .2/.C #
� ;B

#
�/D 0, otherwise we have

� .2/.C�;B�/D �
.2/.C #

� ;B
#
�/
.�1/mC1

:

Proof By the proof of [14, Theorem 1.35(3)] the L2 –Betti numbers of C� vanish
if and only if the L2 –Betti numbers of C #

� vanish. In particular, if either L2 –Betti
number does not vanish, then both torsions are zero.

Now we suppose that the L2 –Betti numbers of C� vanish. We denote by Ai the
corresponding matrices of the boundary maps of C� . The boundary matrices of the
chain complex C #

� with respect to the basis B#
� are given by .�1/m�iAt

i . Now the
lemma is an immediate consequence of the definitions and of Theorem 3.1(4).

4B The duality theorem for manifolds

Before we state our main technical duality theorem we need to introduce two more
definitions.

(1) Let G be a group and let 'W �! GL.d;CŒG�/ be a representation. We denote
by '| the representation which is given by g 7! '.g�1/t .

(2) Let N be an m–manifold and let e 2 Eul.N; @N /. Pick a triangulation X for
N . We denote by Y the subcomplex corresponding to @N . Let X | be the
CW–complex that is given by the cellular decomposition of N dual to X . Pick
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an Euler lift fcij g that represents e 2 Eul.X;Y /D Eul.N; @N /. For any i –cell
c in zX n zY we denote by c| the unique oriented .m� i/–cell in zX | which
has intersection number C1 with c . The Euler lift fc|

ij g defines an element in
Eul.X |/D Eul.N / that we denote by e| . This map is an H1.N /–equivariant
bijection and we denote the inverse map Eul.N; @N /!Eul.N / again by e 7! e| .
We refer to [15, Chapter 70], [18, Section 14] and [9, Section 4] for details.

Theorem 4.2 Let N be an m–manifold. Let G be a group and let 'W �.N / !

GL.d;CŒG�/ be a representation. Let e 2 Eul.N; @N /. Then either � .2/.N; @N; '; e/
and � .2/.N; '|; e|/ are both zero, or the following equality holds:

� .2/.N; @N; '; e/D � .2/.N; '|; e|/.�1/mC1

:

Proof Pick a triangulation X for N and denote by Y the subcomplex corresponding
to @N . Let X | be the CW–complex which is given by the cellular decomposition of N

dual to X . We identify � D �1.X /D �1.N /D �1.X
|/. We pick an Euler lift fcij g

which represents e 2 Eul.N; @N /D Eul.X;Y /. We denote by c
|
ij the corresponding

dual cells. The theorem follows from the definitions and the following claim.

Claim Either both � .2/.C
'
� .X;Y ICŒG�

d /; fvk ˝ cij g/ and � .2/.C
'|

� .X |ICŒG�d /,
fvk ˝ c

|
ij g/ are zero, or the following equality holds:

� .2/
�
C
'
� .X;Y ICŒG�

d /; fvk ˝ cij g
�
D � .2/

�
C
'|

� .X |
ICŒG�d /; fvk ˝ c

|
ij g
�.�1/mC1

:

In order to prove the claim we first note that there is a unique, sesquilinear paring

Cm�i. zX ; zY /�Ci. zX
|/! ZŒ��;

.a; b/ 7! ha; bi WD
X
g2�

.a �gb/g�1

such that a �b|D ıab for any two cells a and b of zX n zY . Here sesquilinear means that
for any a 2 Cm�i. zX ; zY /, b 2 Ci. zX

|/ and p; q 2 ZŒ�� we have hpa; qbi D qha; bi Np .
It is straightforward to see that the pairing is non-singular. It follows immediately from
[18, Claim 14.4]) that these maps give rise to well-defined maps

Ci. zX ; zY /! HomZŒ��.Cm�i. zX |/;ZŒ��/;

a 7! .b 7! ha; bi/

that define an isomorphism of based chain complexes of right ZŒ��–modules. In fact it
follows easily from the definitions that the maps define an isomorphism

.C�. zX ; zY /; fcij g/!
�
HomZŒ��.Cm��. zX |/;ZŒ��/; f.c|

ij /
�
g
�
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of based chain complexes of left ZŒ��–modules. Tensoring these chain complexes with
CŒG�d we obtain an isomorphism�
CŒG�d ˝ZŒ�� C�. zX ; zY /; fvk ˝ cij g

�
!
�
CŒG�d ˝ZŒ�� HomZŒ��.Cm��. zX |/;ZŒ��/; fvk ˝ .c

|
ij /
�
g
�

of based chain complexes of CŒG�–modules. Furthermore the maps

CŒG�d ˝ZŒ�� HomZŒ��.Ci. zX |/;ZŒ��/! HomCŒG�

�
C
'|

i .X |ICŒG�d /;CŒG�
�
;

v˝f 7!

�
C
'|

i .X |
ICŒG�d /!CŒG�;

w˝ � 7! v'.f .�//wt

�
induce an isomorphism�

C
'
� .X;Y ICŒG�

d /; fvk ˝ cij g
�
!
�
C
'|

� .X |
ICŒG�d /#; f.vk ˝ c

|
ij /

#
g
�

of based chain complexes of CŒG�–modules. The claim follows from Lemma 4.1.

5 Twisted L2–torsion of 3–manifolds

5A Canonical structures on tori

Let T be a torus. We equip T with a CW–structure with one 0–cell p , two 1–cells x

and y and one 2–cell s . We write � D �1.T;p/ and by a slight abuse of notation we
denote by x and y the elements in � represented by x and y . We denote by zT the
universal cover of T . There exist lifts of the cells such that the chain complex C�. zT /

of left ZŒ��–modules with respect to the bases given by these lifts is of the form

(1) 0! ZŒ��
.y�1 1�x/

��������! ZŒ��2

�
1�x

1�y

�
�����! ZŒ��! 0:

We refer to the corresponding Euler structure of T as the canonical Euler structure
on T . Given a group G we say that a representation 'W �!GL.1;CŒG�/ is monomial
if for any x 2 � we have '.x/D zg for some z 2C and g 2G . The following is [4,
Lemma 5.6].

Lemma 5.1 Let 'W �1.T /! GL.1;CŒG�/ be a monomial representation such that
b
.2/
� .T ICŒG�/D 0 and e be the canonical Euler structure on T . Then � .2/.T; '; e/D 1.
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5B Chern classes on 3–manifolds with toroidal boundary

Let N be a 3–manifold with toroidal incompressible boundary and let e 2Eul.N; @N /.
Let X be a triangulation for N . We denote the subcomplexes corresponding to
the boundary components of N by S1 [ � � � [ Sb . We denote by pW zX ! X and
pi W
zSi! Si ; i D 1; : : : ; b the universal covering maps of X and Si ; i D 1; : : : ; b . For

each i we identify a component of p�1.Si/ with zSi

Pick an Euler lift c that represents e . For each boundary torus Si pick an Euler lift zsi

to zSi � p�1.Si/ � zX that represents the canonical Euler structure. The set of cells
fQs1; : : : ; Qsb; cg defines an Euler structure K.e/ for N , which only depends on e . Put
differently, we defined a map KW Eul.N; @N /! Eul.N / which is easily seen to be
H1.N /–equivariant. Given e 2Eul.N / there exists a unique element g 2H1.N / such
that e D g �K.e|/. Following Turaev [19, page 11] and [9, Section 6.3] we define
c1.e/ WD g 2H1.N IZ/ and we refer to c1.e/ as the Chern class of e .

5C Torsions of 3–manifolds

Let � and G be groups and let 'W �! GL.1;CŒG�/ be a monomial representation.
By the multiplicativity of the Fuglede–Kadison determinant, see [14, Theorem 3.14],
given g 2� the invariant detN .G/.'.g// only depends on the homology class of g . Put
differently, detN .G/ ı'W �!R�0 descends to a map detN .G/ ı'W H1.� IZ/!R�0 .

Theorem 5.2 Let N be a 3–manifold which is either closed or which has toroidal,
incompressible boundary. Let G be a group and let 'W �.N /! GL.1;CŒG�/ be a
monomial representation such that b

.2/
� .@N ICŒG�/D 0. For any e 2 Eul.N / we have

� .2/.N; @N; '; e|/D detN .G/.'.c1.e/// � �
.2/.N; '; e/:

Proof The assumption that b
.2/
� .@N ICŒG�/D 0 together with the proof of [14, The-

orem 1.35(2)] implies that b
.2/
� .N ICŒG�/D 0 if and only if b

.2/
� .N; @N ICŒG�/D 0.

If both are non-zero, then both torsions � .2/.N; @N; '; e|/ and � .2/.N; '; e/ are zero.
For the remainder of this proof we assume that b

.2/
� .N ICŒG�/D 0.

Pick a triangulation X for N . As usual denote by Y the subcomplex corresponding
to @N . Let e 2 Eul.N /. Pick an Euler lift c� which represents e| 2 Eul.N; @N /D

Eul.X;Y /. Denote the components of Y by Y1[ � � � [Yb and pick Qs1
�; : : : ; Qs

b
� as in

the previous section. We write Qs� D Qs1
� [ � � � [ Qs

b
� . Denote by fQs�[ c�g the resulting

Euler lift for X . Recall that this Euler lift represents K.e|/.

Claim � .2/
�
C
'
� .X;Y ICŒG�/; fc�g

�
D � .2/

�
C
'
� .X ICŒG�/; fQs�[ c�g

�
:
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We consider the following short exact sequence of chain complexes

0!

bM
iD1

C
'
� .Yi ICŒG�/! C

'
� .X ICŒG�/! C

'
� .X;Y ICŒG�/! 0;

with the bases fsi
�giD1;:::;b , fQs�[ c�g and fc�g. These bases are in fact compatible, in

the sense that the middle basis is the image of the left basis together with a lift of the
right basis. By Lemma 5.1 we have � .2/.C '

� .Yi ICŒG�/; fzs i
�g/ D 1 for i D 1; : : : ; b .

Now it follows from the multiplicativity of torsion, see [14, Theorem 3.35], that

� .2/
�
C
'
� .X;Y ICŒG�/; fc�g

�
D � .2/

�
C
'
� .X ICŒG�/; fc�[ Qs�g

�
:

Here we used that the complexes are acyclic. This concludes the proof of the claim.

Finally it follows from this claim, the definitions and Lemma 3.2 that

� .2/.N; @N; '; e|/D � .2/
�
C
'
� .X;Y ICŒG�/; fc�g

�
D � .2/

�
C
'
� .X ICŒG�/; fQs�[ c�g

�
D � .2/.N; ';K.e|//D � .2/.N; '; c1.e/

�1e/

D detN .G/.'.c1.e/// � �
.2/.N; '; e/:

6 The symmetry of the L2–Alexander torsion

Let .N; �;  W �1.N /!G/ be an admissible triple and let e 2Eul.N /. Given t 2R>0

we consider the representation t W �1.N /! GL.1;CŒG�/ that is given by t .g/ WD

.t�.g/ .g//. We denote by � .2/.N; �; ; e/ the function

� .2/.N; �; ; e/W R>0!R�0;

t 7! � .2/.N; t ; e/:

For another e0 2 Eul.N / we have e0 D ge for some g 2H1.N /. By Lemma 3.2

� .2/.N; �; ;ge/.t/D t��.g/� .2/.N; �;g; e/.t/ for all t 2R>0:

Put differently, the functions � .2/.N; �; ; e/ and � .2/.N; �; ;ge/ are equivalent. We
denote by � .2/.N; �;  / the equivalence class of the functions � .2/.N; �; ; e/ and we
refer to � .2/.N; �;  / as the L2 –Alexander torsion of .N; �;  /.
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Proof of Theorem 1.1 Let e 2 Eul.N / and t 2R>0 . We write � D � .2/.N; ; �; e/.
Note that .t /

| D t�1 . It follows from Theorems 4.2 and 5.2 that

�.t/D � .2/.N; ; �; e/D � .2/.N; t ; e/

D � .2/.N; @N; .t /
|; e|/D � .2/.N; @N; t�1 ; e|/

D detN .G/.t�1.c1.e/// � �
.2/.N; t�1 ; e/

D detN .G/.t
��.c1.e//c1.e// � �

.2/.N; t�1 ; e/

D t��.c1.e// � � .2/.N; t�1 ; e/D t��.c1.e// � �.t�1/:

Now it suffices to show that for any � 2 H 1.N IZ/ we have �.c1.e// D xN .�/

mod 2.

So let S be a Thurston norm minimizing surface which is dual to some � 2H 1.N IZ/.
Since N is irreducible and since N ¤ S1 �D2 we can arrange that S has no disk
components. Therefore we have

xN .�/� ��.S/� b0.@S/ mod 2Z:

On the other hand, by [19, Lemma VI.1.2] and [19, Section XI.1] we have that
b0.@S/ � c1.e/ � S mod 2Z where c1.e/ � S is the intersection number of c1.e/ 2

H1.N /DH1.N / with S . Since S is dual to � , we obtain the desired equality

�.c1.e//� c1.e/ �S � b0.@S/� ��.S/� xN .�/ mod 2Z:

Finally, a real admissible triple .N; �;  / is defined like an admissible triple, except
that now we also allow � to lie in H 1.N IR/DHom.�1.N /;R/. The same definition
as in Section 6 associates to .N; �; e/ a function � .2/.N; �; e/W R>0! R�0 that is
well defined up to multiplication by a function of the form t 7! tr for some r 2 R.
The same argument as in the proof of Theorem 1.1 gives us the following result.

Theorem 6.1 Let .N; �;  / be a real admissible triple. Then for any representative �
of � .2/.N; �;  / there exists an r 2R such that �.t�1/D tr � �.t/ for any t 2R>0 .

The only difference to Theorem 1.1 is that for real cohomology classes � 2H 1.N IR/
we cannot relate the exponent r to the Thurston norm of � .
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Cup products, the Johnson homomorphism and
surface bundles over surfaces with multiple fiberings

NICK SALTER

Let †g ! E ! †h be a surface bundle over a surface with monodromy repre-
sentation �W�1†h ! Mod.†g/ contained in the Torelli group Ig . We express
the cup product structure in H�.E;Z/ in terms of the Johnson homomorphism
� W Ig !

V3
.H1.†g;Z//=H1.†g;Z/ . This is applied to the question of obtaining

an upper bound on the maximal n such that p1WE! †h1
; : : : ;pnWE! †hn

are
fibering maps realizing E as the total space of a surface bundle over a surface in
n distinct ways. We prove that any nontrivial surface bundle over a surface with
monodromy contained in the Johnson kernel Kg fibers in a unique way.

57R22; 57R95

1 Introduction

The theory of the Thurston norm gives a detailed picture of the set of possible ways
that a compact, oriented 3–manifold M can fiber as a surface bundle. If b1.M / > 1,
then M admits infinitely many such fibrations †g !M ! S1 , finitely many for
each g � 2. The purpose of the present paper is to take up a similar sort of inquiry for
4–manifolds †g!E!†h fibering as a surface bundle over a surface of genus g� 2.

When hD 1 (ie the base surface is a torus), a similar story as in the 3–manifold setting
unfolds; if M 3 is a 3–manifold admitting infinitely many fiberings pW M ! S1 , then
p � idW M 3 �S1! S1 �S1 admits infinitely many fiberings as well. However, in
stark contrast with the 3–dimensional setting and with the case of surface bundles
over the torus, F E A Johnson [8] showed that if †g!E!†h is a surface bundle
over a surface with g , h � 2, then there are only finitely many distinct fibrations
pi W E! †hi

realizing E as the total space of a surface bundle over a surface (see
Proposition 2.1 for a precise definition of what is meant by “distinct”). Hillman [7]
contains a treatment of results of this type, as does Rivin [12], in which the case of
surface bundles over surfaces is situated in the larger context of “fibering rigidity” for
a wide class of manifolds.

A particularly simple example of a surface bundle over a surface admitting two fiber-
ings is that of a trivial bundle, ie a product of surfaces †g � †h . At the time of
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Johnson’s result, there was essentially one known method for producing nontrivial
surface bundles over surfaces with multiple fiberings, due independently to Atiyah [1]
and Kodaira [9] (see also the summary in [11]). Their construction is built by taking
a certain cyclic branched covering pW E! †g �†h of a product of surfaces. The
two fibering maps are inherited from the projections of †g �†h onto either factor.
While Johnson’s argument produces a bound on the number of possible fiberings of
a surface bundle E that is super-exponential in the Euler characteristic �.E/, until
recently all known examples of surface bundles over surfaces had at most two fiberings,
leaving a large gap between the upper and lower bounds on the number of possible
fiberings.

The author [14] gave a new method for constructing surface bundles over surfaces with
multiple fiberings, including the first examples of bundles admitting an arbitrarily large
number of fiberings. In fact, the methods of [14] are capable of producing families En

of surface bundles admitting exponentially many fiberings as a function of �.En/. The
results of this paper can be seen as a complement to that work, in that our concern
here is in addressing the question of when surface bundles over surfaces admit unique
fiberings.

A central theme in the study of surface bundles is the “monodromy–topology dictionary”.
For any reasonable base space M , there is a well-known correspondence (see eg Farb
and Margalit [3])

(1)
�

bundle isomorphism classes of
oriented †g –bundles over M

�
 !

�
conjugacy classes of represen-
tations �1.M /!Mod.†g/

�
:

This raises the question of translating between topological and geometric properties of
surface bundles on the one hand and, on the other, algebraic or geometric properties of
the monodromy representation. Certain entries in this dictionary are well established,
for instance Thurston’s landmark result that a fibered 3–manifold †g!M� ! S1

admits a complete hyperbolic metric if and only if the monodromy is a so-called
“pseudo-Anosov” element of Mod.†g/. In this paper we add to the dictionary by
relating the cohomology ring of a surface bundle over a surface to its monodromy
representation, then apply these results to give various obstructions for the surface
bundle to admit more than one fibering.

From the perspective of the monodromy representation, the phenomenon of multiple
fibering remains mysterious. The central result of this paper shows that there is a strong
interaction between the existence of multiple fiberings and the theory of the Torelli
group Ig . Recall that the Torelli group is the kernel of the symplectic representation
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‰W Mod.†g/ ! Sp2g.Z/ and that the Johnson kernel Kg is defined as the group
generated by Dehn twists T with  a separating curve.1

Theorem 1.1 Let � W E! B be a surface bundle over a surface with monodromy in
the Johnson kernel Kg . If E admits two distinct fiberings then E is diffeomorphic
to B�B0 , the product of the base spaces. In other words, any nontrivial surface bundle
over a surface with monodromy in Kg admits a unique fibering.

The surface bundles over surfaces of [14] can be constructed so as to have monodromy
contained in Ig . It follows that the hypothesis in Theorem 1.1 that the monodromy
be contained in Kg is effectively sharp with respect to the Johnson filtration (see [3,
Chapter 6] for the definition of the Johnson filtration).

Theorem 1.1 is proved by first relating the monodromy representation of a surface
bundle over a surface E4! B2 to the cohomology ring H�.E/. This analysis will
show that the integral cohomology of a surface bundle over a surface with monodromy
in Kg is as simple as possible. It is then shown that, in these circumstances, obstructions
to possessing alternative fiberings can be extracted from H�.E/.

In a similar spirit we also have the following general criterion, which we believe to
be of independent interest, for a surface bundle over a surface to possess a unique
fibering. It can be viewed as the 4–manifold analogue of a well-known fact about
fibered 3–manifolds (see Remark 3.6).

Theorem 3.5 Let pW E! B be a surface bundle over a surface B of genus g � 2

with monodromy representation �W �1B ! Mod.†g/. Suppose that the space of
invariant cohomology .H 1.F;Q//� (equivalently, the coinvariant homology of the
fiber .H1.F;Q//� ) vanishes. Then E admits a unique fibering.

The paper is organized as follows. In Section 2, we give various characterizations of
the notion of equivalence under consideration. In Section 3, we prove Theorem 3.5.
Sections 4–7 are devoted to the proof of Theorem 1.1. Section 4 is devoted to a lemma
in differential topology that features in later stages of the proof of Theorem 1.1. The
technical heart of the paper is Section 5. In it, we first give an overview of the classical
description of the Johnson homomorphism � in terms of the intersection theory of
surfaces in 3–manifolds that fiber over S1 . Using this description of � , we then carry
out a construction of 3–manifolds embedded in surface bundles over surfaces that

1As discussed further in Section 5.1, there is an alternative characterization of Kg as the kernel of
the Johnson homomorphism (to be defined there). We will pass between these two perspectives as the
situation dictates.
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realizes the relationship between the Johnson homomorphism and the intersection
product in the homology of the surface bundle. We give a complete description of the
product structure in (co)homology for a surface bundle over a surface with monodromy
in Ig . These methods of Section 5 extend to an arbitrary surface bundle over a surface,
but we do not state them in this level of generality since we have no need for them
here.

Section 6 is devoted to some technical results concerning multisections of surface
bundles, and their connection to splittings on rational cohomology. These results are
used in the course of proving Theorem 1.1.

In Section 7 we turn finally to the proof of Theorem 1.1. The result follows from
an analysis of the intersection product structure in H�.E/ for a surface bundle over
a surface †g ! E ! †h with monodromy in Kg . The results of Section 5 are
applied to show that if the monodromy of †g!E!†h is contained in Kg , then E ,
which necessarily has H�E � H�†g ˝ H�†h as an additive group, in fact has
H�E�H�†g˝H�†h (with Z coefficients) as a graded ring. This condition is then
exploited to prove Theorem 1.1.

Acknowledgements The author would like to express his gratitude to Tom Church,
Sebastian Hensel, Jonathan Hillman, Andy Putman, and Alden Walker for illuminating
discussions at various stages of this work. He is grateful to the anonymous referees for
many helpful suggestions. He would also like to extend his warmest thanks to Benson
Farb for his extensive comments as well as his invaluable support from start to finish.

2 Equivalence

If E is a smooth n–manifold and pi W E! Bi , i D 1; : : : ; k , are projection maps for
various fiber bundle structures on E , we can consider the product of all the projection
maps

p1 � � � � �pk W E! B1 � � � � �Bk :

In particular, if E4 is the total space of a surface bundle over a surface with two
fiberings, the bi-projection p1 � p2W E ! B2 �B2 is defined. As remarked in the
introduction, ultimately we are concerned with fiberwise diffeomorphism classes of
surface bundles. However, it is convenient to consider a more restrictive notion of
equivalence, which will turn out to have the advantage of being describable purely on
the level of the fundamental group.
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We say that two fiberings p1W E! B1 and p2W E! B2 are �1 –fiberwise diffeomor-
phic if .1/ they are fiberwise diffeomorphic, ie there exists a commutative diagram

E
�
//

p1

��

E

p2

��

B1 ˛
// B2

with � , ˛ diffeomorphisms, and .2/ ��.�1F1/D�1F1 (here, as always, Fi denotes a
fiber of pi ). Certainly if p1 and p2 are �1 –fiberwise diffeomorphic bundle structures,
then they are fiberwise diffeomorphic in the usual sense. We are interested in this
notion because we want to always regard the trivial bundle †g �†h as having two
distinct fiberings. In the setting of fiberwise diffeomorphism, the projections onto either
factor of †g �†g yield equivalent fiberings via the factor-swapping map �.x;y/D
.y;x/, which covers the identity on †g , but ��.�1.†g � fpg// ¤ �1.†g � fpg/.
The following proposition asserts that �1 –fiberwise diffeomorphism classes are in
correspondence with the fiber subgroups �1F C �1E . Recall that this is the setting in
which F E A Johnson proved his finiteness result (see [8]).

Proposition 2.1 Suppose E is the total space of a surface bundle over a surface in
two ways, p1W E!B1 and p2W E!B2 . Let F1 and F2 denote fibers of p1 and p2 ,
respectively. Then the following are equivalent:

(1) The fiberings p1 and p2 are �1 –fiberwise diffeomorphic.

(2) The fiber subgroups �1F1 , �1F2 � �1E are equal.

If deg.p1 �p2/¤ 0 then the bundle structures p1 and p2 are distinct.

Proof First suppose that p1 and p2 are equivalent. Appealing to the long exact
sequence in homotopy, we see that:

1 // �1F1
//

��
��

�1E //

��
��

�1B1
//

˛�
��

1

1 // �1F2
// �1E // �1B2

// 1

By assumption, ��.�1F1/D �1F1 , so that (1) implies (2).

Conversely, suppose that �1F1 D �1F2 . Then the bundle structures p1 and p2 give
rise to the same splitting

1! �1F ! �1E! �1B! 1
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on fundamental groups. The monodromy for each bundle can be obtained from this
sequence via the map �1B ! Out.�1F / � Mod.†g/. This shows that the mon-
odromies for the two bundle structures are conjugate and so, via the correspondence (1),
there is a bundle isomorphism �W E ! E covering the identity on B . To see that
��.�1F1/D �1F1 , consider the induced map on the long exact sequence in homotopy
coming from � :

1 // �1F1
//

��
��

�1E //

��
��

�1B // 1

1 // �1F2
// �1E // �1B // 1

This shows ��.�1F1/D �1F2 , and �1F1 D �1F2 by assumption, so (2) implies (1).

It remains to show that if deg.p1�p2/¤ 0 then p1 and p2 are distinct. We establish
the contrapositive. Suppose that �1F1 D �1F2 . For i D 1, 2, we view �1Bi as the
quotient �1Bi � �1E=�1Fi . If p1 �p2 is the bi-projection then, in this notation,

.p1 �p2/�W �1E! �1B1 ��1B2

is given by
.p1 �p2/�.x/D .x �1F1;x �1F2/D .Œx�; Œx�/;

where Œx�D x .mod �1F1/D x .mod �1F2/. As �1F1 D �1F2 , the quotients �1B1

and �1B2 are isomorphic, and as they are K.G; 1/ spaces, there is a homotopy
equivalence

f W B1! B2:

Let g be the map
g D .f � id/ ı .p1 �p2/W E! B2 �B2:

By the above,
Im.g/D�D f.x;x/ j x 2 B2g:

Being nonsurjective, g has degree 0. As p1 � p2 is the composition of g with a
homotopy equivalence, we conclude that also deg.p1 �p2/D 0.

In general the condition deg.p1 �p2/D 0 on a bi-projection does not imply that the
associated fiberings are equivalent. However, in the setting of the Johnson kernel, this
is indeed the case.

Proposition 2.2 Suppose E is the total space of a surface bundle over a surface
in two ways, p1W E ! B1 and p2W E ! B2 . Let F1 and F2 denote fibers of p1

and p2 , respectively. Suppose that �1W �1B1!Mod.F1/ is contained in the Johnson
kernel Kg . Then the following are equivalent:
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(1) The fiberings p1 and p2 are not �1 –fiberwise diffeomorphic.

(2) The fiber subgroups �1F1 , �1F2 � �1E are distinct.

(3) deg.p1 �p2/¤ 0.

(4) E is diffeomorphic to B1 �B2 .

The additional assertions in Proposition 2.2 will be proved in the course of establishing
Theorem 1.1 (see Remark 7.6).

3 Surface bundles over surfaces with unique fiberings

In this section, we prove Theorem 3.5. The additive structure of H�E is central to
everything that follows in the paper, so we begin with a review of the relevant results.
The following theorem was formulated and proved by Morita [10] for the case of
field coefficients of characteristic not dividing �.F /; subsequently this was improved
to integral coefficients in the cohomological setting by Cavicchioli, Hegenbarth and
Repovš [2].

Proposition 3.1 (Morita, Cavicchioli–Hegenbarth–Repovš) Let F be a closed sur-
face of genus g � 2. The Serre spectral sequence (with twisted coefficients) of any
surface bundle F ! E ! B collapses at the E2 page. Consequently, there are
noncanonical isomorphisms for all k ,

Hk.E;Q/DHk.B;Q/˚Hk�1.B;H1.F;Q//˚Hk�2.B;Q/;

H k.E;Z/DH k.B;Z/˚H k�1.B;H 1.F;Z//˚H k�2.B;Z/:

The Hk�2B summand of HkE is canonical and is realized by the Gysin map p! ,
which associates to a homology class x 2B the induced sub-bundle Ex sitting over x .
Similarly, the H kB summand is canonical via the pullback map p�W H kB!H kE .

If F ! E ! B has monodromy in Ig , then the coefficient system is untwisted
and H�.E;Z/ � H�.B;Z/ ˝ H�.F;Z/ additively. In particular, H�.E;Z/ is
torsion-free and so, by the universal coefficients theorem, there is also an isomorphism
H�.E;Z/�H�.B;Z/˝H�.F;Z/.

Because the surface bundles we will be considering in this paper have monodromy
lying in Ig , we will subsequently take all coefficients to be Z without further mention.
A remark, which is obvious from Proposition 3.1, is that if � generates H0.B/ then
p!.�/ is a primitive class; we will use this fact later on. Here and throughout, we will
use the notation

ŒF �D p!.�/ 2H2.E/
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to denote the (pushforward of the) fundamental class of the fiber.

The following result is a well-known application of the theory of the Gysin homomor-
phism and we state it without proof.

Proposition 3.2 Let pW E! B be a surface bundle with fiber F . If �.F /¤ 0, then
there are injections

p�WH�.B;Q/!H�.E;Q/;

p!
WHk.B;Q/!HkC2.E;Q/:

In the case where H�.E;Z/ is torsion-free, the same statements hold with Z coeffi-
cients. In particular, this is true whenever E has monodromy lying in Ig , since in
this case H�.E;Z/ is isomorphic to H�.F;Z/˝H�.B;Z/ as an abelian group (see
Proposition 3.1).

For surface bundles over surfaces with multiple fiberings, there is an extension of the
previous result.

Lemma 3.3 Let E be a 4–manifold with two distinct surface bundle structures
p1W E! B1 and p2W E! B2 . Then

p�1 .H
1.B1;Q//\p�2 .H

1.B2;Q//D f0g

and so, by Proposition 3.2, there is a canonical injection

p�1 �p�2 W H
1.B1;Q/˚H 1.B2;Q/ ,!H 1.E;Q/:

Proof By the universal coefficients theorem, for any space X there is an identification

H 1.X;Q/� Hom.�1X;Q/:

Under this identification, a character ˛ 2 Hom.�1Bi ;Q/ is pulled back to p�i .˛/

in Hom.�1E;Q/ by precomposition with .pi/� . In particular, p�i .˛/ vanishes on
�1Fi D ker.pi/� . Therefore, any character ˛ 2 p�

1
.H 1.B1;Q//\ p�

2
.H 1.B2;Q//

must vanish on the subgroup generated by .�1F1/.�1F2/.

By Lemma 3.4 below, .�1F1/.�1F2/ has finite index in �1E . For any group � , any
character ˛W � ! Q vanishing on a finite-index subgroup must vanish identically,
proving the claim.

Lemma 3.4 Let E be a surface bundle over a surface with two distinct fiberings
pi W E!Bi , i D 1, 2; let the fibers be F1 and F2 , respectively. Then .�1F1/.�1F2/

has finite index in �1E .
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Proof Consider the cross-projection �1F1! �1B2 . Let the image of �1F1 in �1B2

be denoted by � . This is a finitely generated normal subgroup of �1B2 . For any
surface group of genus g � 2, any nontrivial finitely generated normal subgroup has
finite index (see [8, Property (D6)]). If � is the trivial group, then �1F1 � �1F2 ,
necessarily again of finite index. In this case, the image of �1F2 in �1B1 is therefore
finite, but �1B1 is torsion-free. We conclude that � � �1B2 has finite index. The
kernel of the map �1E! .�1B2=�/ is exactly .�1F1/.�1F2/.

Recall that if �W G!GL.V / is a representation then the invariant space V � is defined
by

V �
D fv 2 V j �.g/.v/D v for all g 2Gg:

The space of coinvariants V� of the representation is defined as

V� D V =W; where W D fv� �.g/.v/ j v 2 V; g 2Gg:

Theorem 3.5 Let pW E! B be a surface bundle over a surface B of genus g � 2

with monodromy representation �W �1B ! Mod.†g/. Suppose that the space of
invariant cohomology .H 1.F;Q//� (equivalently, the coinvariant homology of the
fiber .H1.F;Q//� ) vanishes. Then E admits a unique fibering.

Proof For any surface bundle pW E ! B with monodromy � and any choice of
coefficients, there is a (noncanonical) splitting

H 1.E/D p�.H 1.B//˚ .H 1.F //�

(see Proposition 3.1). If .H 1.F;Q//� D 0, then this reduces to

H 1.E;Q/D p�H 1.B;Q/:

If p2W E! B2 is a second, distinct fibering, the above shows that

p�2 .H
1.B2;Q//� p�H 1.B;Q/:

However, this contradicts Lemma 3.3.

Remark 3.6 Recall that a surface bundle over S1 , viewed as the mapping torus M

of some diffeomorphism � of a surface F , admits a unique fibering if and only
if b1.M /D 1. This is the case exactly when .H1.F;Q//� D 0, so Theorem 3.5 is the
counterpart to this fact in dimension 4. Moreover, a random element � 2Mod.†g/

satisfies .H1.F;Q//� D 0 (see [13]). It easily follows that a generic monodromy
representation will also have .H1.F;Q//� D 0: “most” surface bundles over surfaces
have a single fibering. The proof of Theorem 3.5 is special to the case of surface
bundles over surfaces and it is not clear if Theorem 3.5 is true in greater generality.
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4 Bi-projections

In this section we state and prove the key lemma from differential topology needed for
the proof of Theorem 1.1.

Proposition 4.1 Let E be a 4–manifold with surface bundle structures p1W E! B1

and p2W E ! B2 . Let F1 and F2 denote fibers of p1 and p2 lying over a regular
value of p1�p2 . If deg.p1�p2W E!B1�B2/¤ 0, then the following five quantities
are equal:

(1) deg.p1 �p2W E! B1 �B2/.

(2) deg.p1jF2
W F2! B1/.

(3) deg.p2jF1
W F1! B2/.

(4) The algebraic intersection number IE.F1;F2/.

(5) The cardinality of the intersection jF \F2j.

As (5) indicates, this quantity is always positive.

Proof As p1 and p2 are projection maps for fiber bundle structures on E , they are
everywhere regular, and ker.dp1/x is identified with the tangent space to the fiber
of p1 through x . Let zD .b1; b2/2B1�B2 be a regular value for p1�p2 . It follows
from the assumption that deg.p1 � p2W E! B1 �B2/ ¤ 0 that d.p1 � p2/x is an
isomorphism for all x 2 .p1 �p2/

�1.z/ (and that this preimage is nonempty). The
kernel of d.p1�p2/x is just the intersection of the kernels of d.p1/x and d.p2/x . It
follows that, for all x 2 .p1 �p2/

�1.z/,

(2) TxE � TxF1˚TxF2:

Note that this shows that the fibers F1 and F2 over b1 and b2 , respectively, are
transverse.

If orientations on E , B1 and B2 are chosen properly, then this specifies an orienta-
tion on each fiber of p1 and p2 via the following decomposition, where Hx is any
complement to TxF1 D ker d.p1/x :

TxF1˚Hx � TxE:

The orientation on Hx is specified by the isomorphism Hx � Tp1.x/B1 . Of course an
analogous convention orients each fiber of p2 . In particular, it follows from Equation (2)
that at any regular point for p1 �p2 we can take Hx D TxF2 and that the restriction
of d.p1/x to TxF2 is an isomorphism.
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Recall that if f W X n! Y n is a smooth map of oriented closed n–manifolds then

deg.f /D
X

x2f �1.y/

".x/;

where y is any regular value of f , and ".x/D 1 if the orientation on TyY induced
by dfx agrees with the pre-chosen orientation on Y and ".x/D�1 otherwise. If Y

and Z are smoothly embedded and transversely intersecting oriented submanifolds of
the oriented manifold X such that dim.X /D dim.Y /C dim.Z/, then the algebraic
intersection number of Y and Z is computed as

IX .Y;Z/D
X

w2Y\Z

".w/;

where ".w/ D 1 if the orientation on TwX given by TwY ˚ TwZ agrees with the
pre-chosen orientation on X and ".w/D�1 otherwise.

It follows from the definitions that

.p1 �p2/
�1.b1; b2/D p1j

�1
F2
.b1/D p2j

�1
F1
.b2/D F1\F2:

Therefore, each of the sums computing (1)–(5) take place over the same set of points.
So it remains only to show that, in each of the contexts (1)–(4), the relevant orientation
convention assigns a positive value.

The orientation number assigned to x 2 .p1 �p2/
�1.b1; b2/ is given by the sign of

the determinant of the map

d.p1 �p2/x W TxE! Tb1
B1˚Tb2

B2:

By the above discussion, our orientation convention stipulates that

d.p1jF2
/x W TxF2! Tb1

B1

is an orientation-preserving isomorphism and similarly for d.p2jF1
/. This proves the

equality of (2) and (3) with (5).

As
TxF1 D ker d.p1/x and TxF2 D ker d.p2/x;

it follows that d.p1 �p2/x has a block-diagonal decomposition

d.p1 �p2/x D d.p1/x˚ d.p2/x W TxF1˚TxF2! Tb2
B2˚Tb1

B1;

from which it follows that x also carries a positive orientation number in setting (1).
Finally, the orientation number for x as a point of intersection between F1 and F2
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records whether the orientations of TxE and TxF1˚TxF2 agree, but we have already
seen that they necessarily do.

5 Cup products and the Johnson homomorphism

The goal of this section is to give a construction of embedded submanifolds in a surface
bundle over a surface E that will be explicit enough to compute the intersection form
on homology or, dually, the cup product structure in cohomology. One of the original
definitions of the Johnson homomorphism was via the cup product structure in surface
bundles over S1 . In this section we turn this perspective on its head and explain how
the Johnson homomorphism computes the cup product structure in a surface bundle over
a surface (in fact, these methods extend to surface bundles over arbitrary manifolds).
The submanifolds we construct will be codimension-1 (ie 3–manifolds) and built so
that their intersection theory is explicitly connected to the Johnson homomorphism.

To this end, in Section 5.1 we give a discussion of the definition of the Johnson
homomorphism in the setting of the cup product in surface bundles over S1 . The
centerpiece of this is the construction of geometric representatives for classes in H 1 ,
via embedded surfaces which we call “tube-and-cap surfaces”. Then, in Section 5.2,
we return to the original problem of constructing representatives for classes in H 1 of a
surface bundle over a surface as embedded 3–manifolds. The construction is carried
out so that the intersection of particular pairs of these 3–manifolds is a tube-and-cap
surface, thereby realizing the link between cup products in surface bundles over surfaces
and the Johnson homomorphism.

5.1 From the intersection form to the Johnson homomorphism, and back
again

In this subsection we will begin to dive into the theory of the Torelli group in earnest,
so we begin with a brief review of the relevant definitions. The Torelli group Ig is
the kernel of the symplectic representation ‰W Mod.†g/! Sp2g.Z/. The Johnson
kernel Kg is the subgroup of Ig generated by all Dehn twists T about separating
curves  . It is a deep theorem of D Johnson that Kg can alternately be characterized
as the kernel of the Johnson homomorphism � to be defined below.

Let � 2 Ig be a Torelli mapping class and build the mapping torus

M� D†g � I=f.x; 1/� .�.x/; 0/g:

As � 2 Ig for any curve  �†g , the homology class Œ ����Œ � is zero. Thus there
exists a map of a surface i W S !†g which cobounds  [�. /. Indeed, there exists
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an embedded surface S �†g � I whose boundary is given by

@S D  � f1g[�. /� f0g:

To see this, recall that since S1 is a K.Z; 1/ there is a correspondence

H 1.†g;Z/� Œ†g;S
1�:

Via Poincaré duality,
H 1.†g;Z/�H1.†g;Z/:

The induced correspondence

H1.†g;Z/� Œ†g;S
1�

is realized by taking the preimage of a regular value, which will be an embedded
submanifold. Under this correspondence, homotopic maps f , gW †g ! S1 yield
homologous submanifolds, and conversely. Therefore, the maps f , gW †g!S1 which
determine  and �. / are homotopic. This gives the desired map F W †g � I ! S1

such that the preimage of a regular value is an embedded surface S cobounding 
and �. /.

In fact, the choice of S is not unique. Let i 0W S 0!M� be any map of a closed surface
to M� . Then the chain S CS 0 satisfies @.S CS 0/D @S D  � �. /. Nonetheless,
given any S satisfying @.S/D  ��. /, we can form a closed submanifold of M�

in the following way. We begin with a tube, diffeomorphic to S1 � I , embedded
into M� as �. /� Œ0; 1

3
�[  � Œ2

3
; 1�. We may then glue in S to †g � Œ

1
3
; 2

3
�. The

result is a smoothly embedded oriented submanifold † �M� , which will descend to
a homology class †z (here z D Œ �). See Figure 1.

For convenience, we introduce the following terminology for these surfaces, which
we will refer to as tube surfaces. The tube of a tube surface is the cylinder S1 � I D

�. /� Œ0; 1
3
�[  � Œ2

3
; 1� and the cap is the subsurface S .

We assign an orientation to † as follows. The tangent space to a point x contained
in the tube has a direct sum decomposition

(3) Tx† D V ˚Tx;

where V is any preimage of T�.x/S
1 and Tx is interpreted as the tangent space to

the copy of  sitting in the fiber containing x . Both of the summands in (3) have
orientations induced from those on S1 and  , respectively, and this endows Tx† with
an orientation. This can then be extended over the cap surface in a coherent way, since
S was chosen to be a boundary for Œ �� Œ�. /� with Z coefficients.
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M�

�. /

tube region tube region



cap

�

S1

Figure 1: A tube surface

Recall however that the choice of S was not unique. Any closed surface mapping
into †g is homologous to some multiple of the fundamental class, so the above
procedure really defines a homomorphism H1.†g/! H2.M�/=ŒF �, where ŒF � is
the fundamental class of the fiber. If the bundle has a section � W S1!M� , then we
can choose S so that Im � and †z have zero algebraic intersection, which gives a
canonical lift H1.†g/!H2.M�/. In the absence of such auxiliary data, we instead
just choose an arbitrary lift and we will account for the consequences later.

Having chosen an embedding i W H1.†g/ ,!H2.M�/ such that z 7!†z , there is an
associated direct sum decomposition of H2.M�/, namely

H2.M�/D hŒF �i˚ Im i:

Relative to such an embedding, we form the map �.�/ 2 Hom.
V3

H1.†g/;Z/ by

�.�/.x ^y ^ z/D†x �†y �†z;

the term on the right being interpreted as the triple algebraic intersection of the given
homology classes. Suppose a section exists and that the †x have been constructed
accordingly. In this case, D Johnson showed that the map

� W Ig;�! Hom
�

3̂H1.†g/;Z
�
;

� 7! �.�/;

is a surjective homomorphism. See [3, Chapter 6] for a summary of the Johnson homo-
morphism, including two alternative definitions. The (pointed) Johnson kernel Kg;�
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is defined, analogously to the case of closed surfaces, as the subgroup of Mod.†g;�/

generated by Dehn twists about separating simple closed curves (scc). As in the closed
case, D Johnson established that Kg;� coincides with the kernel of � . In our context
this precisely means that all triple intersections between the various †x vanish.

Having fixed a family of †x , it is then easy to compute the entire intersection form onV3
H2.M�/. Certainly ŒF �2 D 0. It is also fairly easy to see that

ŒF � �†x �†y D i.x;y/;

where i.x;y/ denotes the algebraic intersection pairing in H1.†g/. Indeed, by picking
the choice of fiber to intersect †x on the tube, it is clear that the result is simply the
curve x , so that ŒF � �†x �†y computes the intersection of x and y on F , at least up
to a sign that may be introduced by the (non)compatibilities of the various orientation
conventions in play. A quick check reveals this sign to be positive.

We will now be able to account for the ambiguity introduced by our choice of embedding
i W H1.†g/ ,! H2.M�/, which will in turn lead to the definition of the Johnson
homomorphism on the closed Torelli group Ig . Suppose that †0w D †w C kw ŒF �

is some other set of choices that is coherent in the sense that †0w C †
0
z D †0wCz

(ie x 7! kx 2H 1.†g/). By linearity,

†0x �†
0
y �†

0
z D†x �†y �†zC kxi.y; z/C kyi.z;x/C kzi.x;y/

D �.�/.x ^y ^ z/C kxi.y; z/C kyi.z;x/C kzi.x;y/

D �.�/.x ^y ^ z/CC �.k/I

here C W
V3

H1.†g/! H1.†g/ is the contraction with the symplectic form i. � ; � /

and k 2 Hom.H1.†g/;Z/ is the form such that k.w/ D kw . The upshot of this
calculation is that �.�/ is well defined as an element of Hom.

V3
H1.†g/;Z/= Im C � ,

which can be identified with the more familiar space
V3

H=H (here we adopt the usual
convention that H D H1.†g/). The Johnson homomorphism on the closed Torelli
group is then given by

� W Ig! Hom
�

3̂H1.†g/;Z
�
= Im C � � 3̂H=H;

� 7! �.�/:

As mentioned above, work of D Johnson shows that the kernel of � coincides with the
previously defined subgroup

Kg D hT j  separating scci:

Remark 5.1 The construction given above with the tube-and-cap surfaces is a concrete
realization of the isomorphism H1.†g/�H2.M�/=ŒF � coming from the Serre spectral
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sequence for pW M�! S1 . In fact, this same construction will work for an arbitrary
� 2Mod.†g/, yielding an isomorphism .H1.†g//

� �H2.M�/=ŒF �, but we do not
pursue this here.

The above discussion shows how to construct the Johnson homomorphism in terms
of the intersection form on M� . Conversely, we will show next how to recon-
struct the intersection form on M� from the data of the Johnson homomorphism
�.�/ 2

V3
H=H � Hom.

V3
H†g;Z/= Im C � . Begin by selecting an arbitrary lift

Q�.�/ of �.�/ (of course, the presence of a section gives a canonical such choice). Next,
construct a coherent family of homology classes †0x by making choices arbitrarily.
Define � 0.�/ 2 Hom.

V3
H;Z/ by

� 0.�/.x ^y ^ z/D†0x �†
0
y �†

0
z :

There is no reason to suspect that � 0.�/D Q�.�/. However, as we saw above, we do
know that � 0.�/� Q�.�/ 2 Im C � , so there is some functional ˛ 2H 1.†g/ such that
� 0.�/� Q�.�/DC �.˛/. This functional ˛ will allow us to choose the correct set of †x

so that the triple intersections are computed by our choice of Q�.�/.

Lemma 5.2 We assume the notation of the above setting. By taking

†x D†
0
x �˛.x/ŒF �;

there is an equality for all x , y and z ,

†x �†y �†z D Q�.�/.x ^y ^ z/:

Proof We compute:

†x �†y �†z D†
0
x �†

0
y �†

0
z �˛.x/i.y; z/�˛.y/i.z;x/�˛.z/i.x;y/

D � 0.�/.x ^y ^ z/�C �.˛/.x ^y ^ z/

D Q�.�/:

5.2 Intersections in surface bundles over surfaces, and beyond

The methods of the previous subsection can be adapted to give a description of certain
cup products in H 1.E/, where pW EnC2 ! Bn has monodromy lying in Ig . The
idea will be to define an embedding, as before,

i W H1.†g/ ,!HnC1.E/;

by constructing submanifolds M for curves  �†g by means of a higher-dimensional
“tubing construction”. Then the triple intersections of collections of M will be
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partially computable via the Johnson homomorphism in a certain sense, to be described
below. In this subsection we will first briefly sketch the properties we require of the
submanifolds M , then we will give the construction. Then, in Section 5.3, we will
determine much of the intersection pairing in H�.E;Z/.

Our construction will provide, for each simple closed curve  �F , a submanifold M

such that if Œ �D Œ 0� then also ŒM �D ŒM 0 �. If Œ �Dx , we write Mx in place of ŒM �.
Let pW E! B be a surface bundle with monodromy in Ig and let �W �1B! Ig be
the monodromy. By post-composing with � W Ig!

V3
H=H , we obtain a map from

�1B to an abelian group, so � ı� factors through H1.B/. By an abuse of notation we
will write �.b/ for b 2H1.B/.

This map computes (most of) the intersection form in H�.E/. Recall the notation from
Proposition 3.1: given a curve ˛ � B , there is an induced bundle E˛ over ˛ , which
determines a homology class Ea . A given M can be intersected with E˛ to yield a
surface †˛; inside E˛ . Our construction will be set up so that

Mx �My �Mz �Eb D �.b/.x ^y ^ z/;

possibly up to a sign. This is the sense in which Mx �My �Mz is partially computable.
As an aside, the intersections Mx �My �Mz �X for arbitrary X 2H3E will all involve
intersections with further Mw and are describable (at least in the case of bundles with
section) in terms of the higher Johnson invariants

� W Hi.Ig;�/!
îC2H;

but we will not pursue this point of view further in this paper.

The construction As usual, let � W E! B be a surface bundle over a surface with
monodromy �W �1B ! Ig . We turn now to the question of constructing suitable
homology classes Mx 2H3.E/ for x 2H1.†g/. The construction will be a higher-
dimensional analogue of the construction of tube-and-cap surfaces given in the previous
subsection. The reader may find it helpful to consult Figure 2 as they read this
subsection.

When the base space B has dimension 2, a new layer of complexity is introduced
by the potential absence of sections � W B!E , which will require some additional
preparatory work in order to construct geometric representatives for homology classes.
Our construction method proceeds by exploiting the fact that it is always possible
to find sections defined on B0 WD B nD2 . We define E0W D ��1.B0/ and refer to a
section � W B0!E0 as a partial section of the bundle E . We say that two sections �0

and �1 of a fiber bundle are homotopic through sections if there exists a homotopy �t

between �0 and �1 such that �t is a section for each fixed t .
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N.b1/

�.b1/

�.a1/

N.p/

p

N.a1/

�.b1/. / �.a1b1/. /D �.b1a1/. /

�.a1/. /

Figure 2: Upper left: the neighborhoods N.e/ and N.p/ . Upper right:
M 1
 intersected with four different fibers. Lower left: cap surfaces, lying over

different portions of N . Lower right: a depiction of M 2
 \�

�1.@N / .

Lemma 5.3 Let � W E ! †h be a surface bundle over a surface with monodromy
�W �1†h!Mod.†g/. Let E0 D ��1.†h nD2/ and note that � restricts to give E0

the structure of a †g –bundle over †h nD2 . Then there is a one-to-one correspondence
between the set of classes of partial sections � W †h nD2 ! E0 , up to homotopy
through sections, and homomorphisms Q�W F2h ! Mod.†g;�/ making the diagram
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below commute:

1 // K //

Q�

��

F2h
//

Q�

��

�1†h
//

�

��

1

1 // �1†g
// Mod.†g;�/ // Mod.†g/ // 1

Proof This follows immediately from the well-known fact that there is a homotopy
equivalence

K.Mod.†g;�/; 1/' B.Diff.†g;�//;

the latter space being the classifying space of †g –bundles with section.

The kernel K C F2h is normally generated by a single element ! , represented geo-
metrically by the boundary of †h nD2 . The element Q�.!/ 2 �1†g associated to a
section � will be denoted by !� . It is called the index curve. The following lemma is
immediate from the definitions.

Lemma 5.4 Assume the notation of Lemma 5.3. Let � be a partial section of E and
let !� 2�1†g be the corresponding index curve. Then there exists a local trivialization
of E ,

t W ��1.D2/!D2
�†g;

relative to which �.@D2/ is in the free homotopy class of !� .

The next lemma will be used in the course of the construction in Proposition 5.6.

Lemma 5.5 Let S � †g � S1 be an embedded, closed, oriented subsurface. Sup-
pose  W S1 ! †g � S1 is a section of the projection †g � S1 ! S1 and that
p�Œ � D 0 2 H1.†g;Z/ (where pW †g � S1 ! †g is the obvious projection). Let
i W †g�S1!†g�D2 be the natural inclusion. If the algebraic intersection number is
Œ � � ŒS �D 0 (computed in †g �S1 ), then there exists an oriented, properly embedded
3–manifold M �†g �D2 such that @M D S .

Proof The first step is to establish that i�ŒS � D 0 in H2.†g �D2/. The Künneth
formula establishes natural splittings

H1.†g �S1/�H1.†g/˚H1.S
1/;

H2.†g �S1/�H2.†g/˚ .H1.†g/˝H1.S
1//:

In these coordinates, the map i�W H2.†g �S1/!H2.†g �D2/�H 2.†g/ is given
simply by projection onto the H2.†g/ factor. The assumptions on  imply that Œ �
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generates H1.S
1/�H1.†g �S1/. Under the intersection pairing, H1.S

1/ is orthog-
onal to H1.†g/˝H1.S

1/. From the assumption Œ � � ŒS �D 0, it then follows easily
that i�ŒS �D 0. Consequently, there exists a 3–chain Cp in †g �D2 with @Cp D S .

It remains to explain why Cp can be replaced with a smooth, oriented, properly
embedded 3–manifold. This will follow from general results on representing (relative)
codimension-1 homology classes by smooth submanifolds (with boundary). The
argument proceeds along very similar lines to the construction of embedded cap
surfaces in fibered 3–manifolds described above. For an oriented manifold X with
boundary, Lefschetz duality gives an isomorphism

Hn�1.X; @X;Z/�H 1.X;Z/� ŒX;S1�:

In our setting, the surface S �†g �S1 is represented by a map

f W †g �S1
! S1

such that SDf �1.�/ for some regular value �2S1 . Similarly, the (relative) homology
class of Cp in H3.†g �D2; †g �S1;Z/ corresponds to a map

F W †g �D2
! S1:

Moreover, as @Cp D S , they represent the same homology class in H2.†g �S1;Z/.
This means that the maps f and F j†g�S1 are homotopic. We can therefore concatenate
this homotopy with F to obtain a map

zF W †g �D2
! S1:

On the boundary, zF equals f and is therefore transverse to � � S1 . In order to
replace Cp by a smooth submanifold such that @Cp DC , we must therefore perturb zF
away from a neighborhood of @.†g �D2/ and make the result everywhere transverse
to � � S1 . The extension theorem (see [4, page 72]) asserts that we can do precisely
this.

The theory of index curves established above will allow us to construct embedded
representatives of homology classes in surface bundles over surfaces when suitable
conditions on the monodromy are satisfied.

Proposition 5.6 Let � W E!B be a surface bundle over a surface with monodromy
�W �1B ! Ig contained in the Torelli group. Suppose there is a partial section
� W B0!E0 for which the associated index curve !� lies in the commutator subgroup
Œ�1†g; �1†g�. Then there is an embedding

�W H1.F;Z/!H3.E;Z/
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constructed so that, if c 2H1.F;Z/ is a primitive class, then �.c/ can be represented
by some embedded, oriented, piecewise-smooth 3–submanifold Mc of E .

Proof Let c 2 H1.F;Z/ be given. By assumption, c is primitive, so that there
exists a simple closed curve  � †g with Œ � D c . We will use this to construct a
3–manifold M .

Consider a cell decomposition

B D B0
� B1

� B2

of B , where B0 consists of the single point p , there are 2g one-cells fa1;b1; : : : ;ah;bhg

and a single two-cell D . For each one-cell e , there is an associated element �.e/ of the
monodromy such that the effect of transporting a curve  across e (from the negative
to the positive side, relative to orientations of B and e ) sends the isotopy class of 
to �.e/ . For a one-cell e , let N.e/� e� I be a (closed) regular neighborhood in B .
We also let N.p/ be a small closed neighborhood of p . If necessary, shrink N.e/ so
that

N WDN.a1/[ � � � [N.bh/ nN.p/

is a union of 2h disjoint rectangles.

Let  � F be a simple closed curve on a fiber F over a point in

D0 WDD n .N.p/[N.a1/[ � � � [N.bh//:

By construction, D0 is nothing more than a closed disk (in the upper-left portion of
Figure 2, D0 is the closure of the complement of the shaded regions). The submanifold
M will be constructed in three stages, denoted by M i

 for i D 1, 2, 3: first over D0 ,
then over N and finally over N.p/. Choose a trivialization ��1.D0/�D0 �F and
define M 1

 D  �D0 relative to this trivialization. Then @.M 1
 / � �

�1.@D0/. We
specify an orientation on M 1

 as follows: a point x 2M 1
 has a decomposition of the

tangent space

(4) TxM 1
 � T�.x/B˚Tx:

Both of these two summands carry pre-existing orientations and M 1
 is then oriented

by specifying the above isomorphism to be orientation-preserving. By analogy with
the construction of tube surfaces, we refer to M 1

 as the tube region of M .

Next we construct M 2
 . Let e be a one-cell and consider M 1

 \�
�1.N.e/\N /. The

base space N.e/\N is just a rectangle, so the bundle ��1.N.e/\N / is trivializable.
We can therefore find a diffeomorphism

 W ��1.N.e/\N /� I � I �†g
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under which M 1
 \�

�1.N.e/\N / is identified with

.I � f0g �  /[ .I � f1g �  0/;

where  0 is some curve in the isotopy class of �.e/. /. As we saw in the previous
subsection, for each e there exists a family of properly embedded surfaces Se in I�†g

such that @Se D f0g �  [f1g � 
0 .

Our choice of Se will be dictated by the section � . Applying  , the image of � in
ftg�I�†g is a properly embedded arc ˛� . This determines a preferred homology class
in H2.I�†g; @.I�†g/;Z/ among the set of possible Se , by the relation Œ˛� ��ŒSe �D0.

Let Se be any properly embedded subsurface of I �†g satisfying the conditions
@Se D f0g� [f1g�

0 and Œ˛� � � ŒSe �D 0. We can then fill in ��1.N.e/\N / with
I �Se for each e , creating M 2

 . As in the case of a tube surface, the orientation for
M 1
 can be extended over each of these pieces coherently. We refer to M 2

 nM 1
 as

the cap region of M .

It therefore remains to construct M 3
 DM . By construction, @M 2

 � �
�1.@N.p//.

We would like to be able to fill this boundary in by inserting a “plug” contained
in ��1.N.p//. A priori, there is a homological obstruction to this: if Œ@M 2

 �¤ 0 in
H2.�

�1.N.p/// then this problem is not solvable even on the chain level.

However, the assumption that the index curve !� is in Œ�1†g; �1†g� will imply
that this obstruction vanishes. Let t W ��1.N.p//! D2 �†g be the trivialization
of Lemma 5.4 and define  D t.�.@.N.p////. Set S D t.@.M 2

 //. By Lemma 5.4,
Œ � D 0 2 H1.�

�1.N.p/// � H1.†g/. We wish to show that Œ � � ŒS � D 0. By
construction, @.M 2

 / consists of 4g subsurfaces, corresponding to the 2g surfaces
Sa1

; : : : ;Sbg
, each appearing twice (once for each component of N.e/\N.p/). Simi-

larly,  is comprised of 4g segments, again indexed by the components of N.e/\N.p/.
On each one of these components, the relevant Se was selected to have zero algebraic
intersection with the relevant portion of  , so the same holds true globally: Œ � � ŒS �D 0.

Applying Lemma 5.5, we obtain a 3–manifold Mp�N.p/�†g with @MpD t.@.M 2
 //.

Extending the orientation of M 2
 over Mp , the result is an oriented, piecewise-smooth

submanifold M �E .

Remark 5.7 It is apparent in the above construction that if  and  0 are homologous
curves, the associated 3–manifolds M and M 0 are homologous. Accordingly, if
Œ �D Œ 0�D x , we adopt the notation Mx D ŒM �D ŒM 0 �.

While, in general, not every surface bundle over a surface satisfies the hypotheses
of Proposition 5.6 (specifically the requirement that there exist a partial section with
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Œ!� � D 0 2 H1.†g;Z/), it turns out that this is always the case for surface bundles
over surfaces with monodromy in Kg .

Lemma 5.8 Let �W �1†h!Kg be given. Then, for any lift Q�W F2h!Kg;� of � , the
index curve satisfies !� 2 Œ�1†g; �1†g�.

Proof When restricted to Kg , the Birman exact sequence takes the form

1! Œ�1†g; �1†g�! Kg;�! Kg! 1:

The result follows.

An essential feature of the above construction is the relationship between an M and
a sub-bundle E˛ lying over a curve ˛ � B . Suppose ˛ is chosen so that, relative
to the cell decomposition of B used in constructing M , ˛ is transverse to all the
one-cells e and does not pass through N.p/. Then a little visual imagination reveals
that the intersection of M and E˛ is given by a tube surface for  sitting inside E˛ .
We call the resulting surface †˛; and then Œ†˛; � is denoted by †a;x , where Œ˛�D a

and Œ �D x .

We define a family of Mx to be a choice of Mx for each x 2H1.F / such that, for all
c 2 Z and x , y 2H1.F /,

McxCy D cMxCMy :

Different choices of Mx lead to different spaces of †b;x but, conversely, a choice of a
family of Mx leads to a corresponding distinguished summand of H2.E/.

5.3 Determination of the intersection form

From this point onwards, we assume without further comment that our surface bundle
over a surface, � W E ! B , satisfies the hypotheses of Proposition 5.6 (as a special
case, these results apply to all surface bundles over surfaces with monodromy in Kg ,
by Lemma 5.8). The purpose of this subsection is to give a description of the cup
product structure on H�.E;Z/; equivalently, we will describe the intersection form.
By Poincaré duality, it suffices to determine, for each X , the set of pairings X �Y .

Proposition 5.9 Let iB and iF denote the algebraic intersection pairing on the homol-
ogy of the base and on the fiber, respectively.

(1) There exists a unique class C 2 H2.E/ such that C � ŒF �D 1 and C �†b;z D 0

for all b 2H1.B/ and z 2H1.†g/. The intersection pairing H2.E/˝H2.E/! Z
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is given as follows, where e D C 2 by definition:

C ŒF � †a;z

C e 1 0

ŒF � 1 0 0

†b;w 0 0 �iB.a; b/iF .z; w/

In the case where the monodromy is contained in the Johnson kernel, we have e D 0.

(2) For any family of Mx , we have

Ea �Eb D iB.a; b/ŒF �;

Mx �Eb D†b;x;

Mz �Mw � ŒF �D iF .z; w/:

(3) Let � W B0!E0 be a partial section for which Œ!� �D 0 2H1.F /. Associated to
such a section is a lift of � W H1.B/!

V3
H=H to Q� W H1.B/!

V3
H . The choice

of � gives rise to a splitting

H3.E/D �
!.H1.B//˚H1.M /D fEb; b 2H1.B/g˚ fMz; z 2H1.F /g

relative to which

Mx �My �Mz �Eb DMx �My �†b;z D Q�.b/.x ^y ^ z/:

In the case where the monodromy is contained in the Johnson kernel, we can take the
canonical lift Q� � 0 and, for this family of Mx , we have

C �Mx D 0 and C 2
D 0

for all x 2H1.†g/.

Remark The intersection pairing Hn�kE ˝ HkE ! Z identifies Hn�kE with
Hom.HkE;Z/ and hence with H kE by the universal coefficients theorem, since the
homology of a surface bundle over a surface with monodromy in Ig is torsion-free
(see Proposition 3.1). Therefore, Proposition 5.9 can also be viewed as a description of
the cup product in H�.E/.

Proof Before beginning the proof of the statements, a comment on orientations is in
order. Recall that if X and Y are embedded surfaces intersecting transversely, then
X \Y is oriented via the convention that

N.X /˚N.Y /˚T .X \Y /
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should be positively oriented, where, for W D X or W D Y , N.W / is oriented
by the convention that N.W / ˚ T .W / be positively oriented with respect to the
orientation fixed on W . Note that relative to this convention, if X is of odd codimension,
then X �X D 0; we will often employ this fact without comment in the sequel.

Recall that the submanifolds †x �M� and Mz �E have been oriented using a “base
first” convention; see (3) and (4). As remarked already in the proof of Proposition 4.1,
E itself is oriented by selecting orientations for B and F . It is a somewhat tedious
process to go through and verify the signs on all of the intersections being asserted in
this theorem, so we omit the full verification of these results. At the same time, the
reader who is interested in verifying the calculations should have no trouble doing so
by carefully tracking the orientation conventions we have laid out.

It will turn out to be most natural to construct C after verifying the statements not
involving C . We begin with computing †a;z �†b;w . These are represented by surfaces
contained in some E˛ and Eˇ , respectively, where they are tube surfaces constructed
from curves  and ı . We can arrange it so that ˛ and ˇ intersect transversely and
such that, over these points, the surfaces intersect in their tube regions. Following
the orientation conventions as above, one verifies that the local intersection at such a
point .p; q/, written I.p;q/ , is equal to �IpIq , where Ip denotes the local intersection
of ˛ and ˇ relative to the orientation on B and Iq is the local intersection of  and ı
relative to the orientation on F . Summing over all local intersections gives the result
in the lower right-hand corner of the table in Proposition 5.9(1).

The relation ŒF � �†a;z D 0 is easy to verify, by taking ŒF � to be represented by a fiber
not contained in the E˛ containing †a;z . This same idea also shows ŒF �2 D 0, by
picking representative fibers over distinct points.

Let us turn now to Proposition 5.9(2). If E˛ and Eˇ intersect transversely at a point,
then E˛ \Eˇ D F , the fiber over the point of intersection; a check of the orientation
conventions shows that the orientation on F given by the intersection convention agrees
with the predetermined orientation, so that

Ea �Eb D iB.a; b/ŒF �;

as asserted.

The manifolds M were constructed so as to intersect each Eb in a tube surface, so
the relation

Mz �Eb D†b;z

can be taken as a definition of the orientation on †b;z . We choose this over the
alternative because it can be verified that, under this convention, the orientation on †b;z

agrees with the “base first” convention discussed above.
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Now let Mx and My be given and consider Mx �My � ŒF �. By perturbing the one-
skeleton of B , it can be arranged so that the plugs for Mx and My are disjoint, the
cap regions intersect transversely and the representative fiber intersects Mx and My

in their tube regions. The local picture therefore becomes the intersection of x and y

on F . A check of the orientation convention then shows

Mx �My � ŒF �D iF .x;y/:

Turning to Proposition 5.9(3), consider now a four-fold intersection

Mx �My �Mz � ŒEˇ �:

We will assume without further comment that the intersection of representative subman-
ifolds has been made suitably transverse by choosing one-skeleta wisely. The Mw were
constructed so that the problem of computing Mx �My �Mz � ŒEˇ � is exactly the same as
the problem of computing the corresponding †x �†y �†z inside the 3–manifold Eˇ ,
up to a sign which records whether the orientation on Mx � ŒEˇ � agrees with the
orientation on the corresponding †x �Eˇ ; the convention Mx �Eb D†x;b makes
this sign positive. Lemma 5.2 shows that, within Eb , there exist choices of homology
classes †x such that

†x �†y �†z D Q�.b/.x ^y ^ z/:

Recall from Lemma 5.2 that the †x are obtained by starting with an arbitrary fam-
ily †0x and adding appropriate multiples of ŒF �. By the preceding, if a 2 B satisfies
iB.a; b/D 1, then

.MzCEa/ �Eb DMz �EbC ŒF �:

This shows that, by adding appropriate multiples of Ea to Mz (as specified by the
formulas in Lemma 5.2), for a given b the formula

(5) Mx �My �Mz � ŒEˇ �D Q�.b/.x ^y ^ z/

can be made to hold. By choosing a symplectic basis for H1.B/, this can be made to
hold for all b 2H1.B/ simultaneously.

It therefore remains to construct the class C . If x , y 2H1.†g/ satisfy iF .x;y/D 1,
then ŒF � �Mx �My D 1. Similarly, if ˛ and ˇ are loops in B intersecting transversely
exactly once and Mx and My are as above, then

(6) †˛;x �†ˇ;y D†˛;x �Mx �Eˇ D˙1:

As the space spanned by ŒF � and the †b;x classes has codimension one in H2.E/,
(5) and (6) together show that the space of classes in H2.E/ pairing trivially with the
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space of Mx has dimension at most one. We claim that

C DMx1
�My1

C

X
.b;z/2B�F

Q�.b/.x1 ^y1 ^ z/† Ob Oz

has all the required properties; here, B and F are symplectic bases for H1.B/

and H1.F /, respectively, the map x 7! Ox satisfies i.x; Ox/D 1, x1 2 B and Ox1 D y1 .
Recall that C is asserted to have the following properties: C � ŒF �D 1 and C �†b;z D 0

for all b 2 H1.B/ and z 2 H1.†g/. Additionally, when the monodromy of E is
contained in the Johnson kernel, we require C 2 D 0 and C �Mx D 0 for Mx in the
family associated to the lift of � to the zero homomorphism. The proof is a direct
calculation. For C � ŒF �, one has, by Proposition 5.9(1) and then Proposition 5.9(2),

C � ŒF �D

�
Mx1
�My1

C

X
.b;z/2B�F

Q�.b/.x1 ^y1z/† Ob Oz

�
� ŒF �DMx1

�My1
� ŒF �D 1:

Computation of C �†b;z proceeds by Proposition 5.9(3) and Proposition 5.9(1), re-
spectively:

C �†b;z DMx1
�My1

�†b;zC Q�.b/.x1 ^y1 ^ z/.† Ob Oz/ �†b;z

D Q�.b/.x1 ^y1 ^ z/� Q�.b/.x1 ^y1 ^ z/

D 0:

When the monodromy of E is contained in Kg , the above formula for C simplifies
to C DMx1

�My1
, from which it is apparent that C 2D 0. To see that C �Mx D 0 for

all x , we will apply Poincaré duality to see that it suffices to show that

C �Mx �Y D 0

for all classes Y 2H3E . Since Mx �Eb D†bx and we have shown C �†bx D 0, it
remains only to consider C �Mz �Mw . Expanding Mz �Mw in the additive basis for
H2.E/,

Mz �Mw D ˛ŒF �CˇC C
X

.b;z/2B�F

b;z† Ob;Oz :

As the monodromy of E is contained in Kg , we have Mz �Mw �†b;x D 0; applying
this in coordinates for some .b;x/ 2 B�F gives, by applying the prior formulas,

0D

�
˛ŒF �CˇC C

X
.b;z/2B�F

b;z† Ob;Oz

�
�†b;x D�b;x;

so that all b;z are 0. Consequently, Mz �Mw D ˛ŒF �CˇC . Recalling that ŒF �2 D
C 2 D 0 and that .Mz �Mw/

2 D 0, this implies ˛ˇ D 0.
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Also,
iF .z; w/DMz �Mw � ŒF �D ˇ:

Therefore, we conclude that, in the case iF .z; w/¤ 0,

Mz �Mw D iF .z; w/C:

As C 2 D 0, this shows the result in this case. Now suppose that iF .z; w/D 0. Then
we can find z0 such that Mz �Mz0 D cC by the above, with c ¤ 0, then

0DMz �Mw �Mz �Mz0 D cMz �Mw �C:

This shows that Mz �Mw �C D 0 for all z and w , finishing the proof of Proposition 5.9.

6 Multisections and splittings on rational cohomology

Let pW E! B be a surface bundle over an arbitrary base space B equipped with a
section � W B!E . Then there is an associated splitting of H 1.E;Z/ as a direct sum,

(7) H 1.E;Z/D Im p�˚ ker ��:

The condition that pW E ! B admit a section is restrictive. However, recent work
of Hamenstädt shows that all surface bundles over surfaces with zero signature admit
multisections (see Theorem 6.2). In this section, we develop some necessary machinery
showing how a multisection of a surface bundle gives rise to a splitting of H 1.E;Q/,
similarly to (7). The results of this section will be required in the proof of Theorem 1.1.

Remark 6.1 Theorem 6.2 is the only result in this section that requires the base
space B to be a surface of genus g � 2. Lemma 6.3 and Proposition 6.4 are valid for
any base space B .

Let Confn.E/ denote the configuration space of n unordered distinct points in E and
let PConfn.E/ denote the space of n ordered distinct points in E . The symmetric
group Sn on n letters acts freely on PConfn.E/ by permuting the order of the points,
and PConfn.E/=Sn D Confn.E/.

By a multisection of pW E! B , we mean a map

� W B! Confn.E/

for some n� 1 such that the composition

B! Confn.E/! Bn=Sn
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is given by x 7! Œx; : : : ;x�. In other words, a multisection selects n distinct unordered
points in each fiber. A pure multisection is a map

� W B! PConfn.E/

such that the composition
B! PConfn.E/! Bn

is given by x 7! .x; : : : ;x/. Our interest in multisections is due to the following result
of Hamenstädt (see [5]; also personal communication, 2015):

Theorem 6.2 (Hamenstädt) Let pW E! B be a surface bundle over a surface such
that the signature of E is zero (eg a bundle with at least one fibering with monodromy
lying in Ig ). Then pW E! B has a multisection � of cardinality 2g� 2.

We will use this result to obtain a splitting on H�.E;Q/. As (7) indicates, this is
straightforward when the multisection is pure; the work will be to obtain the required
maps for general multisections. First note that, by taking a finite cover zB! B , we
can pull the bundle back to QpW zE! zB so that the multisection pulls back to a pure
multisection

 W zB! PConfn. zE/:

Moreover, we can assume that the covering zB! B is normal with deck group � . By
pulling back the � action on zB , we see that � also acts on zE , by sending the fiber
over b to the fiber over  .b/. Then the multisection  is in fact �–equivariant. This
suggests the following lemma:

Lemma 6.3 Let z� W zB! zE be a �–equivariant section. Then there is an induced map
on �–invariant cohomology:

z��W H�. zE;Q/� !H�. zB;Q/� :

As a result, the transfer map

��W H�. zB;Q/!H�.B;Q/

is injective when restricted to z��.H�. zE;Q/�/.

Proof If f W X ! Y is any �–equivariant map of topological spaces, then the map
f �W H�.Y /!H�.X / will be equivariant, so will restrict to a map on the �–invariant
subspaces. Transfer (see [6]) gives an identification H�. zB;Q/� �H�.B;Q/ and the
remaining statement follows.
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We now come to the main result of the section. This asserts that, when pW E ! B

is a surface bundle with a multisection � W B ! Confn.E/, there exists a map
y��W H�.B;Q/!H�.E;Q/ with many of the same properties as (the pullback of)
an actual section map.

Proposition 6.4 Suppose � W B! Confn.E/ is a multisection. Then there exist maps

y��WH�.E;Q/!H�.B;Q/;

y��WH�.B;Q/!H�.E;Q/;

with the following properties:

(1) y�� ıp�W H�.B/!H�.B/D id;

p� ı y��W H�.B/!H�.B/D id :

(2) The maps y�� and y�� are adjoint under the evaluation pairing. That is, for all
˛ 2H�.E/ and x 2H�.B/,

h˛; y��xi D hy�
�˛;xi:

(3) If ˛ 2 ker y�� then, for any ˇ 2H�.E;Q/ and any x 2H�.B;Q/,

h˛ ^ ˇ; y��.x/i D 0:

Consequently, y�� induces a splitting

(8) H 1.E;Q/D Im p�˚ ker y��:

Proof Begin by assuming that the multisection is pure. Let pi W PConfn.E/!E be
the projection onto the i th coordinate for i D 1; : : : ; n. We define

y��.˛/D
1

n

nX
iD1

��.p�i .˛//;

y��.x/D
1

n

nX
iD1

.pi/�.��.x//:

Then properties (1)–(3) follow by direct verification.

In the general case, let cW zB ! B be a normal covering such that � pulls back
to a pure multisection  . We will use Nc to denote the covering zE ! E . Let
��W H�. zB;Q/! H�.B;Q/ be the transfer map, normalized so that c� ı �� D id.
Then define y��W H�.E;Q/!H�.B;Q/ by

y�� D �� ı y � ı Nc�:
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Similarly, define y��W H�.B;Q/!H�.E;Q/ by

y�� D Nc� ı y � ı ��:

For what follows, it will be useful to refer to the following diagram:

H�. zE/

y �

��

��
//
H�.E/

Nc�
oo

y�

��

H�. zB/

Qp�

OO

��
//
H�.B/

c�
oo

p�

OO

By definition,
y�� ıp� D �� ı y � ı Nc� ıp�:

By commutativity, Nc� ıp� D Qp� ı c� . Then

�� ı y � ı Nc� ıp� D �� ı y � ı Qp� ı c� D �� ı c� D id :

Here we have used the property y � ı Qp� D id for the pure multisection  as well as
our normalization convention �� ı c� D id for the transfer map. A similar calculation
proves the corresponding result for y � and (1) follows.

Statement (2) follows from the observation that the cohomology and homology transfer
maps are adjoint under the evaluation pairing. That is, if zX !X is a normal covering
space with deck group � then, for x 2H�.X / and ˛ 2H�. zX /,

h˛; ��.x/i D h�
�.˛/;xi:

As y � and Nc� certainly also enjoy this adjointness property, so does y�� , and (2)
follows.

To establish (3), suppose ˛ 2 ker y�� and take ˇ 2H�.E;Q/ and x 2H�.B;Q/. As
the transfer map is not a ring homomorphism, (3) does not follow immediately from (2).
However, we see that

h˛ ^ ˇ; y��.x/i D hy�
�.˛ ^ ˇ/;xi D

˝
��.. y � ı Nc�/.˛/ ^ . y � ı Nc�/.ˇ//;x

˛
:

It therefore suffices to show that y � ı Nc�.˛/ D 0. This follows from Lemma 6.3.
Indeed, Nc�.˛/ 2 H�. zE;Q/� and y � , being a sum of �–equivariant maps, is itself
�–equivariant, so y � ı Nc� takes image in H�. zB;Q/� . On the one hand, we have

0D y��˛ D �� ı y � ı Nc�.˛/

by assumption. Also, by Lemma 6.3, �� is injective on the image of y � ı Nc� , so that
y � ı Nc�.˛/D 0 as desired.
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7 Unique fibering in the Johnson kernel

This section is devoted to the proof of Theorem 1.1. The outline is as follows. Let
p1W E!B1 be a surface bundle with monodromy in the Torelli group Ig and suppose
there is a second distinct fibering p2W E! B2 with fiber F2 . The proof proceeds by
analyzing ŒF2� in the coordinates on H�.E/ coming from the Torelli fibering p1 . On
the one hand, the intersection form in these coordinates is completely understood by
virtue of Proposition 5.9. On the other, ŒF2� is realizable as an intersection of classes
induced from H1.B2/. Under the assumption that the monodromy of p1 is contained
in Kg and not merely Ig , it will follow that there is a unique possibility for ŒF2�. The
final step will be to extract the condition that the genera of F2 and B1 must be equal
from the cohomology ring H�.E/ and to argue that this enforces the triviality of either
bundle structure.

The fundamental class of a second fiber In this subsection we will compute ŒF2�

in the coordinates on H2 coming from the fibering p1 . The results are formulated
under the more general assumption that the monodromy of p1 lie in Ig rather than Kg ,
because we feel that the arguments are clearer in this larger context. The main objective
is Lemma 7.3.

Suppose that p1W E! B1 is a bundle with monodromy lying in Ig . Suppose there
is a partial section � W B0!E0 such that Œ!� �D 0 2H1.F /, giving rise to a lift Q� of
the Johnson homomorphism to

V3
H ; then, by Proposition 5.9(3), there is a natural

splitting
H3.E/� p!

1H1.B1/˚H1.F1/:

We use this direct sum decomposition to define the projections

P W H3.E/! p!
1H1.B1/ and QW H3.E/!H1.F /

and we consider the restrictions of P and Q to p!
2
.H1.B2// for a second fibering

p2W E! B2 . Where convenient, we will also define P and Q on H1.B2/ directly,
by precomposing with the injection p! .

Lemma 7.1 For any second fibering p2W E! B2 , the restriction of Q to H1.B2/

is a symplectic mapping with respect to diF1
on H1.F1/ and iB2

on H1.B2/, where
d D ŒF1� � ŒF2� is the algebraic intersection number of the two fibers.

Proof There exist classes x , y 2 H1.B2/ such that x � y D 1 2 H0.B2/, so that
ŒF2�D p!

2
x �p!

2
y and there are expressions

p!
2x D PxCQx; p!

2y D PyCQy:
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Consequently,

ŒF2�D Px �PyCPx �Qy �Py �QxCQx �Qy:

By Proposition 5.9, ŒF1� �Pz D 0 for all z 2H1.B2/, so that

d D ŒF1� � ŒF2�D ŒF1� �Qx �Qy;

with the first equality holding by assumption. The condition ŒF2� D p!
2
x � p!

2
y is

equivalent to iB2
.x;y/D 1. By Proposition 5.9,

d D ŒF1� �Qx �Qy D iF1
.Qx;Qy/;

proving the claim.

As in the above proof, let x , y 2H1.B2/ satisfy x � y D 1. By Poincaré duality, in
order to determine ŒF2� it suffices to determine the collection of cup products ŒF2� �Z

for Z 2 H2.E/. Relative to the splitting of H2.E/ coming from p1 (where the
monodromy lies in Ig ), in particular we must determine ŒF2� �†b;z , where b 2H1.B1/

and z 2H1.F1/.

Lemma 7.2 Take x , y2H1.B2/ satisfying x�yD1. For b2H1.B1/ and z2H1.F1/,
let †b;z be the associated element of H2.E/. Then

(9) ŒF2��†b;zD iB1
.Px; b/iF1

.Qy; z/�iB1
.Py; b/iF1

.Qx; z/C�.b/.Qx^Qy^z/:

In particular, if z 2 hQx;Qyi? then (9) simplifies to

(10) ŒF2� �†b;z D �.b/.Qx ^Qy ^ z/:

In fact, for all z2H1.F1/ there exist pairs xz , yz 2H1.B2/ such that z2hQxz;Qyzi
?

holds, so that, for all b and z , (10) is satisfied for this choice of xz and yz .

Proof The formulas in (9) and (10) follow directly from the description of the intersec-
tion form given in Proposition 5.9. The existence of a suitable x and y for a given z is
nothing but a matter of symplectic linear algebra. Since we will use some features of the
construction later on, we give a detailed explanation. Lemma 7.1 shows that W D Im Q

is a symplectic subspace of H1.F1/, so we can take a symplectic complement W ? .
Any z can therefore be written as wCw0 with w 2W and w0 2W ? . If wD 0 there
is nothing to show. Otherwise, extend w to a symplectic basis for W such that wD x1 .
As B2 has genus at least 2, this basis includes x2 and y2 and, as W D Im Q, we can
select xz and yz in H1.B2/ with Qxz D x2 and Qyz D y2 .

We conclude this subsection by amalgamating the work we have done in the previous
two propositions in order to give a description of ŒF2�.
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Lemma 7.3 Let p2W E ! B2 be a second fibering. The choice of partial section
� W B0!E0 furnishes H2.E/ with the splitting

H2.E/D hŒF1�i˚ .H1.B1/˝H1.F1//˚H2.B1/;

with H1.B1/˝H1.F1/ spanned by the set of †b;z where b and z range in symplectic
bases B and F for H1.B1/ and H1.F1/, respectively, and H2.B1/ is spanned by C , as
in Proposition 5.9. Relative to this splitting of H2.E/ there is the following expression
for ŒF2�:

(11) ŒF2�D .ı� 2de/ŒF1�C dC C
X

b2B;z2F

Q�.b/.Qxz ^Qyz ^ z/† Ob Oz :

Here, ı D iB1
.Px;Py/CQx �Qy �C for any choice of x , y 2 H1.B2/ satisfying

x � y D 1, e D C 2 and d D ŒF1� � ŒF2� (the algebraic intersection of the two fibers).
Also, Ox denotes the symplectic dual of x relative to the chosen symplectic basis.

Proof Suppose V is a free Z–module equipped with a nondegenerate symmet-
ric bilinear pairing h � ; � i. Suppose, moreover, that there exists a generating set
AD fa1; : : : ; ak ; b1; : : : ; bkg with the property that hai ; aj i D hbi ; bj i D 0 for all i

and j , hai ; bj iD 0 for i ¤ j , and hai ; biiD 1. Then any element x 2V is expressible
in the form

(12) x D

kX
iD1

hx; aiibi C

kX
iD1

hx; biiai :

We will apply this to V DH2.E/ with the intersection pairing; in order to do this we
must find a suitable generating set A. Via Proposition 5.9, the space H1.B1/˝H1.F1/

is orthogonal under � to H2.B2/ and to H2.F1/ and, moreover, the collection of †b;z

for .b; z/ 2 B�F is such a generating set on this subspace. We also have ŒF1� �C D 1

as well as .ŒF1�/
2 D 0 and C 2 D e . Therefore, we can take

AD fŒF1�;C � eŒF1�g[ f†b;z j .b; z/ 2 B�Fg:

The only intersection that remains to be computed is ŒF2� � C . As Px � Py D

iB1
.Px;Py/ŒF1�, a direct computation gives

ŒF2� �C D .Px �PyCPx �Qy �Py �QxCQx �Qy/ �C

D Px �Py �C CQx �Qy �C

D iB1
.Px;Py/CQx �Qy �C D ı:

By assumption, ŒF1� � ŒF2�D d , and (10) computes ŒF2� �†b;z . Therefore we may insert
these computations into (12) to obtain (11).
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Rigidity in the Johnson kernel We now assume, as is required for Theorem 1.1,
that the monodromy of p1 is contained in Kg . As noted in the previous section, the
closed Johnson kernel Kg coincides with the kernel of � W Ig!

V3
H=H ; similarly,

the pointed Johnson kernel Kg;� is the kernel of � W Ig;� !
V3

H . We also noted
above that if � ı �W H1.B/!

V3
H=H is identically zero then there is a canonical

lift Q� W H1.B/!
V3

H , namely zero. This furnishes the (co)homology of E with a
canonical splitting in which all cup products in (10) vanish.

In order to prove the main result of this section, we will compute ŒF2� and see that
it is “as simple as possible” in the coordinates coming from p1 , the fibering with
monodromy in Kg . This will be accomplished via Lemma 7.3. Per our choice of lift Q� ,
the terms expressed via the Johnson homomorphism all vanish, so that

ŒF2�D aŒF1�C dC

for some a 2 Z. The coefficient a is determined by ŒF2� � C or, equivalently, by
ı D iB2

.Px;Py/ (by Proposition 5.9(3), Qx �Qy �C D 0). This can be determined
from Lemma 7.2.

Lemma 7.4 Let E be a 4–manifold with two fiberings as a surface bundle over a
surface, p1W E!B1 and p2W E!B2 . Define the projection P W H1.B2/!H1.B1/.
Suppose that the monodromy for the bundle structure associated to p1 lies in Kg .
Then P � 0 and, consequently ı D 0.

Proof Returning to (9), in the Johnson kernel setting ŒF2��†b;z and Q�.b/.Qx^Qy^z/

are both zero for all x , y and z . Taking z to be any element satisfying iF1
.Qy; z/¤ 0

and iF1
.Qx; z/D 0, (9) simplifies to iB1

.Px; b/D 0. Since this is true for all b , we
conclude that Px D 0 and, since any x 2H1.B2/ has a suitable y such that (9) holds,
we conclude that P � 0 and ı D 0, as claimed.

With this in hand, we can apply Lemma 7.3 (recalling from Proposition 5.9(3) that eD0)
to see that ŒF2� is as simple as possible:

(13) ŒF2�D dC:

As was noted following the statement of Proposition 3.1, ŒF2� must be a primitive class,
so d D˙1. We conclude that d D 1 (as d � 0 by Proposition 4.1). We record this
fact for later reference:

Lemma 7.5 Let p1W E ! B1 be a surface bundle over a surface with monodromy
in Kg . Suppose there is a second fibering p2W E! B2 . Then

deg.p1 �p2/D 1:
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Proposition 4.1 asserts the equality of deg.p1 �p2/ with deg.p2jF1
W F1! B2/ and

deg.p1jF2
W F2! B1/. Consequently,

deg.p2jF1
W F1! B2/D deg.p1jF2

W F2! B1/D 1:

Remark 7.6 Observe that Lemma 7.5 supplies a proof of the missing assertion
.1/D) .3/ in Proposition 2.2, namely that, if E is a surface bundle over a surface
with monodromy in the Johnson kernel, then any second fibering necessarily yields a
bi-projection with nonzero degree. Of course, the assertion that any of the conditions
(1)–(3) of Proposition 2.2 are equivalent to the bundle E being a product is the content
of Theorem 1.1.

Cohomology: Splittings coming from multisections In order to complete the proof
of Theorem 1.1, we will combine the work we have done above with an analysis of
what the (co)homology of E looks like with respect to the coordinates coming from
the second fibering (where the monodromy need not be contained in Ig ). The most
convenient setting for this portion of the argument is in the cohomology ring, so we
pause briefly to establish some preliminaries.

Most of what we have established vis-à-vis the intersection pairing on H�.E/ is directly
portable to the setting of the cup product in cohomology. In particular, the maps

p�i W H
�.Bi/!H�.E/

for i D 1, 2, are injections. We let �i 2H 2.Bi/ be an integral generator compatible
with the chosen orientations; it is easy to see that p�i .�i/ is Poincaré dual to ŒFi �.
Relative to a choice of splitting

H 1.E/D p�1H 1.B1/˚H 1.F1/;

there are the projection maps P W H 1.B2/! H 1.B1/ and QW H 1.B2/! H 1.F1/,
and Lemma 7.4 carries over to show that P � 0. We can also transport our analysis of
the intersection form on H�.E/. In the cohomological setting, we have proved:

Proposition 7.7 Let F1 ! E ! B1 be a surface bundle over a surface with mon-
odromy in the Johnson kernel Kg . Then E is an integral cohomology B1 �F1 , ie
there exists a canonical isomorphism

H�.E/�H�.B1/˝H�.F1/

as graded rings.

We now continue with the proof of Theorem 1.1.
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Lemma 7.8 Suppose that the genus of B2 is strictly smaller than that of F1 . Then
there exist classes x , y 2H 1.E/ annihilating p�

2
H 1B2 (ie x ^ p�

2
zD y ^ p�

2
zD 0

for all z 2H 1.B/), such that x ^ y Dˆ1 , where ˆ1 2H 2.F1/ is a generator.

Proof The cohomological formulation of Lemma 7.4 shows that

p�2H 1.B2/�H 1.F1/:

By (the cohomological reformulation of) Lemma 7.1, p�
2
H 1.B2/ is in fact a symplectic

subspace of H 1.F /, so there exists a symplectic complement. We can then take the
desired x and y to be suitable elements of this complement.

To finish the proof of Theorem 1.1, we will examine where x and y must live, relative
to coordinates on H�.E/ coming from the fibering p2 . At this point, the results of
Section 6 come into play. In particular, (8) endows H 1.E;Q/ with a splitting

H 1.E;Q/D Im p�˚ ker y��:

For the remainder of the proof, we will assume that all of our cohomology groups have
rational coefficients.

Lemma 7.9 Let pW E! B be any surface bundle over a surface with multisection � .
Suppose that there exists x 2H 1.E/ annihilating p�H 1.B/. Then x 2 ker y�� .

Proof Write
x D vCp�b

with v 2 ker y�� and b 2H 1.B/. If b¤ 0, then there exists c 2H 1.B/ with b^ c¤ 0.
On the one hand, x ^ p�c D 0, by assumption. On the other, letting ŒB� 2 H2.B/

denote the fundamental class, we have by Proposition 6.4 that

hx ^ p�c; y��ŒB�i D h.vCp�b/ ^ p�c; y��ŒB�i

D hv ^ p�c; y��ŒB�iC hp
�.b ^ c/; y��ŒB�i

D 0Chy��p�.b ^ c/; ŒB�i

D hb ^ c; ŒB�i ¤ 0;

since v 2 ker y�� . In this case we have reached a contradiction, so b D 0 as desired.

Lemma 7.10 Let F1!E!B1 be a surface bundle over a surface with monodromy
in Kg and suppose there is a second fibering p2W E! B2 . Let g denote the genus
of F1 and h denote the genus of B2 . Then g D h.
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Proof We have already established (see Lemma 7.5) that

deg.p2jF1
/D 1:

As p2 has positive degree, we conclude immediately that g� h. Suppose g> h. Then
there exist classes x , y 2H 1.E/ as in the statement of Lemma 7.8. We will make
use of the existence of a multisection � of p2W E! B2 so that, by Lemma 7.9, we
must have x , y 2 ker y�� . So, by Proposition 6.4,

hx ^ y; y��ŒB2�i D 0:

In the notation of Proposition 7.7, both p�
2
H 1.B2/ and the classes x and y are

contained in H 1.F1/ and, as the image of

^W 2̂H 1.F1/!H 2.F1/

is one-dimensional (since F1 is a surface), we conclude that x ^ y D p�
2
.�2/, where

�2 2H2.B2/ is a generator. So, then

hx ^ y; y��ŒB2�i D hp
�
2 .�2/; y�

�ŒB2�i D h�2; ŒB2�i D 1:

This is a contradiction; necessarily g D h.

This shows that p2jF1
is a map of degree one between surfaces of the same genus and

thus, as is well known,
.p2/�W �1F1! �1B2

must be an isomorphism.

End of proof of Theorem 1.1 At this point, we turn to an analysis of the fundamental
group. Via the long exact sequence in homotopy for a fibration, there is an exact
sequence

1! �1Fi! �1E! �1Bi! 1

for i D 1, 2. Consequently, the kernel of

.p1 �p2/�W �1E! �1B1 ��1B2

is given by �1F1 \ �1F2 . On the other hand, this is also the kernel of the cross-
projection

�1F1! �1B2;

which was just shown to be an isomorphism. We conclude that .p1 � p2/� is an
isomorphism.
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The monodromy of the bundle E can be read off from the fundamental group as
the map �1B1! Out.�1F1/�Mod.†g/ (the latter isomorphism coming from the
theorem of Dehn, Nielsen, and Baer). Since �1E is a product, this map is trivial. The
correspondence (1) then shows that E , being a surface bundle with trivial monodromy,
is diffeomorphic to B1 �B2 . This completes the proof of Theorem 1.1.

References
[1] M F Atiyah, The signature of fibre-bundles, from: “Global analysis (papers in honor

of K Kodaira)”, (D C Spencer, S Iyanaga, editors), Univ. Tokyo Press (1969) 73–84
MR0254864

[2] A Cavicchioli, F Hegenbarth, D Repovš, On four-manifolds fibering over surfaces,
Tsukuba J. Math. 22 (1998) 333–342 MR1650733

[3] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series
49, Princeton Univ. Press (2012) MR2850125

[4] V Guillemin, A Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, NJ
(1974) MR0348781

[5] U Hamenstädt, On surface subgroups of mapping class groups, talk at the workshop
“Hot topics: Surface subgroups and cube complexes”, MSRI (2013) Available at
https://www.msri.org/workshops/723/schedules/16639

[6] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354

[7] J A Hillman, Four-manifolds, geometries and knots, Geometry & Topology Mono-
graphs 5 (2002) MR1943724

[8] F E A Johnson, A rigidity theorem for group extensions, Arch. Math. .Basel/ 73 (1999)
81–89 MR1703674

[9] K Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967)
207–215 MR0216521

[10] S Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551–577
MR914849

[11] S Morita, Geometry of characteristic classes, Translations of Mathematical Mono-
graphs 199, Amer. Math. Soc. (2001) MR1826571

[12] I Rivin, Rigidity of fibering, preprint (2011) arXiv:1106.4595

[13] I Rivin, Statistics of 3–manifolds occsionally fibering over the circle, preprint (2014)
arXiv:1401.5736

[14] N Salter, Surface bundles over surfaces with arbitrarily many fiberings, Geom. Topol.
19 (2015) 2901–2923 MR3416116

Algebraic & Geometric Topology, Volume 15 (2015)

http://www.ams.org/mathscinet-getitem?mr=0254864
http://www.ams.org/mathscinet-getitem?mr=1650733
http://www.ams.org/mathscinet-getitem?mr=2850125
http://www.ams.org/mathscinet-getitem?mr=0348781
https://www.msri.org/workshops/723/schedules/16639
https://www.msri.org/workshops/723/schedules/16639
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.ams.org/mathscinet-getitem?mr=1943724
http://dx.doi.org/10.1007/s000130050371
http://www.ams.org/mathscinet-getitem?mr=1703674
http://dx.doi.org/10.1007/BF02788717
http://www.ams.org/mathscinet-getitem?mr=0216521
http://dx.doi.org/10.1007/BF01389178
http://www.ams.org/mathscinet-getitem?mr=914849
http://www.ams.org/mathscinet-getitem?mr=1826571
http://arxiv.org/abs/1106.4595
http://arxiv.org/abs/1401.5736
http://dx.doi.org/10.2140/gt.2015.19.2901
http://www.ams.org/mathscinet-getitem?mr=3416116


3652 Nick Salter

Department of Mathematics, University of Chicago
5734 S University Ave, Chicago, IL 60637, USA

nks@math.uchicago.edu

http://math.uchicago.edu/~nks/

Received: 7 December 2014 Revised: 29 March 2015

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

mailto:nks@math.uchicago.edu
http://math.uchicago.edu/~nks/
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 15 (2015) 3653–3705

The algebraic duality resolution at p D 2

AGNÈS BEAUDRY

The goal of this paper is to develop some of the machinery necessary for doing
K.2/–local computations in the stable homotopy category using duality resolutions at
the prime pD 2 . The Morava stabilizer group S2 admits a surjective homomorphism
to Z2 whose kernel we denote by S1

2 . The algebraic duality resolution is a finite
resolution of the trivial Z2ŒŒS1

2��–module Z2 by modules induced from representations
of finite subgroups of S1

2
. Its construction is due to Goerss, Henn, Mahowald and

Rezk. It is an analogue of their finite resolution of the trivial Z3ŒŒG1
2
��–module Z3 at

the prime p D 3 . The construction was never published and it is the main result in
this paper. In the process, we give a detailed description of the structure of Morava
stabilizer group S2 at the prime 2 . We also describe the maps in the algebraic duality
resolution with the precision necessary for explicit computations.

55Q45; 55T99, 55P60

1 Introduction

Fix a prime p and recall that LnS is the Bousfield localization of the sphere spectrum
S with respect to the wedge K.0/ _ � � � _K.n/, where K.m/ is the mth Morava
K–theory at the prime p . The chromatic convergence theorem of Hopkins and Ravenel
[27, Section 8.6] states that the p–local sphere spectrum is the homotopy limit of its
localizations LnS . Further, there is a homotopy pull-back square:

LnS

��

// LK.n/S

��
Ln�1S // Ln�1LK.n/S

In theory, the homotopy groups of S can be recovered from those of its Morava K–
theory localizations LK.n/S . For this reason, computing ��LK.n/S is one of the
central problems in stable homotopy theory. A detailed historical account of chromatic
homotopy theory can be found in Goerss, Henn, Mahowald and Rezk [14, Section 1].

The difficulty of computing ��LK.n/S varies with p and n. The computation of
��LK.1/S is related to K–theory and is now well understood. For n � 3, almost

Published: 12 January 2016 DOI: 10.2140/agt.2015.15.3653
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nothing is known, which leaves the case nD 2. For p � 5, ��LK.2/S was computed
by Shimomura and Yabe in [33]. Behrens gives an illuminating reconstruction of their
results in [4]. The case when p D 3 proved much more difficult than the problem for
p � 5. It is now largely understood due to the work of Shimomura, Wang, Goerss,
Henn, Karamanov, Mahowald and Rezk (see Goerss and Henn [12], Goerss, Henn and
Mahowald [13], Goerss, Henn, Mahowald and Rezk [14; 15], Henn, Karamanov and
Mahowald [18] and Shimomura and Wang [32]).

The major breakthrough in understanding the case of n D 2 and p D 3 was the
construction by Goerss, Henn, Mahowald and Rezk [14] of a finite resolution of
the K.2/–local sphere called the duality resolution. The duality resolution comes
in two flavors. The algebraic duality resolution is a finite resolution of the trivial
Z3ŒŒG2��–module Z3 by permutation modules induced from representations of finite
subgroups G of the extended Morava stabilizer group G2 . Its topological counterpart,
the topological duality resolution, is a finite resolution of E

hG2

2
, where E2 denotes

Morava E–theory. It is composed of spectra of the form †kEhG
2

, and realizes the
algebraic duality resolution. Both the algebraic duality resolution and the topological
duality resolution give rise to spectral sequences which can be used to study ��LK.2/S

at p D 3.

The existence of a resolution analogous to that of [14, Theorem 4.1] at the prime
p D 2 was conjectured by Mahowald using the computations of Shimomura [30] and
of Shimomura and Wang [31]. The central result of this paper is its construction, which
is due to Goerss, Henn, Mahowald and Rezk. The author is grateful for their blessing
to record it here.

More precisely, for the norm-one subgroup S1
2

defined in (2.3.6), we construct a
resolution of Z2 by modules which are induced from representations of finite subgroups
of S1

2
. We add a detailed description of the maps in the resolution, which will be

used in later computations. However, we do not construct a full algebraic duality
resolution of Z2 by Z2ŒŒG2��–modules as in [14, Corollary 4.2] (see Remark 1.2.3),
nor do we realize the algebraic resolution topologically as in [14, Section 5]. For work
on the topological realization of the algebraic duality resolution, we refer the reader to
Bobkova’s thesis [6].

The algebraic duality resolution has already proved to be a useful tool for compu-
tations. We use the results of this paper in [3] to compute an associated graded for
H�.S1

2
; .E2/�V .0//, where V .0/ is the mod 2 Moore spectrum. The computations of

[3] play a crucial role in [2], where we prove that the strongest form of the chromatic
splitting conjecture, as stated by Hovey in [21, Conjecture 4.2(v)], cannot hold when
nD p D 2.
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1.1 Background and notation

As in Goerss, Henn, Mahowald and Rezk [14, page 779], “we unapologetically focus
on the case [p D 2] and nD 2 because this is at the edge of our current knowledge.”

We let K.2/ be Morava K–theory, so that

K.2/� D F2Œv
˙1
2 �

for v2 of degree 6, and whose formal group law is the Honda formal group law of
height two, which we denote by F2 . The Morava stabilizer group S2 is the group of
automorphisms of F2 over F4 . It admits an action of the Galois group Gal.F4=F2/.
The extended Morava stabilizer group G2 is

G2 D S2 Ì Gal.F4=F2/:

By the Goerss–Hopkins–Miller theorem (see Goerss and Hopkins [16]), the group
G2 acts on Morava E–theory E2 by maps of E1–ring spectra and, for X a finite
spectrum,

LK.2/X 'E
hG2

2
^X:

In fact, for any closed subgroup G of G2 , one can form the homotopy fixed point
spectrum EhG

2
; see the work of Hopkins and Devinatz [10] and of Davis [9]. For a

spectrum X , the action of G2 on .E2/� induces an action on

.E2/�X WD ��LK.2/.E2 ^X /:

For a closed subgroup G of G2 and a finite spectrum X, there is a convergent descent
spectral sequence

E
s;t
2
WDH s.G; .E2/tX /H) �t�s.E

hG
2 ^X /:

We describe the most relevant example for this paper here. There is a norm on the
group S2 whose kernel is denoted S1

2
(see Goerss, Henn, Mahowald and Rezk [14,

Section 1.3]). Further,

S2 Š S1
2 Ì Z2:(1.1.1)

Similarly, the norm on S2 induces a norm on G2 . The kernel is denoted G1
2

and

G2 ŠG1
2 Ì Z2:(1.1.2)

Let � be a topological generator of Z2 in G2 and �� be its action on E2 . If X is
finite, there is a fiber sequence

(1.1.3) LK.2/X !E
hG1

2

2
^X

���id
����!E

hG1
2

2
^X:
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For this reason, the spectrum E
hG1

2

2
is often called the half sphere. One approach for

computing ��LK.2/X is to compute the spectral sequence

(1.1.4) H s.G1
2 ; .E2/tX /ŠH s.S1

2; .E2/tX /
Gal.F4=F2/ H) �t�sE

hG1
2

2
^X

and then use the fiber sequence (1.1.3) to pass from ��.E
hG1

2

2
^X / to ��LK.2/X .

Computing the E2 –term of (1.1.4) can be difficult. At the prime 3, the algebraic duality
resolution of Goerss, Henn, Mahowald and Rezk constructed in [14, Theorem 4.1]
gives rise to a first quadrant spectral sequence computing the E2 –term of the analogue
of (1.1.4). One of the most important consequences of this paper is the existence of
such a spectral sequence at the prime p D 2 (Theorem 1.2.4 below).

To state the main results and describe this spectral sequence, we must introduce some
subgroups of S2 . The group S2 has a unique conjugacy class of maximal finite
subgroups of order 24. Fix a representative and call it G24 . The group G24 is
isomorphic to the semidirect product of a quaternion group denoted Q8 and a cyclic
group of order 3 denoted C3 (see Section 2.4); that is,

G24 ŠQ8 Ì C3:

However, there are two conjugacy classes of maximal finite subgroups in S1
2

. If � is
as above (1.1.3), the groups G24 and

G024 WD �G24�
�1

are representatives for the distinct conjugacy classes. The group S2 also contains a
central subgroup C2 of order 2 generated by the automorphism Œ�1�.x/ of the formal
group law F2 of K.2/. Therefore, S1

2
contains a cyclic subgroup

C6 WD C2 �C3:

Choose a generator ! of C3 and an element i in G24 such that G24 is generated by i

and ! . That is,
G24 D hi; !i:

Let j D !i!2 and k D !2j! . The group S2 can be decomposed as a semidirect
product

S2 ŠK Ì G24

for a Poincaré duality group K of dimension 4. Similarly,

S1
2 ŠK1 Ì G24

Algebraic & Geometric Topology, Volume 15 (2015)
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for a Poincaré duality group K1 of dimension 3; see Section 2.5. The homology of
the groups K and K1 play a central role in the construction of the duality resolution;
see Section 3.1.

The group S1
2

is a profinite group and one can define the completed group ring

Z2ŒŒS
1
2��D lim

i;j
Z=.2i/ŒS1

2=Uj �

where fUj g forms a system of open subgroups such that
T

j Uj D feg. For any closed
subgroup G of S1

2
, we let

Z2ŒŒS
1
2=G�� WD Z2ŒŒS

1
2��˝Z2ŒŒG��Z2:

1.2 Statement of the results

The main result of this paper is the following theorem.

Theorem 1.2.1 (Goerss, Henn, Mahowald and Rezk, unpublished) Let Z2 be the
trivial Z2ŒŒS

1
2
��–module. There is an exact sequence of complete left Z2ŒŒS

1
2
��–modules

0! C3

@3
�! C2

@2
�! C1

@1
�! C0! Z2! 0

where

Cp D

8<:
Z2ŒŒS

1
2
=G24�� if p D 0;

Z2ŒŒS
1
2
=C6�� if p D 1; 2;

Z2ŒŒS
1
2
=G0

24
�� if p D 3:

The resolution of Theorem 1.2.1 is called the algebraic duality resolution. The name is
motivated by the fact that the exact sequence of Theorem 1.2.1 exhibits a certain twisted
duality. To make this precise, let Mod.S1

2
/ denote the category of finitely generated left

Z2ŒŒS
1
2
��–modules. As above, let � be a topological generator of Z2 in S2 Š S1

2
Ì Z2 .

For a module M in Mod.S1
2
/, let c�.M / denote the left Z2ŒŒS

1
2
��–module whose

underlying Z2 –module is M, but whose Z2ŒŒS
1
2
��–module structure is twisted by the

element � .

Theorem 1.2.2 (Henn, Karamanov and Mahowald, unpublished) Let

C �p D HomZ2ŒŒS
1
2
��.Cp;Z2ŒŒS

1
2��/:
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There is an isomorphism of complexes of left Z2ŒŒS
1
2
��–modules:

0 // C3

f3

��

@3 // C2

f2

��

@2 // C1

f1

��

@1 // C0

f0

��

// Z2
// 0

0 // c�.C
�
0
/

c� .@
�
1
/
// c�.C

�
1
/

c� .@
�
2
/
// c�.C

�
2
/

c� .@
�
3
/
// c�.C

�
3
/ // Z2

// 0

Remark 1.2.3 The resolution of Theorem 1.2.1 has the following shortcoming: it does
not extend to a resolution of the group G2 or of the group S2 as in [14, Corollary 4.2].
This is due to the fact that (1.1.1) is a nontrivial extension when nD pD 2. For nD 2

and p � 3, S2 Š S1
2
�Zp .

One application of the algebraic duality resolution is given by the following theorem.

Theorem 1.2.4 Let M be a profinite left Z2ŒŒS
1
2
��–module. There is a first quadrant

spectral sequence

E
p;q
1
D Extq

Z2ŒŒS
1
2
��
.Cp;M /H)H pCq.S1

2;M /

with differentials dr W E
p;q
r !E

pCr;q�rC1
r . Further, there are isomorphisms

E
p;q
1
Š

8<:
H q.G24;M / if p D 0;

H q.C6;M / if p D 1; 2;

H q.G0
24
;M / if p D 3:

The spectral sequence of Theorem 1.2.4 is called the algebraic duality resolution
spectral sequence. Its computational appeal is twofold. The E1 –term is composed
of the cohomology of finite groups. Further, it collapses at the E4 –term. The d1

differentials are induced by the maps of the exact sequence in Theorem 1.2.1. In order
to compute the spectral sequence, it is necessary to have a detailed description of these
maps, which we do in Theorem 1.2.6 below.

The following result introduces some important elements in S1
2

.

Theorem 1.2.5 There is an element ˛ in K1 such that S2 is topologically generated
by the elements � , ˛ , i and ! . The group S1

2
is topologically generated by the

elements ˛ , i and ! .

To state the next result, for any element � in G24 , let

˛� D �˛�
�1˛�1:

Let S1
2

be the 2–Sylow subgroup of S1
2

. The group S1
2

admits a decreasing filtration,
denoted Fn=2S1

2
which will be defined in Section 2.2.
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Theorem 1.2.6 Let e be the canonical generator of Z2ŒŒS
1
2
�� and ep be the canonical

generator of Cp . For a subgroup G of S1
2

, let IG be the kernel of the augmentation
"W Z2ŒŒG��! Z2 . The maps @pW Cp! Cp�1 of Theorem 1.2.1 can be chosen so that:

(a) @1.e1/D .e�˛/e0 .

(b) @2.e2/D‚e1 for an element ‚ in Z2ŒŒS
1
2
��C3 such that

‚� eC˛C i C j C k �˛i � j̨ �˛k mod J ;

where J is the left ideal

J D .IF4=2K1; .IF3=2K1/.IS1
2 /; .IK1/7; 2.IK1/3; 4IK1; 8/:

In particular, ‚� eC˛ modulo .2; .IS1
2
/2/.

(c) There are isomorphisms of Z2ŒŒS
1
2
��–modules gpW Cp! Cp and differentials

@0pC1W CpC1! Cp

such that

0 // C3

g3

��

@3 // C2

g2

��

@2 // C1

g1

��

@1 // C0

g0

��

// Z2
// 0

0 // C3

@0
3 // C2

@0
2 // C1

@0
1 // C0

// Z2
// 0

is an isomorphism of complexes. The map @0
3
W C3! C2 is given by

@03.e3/D �.eC i C j C k/.e�˛�1/��1e2:

Theorem 1.2.6 is the key to doing computations using the duality resolution spectral
sequence. The most difficult part of Theorem 1.2.6 is giving a good estimate for
@2W C2! C1 . A detailed description of the map @2 is given in Section 3.4. Though
such precision is not needed for our computations in [3], the hope is that it will be
sufficient for most future computations using the duality resolution spectral sequence.

1.3 Organization of the paper

Section 2 is dedicated to the description of the Morava stabilizer group in the special
case of p D 2 and n D 2. (A more general account of the structure of Sn can be
found in Goerss, Henn, Mahowald and Rezk [14, Section 1].) We begin by recalling
the standard filtration on S2 and defining the norm. This allows us to define the unit
norm subgroup S1

2
and describe its finite subgroups. In particular, we give an explicit
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choice of maximal finite subgroup G24 in Lemma 2.4.3. In Section 2.5, we introduce
a subgroup K such that S2 Š K Ì G24 and compute the cohomology of K and of
its norm-one subgroup K1 . These results are due to Goerss and Henn but are not
published. We finish the section with a proof of Theorem 1.2.5.

In Section 3, we introduce the finite resolution of the trivial Z2ŒŒS
1
2
��–module Z2 . We

construct the algebraic duality resolution spectral sequence. We describe the duality
properties of the resolution and give a proof of Theorem 1.2.2. We end this section by
giving a detailed description of the maps in the resolution, proving Theorem 1.2.6.

The appendix, contains the results on the cohomology of profinite p–adic analytic
groups used in this paper.
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2 The structure of the Morava stabilizer group

2.1 A presentation of S2

Let F2 be the Honda formal group law of height 2 at the prime 2. It is the 2–typical
formal group law defined over F2 specified by the 2–series

Œ2�F2
.x/D x4:

The ring of endomorphisms of F2 over F4 is isomorphic to the maximal order O2 in
the central division algebra over Q2 of valuation 1

2
, which we denote by

D2 DD.Q2;
1
2
/:

We begin by describing this isomorphism. More details can be found in Ravenel [26,
A2.2; 27, Chapter 4].
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Let W DW .F4/ denote the ring of Witt vectors on F4 . The ring W is isomorphic
to the ring of integers of the unique unramified degree 2 extension of Q2 . It is a
complete local ring with residue field F4 . The Teichmüller character defines a group
homomorphism

� W F�4 !W �:

Let ! be a choice of primitive third root of unity in F�
4

, and identify ! with its
Teichmüller lift �.!/. Given such a choice, there is an isomorphism

W Š Z2Œ!�=.1C!C!
2/:

The Galois group Gal.F4=F2/ is generated by the Frobenius � . It is the Z2 –linear
automorphism of W determined by

!� D !2:

The ring O2 is a noncommutative extension of W . It is given by

O2 ŠW hSi=.S2
D 2; aS D Sa� /

for a in W . Note that any element of O2 can be expressed uniquely as a linear
combination aC bS for a and b in W . The division algebra D2 is given by

D2 ŠO2˝Z2
Q2:

The 2–adic valuation v on Q2 extends uniquely to a valuation v on D2 such that
v.S/D 1

2
. Further, O2Dfx 2D j v.x/� 0g and O�

2
Dfx 2D j v.x/D 0g. Therefore,

any finite subgroup G �D�
2

is contained in O�
2

.

Next, we describe the ring of endomorphisms of F2 and give an explicit isomorphism
End.F2/ Š O2 . A complete proof can be found in Ravenel [26, Section A2]. First,
note that

End.F2/� F4ŒŒx��:

To avoid confusion with the elements W �O2 , let � be a choice of primitive third root
of unity in the field of coefficients F4ŒŒx��. Let S.x/ correspond to the endomorphism

S.x/D x2

so that
Œ2�F2

.x/D x4
D S.S.x//D S2.x/:

Define !i.x/D �ix and 0.x/D 0. Given an element a in W , one can write it uniquely
as aD

P1
iD0 ai2

i where ai in W satisfies the equation

x4
�x D 0:
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That is, ai is in f0; 1; !; !2g. Let  DaCbS be an element of O2 . Let aD
P

i�0 a2i2
i

and b D
P

i�0 a2iC12i . Using the fact that S2 D 2, the element  can be expressed
uniquely as a power series

 D a0C 2a2C 4a4C � � �C .a1C 2a3C 4a6C � � � /S D
X
i�0

aiS
i :(2.1.1)

One can show that

 .x/D a0.x/CF2
a1.x

2/CF2
a2.x

4/CF2
� � � CF2

ai.x
2i

/CF2
� � �

is a well-defined power series in F4ŒŒx��. This determines a ring isomorphism from O2

to End.F2/.

The Morava stabilizer group S2 is the group of automorphisms of F2 . Thus,

S2 ŠO�2 :

Any element of S2 can be expressed uniquely as a linear combination aCbS for a in
W � and b in W . The center of S2 is given by the Galois invariant elements in W �,

Z.S2/Š Z�2 :

Further, the element ! in W � generates a cyclic group of order 3 in S2 , denoted C3 .
The reduction of W modulo 2 induces an isomorphism C3 Š F�

4
.

The Galois group acts on S2 by

.aC bS/� D a� C b�S:

The extended Morava stabilizer group G2 is defined by

G2 WD S2 Ì Gal.F4=F2/:

2.2 The filtration

In what follows, we use the presentation of S2 induced by the isomorphism S2 ŠO�
2

that was described in Section 2.1. That is,

S2 Š
�
W hSi=.S2

D 2; aS D Sa� /
��

for a in W . As described in Henn [17, Section 3], the group S2 admits the follow-
ing filtration.

Recall from Section 2.1 that there is a valuation v on O2 such that

v.S/D 1
2
:
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Regard S2 as the units in O2 . For all n� 0, define

Fn=2S2 D fx 2 S2 j v.x� 1/� n=2g:

This filtration corresponds to the filtration of S2 by powers of S ; that is, for n� 1,

Fn=2S2 D f 2 S2 j  D 1C anSn
C � � � g:(2.2.1)

The motivation for indexing the filtration by half integers is that the induced filtration
on Z�

2
� S2 is the usual 2–adic filtration by powers of 2.

Let
grn=2 S2 WD Fn=2S2=F.nC1/=2S2

and
gr S2 D

M
n�0

grn=2 S2:

Define S2 WD F1=2S2 . The group S2 is the 2–Sylow subgroup of S2 . The map
S2! F�

4
which sends  to a0 has kernel S2 . It induces an isomorphism

gr0=2 S2 Š F�4 :

Suppose that n> 0 and that  is an element of Fn=2S2 , so that

 D 1C anSn
C � � �

for ai as in (2.1.1). Let x denote the image of  in grn=2 S2 . For n � 1, the map
defined by x 7! an gives a group isomorphism

grn=2 S2 Š F4:

It follows from these observations that the subgroups Fn=2S2 form a basis of open
neighborhoods for the identity, so that S2 is a profinite topological group.

Given any subgroup G of S2 , the filtration on S2 induces a filtration on G , defined
by Fn=2G D Fn=2S2\G . Let

gr G D
M
n�0

grn=2 G(2.2.2)

be the associated graded for this filtration.

The associated graded gr S2 has the structure of a restricted Lie algebra. The bracket
is induced by the commutator in S2 and the restriction is induced by squaring. In [17,
Lemma 3.1.4], Henn gives an explicit description of the structure of this Lie algebra.
We record this result in the case when p D 2 and nD 2.
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Lemma 2.2.1 (Henn) For n;m> 0, let a 2 Fn=2S2 and b 2 Fm=2S2 . Let xa be the
image of a in grn=2 S2 and xb be the image of b in grm=2 S2 . If Œa; b� denotes the
commutator aba�1b�1 , then

Œa; b�� xaxb2n

Cxa2m
xb 2 gr.nCm/=2 S2:

If P .a/D a2 , then

P .a/�

8<:
xa3 2 gr2=2 S2 if nD 1;

xaCxa2 2 gr4=2 S2 if nD 2;

xa 2 grn=2C1 S2 if n> 2:

2.3 The norm and the subgroups S1
2

and G1
2

The group S2 ŠO�
2

acts on O2 by right multiplication. This gives rise to a represen-
tation �W S2! GL2.W /:

�.aC bS/D

�
a 2b�

b a�

�
:(2.3.1)

The restriction of the determinant to S2 is given by

det.aC bS/D aa� � 2bb� :(2.3.2)

This defines a group homomorphism detW S2! Z�
2

.

Lemma 2.3.1 The determinant detW S2! Z�
2

is surjective.

Before proving this lemma, we introduce elements of S2 that will play a key role in
the remainder of this paper and in future computations. First, let

(2.3.3) � WD 1C 2!:

By Hensel’s lemma, Z2 contains two solutions of f .x/Dx2C7. One of them satisfies
p
�7� 1C 4 mod 8:

This allows us to define

(2.3.4) ˛ WD
1� 2!
p
�7

:

Note that the elements � and ˛ are in W � � S2 .

Proof of Lemma 2.3.1. The group Z�
2

is topologically generated by �1 and 3.
It suffices to show that these values are in the image of the determinant. A direct
computation shows that det.�/D 3 and that det.˛/D�1.
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Definition 2.3.2 The norm N W S2! Z�
2
=f˙1g is the composite

S2
det
�! Z�2 ! Z�2 =f˙1g:

For a prime p and an integer i � 1, let Ui D fx 2 Z�p j x � 1 mod pig. For p D 2,
there is a canonical identification

(2.3.5) Z�2 Š f˙1g �U2:

Therefore, the image of the norm is canonically isomorphic to the group U2 . Further,
the group U2 is noncanonically isomorphic to the additive group Z2 .

The subgroup S1
2

is defined by the short exact sequence

(2.3.6) 1! S1
2! S2

N
�!Z�2 =f˙1g ! 1:

Any element  such that N. / is a topological generator of Z�
2
=f˙1g determines a

splitting. The element � defined in (2.3.3) is an example. This gives a decomposition

S2 Š S1
2 Ì Z�2 =f˙1g Š S1

2 Ì Z2:(2.3.7)

Note that the group S1
2

is closed in S2 as it is the intersection of the finite index
subgroups which are the kernels of the norm followed by the projections U2! Z=2n

for n� 0.

The norm N extends to a homomorphism

N W G2! Z�2 =f˙1g �Gal.F4=F2/! Z�2 =f˙1g;

where the second map is the projection. The subgroup G1
2

is the kernel of the extended
norm and

G2 ŠG1
2 Ì Z�2 =f˙1g ŠG1

2 Ì Z2:(2.3.8)

We note that there is no splitting which is equivariant with respect to the action of the
Galois group.

The filtration on S2 induces a filtration on S1
2

and

S1
2 WD F1=2S1

2(2.3.9)

is the 2–Sylow subgroup of S1
2

.

Remark 2.3.3 Note that for odd primes p , there is a canonical isomorphism

Z�p Š Cp�1 �U1;
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where Cp�1 is a cyclic group of order p� 1. The exact sequence analogous to (2.3.6)
is given by

1! S1
2! S2! Z�p =Cp�1! 1:

Further, it has a central splitting. Therefore, when p is odd, the Morava stabilizer
group is a product

G2 ŠG1
2 �Z�p =Cp�1 ŠG1

2 �Zp:

There is no central splitting at the prime p D 2 and the extensions (2.3.7) and (2.3.8)
are nontrivial.

We will need the following result in Section 2.5 to prove Theorem 2.5.7.

Lemma 2.3.4 For n� 1,

grn=2 S1
2 D

�
F2 if n is even,
F4 if n is odd:

Proof Let F0=2Z�
2
D Z�

2
and, for n� 2 even,

Fn=2Z�2 D F.n�1/=2Z�2 WD Un=2 D f j  � 1 mod 2n=2
g:

Let  be in S2 . Let n� 2 be even and suppose that  has an expansion of the form

 � 1C an�1Sn�1
C anSn mod SnC1:

By (2.3.2),

det. /� 1C 2n=2.anC a�n /C an�1a�n�12n�1 mod 2n=2C1;

which is in Fn=2Z�
2

. Therefore, the determinant preserves this filtration. In fact, it
induces short exact sequences of F2 –vector spaces:

0! grn=2 S1
2! grn=2 S2! grn=2 Z�2 ! 0:

The result then follows from the fact that

grn=2 Z�2 D

�
F2 if n is even,
0 if n is odd,

and grn=2 S2 Š .F2/
2 for n� 1.
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2.4 Finite subgroups of S2

In this section, we describe the finite subgroups of S2 that will be used in the
construction of the resolution of Theorem 1.2.1. We also prove that there are two
conjugacy classes of maximal finite subgroups in S1

2
. This will be used in the proof of

Theorem 1.2.1.

Proposition 2.4.1 is a special case of Hewett [19, Theorem 1.4].

Proposition 2.4.1 (Hewett) Any maximal finite nonabelian subgroup of S2 is iso-
morphic to a binary tetrahedral group

G24 ŠQ8 Ì C3:

Here, Q8 is the quaternion group

Q8 Š hi; j j i
2
D j 2; ij i D j i;

and the action of C3 permutes i , j and ij .

Our next goal is to prove that there are two conjugacy classes of maximal finite
subgroups in S1

2
. To do this, we will need some preliminary results. Note that the

classification of conjugacy classes of maximal finite subgroups of S2 is addressed in
Hewett [20] and in Bujard [8]. According to Bujard [8, Remark 1.36], Hewett’s [20,
Theorem 5.3] is incorrect. However, [8, Theorem 1.35] in the case nD p D 2 is also
stated incorrectly. A correct statement can be found in [8, Theorem 4.30]. To avoid
confusion, we restate the results we need.

Proposition 2.4.2 (Bujard) There is a unique conjugacy class of groups isomorphic
to Q8 , and one of groups isomorphic to G24 , in S2 .

Proof For Q8 , this is [8, Lemma 1.25]. For G24 , this is [8, Theorem 1.28].

It will be useful to have explicit choices of subgroups Q8 and G24 . The proof of the
following lemma is a direct computation.

Lemma 2.4.3 (Henn) Let

i WD
1

1C2!
.1�˛S/:

Define j D !i!2 and k D !2i! D ij . The elements i and j generate a quaternion
subgroup of S2 , denoted Q8 . The elements i and ! generate a subgroup isomorphic
to G24 . Further, in D2 ,

! D�
1C i C j C k

2
:
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For H a subgroup of G , let NG.H / be the normalizer of H in G . Let CG.H / be the
centralizer of H in G . Note that the element 1C i in D�

2
is in ND�

2
.Q8/. Since the

valuation v.1C i/D 1
2

, the restriction of the valuation to the normalizer is surjective.
Therefore, there is an exact sequence

1!NS2
.Q8/!ND�

2
.Q8/!

1
2
Z! 0:

Since D2 ŠQ2.i; j /, it follows by the Skolem–Noether theorem that Aut.Q8/ can
be realized by inner conjugation in D�

2
. There is an exact sequence

1! CD�
2
.Q8/!ND�

2
.Q8/! Aut.Q8/! 0:

The next proposition describes which of these automorphisms can be realized by
conjugation in S2 .

Proposition 2.4.4 (Henn) The subgroup of Aut.Q8/ that can be realized by conju-
gation by an element of S2 is isomorphic to the alternating group A4 . It is generated
by conjugation by the elements i , j and ! .

Proof The group Aut.Q8/ is isomorphic to the symmetric group S4 . One verifies by
a direct computation that conjugation by i , j and ! generates a subgroup of Aut.Q8/

isomorphic to A4 . Let OutS2
.Q8/ be the group of automorphisms of Q8 that can be

realized by conjugation in S2 . Since CD�
2
.Q8/ŠQ�

2
and CS2

.Q8/Š Z�
2

, there is a
commutative diagram

Z�
2

��

// Q�
2

��

v // Z

��

NS2
.Q8/

��

// ND�
2
.Q8/

��

v // 1
2
Z

��
OutS2

.Q8/ // S4
// Z=2

where the columns and rows are short exact. Therefore, OutS2
.Q8/ŠA4 .

Lemma 2.4.5 Let G24 DQ8 Ì C3 . The normalizer of Q8 in S2 is given by

NS2
.Q8/Š U2 �G24:

Proof By Proposition 2.4.4, there is a short exact sequence

1! CS2
.Q8/!NS2

.Q8/!A4! 1:
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The centralizer is the subgroup Z�
2
Š C2 �U2 of S2 . Since G24 is defined by the

extension
1! C2!G24!A4! 1;

and the elements of U2 are in the centralizer of G24 , it follows that NS2
.Q8/ is

isomorphic to U2 �G24 .

Since the image of the norm is torsion free, any finite subgroup G of S2 is contained in
the kernel S1

2
. Therefore, S1

2
has the same maximal finite subgroups as S2 . However,

there are more conjugacy classes in S1
2

.

Proposition 2.4.6 There are two conjugacy classes of maximal finite subgroups in
S1

2
. One is the conjugacy class of G24 defined in Lemma 2.4.3. The other is �G24�

�1 ,
where � is any element such that N.�/ is a topological generator of U2 .

Proof Let Z�
2
� S2 be the center. Define

S0
2 WD S1

2 �U2;

where U2 is as in (2.3.5). The restriction of the determinant to U2 surjects onto .Z�
2
/2 .

Therefore, there is an exact sequence

1! S0
2! S2! Z�2 =

�
f˙1g; .Z�2 /

2
�
! 1;

and S2=S
0
2
Š Z=2. If N.�/ is a topological generator for Z�

2
=f˙1g, then � is a

representative for the nontrivial coset in S2=S
0
2

.

By Proposition 2.4.2, there is a unique conjugacy class of subgroups isomorphic to G24

in S2 . Since conjugation by any element of the center Z�
2

is trivial, any two conjugacy
classes in S1

2
differ by conjugation by an element of S2=S

0
2
Š Z=2. Therefore, there

are at most two conjugacy classes.

Next, we show that the conjugacy classes of G24 and �G24�
�1 are distinct in S1

2
.

Conjugation acts on the 2–Sylow subgroups; hence, it suffices to prove the claim for
the subgroup Q8 of G24 . Suppose that there exists an element  in S1

2
such that

�Q8�
�1
D Q8

�1:

This would imply that �1� is in NS2
.Q8/. By Lemma 2.4.5, �1� is a product z�

for z in U2 and � in G24 . This implies that � D  z� . However,  z� is in S0
2

. This
is a contradiction, since the residue class of � in S2=S

0
2

is nontrivial. Therefore, G24

and �G24�
�1 represent distinct conjugacy classes in S1

2
.
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A choice for � is the element � defined in (2.3.3). For the remainder of this paper,
G0

24
will denote

G024 WD �G24�
�1;(2.4.1)

so that G24 and G0
24

are representatives for the two conjugacy classes of maximal
finite subgroups in S1

2
.

2.5 The Poincaré duality subgroups

In this section, we introduce the subgroups K and K1 and we describe their continuous
cohomology rings H�.K;F2/ and H�.K1;F2/ as G24 –modules. The author learned
the results of this section from Paul Goerss and Hans-Werner Henn. We refer the reader
to the appendix for details on the cohomology of a profinite group.

Let K be the closure of the subgroup of S2 generated by ˛ (as defined in (2.3.4)) and
F3=2S2 . That is,

K D h˛;F3=2S2i:

Proposition 2.5.1 The subgroup K is normal in S2 . Further, S2 Š K Ì Q8 and
S2 ŠK Ì G24 .

Proof There is an isomorphism S2 Š S2 Ì C3 and ˛ commutes with the group C3 .
Further, for any element  in S2 , it follows from Lemma 2.2.1 that the commutator
Œ; ˛� is in F3=2S2 . Since S2 Š S2 Ì C3 , and F3=2S2 is normal, K is also normal.
The quotient S2=K is a group of order 8 generated by the image of the elements i and
j defined in Lemma 2.4.3. The inclusion of Q8 followed by the projection to S2=K

is an isomorphism. This defines a splitting. Similarly, the group S2=K is a group of
order 24 generated by the image of ! and i , and this defines a splitting.

Corollary 2.5.2 If K1 is the kernel of the norm restricted to K , then S1
2
ŠK1 ÌG24 .

Proof The elements ˛ and � are in the group K since ˛�1� is in F3=2S2 . Therefore,
the norm restricted to K is surjective and S1

2
=K1 Š S2=K .

Our next goal is to compute the group cohomology of K and K1 . We will need a few
preliminary results.

Proposition 2.5.3 Any open subgroup of S2 or of S1
2

is a profinite 2–adic ana-
lytic group.
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Proof According to Dixon, Du Sautoy, Mann and Segal [11, Theorem 8.1], a topolog-
ical group is 2–adic analytic if and only if it has an open subgroup which is a finitely
generated powerful pro-2 group. (By [11, Definition 3.1], a pro-2 group H is powerful
if the quotient H=H 4 is abelian, where H 4 D hh4 j h 2 H i.) By Lemma 2.2.1, if
n� 3, then Fn=2S2 is topologically generated by any finite set of elements that surjects
onto Fn=2S2=F.nC2/=2S2 . Further, the image of P2W Fn=2S2!F.nC4/=2S2 is dense
by Lemma 2.2.1. If n� 4, then

ŒFn=2S2;Fn=2S2�� F.2n/=2S2 � F.nC4/=2S2:

This implies that Fn=2S2 is powerful for n � 4. Since any open subgroup G of S2

contains Fn=2S2 for some large n, it is a profinite 2–adic analytic group.

The proof for open subgroups of S1
2

is similar, using Fn=2S1
2

instead of Fn=2S2 .

By Proposition 2.5.3, open subgroups of S2 and S1
2

are compact 2–adic analytic
groups. This motivates our use of the following definition, which can be found in
Symonds and Weigel [35, Section 4].

Definition 2.5.4 Let G be a compact p–adic analytic group. Then G is a Poincaré
duality group of dimension n if G has cohomological dimension n and

H s.G;Zp ŒŒG��/Š

�
Zp if s D n;

0 if s ¤ n

as abelian groups. The right Zp ŒŒG��–module H n.G;Zp ŒŒG��/ is denoted Dp.G/ and
called the compact dualizing module. If the action of Zp ŒŒG�� on Dp.G/ is trivial, the
group G is called orientable.

Remark 2.5.5 For a Poincaré duality group G of dimension n, one can show that
Hn.G;Dp.G// is isomorphic to Zp ; see Symonds and Weigel [35, Theorem 4.4.3].
Given a choice of generator ŒG� for Hn.G;Dp.G//, the cap product induces a natural
isomorphism

H n��.G;�/
\ŒG�
���!H�.G;Dp.G/˝Zp

�/:

The following observations are useful to compute Dp.G/. Let �Dp.G/W G! Z�p be
the representation associated to the action of G on Dp.G/. Let L.G/ be the Qp –Lie
algebra associated to G , as defined in Lazard [24, Definition V.2.4.2.5]. The right
conjugation action of G on itself induces a natural right action on L.G/, and thus a
homomorphism AdW G ! Aut.L.G//. By [35, Corollary 5.2.5], if G is p–torsion
free,

�Dp.G/.g/D det.Ad.g//:
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Proposition 2.5.6 If an open subgroup U of Sn is a Poincaré duality group, then it
is orientable.

Proof This is the argument given by Strickland in the proof of [34, Proposition 5].
For any open subgroup U of Sn , L.U / is isomorphic to the central division algebra
Dn over Qp of valuation 1=n. For g in U, the action Ad.g/ is given by conjugation
in Dn , which has determinant one.

The next result relies on Lazard’s theory of groups which are équi-p–valué. We refer
the reader who is unfamiliar with the theory of Lazard to Huber, Kings and Naumann
[22, Section 2] for an overview of the terminology.

Theorem 2.5.7 For n � 3, the group Fn=2S2 is a Poincaré duality group of dimen-
sion 4. The continuous group cohomology H�.Fn=2S2;F2/ is the exterior algebra
generated by

H 1.Fn=2S2;F2/Š HomF2
.grn=2 S2˚ gr.nC1/=2 S2;F2/Š F4

2 :

Similarly, Fn=2S1
2

is a Poincaré duality group of dimension 3 and H�.Fn=2S1
2
;F2/ is

the exterior algebra generated by

H 1.Fn=2S1
2 ;F2/D HomF2

.grn=2 S1
2 ˚ gr.nC1/=2 S1

2 ;F2/Š F3
2 :

Proof We define a filtration wW Fn=2S2 ! R�C [ f1g in the sense of Lazard [24,
Definition II.1.1.1]. Let w.1/D1 . For k � 0 and x 2F.nC2k/=2S2nF.nC2kC2/=2S2 ,
let w.x/D .nC 2k/=2. With this filtration, Fn=2S2 is équi-p–valué of rank 4 in the
sense of Lazard [24, V.2.2.7], with gr Fn=2S2 generated by

Fn=2S2=F.nC2/=2S2 Š grn=2 S2˚ gr.nC1/=2 S2:

To verify that w is a filtration and that Fn=2S2 is équi-p–valué with respect to w , one
uses the formulas of Lemma 2.2.1, noting that the squaring map

P W F.nC2k/=2S2=F.nC2kC2/=2S2! F.nC2kC2/=2S2=F.nC2kC4/=2S2

is an isomorphism if and only if n� 3. The result then follows from [24, Proposition
V.2.5.7.1], which states that H�.Fn=2S2;F2/ is an exterior algebra on the F2 –linear
dual of

Fn=2S2=P .Fn=2S2/Š Fn=2S2=F.nC2/=2S2 Š F2
4 Š F4

2 :

According to Symonds and Weigel [35, Theorem 5.1.5], this also implies that Fn=2S2

is a Poincaré duality group of dimension 4 (note that in [35], the authors imply in
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the third footnote that they use the terms uniformly powerful pro-p and équi-p–valué
interchangeably.)

To prove the second claim, we use the same filtration, Fn=2S1
2

. By Lemma 2.3.4,

Fn=2S1
2=F.nC2/=2S1

2 Š F4˚F2 Š F3
2 :

Recall that we use the convention that

˛� D Œ�; ˛�D �˛�
�1˛�1:

The following congruences will be used in the computations of this section:

i � 1CS mod S2; j � 1C!2S mod S2;

�1� 1CS2 mod S4; ˛ � 1C!S2 mod S4;

˛i � 1CS3 mod S4; j̨ � 1C!2S3 mod S4;

˛2
� 1CS4 mod S5; ˛� � 1C!S4 mod S5:

They are obtained by a direct computation using the definitions of � , ˛ , i and j ,
which were given in (2.3.3), (2.3.4) and Lemma 2.4.3.

Definition 2.5.8 Let

˛0 D ˛; ˛1 D ˛i ; ˛2 D j̨ ; ˛3 D ˛
2; ˛4 D ˛�;

and let xs in HomF2
.gr S2;F2/ be the function dual to the image of ˛s in gr S2 . The

action of conjugation by an element � on an element g is denoted by ��.g/.

Remark 2.5.9 The action of conjugation by � can be computed using Lemma 2.2.1
and the formula

Œ�;  � D ��. /:

Corollary 2.5.10 The continuous group cohomology H�.F3=2S2;F2/ is the exterior
algebra generated by

H 1.F3=2S2;F2/Š F2fx1;x2;x3;x4g

for xs as in Definition 2.5.8. The action of ˛ on H 1.F3=2S2;F2/ is trivial.

Similarly, H�.F3=2S1
2
;F2/ is the exterior algebra generated by

H 1.F3=2S1
2 ;F2/Š F2fx1;x2;x3g

with a trivial action by ˛ .
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Proof By Theorem 2.5.7, H�.F3=2S2;F2/ is an exterior algebra generated by the F2 –
linear dual of F3=2S2=F5=2S2 . This group is generated by the image of ˛1 , ˛2 , ˛3 and
˛4 of Definition 2.5.8. Therefore, H�.F3=2S2;F2/ is the exterior algebra generated by
F2fx1;x2;x3;x4g. Since ˛ is in F2=2S2 , if g is in F3=2S2 , the commutator Œ˛;g� is
in F5=2S2 . Using Remark 2.5.9, we conclude that the action of ˛ on H 1.F3=2S2;F2/

is trivial.

The second claim follows in the same way from the fact that F3=2S1
2
=F5=2S1

2
is

generated by the image of ˛1 , ˛2 and ˛3 .

Lemma 2.5.11 For ˛i as defined in Definition 2.5.8, and x̨i its image in H1.K;Z2/,
there is an isomorphism

H1.K;Z2/Š Z=4fx̨0g˚Z=2fx̨1; x̨2g˚Z2fx̨4g;

where 2x̨0 is the image of ˛3 D ˛
2 . Similarly,

H1.K
1;Z2/Š Z=4fx̨0g˚Z=2fx̨1; x̨2g:

The conjugation action of Q8 on K factors through the quotient of Q8 by the central
subgroup C2 . The induced action on H1.K;Z2/ is trivial on x̨4 . On the other
generators, it is given by

i�.x̨0/D x̨0C x̨1; j�.x̨0/D x̨0C x̨2;

i�.x̨1/D x̨1; j�.x̨1/D x̨1C 2x̨0;

i�.x̨2/D x̨2C 2x̨0; j�.x̨2/D x̨2:

Hence, H1.K
1;Z2/ is generated by the image of ˛ as a G24 –module.

Proof First, we prove that the group ŒK;K� is dense in F5=2S1
2

. Note that K is
contained in F2=2S2 . Let a and b be in K . For xa and xb as in Lemma 2.2.1,

Œa; b�D xaxb4
Cxa4xb 2 gr4=2 S2:

Since xa and xb are in F4 and x4 D x for all x in F4 , this implies that Œa; b�D 0 in
gr4=2 S2 . Therefore, Œa; b� 2 F5=2S2 .

Since the norm is multiplicative, the elements of ŒK;K� have norm one. Hence, ŒK;K�
is contained in F5=2S1

2
. Further, the map from ŒK;K� to F5=2S1

2
=F7=2S1

2
induced

by the inclusion is surjective. Indeed, F5=2S1
2
=F7=2S1

2
is generated by the images of

the elements Œ˛; Œi; ˛��, Œ˛; Œj ; ˛�� and ŒŒi; ˛�; Œj ; ˛��, all of which are in ŒK1;K1�. By
Corollary 2.5.10, this implies that the composite

ŒK1;K1� ,! ŒK;K�!H1.F5=2S1
2 ;F2/
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is surjective. According to Behrens and Lawson [5, Theorem 2.1], it then follows from
results of Koch and Serre that ŒK1;K1� and ŒK;K� are dense in F5=2S1

2
. Therefore,

ŒK1;K1�D ŒK;K�D F5=2S1
2 :

Hence, H1.K;Z2/ Š K=F5=2S1
2

and H1.K
1;Z2/ Š K1=F5=2S1

2
. Since ˛ and �

are in K , the norm N W K ! Z�
2
=f˙1g is split surjective. The image of ˛4 D ˛�

generates Z�
2
=f˙1g Š Z2 . Therefore,

H1.K;Z2/ŠH1.K
1;Z2/˚Z2fx̨4g:

Finally, H1.K
1;Z2/ is generated by the image of ˛0 D ˛ , ˛1 D ˛i and ˛2 D j̨ .

Since ˛i and j̨ are in F3=2S2 , it follows from Lemma 2.2.1 that ˛2
i and ˛2

j are in

F5=2S2 D ŒK1;K1�:

Therefore, the images of ˛i and j̨ have order 2 in K1=ŒK1;K1�. Finally, ˛2�1CS4

modulo S5 , so that the image of ˛ has order 4 in K1=ŒK1;K1�. We conclude that

H1.K
1;Z2/Š Z=4fx̨0g˚Z=2fx̨1; x̨2g:

The action of Q8 by conjugation factors through C2 D f˙1g since C2 is in the center
of S2 . The action of the generators i and j is computed using Remark 2.5.9 and the
following relations, which hold modulo S5 :

Œi; ˛�� ˛i ; Œi; ˛i �� 1; Œi; j̨ �� ˛
2; Œi; ˛��� 1;

Œj ; ˛�� j̨ ; Œj ; ˛i �� ˛
2; Œj ; j̨ �� 1; Œj ; ˛��� 1:

These relations are obtained from Lemma 2.2.1.

Corollary 2.5.12 The group K is an orientable Poincaré duality group of dimension
4 and the group K1 is an orientable Poincaré duality group of dimension 3.

Proof It is a theorem of Serre [29, Section 1] that the cohomological dimension of
a p–torsion free profinite group G is equal to the cohomological dimension of any
of its open subgroups. The group K is a 2–group, and by Lemma 2.2.1, the squaring
operation P on K has a trivial kernel. Therefore, K is torsion free. The group F3=2S2

is an open subgroup of K . Hence, the cohomological dimension of K is equal to
the cohomological dimension of F3=2S2 , so that K has cohomological dimension
4. Similarly, K1 has cohomological dimension 3 since it contains F3=2S1

2
as an

open subgroup. According to Symonds and Weigel [35, Proposition 4.4.1], a profinite
group G of finite cohomological dimension is a Poincaré duality group if and only if it
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contains an open subgroup which is a Poincaré duality group. Therefore, both K and
K1 are Poincaré duality groups.

Since K is an open subgroup of S2 , it follows from Proposition 2.5.6 that it is orientable.
It remains to prove that K1 is orientable. Let Z�

2
be the center of S2 . Let U2 � Z�

2

be as in (2.3.5). The group H DK1 �U2 is an open subgroup of S2 , and hence H

is orientable. Further, L.H /Š L.K1/˚L.U2/, and the action of H preserves the
summands. Recall from Remark 2.5.5 that the representation �D2.H /W H ! Z�

2
is

given by the determinant of the adjoint action of H on L.H /. For g in H,

det.Ad.g//D det.Ad.g/jL.K 1// det.Ad.g/jL.U2//:

Since U2 is abelian, det.Ad.g/jL.U2//D 1. It follows from the orientability of H that
det.Ad.g/jL.K 1//D 1. In particular, this holds for any g in K1, and the representation
�D2.K 1/ is trivial.

Theorem 2.5.13 (Goerss and Henn, unpublished) As an F2 –algebra,

H�.K;F2/Š F2Œx0;x1;x2;x4�=.x
2
0 ;x

2
1 Cx0x1;x

2
2 Cx0x2;x

2
4/;

where xs has degree one and is as in Definition 2.5.8. Further,

H�.K1;F2/Š F2Œx0;x1;x2�=.x
2
0 ;x

2
1 Cx0x1;x

2
2 Cx0x2/:

The conjugation action of Q8 factors through Q8=C2 Š C2 �C2 . It is trivial on x0

and x4 . On x1 and x2 , it is described by

i�.x1/D x0Cx1; j�.x1/D x1;

i�.x2/D x2; j�.x2/D x0Cx2;

so that the induced representation on H 1.K1;F2/ is isomorphic to the augmentation
ideal I.Q8=C2/, and H 2.K1;F2/ is isomorphic to the coaugmentation ideal I.Q8=C2/

�.

Proof The spectral sequence for the group extension

1! F3=2S2!K! Z=2fx̨0g ! 1

has E2 –term given by
F2Œx0�˝E.x1;x2;x3;x4/:

It follows from Lemma 2.5.11 and Lemma A.1.5 of the appendix that x2
0
D 0. Since

x3 is the function dual to the image of ˛2 in gr S2 , we have that d2.x3/D x2
0

. Using
the isomorphism H 1.K;F2/Š Hom.K;F2/ and Lemma 2.5.11, one computes that

H 1.K;F2/Š F2fx0;x1;x2;x4g:

Algebraic & Geometric Topology, Volume 15 (2015)



The algebraic duality resolution at p D 2 3677

Hence, dr .xi/D0 for i¤3. All other differentials are determined by these differentials,
and

E3 ŠE1 ŠE.x0;x1;x2;x4/:

Similarly, the E2 –term for the extension

1! F3=2S1
2!K1

! Z=2fx̨0g ! 1

is given by F2Œx0�˝E.x1;x2;x3/, and E3 ŠE1 ŠE.x0;x1;x2/.

Now we determine the multiplicative extensions. First, note that it follows from
Lemma A.1.5 that x2

4
D 0 since x4 is dual to a class that lifts to the free class x̨4 in

H1.K;Z2/. Similarly, x2
1

and x2
2

are nonzero since they lift to 2–torsion classes x̨1
and x̨2 in H1.K;Z2/. Therefore, x2

1
and x2

2
are linear combinations of x0x1 and

x0x2 . We will show that x2
1
D x0x1 . The proof that x2

2
D x0x2 is similar.

Let N be the closure of the normal subgroup of K1 generated by F6=2K1 , ˛2 and
j̨ . That is,

N D hF6=2K1; ˛2; j̨ i:

Since ŒK1;F3=2K1� � F6=2K1 , and Œ˛; j̨ � D ˛
2
j , the group K1=N is a group of

order 8 generated by the image a of ˛ and the image b of ˛i . The order of a is 2

and the order of b is 4. Further, since Œ˛; ˛i �D ˛
2
i , the group K1=N is isomorphic to

the dihedral group D8 . Now, note that

H1.D8;F2/Š F2fa; bg:

It is proved in Adem and Milgram [1, Chapter IV, Theorem 2.7] that

H�.D8;F2/Š F2Œx;y; w�=.xy/;

where x is the function dual to a and y is the function dual to aC b . Changing the
basis of H1.D8;F2/ from ha; aC bi to ha; bi sends the basis hx;yi of H 1.D8;F2/

to the basis hy0;y1i D hxCy;yi. We obtain the following presentation

H�.K1=N;F2/Š F2Œy0;y1; w�=.y
2
1 Cy0y1/:

The projection induces a map

f W H�.K1=N;F2/!H�.K1;F2/

with f .y0/D x0 and f .y1/D x1 . Therefore, x2
1
Cx0x1 D 0 in H 2.K1=N;F2/.

The action of Q8 follows from Lemma 2.5.11. The isomorphism between the repre-
sentation H 1.K1;F2/ and the representation I.Q8=C2/ defined by

0! I.Q8=C2/! F2ŒQ8=C2�
"
�! F2! 0
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is given by sending x0 to the invariant eC iCj C ij , x1 to eCj and x2 to eC i .

The following description of the integral homology of K1 will be used heavily in the
proof of Theorem 1.2.1.

Corollary 2.5.14 (Goerss and Henn, unpublished) The integral homology of K1 is
given by

Hn.K
1;Z2/D

8<:
Z2 if nD 0; 3;

Z=4˚ .Z=2/2 if nD 1;

0 if nD 2:

Proof The result for nD 1 is Lemma 2.5.11. The homology H�.K
1;F2/ is dual to

H�.K1;F2/, computed in Theorem 2.5.13. The groups Hn.K
1;Z2/ for nD 2; 3 are

computed from the long exact sequence associated to

0! Z2
2
�! Z2! F2! 0;

using the fact that Hn.K
1;F2/ and H1.K

1;Z2/ are known.

We finish this section by proving Theorem 1.2.5.

Proof of Theorem 1.2.5 Since S2 Š S2 Ì C3 and ! generates C3 , it suffices to
show that S2 is generated by � , ˛ , i and j D !i!�1 . Further, according to Behrens
and Lawson [5, Theorem 2.1], it suffices to prove that the inclusion h�; ˛; i; j i ! S2

induces a surjective map
H1.S2;F2/Š S2=S

�
2
;

where S�
2

is the group S2
2
ŒS2;S2�. The claim then follows from the isomorphism

S2 ŠK Ì Q8 , the surjectivity of the map

h�; ˛; ˛i ; j̨ i !K=K�

and the fact that i and j generate Q8 . The argument for S1
2

is similar.

3 The algebraic duality resolution

This section is devoted to the construction of the algebraic duality resolution and the
description of its properties. We refer the reader to the appendix for background on the
cohomology of profinite groups.
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3.1 The resolution

From now on, we fix p D 2. The goal of this section is to prove Theorem 1.2.1,
which was stated in Section 1.2, and is restated as Theorem 3.1.7 below. The proof
is broken into a series of results given in Lemma 3.1.1, Lemma 3.1.2, Lemma 3.1.3
and Theorem 3.1.6. All results in this section are due to Goerss, Henn, Mahowald
and Rezk.

Let G24 be the maximal finite subgroup of S2 defined in Lemma 2.4.3. Recall that
G0

24
D �G24�

�1 for � D 1C 2! in S2 . It was shown in Proposition 2.4.6 that there
are two conjugacy classes of maximal finite subgroups in S1

2
, and that G24 and G0

24

are representatives. Recall that C2 D f˙1g is the subgroup generated by Œ�1�.x/ and
C6 D C2 � C3 . The group K1 is the Poincaré duality subgroup of S1

2
which was

defined in Section 2.5.

Lemma 3.1.1 Let C0 D Z2ŒŒS
1
2
=G24�� with canonical generator e0 . Let "W C0! Z2

be the augmentation

"W Z2ŒŒS
1
2=G24��! Z2˝Z2ŒŒS

1
2
��Z2ŒŒS

1
2��˝Z2ŒG24�Z2 Š Z2:

Let N0 be defined by the short exact sequence

(3.1.1) 0!N0! C0
"
�! Z2! 0:

Then N0 is the left Z2ŒŒS
1
2
��–submodule of C0 generated by .e�˛/e0 , for e the unit

in S1
2

and ˛ as defined in (2.3.4).

Proof Since S1
2
ŠK1 Ì G24 , C0 Š Z2ŒŒK

1�� as a Z2ŒŒK
1��–module. Therefore, N0

is isomorphic to the augmentation ideal IK1. Lemma A.1.4 of the appendix implies
that H1.K

1;Z2/ Š H0.K
1;N0/, where an isomorphism sends the image of g in

K1=ŒK1;K1� to the image of e�g in IK1=.IK1/2 . It was shown in Lemma 2.5.11
that K1=ŒK1;K1� is generated by ˛ as a G24 –module. This implies that, as a G24 –
module, H0.K

1;N0/ is generated by the image of .e � ˛/e0 . Therefore, the map
F W Z2ŒŒS

1
2
��!N0 defined by F. /D  .e�˛/e0 induces a surjective map

F2˝Z2ŒŒK 1�� F W F2˝Z2ŒŒK 1��Z2ŒŒS
1
2��! F2˝Z2ŒŒK 1��N0:

By Lemma A.1.3 of the appendix, F itself is surjective, and .e�˛/e0 generates N0

as a Z2ŒŒS
1
2
��–module.

Lemma 3.1.2 Let N0 be as in Lemma 3.1.1. Let C1 D Z2ŒŒS
1
2
=C6�� with canonical

generator e1 . There is a map @1W C1!N0 defined by

(3.1.2) @1. e1/D  .e�˛/e0
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for  in Z2ŒŒS
1
2
��. Further, let N1 be defined by the short exact sequence

(3.1.3) 0!N1! C1

@1
�!N0! 0;

and let ‚0 in Z2ŒŒS
1
2
�� be any element such that ‚0e1 is in the kernel of @1 and

‚0e1 � .3C i C j C k/e1 mod .4; IK1/:

Then ‚0e1 generates N1 over S1
2

.

Proof The element ˛ satisfies �˛ D ˛� for � 2 C6 . Therefore, the map @1 given by
(3.1.2) is well defined.

Let N1 be the kernel of @1 . Note that Z2ŒŒS
1
2
=C6��Š Z2ŒŒK

1��4 as Z2ŒŒK
1��–modules,

generated by e1 , ie1 , je1 and ke1 . Therefore, there is an isomorphism of G24 –
modules

H0.K
1;C1/Š Z2ŒG24=C6�:

As Z2ŒŒK
1��–modules, H0.K

1;C1/ŠZ4
2

generated by the image of the classes e1 , ie1 ,
je1 and ke1 . Since N0 Š IK1 , Lemma A.1.4 of the appendix and Corollary 2.5.14
imply that

H1.K
1;N0/ŠH2.K

1;Z2/D 0:

Therefore, the long exact sequence on cohomology gives rise to a short exact sequence

0!H0.K
1;N1/!H0.K

1;C1/!H0.K
1;N0/! 0:

By Lemma A.1.4 of the appendix and Lemma 2.5.11,

H0.K
1;N0/ŠH1.K

1;Z2/Š Z=4˚ .Z=2/2;

which is all torsion. Thus, we can identify H0.K
1;N1/ with a free submodule of

H0.K
1;C1/. Further, it must have rank 4 over Z2 . This can be made explicit

as follows.

The map H0.K
1; @1/ sends the residue class of �e1 to that of �.e� ˛/e0 . For � in

G24 , ��1e0 D e0 , hence �.e�˛/e0 D .e� ��.˛//e0 , where ��.˛/D �˛��1 . Again,
using the boundary isomorphism H1.K

1;Z2/ŠH0.K
1;N0/ of Lemma A.1.4, the

formulas of Lemma 2.5.11 together with the fact that k D ij can be used to compute

@1.e1/� x̨; @1.ie1/� x̨C x̨i ; @1.je1/� x̨C x̨j ; @1.ke1/� 3x̨ C x̨i C x̨j :

Here, xa is the image of a in H1.K
1;Z2/. As ˛ generates a group isomorphic to Z=4,

and ˛i and j̨ both generate groups isomorphic to Z=2, a set of Z2 generators for
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the kernel of H0.K
1; @1/ is given by the elements

f1 D�4e1; f2 D 2.i � e/e1; f3 D 2.j � e/e1; f4 D .k � i � j � e/e1:

Let
f D .3eC i C j C k/e1 2H0.K

1;N1/:

Then f generates H0.K
1;N1/Š Z2ŒG24=C6� as a G24 –module. Indeed, using the

fact that G24=C6 ŠQ8=C2 , one computes

f1 D 1=3.i C j C k � 5/f; f2 D if �f; f3 D jf �f; f4 D�k.f Cf1/:

(Note that �� denotes .�1/�� for the coefficient �1 in Z2 , as opposed to the generator
of the central C2 in Q8 .)

Next, we show that if
f 0 � f mod .4; IK1/;

then f 0 also generates H0.K
1;N1/ as a G24 –module. To do this, note that Z2ŒQ8=C2�

is a complete local ring with maximal ideal mD .2; IQ8=C2/. Hence, any element
congruent to 1 modulo m is invertible. Therefore, if f 0 D f C �f for � in m, then
f 0 is also a generator. However, for a in H0.K1;C1/,

4ae1 D a1
3
..e� i/C .e� j /C .e� k/C 2e/f:

Hence, a1
3
..e � i/C .e � j /C .e � k/C 2e/ is in m. Therefore, 4H0.K1;C1/ is

contained in mf .

Let ‚0 in Z2ŒŒS
1
2
�� be such that

‚0e1 � .3C i C j C k/e1 mod .4; IK1/:

Let F W Z2ŒŒS
1
2
��!N1 be the map defined by F. /D ‚0e1 . It induces a surjective

map
F2˝Z2ŒŒK 1�� F W F2˝Z2ŒŒK 1��Z2ŒŒS

1
2��! F2˝Z2ŒŒK 1��N1:

By Lemma A.1.3 of the appendix, F itself is surjective, and ‚0e1 generates N1 as a
Z2ŒŒS

1
2
��–module.

Define trC3
W Z2ŒŒS

1
2
��! Z2ŒŒS

1
2
�� to be the Z2 –linear map induced by

(3.1.4) trC3
.g/D gC!g!�1

C!�1g!

for g in S1
2

and ! our chosen generator of C3 .

Lemma 3.1.3 Let C2 D Z2ŒŒS
1
2
=C6�� with canonical generator e2 . Let ‚ in Z2ŒŒS

1
2
��

satisfy:
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(1) �‚D‚� for � in C6 ,

(2) ‚e1 is in the kernel of @1W C1! C0 ,

(3) ‚e1 � .3C i C j C k/e1 modulo .4; IK1/.

Then the map of Z2ŒŒS
1
2
��–modules @2W C2! C1 defined by

(3.1.5) @2. e2/D ‚e2

surjects onto N1 D ker.@1/. Further, if N2 is defined by the exact sequence

(3.1.6) 0!N2! C2

@2
�!N1! 0;

then N2 Š Z2ŒŒK
1�� as Z2ŒŒK

1��–modules.

Proof Choose an element ‚0 which generates N1 as in Lemma 3.1.2. Recall that
C6 Š C2 �C3 and that C2 is in the center of S2 . Therefore, for trC3

as defined by
(3.1.4),

‚D 1
3

trC3
.‚0/

satisfies properties (1), (2) and (3). The map @2 given by (3.1.5) is well defined and
surjects onto N1 by Lemma A.1.3.

Let N2 � C2 be the kernel of @2 as in the statement of the result. The map @2 induces
an isomorphism H0.K

1;C2/ŠH0.K
1;N1/. Hence, for all n,

Hn.K
1;N2/ŠHnC1.K

1;N1/ŠHnC2.K
1;N0/ŠHnC3.K

1;Z2/:

This implies:

Hn.K
1;N2/Š

�
Z2 if nD 0;

0 if n> 0:

Choose an element e0 in N2 such that e0 reduces to a generator of Z2 in H0.K
1;N2/.

Define �W Z2ŒŒK
1��!N2 by �.k/D ke0 . Then

TorZ2ŒŒK
1��

0
.F2; �/

is an isomorphism, and
TorZ2ŒŒK

1��
1

.F2; �/

is surjective. By Lemma A.1.3 of the appendix, � is an isomorphism of Z2ŒŒK
1��–

modules.
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Splicing the exact sequences (3.1.1), (3.1.3) and (3.1.6) gives an exact sequence

(3.1.7) 0!N2! C2! C1! C0! Z2! 0;

which is a free resolution of Z2 as a trivial Z2ŒŒK
1��–module. The next goal is to

find an isomorphism N2ŠZ2ŒŒS
1
2
=G0

24
��, where G0

24
D �G24�

�1 represents the other
conjugacy class of maximal finite subgroups in S1

2
. To prove this, we will need a few

results. Before stating these, we introduce some notation.

Let G be a subgroup of S2 which contains the central subgroup C2 . We define

PG WDG=C2:

We let

A4 WD PG24;(3.1.8)

A04 WD PG024:(3.1.9)

The choice of notation is justified by the fact that both of these groups are isomorphic
to the alternating group on four letters. Note also that, since C2 is central, PC6 Š C3

and PS1
2
ŠK1 Ì A4 . Therefore, for any G which contains C2 ,

Z2ŒŒS
1
2=G��Š Z2ŒŒPS1

2=PG��

as Z2ŒŒS
1
2
��–modules. To prove that N2 Š Z2ŒŒS

1
2
=G0

24
��, it will thus be sufficient to

prove that

N2 Š Z2ŒŒPS1
2=A

0
4��

as Z2ŒŒPS1
2
��–modules.

We showed in Corollary 2.5.12 that K1 is a Poincaré duality group (see Definition 2.5.4).
Further, there is an isomorphism of Z2ŒŒK

1��–modules

Z2ŒŒPS1
2=A

0
4��Š Z2ŒŒK

1��:

Hence,

H n.K1;Z2ŒŒPS1
2=A

0
4��/Š

�
Z2 if nD 3;

0 otherwise:
(3.1.10)

Lemma 3.1.4 The inclusion �W K1! PS1
2

induces an isomorphism

��W H 3.PS1
2;Z2ŒŒPS1

2=A
0
4��/!H 3.K1;Z2ŒŒPS1

2=A
0
4��/:
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Proof The action of A4 on H 3.K1;Z2ŒŒPS1
2
=A0

4
��/ is trivial. This follows from the

fact that there are no nontrivial one-dimensional representations of A4 . Indeed,

Hom.A4;Gl1.Z2//DH 1.A4;Z
�
2 /:

and H 1.A4;Z
�
2
/D 0. Since PS1

2
ŠK1 Ì A4 , there is a spectral sequence

H p.A4;H
q.K1;Z2ŒŒPS1

2=A
0
4��//H)H pCq.PS1

2;Z2ŒŒPS1
2=A

0
4��/:

Because the action of A4 on H 3.K1;Z2ŒŒPS1
2
=A0

4
��/ is trivial, (3.1.10) implies that

the edge homomorphism

H 3.PS1
2;Z2ŒŒPS1

2=A
0
4��/!H 0.A4;H

3.K1;Z2ŒŒPS1
2=A

0
4��//

induced by the inclusion �W K1! PS1
2

is an isomorphism.

Lemma 3.1.5 There are surjections

�W HomZ2ŒŒPS1
2
��.N2;Z2ŒŒPS1

2=A
0
4��/!H 3.PS1

2;Z2ŒŒPS1
2=A

0
4��/;

�0W HomZ2ŒŒK 1��.N2;Z2ŒŒPS1
2=A

0
4��/!H 3.K1;Z2ŒŒPS1

2=A
0
4��/

making the following diagram commute

(3.1.11)

HomZ2ŒŒPS1
2
��.N2; Z2ŒŒPS1

2
=A0

4
��/

��

��

� // H 3.PS1
2
;Z2ŒŒPS1

2
=A0

4
��/

��

��
HomZ2ŒŒK 1��.N2;Z2ŒŒPS1

2
=A0

4
��/

�0 // H 3.K1;Z2ŒŒPS1
2
=A0

4
��/

where �� is the map induced by the inclusion �W K1! PS1
2

.

Proof Let Bp D Cp for 0 � p < 3 and B3 D N2 . Resolving Bp by projective
Z2ŒŒPS1

2
��–modules gives rise to spectral sequences

E
p;q
1
Š Extq

Z2ŒŒPS1
2
��
.Bp;Z2ŒŒPS1

2=A
0
4��/H)H pCq.PS1

2;Z2ŒŒPS1
2=A

0
4��/

and
F

p;q
1
Š Extq

Z2ŒŒK 1��
.Bp;Z2ŒŒPS1

2=A
0
4��/H)H pCq.K1;Z2ŒŒPS1

2=A
0
4��/:

These are first quadrant cohomology spectral sequences, with differentials

dr W E
p;q
r !EpCr;q�rC1

r
and

dr W F
p;q
r ! FpCr;q�rC1

r :
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Further, �W K1! PS1
2

induces a map of spectral sequences

��W Ep;q
r ! Fp;q

r :

Let � be the edge homomorphism

�W E
3;0
1
!H 3.PS1

2;Z2ŒŒPS1
2=A

0
4��/;

and let �0 be the edge homomorphism

�0W F
3;0
1
!H 3.K1;Z2ŒŒPS1

2=A
0
4��/:

First, note that since the modules Bp are projective Z2ŒŒK
1��–modules, F

p;q
r collapses

with F
p;q
1 D 0 for q > 0 so that

F3;0
1 !H 3.K1

IZ2ŒŒPS1
2=A

0
4��/

is surjective. Hence, �0 is surjective.

In order to show that � is surjective, it is sufficient to show that E
3�q;q
1

D 0 for q > 0.
For q D 1 and q D 2, this follows from the fact that Z2ŒŒPS1

2
=C3�� is a projective

Z2ŒŒPS1
2
��–module. Hence, if q > 0, then

Extq
Z2ŒŒPS1

2
��
.Z2ŒŒPS1

2=C3��;Z2ŒŒPS1
2=A

0
4��/D 0:

It remains to show that

E
0;3
1
D Ext3

Z2ŒŒPS1
2
��
.B0;Z2ŒŒPS1

2=A
0
4��/

is zero, where B0 D Z2ŒŒPS1
2
=A4��.

Let V Š C2 �C2 be the 2–Sylow subgroup of A4 . Then

E
0;3
1
D Ext3

Z2ŒŒPS1
2
��
.B0;Z2ŒŒPS1

2=A
0
4��/ŠH 3.A4;Z2ŒŒPS1

2=A
0
4��/

ŠH 3.V;Z2ŒŒPS1
2=A

0
4��/

C3 :

Let Gn D PFn=2S1
2

Ì A0
4

and Xn D PS1
2
=Gn . The profinite A4 –set PS1

2
=A0

4
is

isomorphic to the inverse limit of the finite A4 –sets Xn . There is an exact sequence

0! lim 1H 2.V;Z2ŒXn�/!H 3.V;Z2ŒŒPS1
2=A

0
4��/! lim

n
H 3.V;Z2ŒXn�/! 0:

Since the groups H 2.V;Z2ŒXn�/ are finite, the Mittag–Leffler condition is satisfied
and lim 1H 2.V;Z2ŒXn�/D 0. Hence,

H 3.V;Z2ŒŒPS1
2=A

0
4��/Š lim

n
H 3.V;Z2ŒXn�/:
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We will show that there is an integer N such that H 3.V;Z2ŒXn�/D 0 for all n�N .
This implies that H 3.V;Z2ŒŒPS1

2
=A0

4
��/ is zero, so that E

0;3
1
D 0.

Note that

H 3.V;Z2ŒXn�/Š
M

x2V nXn=Gn

H 3.V;Z2ŒV =Vx �/Š
M

x2V nXn=Gn

H 3.Vx;Z2/

for Vx Dfg 2 V j gxGnD xGng. If the inclusion Vx � V is an equality, then x�1Vx

is a subgroup of Gn . We show that there exists an integer N such that, for all n�N ,
there is no element x in PS1

2
such that x�1Vx�Gn . This implies that, for n�N , for

all choices of coset representatives x 2 V nXn=Gn , the group Vx is either trivial or it
has order 2. In both cases, H 3.Vx;Z2/D 0. Hence, for n�N , H 3.V;Z2ŒXn�/D 0.

Suppose that there is a sequence of integers nm and elements xnm
such that x�1

nm
V xnm

�

Gnm
. Since PS1

2
is compact, we can choose the sequence .xnm

/ to converge to some
element y . The groups Gn are closed and nested, so the continuity of the group
multiplication implies that y�1Vy �Gn for all n 2N . Therefore,

y�1Vy �
\
n

Gn DA04;

and hence y�1Vy D V 0 , where V 0 is the 2–Sylow subgroup of A0
4

. However, it
follows from Proposition 2.4.6 that V and V 0 are not conjugate in PS1

2
. Therefore,

such a sequence cannot exist, and there must be some integer N such that, for all
n�N , there is no x in PS1

2
such that x�1Vx �Gn .

Theorem 3.1.6 There is an isomorphism of left Z2ŒŒS
1
2
��–modules

�W Z2ŒŒS
1
2=G024��!N2;

where G0
24
D �G24�

�1.

Proof It suffices to construct an isomorphism 'W N2 ! Z2ŒŒPS1
2
=PG0

24
�� of left

Z2ŒŒPS1
2
��–modules. The result then follows by letting � D '�1 , considered as a map

of Z2ŒŒS
1
2
��–modules.

Recall from Corollary 2.5.12 that K1 is an orientable Poincaré duality group of
dimension 3, as in Definition 2.5.4. That is, the compact dualizing module D2.K

1/

is isomorphic to the trivial Z2ŒŒK
1��–module Z2 and H3.K

1;Z2/ Š Z2 . Choose a
generator ŒK1� of H3.K

1;Z2/. As in Remark 2.5.5, there is a natural isomorphism

H 3��.K1;�/
\ŒK 1�
����!H�.K

1;�/:
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Let
�W H3.K

1;Z2/! Z2˝Z2ŒŒK 1��N2

be the edge homomorphism for the homology spectral sequence obtained from (3.1.7).
Define

evW HomZ2
.Z2˝Z2ŒŒK 1��N2;Z2˝Z2ŒŒK 1��Z2ŒŒPS1

2=A
0
4��/!H0.K

1;Z2ŒŒPS1
2=A

0
4��/

by
ev.f /D f .�.ŒK1�//:

Let �W K1 ! PS1
2

be the inclusion. Let � and �0 be the edge homomorphisms of
Lemma 3.1.5. We obtain the following commutative diagram:

HomZ2ŒŒPS1
2
��.N2;Z2ŒŒPS1

2
=A0

4
��/

� //

��

��

H 3.PS1
2
;Z2ŒŒPS1

2
=A0

4
��/

��

��
HomZ2ŒŒK 1��.N2;Z2ŒŒPS1

2
=A0

4
��/

�0 //

Z2˝Z2ŒŒK
1��
�

��

H 3.K1;Z2ŒŒPS1
2
=A0

4
��/

\ŒK 1�
��

HomZ2
.Z2˝Z2ŒŒK 1��N2;Z2˝Z2ŒŒK 1��Z2ŒŒPS1

2
=A0

4
��/

ev // H0.K
1;Z2ŒŒPS1

2
=A0

4
��/

Since \ŒK1� ı �0 is surjective, so is the map ev. Both N2 and Z2ŒŒPS1
2
=A0

4
�� are free

of rank one over Z2ŒŒK
1��. Hence, Z2˝Z2ŒŒK 1�� N2 and Z2˝Z2ŒŒK 1�� Z2ŒŒPS1

2
=A0

4
��

are abstractly isomorphic to Z2 . Since ev is a surjective group homomorphism from
Z2 to itself, it is an isomorphism. It follows from Lemma A.1.3 that any element of
HomZ2ŒŒK 1��.N2;Z2ŒŒPS1

2
=A0

4
��/ that becomes a unit after applying Z2˝Z2ŒŒK 1��� is

an isomorphism. By Lemma 3.1.5, the composite \ŒK1�ı��ı� is surjective. Therefore,
we can choose ' in HomZ2ŒŒPS1

2
��.N2;Z2ŒŒPS1

2
=A0

4
��/ such that \ŒK1� ı �� ı�.'/ is a

generator of H0.K
1;Z2ŒŒPS1

2
=A0

4
��/. Then ��.'/ in HomZ2ŒŒK 1��.N2;Z2ŒŒPS1

2
=A0

4
��/

is an isomorphism, and hence ' must be an isomorphism.

Combining the previous results, we can finally prove Theorem 1.2.1. We restate it here
for convenience.

Theorem 3.1.7 Let Z2 be the trivial Z2ŒŒS
1
2
��–module. There is an exact sequence of

complete Z2ŒŒS
1
2
��–modules

0! C3

@3
�! C2

@2
�! C1

@1
�! C0

"
�! Z2! 0;

where C0ŠZ2ŒŒS
1
2
=G24�� and C1ŠC2ŠZ2ŒŒS

1
2
=C6�� and C3DZ2ŒŒS

1
2
=G0

24
��. Further,

this is a free resolution of the trivial Z2ŒŒK
1��–module Z2 .
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Proof Let
C3 WD Z2ŒŒS

1
2=G024��:

Let �W C3 ! N2 be the isomorphism of Theorem 3.1.6. Let @3W C3 ! C2 be the
isomorphism � followed by the inclusion of N2 in C2 . This gives an exact sequence

(3.1.12) 0! C3! C2

@2
�!N1! 0:

Splicing the exact sequences of (3.1.1), (3.1.3) and (3.1.12) finishes the proof.

The exact sequence of Theorem 3.1.7 is called the algebraic duality resolution. The
duality properties it satisfies will be described in Section 3.3.

3.2 The algebraic duality resolution spectral sequence

The algebraic duality resolution gives rise to a spectral sequence called the algebraic
duality resolution spectral sequence, which we describe here. The following result is a
refinement of Theorem 1.2.4, which was stated in Section 1.2. We define

Q08 WD �Q8�
�1:

We also let V be the 2–Sylow subgroup of A4 and V 0 be the 2–Sylow subgroup of
A0

4
, where A4 Š PG24 and A0

4
D PG0

24
as defined in (3.1.8) and (3.1.9).

Theorem 3.2.1 Let M be a profinite Z2ŒŒS
1
2
��–module. There is a first quadrant

spectral sequence

E
p;q
1
D Extq

Z2ŒŒS
1
2
��
.Cp;M /H)H pCq.S1

2;M /

with differentials dr W E
p;q
r !E

pCr;q�rC1
r . Further,

E
p;q
1
Š

8<:
H q.G24;M / if p D 0;

H q.C6;M / if p D 1; 2;

H q.G0
24
;M / if p D 3:

Similarly, there are first quadrant spectral sequences

E
p;q
1
D ExtqZ2ŒŒG��

.Cp;M /H)H pCq.G;M /;

where G is S1
2

, PS1
2

or PS1
2

. The E1 –term is

E
p;q
1
Š

8<:
H p.Q8IM / if q D 0;

H p.C2IM / if q D 1; 2;

H p.Q0
8
IM / if q D 3
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when G is S1
2

,

E
p;q
1
Š

8<:
H p.A4IM / if q D 0;

H p.C3IM / if q D 1; 2;

H p.A0
4
IM / if q D 3

when G is PS1
2

and

E
p;q
1
Š

8<:
H p.V IM / if q D 0;

H p.fegIM / if q D 1; 2;

H p.V 0IM / if q D 3

when G is PS1
2

.

Proof There are two equivalent constructions. First, recall that the algebraic duality
resolution is spliced from the exact sequences

0!Ni! Ci!Ni�1! 0;(3.2.1)

with C3 DN2 and N�1 D Z2 . The exact couple

Ext.N�;M /
ı� // Ext.N��1;M /

r�vv
Ext.C�;M /

i�

gg

gives rise to the algebraic duality resolution spectral sequence.

Alternatively, one can resolve each C� ! Z2 into a double complex of projective
finitely generated Z2ŒŒS

1
2
��–modules. The total complex Tot.Pp;q/ for p � 0 is a

projective resolution of Z2 as a Z2ŒŒS
1
2
��–module. The homology of the double complex

HomZ2ŒŒS
1
2
��.Tot.Pp;q/;M / is

ExtpCq

Z2ŒŒS
1
2
��
.Z2;M /ŠH pCq.S1

2;M /:

The identification of the E1 –term follows from Shapiro’s Lemma A.1.2 of the appendix.
Indeed, any finite subgroup H of S1

2
is closed. Further, since S1

2
Š S1

2
Ì C3 ,

Extq
Z2ŒŒS

1
2
��
.Z2ŒŒS

1
2��˝Z2ŒH �Z2;M /Š

�
Extq

Z2ŒŒS
1
2
��
.Z2ŒŒS

1
2 ��˝Z2ŒSyl2.H /�Z2;M /

�C3

Š
�
ExtqZ2ŒSyl2.H /�

.Z2;M /
�C3
ŠH q.H;M /:

For the groups S1
2

, PS2 and PS1
2

, one applies the same construction, keeping the
following isomorphisms in mind. Let H � S1

2
be a finite subgroup which contains C6
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and let PH DH=C2 . There are isomorphisms

Z2ŒŒS
1
2=H ��Š Z2ŒŒPS1

2��˝Z2ŒPH �Z2 Š Z2ŒŒPS1
2=PH ��

and
Z2ŒŒS

1
2=H ��Š Z2ŒŒPS1

2 ��˝Z2ŒSyl2.PH /�Z2 Š Z2ŒŒPS1
2=Syl2.PH /��

as Z2ŒŒPS1
2
�� and Z2ŒŒPS1

2
��–modules, respectively.

3.3 The duality

The algebraic duality resolution of Theorem 3.1.7 owes its name to the fact that it
satisfies a certain twisted duality. This duality is crucial for computations as it allows
us to understand the map @3W C3! C2 .

Let Mod.S1
2
/ denote the category of finitely generated left Z2ŒŒS

1
2
��–modules. Let

� D 1C 2! in S2 be as defined in (2.3.3). For M in Mod.S1
2
/, let c�.M / denote

the left Z2ŒŒS
1
2
��–module whose underlying Z2 –module is M , but for which the action

of  in S1
2

on an element m in c�.M / is given by

 �mD ���1m:

If �W M !N is a morphism of left Z2ŒŒS
1
2
��–modules, let c�.�/W c�.M /! c�.N /

be given by
c�.�/.m/D �.m/:

Then c� W Mod.S1
2
/!Mod.S1

2
/ is a functor. In fact, c� is an involution, since �2D�3

is in the center of S2 . We can now prove Theorem 1.2.2, which is restated here for
convenience.

Theorem 3.3.1 (Henn, Karamanov and Mahowald, unpublished) There exists an
isomorphism of complexes of left Z2ŒŒS

1
2
��–modules:

0 // C3

f3

��

@3 // C2

f2

��

@2 // C1

f1

��

@1 // C0

f0

��

" // Z2
// 0

0 // c�.C
�
0
/

c� .@
�
1
/
// c�.C

�
1
/

c� .@
�
2
/
// c�.C

�
2
/

c� .@
�
3
/
// c�.C

�
3
/
x" // Z2

// 0

Proof The proof is similar to the proof of Henn, Karamanov, Mahowald [18, Proposi-
tion 3.8]. Let C �p D HomZ2ŒŒS

1
2
��.Cp;Z2ŒŒS

1
2
��/ and @�p D HomZ2ŒŒS

1
2
��.@p;Z2ŒŒS

1
2
��/ be
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the Z2ŒŒS
1
2
��–duals of Cp and @p in the sense of Equation (A.1.1). The resolution of

Theorem 3.1.7 gives rise to a complex

0! C �0
@�

1
�! C �1

@�
2
�! C �2

@�
3
�! C �3 ! 0:(3.3.1)

Because K1 has finite index in S1
2

, the induced and coinduced modules of Z2ŒŒK
1��

are isomorphic; see Symonds and Weigel [35, Section 3.3]. Therefore

HomZ2ŒŒS
1
2
��.Cp;Z2ŒŒS

1
2��/Š HomZ2ŒŒK 1��.Cp;Z2ŒŒK

1��/

and the homology of the complex (3.3.1) is H n.K1;Z2ŒŒK
1��/. By Corollary 2.5.12,

H n.K1;Z2ŒŒK
1��/ is 0 for n ¤ 3 and Z2 for n D 3. Further, the action of G24 on

H 3.K1;Z2ŒŒK
1��/Š Z2 is trivial, as there are no nontrivial one dimensional 2–adic

representations of G24 . Hence, (3.3.1) is a resolution of Z2 as a trivial Z2ŒŒS
1
2
��–

module.

The module C �p is of the form Z2ŒŒS
1
2
=H �� via the isomorphism t defined in (A.1.2).

Let x" be the augmentation

x"W C �3 ! Z2:

Because the augmentation "W Z2ŒŒK
1��! Z2 induces an isomorphism

HomZ2ŒŒK 1��.Z2;Z2/Š HomZ2ŒŒK 1��.Z2ŒŒK
1��;Z2/;

one can choose an isomorphism H 3.K;Z2ŒŒK
1��/!Z2 making the following diagram

commute:

C �
3

x"
��

// H 3.K1;Z2ŒŒK
1��/

xx
Z2

Therefore, the dual resolution is given by

0! C �0
@�

1
�! C �1

@�
2
�! C �2

@�
3
�! C �3

x"
�! Z2! 0:

Take the image of this resolution in Mod.S1
2
/ under the involution c� . Let e�

3
be the

canonical generator of c�.C
�
3
/. The map f0W C0! c�.C

�
3
/ defined by

f0.e0/D e�3
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is an isomorphism of Z2ŒŒS
1
2
��–modules, and the following diagram is commutative:

C0

f0

��

"
// Z2

// 0

c�.C
�
3
/

x"
// Z2

// 0

Therefore, f0 induces an isomorphism ker "Š ker x". As both

C2

@2
�! C1

@1
�! ker "

and

c�.C
�
2 /

c� .@
�
2
/

����! C �3
c� .@

�
3
/

����! ker x"

are the beginning of projective resolutions of ker " and ker x" as Z2ŒŒPS1
2
��–modules,

f0 lifts to a chain map:

0 // C3

f3

��

@3
// C2

f2

��

@2
// C1

f1

��

@1
// ker "

f0

��

// 0

0 // c�.C
�
0
/

c� .@
�
1
/
// c�.C

�
1
/

c� .@
�
2
/
// c�.C

�
2
/

c� .@
�
3
/
// ker x" // 0

Let PS1
2
D S1

2
=C2 , where S1

2
denotes the 2–Sylow subgroup of S1

2
. By construction,

f0 is an isomorphism, which implies that F2˝Z2ŒŒPS1
2
�� f1 and F2˝Z2ŒŒPS1

2
�� f2 are

isomorphisms. As Cp and c�.C �p / are projective Z2ŒŒPS1
2
��–modules for p D 1; 2,

Lemma A.1.3 of the appendix implies that f1 and f2 are isomorphisms. Finally, f3

must be an isomorphism by the five lemma.

3.4 A description of the maps

This section is dedicated to proving the statements in Theorem 1.2.6. The first statement
of Theorem 1.2.6 is that

@1.e1/D .e�˛/e0:

This was shown in Theorem 3.1.7. In this section, we prove the remaining statements
of that theorem.

The following result provides a description of the maps @3W C3! C2 and proves the
last part of Theorem 1.2.6. It is a consequence of Theorem 3.3.1.
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Theorem 3.4.1 There are isomorphisms of Z2ŒŒS
1
2
��–modules gpW Cp! Cp and dif-

ferentials
@0pC1W CpC1! Cp

such that

0 // C3

g3

��

@3 // C2

g2

��

@2 // C1

g1

��

@1 // C0

g0

��

" // Z2
// 0

0 // C3

@0
3 // C2

@0
2 // C1

@0
1 // C0

" // Z2
// 0

(3.4.1)

is an isomorphism of complexes. The map @0
3
W C3! C2 is given by

@03.e3/D �.eC i C j C k/.e�˛�1/��1e2:(3.4.2)

Proof We will construct a commutative diagram:

0 // C3

f3

��

@3 // C2

f2

��

@2 // C1

f1

��

@1 // C0

f0

��

" // Z2
// 0

0 // c�.C
�
0
/

q3

��

c� .@
�
1
/
// c�.C

�
1
/

q2

��

c� .@
�
2
/
// c�.C

�
2
/

q1

��

c� .@
�
3
/
// c�.C

�
3
/

q0

��

x" // Z2
// 0

0 // C3

@0
3 // C2

@0
2 // C1

@0
1 // C0

" // Z2
// 0

The maps gp will be the composites of the vertical maps. First, let e�p 2 c�.C �p / be
the canonical generator. Define isomorphisms qpW c�.M

�
3�p

/!Mp by

qp.e
�
3�p/D ep:

Define gpW Cp! Cp by
gp D qpfp

and @0
pC1
W CpC1! Cp by

@0pC1 D qpc�.@
�
3�p/q

�1
pC1:

By construction, (3.4.1) is commutative.

In order to compute @0
3

, it is necessary to understand @�
1

. By definition,

@�1.e
�
0 /.e1/D e�0 ..e�˛/e1/D .e�˛/

X
h2G24

h:
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However,

.e�˛/
X

h2G24

hD .e�˛/
X

h2C6

h.eC i�1
C j�1

C k�1/

D

X
h2C6

h.e�˛/.eC i�1
C j�1

C k�1/

D ..eC i C j C k/.e�˛�1/e�1 /.e1/:

Hence,

@�1.e
�
0 /D .eC i C j C k/.e�˛�1/e�1 :

A diagram chase shows that @0
3

is given by (3.4.2).

The maps @1W C1 ! C0 and @3W C3 ! C2 now have explicit descriptions up to
isomorphisms. The map @2W C2 ! C1 is harder to describe. Theorem 3.4.5 and
Corollary 3.4.6 below give an estimate for this map. These are technical results which
will be used in our computations in [3]. Note that Theorem 3.1.7, Theorem 3.4.1 and
Corollary 3.4.6 below prove Theorem 1.2.6, which was stated in Section 1.2.

Recall that

˛� D Œ�; ˛�D �˛�
�1˛�1:

We will need the following result to describe the element ‚ of Lemma 3.1.3.

Lemma 3.4.2 Let n � 2 and x be in IFn=2K1 . There exist h0 , h1 and h2 in
Z2ŒŒFn=2K1�� such that

x D

�
h0.e�˛

2m�1

/C h1.e�˛
2m�1

i /C h2.e�˛
2m�1

j / if nD 2m;

h0.e�˛
2m

/C h1.e�˛
2m�1

i /C h2.e�˛
2m�1

j / if nD 2mC 1:
(3.4.3)

Proof Define a map of Z2ŒŒFn=2K1��–modules

pW

2M
iD0

Z2ŒŒFn=2K1��i! IFn=2K1

by sending .h0; h1; h2/ to the element given by (3.4.3). It is sufficient to show that the
map induced by p surjects onto

H1.Fn=2K1;F2/Š F2˝Z2ŒŒFn=2K 1�� IFn=2K1:
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By Lemma 2.2.1, H1.Fn=2K1;F2/ is generated by the classes

˛2m�1

; ˛2m�1

i ; ˛2m�1

j if nD 2m,

˛2m

; ˛2m�1

i ; ˛2m�1

j if nD 2mC 1.

Therefore, F2˝Z2ŒŒFn=2K 1�� p is surjective, and hence so is p .

The ideal
I D ..IK1/7; 2.IK1/3; 4.IK1/; 8/

will play a crucial role in the following estimates.

Corollary 3.4.3 Let e0 be the canonical generator of C0 and g be in F8=2K1. There
exists h in Z2ŒŒS

1
2
�� such that .e�g/e0 D h.e�˛/e0 with h� 0 mod I .

Proof By Lemma 3.4.2, there exist h0 , h1 and h2 in Z2ŒŒF8=2K1�� such that

e�g D h0.e�˛
8/C h1.e�˛

8
i /C h2.e�˛

8
j /:

Since

.e�x8/D

� 7X
sD0

xs

�
.e�x/;

this implies that

e�g D h0

� 7X
sD0

˛s

�
.e�˛/C h1

� 7X
sD0

˛s
i

�
.e�˛i/C h2

� 7X
sD0

˛s
j

�
.e� j̨ /:

Let

hD h0

� 7X
sD0

˛s

�
C h1

� 7X
sD0

˛s
i

�
.i �˛i/C h2

� 7X
sD0

˛s
j

�
.j � j̨ /:

If � 2G24 , then �e0 D e0 . Hence,

.� �˛� /.e�˛/e0 D .e�˛� /e0:

Using this fact, one verifies that .e�g/e0 D h.e�˛/e0 . Further,

7X
sD0

xs
� .1�x/7C 2x4.x� 1/3C 4x2.x� 1/ mod .8/:

Since ˛ , ˛i and j̨ are in K1 and K1 is a normal subgroup, this implies that

h� 0 mod ..IK1/7; 2.IK1/3; 4.IK1/; 8/:

Algebraic & Geometric Topology, Volume 15 (2015)



3696 Agnès Beaudry

We will use the following result.

Lemma 3.4.4 The element ˛i j̨˛k is in F4=2K1 . The element ˛i j̨˛k˛
2 is in

F8=2K1 .

Proof Let T D ˛S in O2 Š End.F2/. Then T 2 D�2, and aT D Ta� for a in W .
As defined in (2.3.4) and Lemma 2.4.3, we have

˛ D
1
p
�7
.1� 2!/; i D�1

3
.1C 2!/.1�T /;

j D�1
3
.1C 2!/.1�!2T /; k D�1

3
.1C 2!/.1�!T /:

Further,

˛�1
D�

1
p
�7
.1� 2!2/:

We use the fact that 1
3

and 1p
�7

are in Z.S2/. We also use the fact ��1 D �� for
� D i , j and k and the fact that S4 D 4 and S8 D 16.

First, note that

i˛ D�
1

3
p
�7
.1C 2!/.1�T /.1� 2!/

D�
1

3
p
�7
.1C 2!/..1� 2!/� .1� 2!2/T /

D�
1

3
p
�7
..5C 4!/C .1� 4!/T /:

Further,

i�1˛�1
D�

1

3
p
�7
.1C 2!/.1�T /.1� 2!2/

D�
1

3
p
�7
.1C 2!/..1� 2!2/� .1� 2!/T /

D�
1

3
p
�7
..�1C 4!/� .5C 4!/T /:

Therefore,

˛i D i˛i�1˛�1
D�

1
63
..5C 4!/C .1� 4!/T /..�1C 4!/� .5C 4!/T /

� 13C .2C 8!/T mod S8:

Using the fact that j̨ D !˛i!
2 and ˛k D !

2˛i! , this implies that

j̨ � 13C!2.2C 8!/T mod S8; ˛k � 13C!.2C 8!/T mod S8:
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Hence,

˛i j̨ � .13C .2C 8!/T /.13C!2.2C 8!/T /

�
�
9C!2.10C 8!/T C .10C 8!/T C .2C 8!/.!.2C 8!2//T 2

�
� 9C 8!C .8C 14!/T mod S8;

so that

˛i j̨˛k � .9C 8!C .8C14!/T /.13C!.2C8!/T /

� .5C 8!C .8C6!/T C .9C8!/!.2C8!/T C .8C14!/!2.2C8!2/T 2/

� 13C 8! mod S8:

This shows that ˛i j̨˛k � 1 modulo S4 . Finally, note that

˛i j̨˛k˛
2
� .13C 8!/

�
1
p
�7
.1� 2!/

�2
��

1
7
.13C 8!/.1� 2!/2 ��9

7

� 1 mod S8;

which shows that ˛i j̨˛k˛
2 is in F8=2K1 .

Theorem 3.4.5 There exists ‚ in Z2ŒŒS
1
2
�� satisfying the conditions of Lemma 3.1.3

such that

‚� eC˛C i C j C k �˛i � j̨ �˛k

�
1
3

trC3
..e�˛i/.j � j̨ /C .e�˛i j̨ /.k �˛k/C .e�˛i j̨˛k/.eC˛//

modulo I D ..IK1/7; 2.IK1/3; 4.IK1/; 8/, where trC3
is defined by (3.1.4).

Proof We will use the following facts. First, note that

�eq D eq

for � 2G24 and q D 0, or for � 2 C6 and q D 1. This implies that

�.e�˛/e0 D .e�˛�˛/e0:

Since j D !i!�1 and k D !�1i! , it also implies that

!ieq D jeq; !2ieq D keq:

The element ˛ 2W � � S2 commutes with ! . This implies that

!˛ieq D j̨ eq:
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We will use the fact that for � 2G24 ,

.� �˛� /.e�˛/e0 D .e�˛� /e0:

We will also use the identity

e�ghD .e�g/C .e� h/� .e�g/.e� h/:

Let ‚0 D eC i . Then trC3
.‚0/e1 D .3C i C j C k/e1 and

@1.‚0e1/D .eC i/.e�˛/e0

D .e�˛/e0C .e�˛i˛/e0

D 2.e�˛/e0C .e�˛i/e0� .e�˛i/.e�˛/e0

D .e�˛2/e0C .e�˛/
2e0C .e�˛i/e0� .e�˛i/.e�˛/e0:

Let ‚1 D eC i � .e�˛/C .e�˛i/. Then,

@1.‚1e1/D .e�˛
2/e0C .e�˛i/e0:

Therefore,

@1.trC3
.‚1/e1/

D 3.e�˛2/e0C .e�˛i/e0C .e� j̨ /e0C .e�˛k/e0

D 3.e�˛2/e0C .e�˛i/.e� j̨ /e0C .e�˛i j̨ /e0C .e�˛k/e0

D 3.e�˛2/e0C .e�˛i/.e� j̨ /e0C .e�˛i j̨ /.e�˛k/e0C .e�˛i j̨˛k/e0

D 2.e�˛2/e0C .e�˛i/.e� j̨ /e0C .e�˛i j̨ /.e�˛k/e0

C.e�˛i j̨˛k/.e�˛
2/e0C .e�˛i j̨˛k˛

2/e0:

Let

‚2 D trC3

�
eC i � .e�˛/C .e�˛i/

�
� 2.eC˛/

�.e�˛i/.j � j̨ /� .e�˛i j̨ /.k �˛k/� .e�˛i j̨˛k/.eC˛/:

Then ‚2 � 3C i C j C k mod .4; IK1/. Further,

@1.‚2e1/D .e�˛i j̨˛k˛
2/e0:

By Lemma 3.4.4, ˛i j̨˛k˛
2 2 F8=2K1 . By Corollary 3.4.3, there exists h such that

.e�˛i j̨˛k˛
2/e0 D h.e�˛/e0

and h� 0 modulo I , where I D ..IK1/7; 2.IK1/3; 4IK1; 8/. Therefore,

@1..‚2� h/e1/D .e�˛i j̨˛k˛
2/e0� h.e�˛/e0 D 0:
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Define

‚D 1
3

trC3
.‚2� h/:

Then ‚ satisfies the conditions of Lemma 3.1.3. Further,

‚� eC˛C i C j C k �˛i � j̨ �˛k

�
1
3

trC3
..e�˛i/.j � j̨ /C .e�˛i j̨ /.k �˛k/C .e�˛i j̨˛k/.eC˛//

modulo I .

Corollary 3.4.6 Let J D .IF4=2K1; .IF3=2K1/.IS1
2
/; I/. The element ‚ from

Theorem 3.4.5 satisfies

‚� eC˛C i C j C k �˛i � j̨ �˛k mod J ;

and ‚� eC˛ modulo .2; .IS1
2
/2/.

Proof First, note that ˛� 2 F3=2K1 for � 2G24 . Further, by Lemma 3.4.4, ˛i j̨˛k

is in F4=2K1 . Hence, it follows from Theorem 3.4.5 that

‚� eC˛C i C j C k �˛i � j̨ �˛k mod J :

For the second claim, we first prove that J � .2; .IS1
2
/2/. It is clear that

..IF3=2K1/.IS1
2 /; I/� .2; .IS1

2 /
2/:

Further, it follows from Lemma 3.4.2 and the fact that .e�x2k

/� .e�x/2
k

modulo .2/
that

IF4=2K1
� .2; .IS1

2 /
2/:

Therefore, J � .2; .IS1
2
/2/. Hence,

‚� eC˛C i C j C k �˛i � j̨ �˛k mod .2; .IS1
2 /

2/:

Further, .e� i/.e� j /� eC i C j C k modulo .2/ and

e�˛i D i˛..e�˛�1/.e� i�1/� .e� i�1/.e�˛�1//:

Therefore, eC i C j C k and e�˛� are in .2; .IS1
2
/2/. We conclude that

‚� eC˛ mod .2; .IS1
2 /

2/:
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Appendix: Background on profinite groups

We use the terminology of Ribes and Zalesskii [28, Section 5]. Let G be a profinite
p–adic analytic group and fUkg be a system of open normal subgroups of G such thatT

k Uk D feg. The completed group ring of G is

Zp ŒŒG�� WD lim
n;k

Z=.pn/ŒG=Uk �:

The augmentation is the continuous homomorphism of Zp –modules "W Zp ŒŒG��! Zp

defined by ".g/D 1 for g 2G . The augmentation ideal IG is the kernel of ".

A left Zp ŒŒG��–module is a Zp ŒŒG��–module M which is a Hausdorff topological abelian
group with a continuous structure map Zp ŒŒG���M !M. The module M is finitely
generated if it is the closure of the Zp ŒŒG��–module generated by a finite subset of M.
It is discrete if it is the union of its finite Zp ŒŒG��–submodules and profinite if it is the
inverse limit of its finite Zp ŒŒG��–submodule quotients; see [28, Lemma 5.1.1]. The
module M is complete with respect to the IG –adic topology if

M Š lim
n;k

Zp=.p
n/ŒG=Uk �˝ZpŒŒG��M:

It is a theorem of Lazard that Zp ŒŒG�� is Noetherian; see Symonds and Weigel [35, The-
orem 5.1.2]. Finitely generated Zp ŒŒG��–modules are thus both profinite and complete
with respect to the IG –adic topology.

Let M D limi Mi be a profinite Zp ŒŒG��–bimodule and N D limj Nj a profinite left
Zp ŒŒG��–module. Then

M ˝ZpŒŒG��N D lim
i;j

Mi ˝ZpŒŒG��Nj

denotes the completed tensor product, which is itself a profinite left Zp ŒŒG��–module [28,
Section 5.5]. The abelian group of continuous Zp ŒŒG��–homomorphisms is denoted by

HomZpŒŒG��.M;N /:

This is a topological space with the compact open topology. If M is finitely generated,
then it is compact; see [35, Section 3.7].

Lazard also proves in [24, V.3.2.7] that the trivial Zp ŒŒG��–module Zp admits a reso-
lution by finitely generated Zp ŒŒG��–modules. A Zp ŒŒG��–module M which admits a
projective resolution P�!M by finitely generated Zp ŒŒG��–modules is said to be of
type FP1 ; see [35, Section 3.7]. For such M, we let

ExtnZpŒŒG��
.M;N /DH n.HomZpŒŒG��.P�;N //
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and
TorZpŒŒG��

n .M;N /DHn.P�˝ZpŒŒG��N /:

These functors are studied by Symonds and Weigel in [35, Section 3.7]. There are
isomorphisms

H n.G;N /Š ExtnZpŒŒG��
.M;N /;

where H n.G;N / is the cohomology computed with continuous cochains and

Hn.G;N /Š TorZpŒŒG��
n .Zp;N /I

see Neukirch, Schmidt and Wingberg [25, Propositions 5.2.6, 5.2.14] or the discussion
in Kohlhaase [23, Section 3]. Therefore, these functors satisfy the usual properties of
group cohomology; see Ribes and Zalesskii [28, Section 6]. In particular, for ŒG;G�
the commutator subgroup, G� DGp ŒG;G�, and Zp and Fp the trivial modules, we
have

H1.G;Zp/ŠG=ŒG;G�; H1.G;Fp/ŠG=G�;

H 1.G;Zp/Š Hom.G;Zp/; H 1.G;Fp/Š Hom.G;Fp/:

Examples A.1.1 We give examples, which we use in this paper, in [3] and in [2].

(a) The modules
Zp ŒŒG=H �� WD Zp ŒŒG��˝ZpŒH �Zp

for H a finite subgroup of G and Zp the trivial Zp ŒH �–module are finitely
generated, and thus profinite and complete.

(b) The Zp ŒŒG��–dual of a finitely generated Zp ŒŒG��–module M is defined as

M �
WD HomZpŒŒG��.M;Zp ŒŒG��/;(A.1.1)

with the action of g 2G on � 2M � defined by

.g�/.m/D �.m/g�1:

This gives M � the structure of a finitely generated left Zp ŒŒG��–module; see
Symonds and Weigel [35, 3.7.1] and Henn, Karamanov and Mahowald [18,
Section 3.4]. For example, if H � G is a finite subgroup and Œg� denotes the
coset gH, there is a canonical isomorphism

(A.1.2) t W Zp ŒŒG=H ��! Zp ŒŒG=H ���

which sends Œg� to the map Œg��W Zp ŒŒG=H ��! Zp ŒŒG�� defined by

Œg��.Œx�/D x
X
h2H

hg�1:

Algebraic & Geometric Topology, Volume 15 (2015)
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We refer the reader to [18, Section 3.4] for a detailed discussion of Zp ŒŒG��–duals.

(c) In the case when GDSn is the p–Sylow subgroup of Sn , an important example
is the continuous Zp ŒŒSn��–module .En/�X D��LK.n/.En^X / for a spectrum
X ; see Goerss, Henn, Mahowald and Rezk [14, Section 2]. In the case when X

is a finite spectrum, .En/�X is profinite, although it is not known if, in general,
it is finitely generated over Zp ŒŒSn��. For a more extensive discussion, see the
work of Kohlhaase in [23].

Lemma A.1.2 (Shapiro’s Lemma) Let G be a profinite p–analytic group and let H

be a closed subgroup. Let M be a Zp ŒŒH ��–module of type FP1 and let N D limi Ni

be a profinite Zp ŒŒG��–module, which is also a Zp ŒŒH ��–module via restriction. Then

Ext�ZpŒŒG��
.Zp ŒŒG��˝ZpŒŒH ��M;N /Š Ext�ZpŒŒH ��.M;N /:

Proof Let P�!M be a projective resolution of M by finitely generated Zp ŒŒH ��–
modules. According to Brumer [7, Lemma 4.5], Zp ŒŒG�� is a projective Zp ŒŒH ��–module.
Hence, the functor Zp ŒŒG��˝ZpŒŒH �� .�/ is exact, and Zp ŒŒG��˝ZpŒŒH ��P� is a projective
resolution of Zp ŒŒG��˝ZpŒŒH ��M by finitely generated Zp ŒŒG��–modules. Finally, note
that

HomZpŒŒG��.Zp ŒŒG��˝ZpŒŒH �� P�;N /Š lim
i

HomZpŒŒG��.Zp ŒŒG��˝ZpŒŒH �� P�;Ni/

Š lim
i

HomZpŒŒH ��.P�;Ni/

Š HomZpŒŒH ��.P�;N /;

where the first isomorphism is proved by Symonds and Weigel [35, (3.7.1)] and the
second follows from Ribes and Zalesskii [28, Proposition 5.5.4(c)].

The following result is Lemma 4.3 of Goerss, Henn, Mahowald and Rezk [14]. It is a
version of Nakayama’s lemma in this setting.

Lemma A.1.3 Let G be a finitely generated profinite p–group. Let M and N be
finitely generated complete Zp ŒŒG��–modules and f W M !N be a map of complete
Zp ŒŒG��–modules. If the induced map

Fp˝ZpŒŒG�� f W Fp˝ZpŒŒG��M ! Fp˝ZpŒŒG��N

is surjective, then so is f . If the map

TorZpŒŒG��
q .Fp; f /W TorZpŒŒG��

q .Fp;M /! TorZpŒŒG��
q .Fp;N /

is an isomorphism for q D 0 and surjective for q D 1, then f is an isomorphism.
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The following is a restatement of some of the results which can be found in Ribes and
Zalesskii [28, Lemma 6.8.6].

Lemma A.1.4 Let G be a profinite group and let IG be the augmentation ideal. For
a profinite Zp ŒŒG��–module M , the boundary map for the short exact sequence

0! IG! Zp ŒŒG��
"
�! Zp! 0

induces an isomorphism

HnC1.G;M /Š TorZpŒŒG��
n .IG;M /:

For the trivial module M D Zp , this isomorphism sends g in G=ŒG;G� to the residue
class of e � g in H0.G; IG/ Š IG=IG2 . Let G� be the subgroup generated by
ŒG;G� and Gp . For M D Fp , it sends g in G=G� to the residue class of e � g in
Fp˝Zp

IG=IG2 .

Finally, we note the following classical result.

Lemma A.1.5 Let G be a profinite 2–analytic group and suppose that H1.G;Z2/Š

G=ŒG;G� is a finitely generated 2–group. Suppose that the residue class of an element
g in G=ŒG;G� generates a summand isomorphic to Z=2k. Let x in H 1.G;Z=2/ Š
Hom.G;Z=2/ be the homomorphism dual to g . Then x2 is nonzero in H 2.G;Z=2/
if and only if k D 1.

Proof This follows from the fact that x in H 1.G;Z=2/ has a nonzero Bockstein in
the long exact sequence associated to the extension of trivial modules

1! Z=2! Z=4! Z=2! 1

if and only if g generates a Z=2 summand.

References
[1] A Adem, R J Milgram, Cohomology of finite groups, 2nd edition, Grundl. Math.

Wissen. 309, Springer, Berlin (2004) MR2035696

[2] A Beaudry, The chromatic splitting conjecture at nD p D 2 , preprint (2015) arXiv:
1502.02190v2

[3] A Beaudry, Towards ��LK.2/V .0/ at p D 2 , preprint (2015) arXiv:1501.06082

[4] M Behrens, The homotopy groups of SE.2/ at p � 5 revisited, Adv. Math. 230 (2012)
458–492 MR2914955

Algebraic & Geometric Topology, Volume 15 (2015)

http://dx.doi.org/10.1007/978-3-662-06280-7
http://www.ams.org/mathscinet-getitem?mr=2035696
http://arxiv.org/abs/1502.02190v2
http://arxiv.org/abs/1502.02190v2
http://arxiv.org/abs/1501.06082
http://dx.doi.org/10.1016/j.aim.2012.02.023
http://www.ams.org/mathscinet-getitem?mr=2914955


3704 Agnès Beaudry

[5] M Behrens, T Lawson, Isogenies of elliptic curves and the Morava stabilizer group, J.
Pure Appl. Algebra 207 (2006) 37–49 MR2244259

[6] I Bobkova, Resolutions in the K.2/–local category at the prime 2 , PhD thesis,
Northwestern University, Ann Arbor, MI (2014) MR3251316 Available at http://
search.proquest.com/docview/1558126694

[7] A Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra
4 (1966) 442–470 MR0202790

[8] C Bujard, Finite subgroups of extended Morava stabilizer groups, preprint (2012)
arXiv:1206.1951v2

[9] D G Davis, Homotopy fixed points for LK.n/.En ^X / using the continuous action, J.
Pure Appl. Algebra 206 (2006) 322–354 MR2235364

[10] E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the
Morava stabilizer groups, Topology 43 (2004) 1–47 MR2030586

[11] J D Dixon, M P F du Sautoy, A Mann, D Segal, Analytic pro-p groups, 2nd edition,
Cambridge Studies Adv. Math. 61, Cambridge Univ. Press (1999) MR1720368

[12] P G Goerss, H-W Henn, The Brown–Comenetz dual of the K.2/–local sphere at the
prime 3 , Adv. Math. 288 (2016) 648–678

[13] P G Goerss, H-W Henn, M Mahowald, The rational homotopy of the K.2/–local
sphere and the chromatic splitting conjecture for the prime 3 and level 2 , Doc. Math.
19 (2014) 1271–1290 MR3312144

[14] P Goerss, H-W Henn, M Mahowald, C Rezk, A resolution of the K.2/–local sphere
at the prime 3, Ann. of Math. 162 (2005) 777–822 MR2183282

[15] P Goerss, H-W Henn, M Mahowald, C Rezk, On Hopkins’ Picard groups for the
prime 3 and chromatic level 2 , J. Topol. 8 (2015) 267–294 MR3335255

[16] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: “Struc-
tured ring spectra”, (Cambridge, editor), London Math. Soc. Lecture Note Ser. 315,
Cambridge Univ. Press (2004) 151–200 MR2125040

[17] H-W Henn, Centralizers of elementary abelian p–subgroups and mod-p cohomology
of profinite groups, Duke Math. J. 91 (1998) 561–585 MR1604171

[18] H-W Henn, N Karamanov, M Mahowald, The homotopy of the K.2/–local Moore
spectrum at the prime 3 revisited, Math. Z. 275 (2013) 953–1004 MR3127044

[19] T Hewett, Finite subgroups of division algebras over local fields, J. Algebra 173 (1995)
518–548 MR1327867

[20] T Hewett, Normalizers of finite subgroups of division algebras over local fields, Math.
Res. Lett. 6 (1999) 271–286 MR1713129

Algebraic & Geometric Topology, Volume 15 (2015)

http://dx.doi.org/10.1016/j.jpaa.2005.09.007
http://www.ams.org/mathscinet-getitem?mr=2244259
http://www.ams.org/mathscinet-getitem?mr=3251316
http://search.proquest.com/docview/1558126694
http://search.proquest.com/docview/1558126694
http://dx.doi.org/10.1016/0021-8693(66)90034-2
http://www.ams.org/mathscinet-getitem?mr=0202790
http://arxiv.org/abs/1206.1951v2
http://dx.doi.org/10.1016/j.jpaa.2005.06.022
http://www.ams.org/mathscinet-getitem?mr=2235364
http://dx.doi.org/10.1016/S0040-9383(03)00029-6
http://dx.doi.org/10.1016/S0040-9383(03)00029-6
http://www.ams.org/mathscinet-getitem?mr=2030586
http://dx.doi.org/10.1017/CBO9780511470882
http://www.ams.org/mathscinet-getitem?mr=1720368
http://dx.doi.org/10.1016/j.aim.2015.08.024
http://dx.doi.org/10.1016/j.aim.2015.08.024
http://www.ams.org/mathscinet-getitem?mr=3312144
http://dx.doi.org/10.4007/annals.2005.162.777
http://dx.doi.org/10.4007/annals.2005.162.777
http://www.ams.org/mathscinet-getitem?mr=2183282
http://dx.doi.org/10.1112/jtopol/jtu024
http://dx.doi.org/10.1112/jtopol/jtu024
http://www.ams.org/mathscinet-getitem?mr=3335255
http://dx.doi.org/10.1017/CBO9780511529955.009
http://www.ams.org/mathscinet-getitem?mr=2125040
http://dx.doi.org/10.1215/S0012-7094-98-09121-9
http://dx.doi.org/10.1215/S0012-7094-98-09121-9
http://www.ams.org/mathscinet-getitem?mr=1604171
http://dx.doi.org/10.1007/s00209-013-1167-4
http://dx.doi.org/10.1007/s00209-013-1167-4
http://www.ams.org/mathscinet-getitem?mr=3127044
http://dx.doi.org/10.1006/jabr.1995.1101
http://www.ams.org/mathscinet-getitem?mr=1327867
http://dx.doi.org/10.4310/MRL.1999.v6.n3.a2
http://www.ams.org/mathscinet-getitem?mr=1713129


The algebraic duality resolution at p D 2 3705

[21] M Hovey, Bousfield localization functors and Hopkins’ chromatic splitting conjecture,
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Braiding link cobordisms and non-ribbon surfaces

MARK C HUGHES

We define the notion of a braided link cobordism in S3 � Œ0; 1� , which generalizes
Viro’s closed surface braids in R4 . We prove that any properly embedded oriented
surface W � S3 � Œ0; 1� is isotopic to a surface in this special position, and that the
isotopy can be taken rel boundary when @W already consists of closed braids. These
surfaces are closely related to another notion of surface braiding in D2 �D2 , called
braided surfaces with caps, which are a generalization of Rudolph’s braided surfaces.
We mention several applications of braided surfaces with caps, including using them
to apply algebraic techniques from braid groups to studying surfaces in 4–space, as
well as constructing singular fibrations on smooth 4–manifolds from a given handle
decomposition.

57M12; 57M25, 57R52

1 Introduction

Two of the most useful and foundational results in knot theory and low-dimensional
topology are the classical theorems of Alexander and Markov. These theorems allow
us to study knots entirely within the realm of braids and braid closures, where we
can exploit either the algebraic structure of the braid group, the special position of
a closed braid in S3 or the fact that braids with isotopic closures can be related by
special braid moves. These results have been used in numerous applications, examples
of which include the construction and categorification of quantum link invariants due
to Freyd, Yetter, Hoste, Lickorish, Millett and Ocneanu [9], Jones [13] and Khovanov
and Rozansky [20], the construction of open book decompositions on 3–manifolds of
Alexander [2], and studying the slice and ribbon genera of knots of Rudolph [25; 27].

The notion of a closed braid as a specially positioned 1–dimensional submanifold of
3–dimensional space has been generalized by different authors to certain classes of
surfaces in 4–space. One such generalization is due to Rudolph [25], who considered
surfaces S �D2�D2 on which the projection to the second factor pr2W D

2�D2!D2

restricts as a branched covering. These braided surfaces generalize the classical notion
of a (geometric) braid as a 1–dimensional submanifold of D2 � Œ0; 1� on which the
projection prŒ0;1�W D

2 � Œ0; 1�! Œ0; 1� restricts as an ordinary covering. Any braided
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surface is necessarily ribbon and Rudolph showed that every orientable ribbon surface
with boundary properly embedded in D2 �D2 is isotopic to a braided surface.

Braided surfaces are closely related to a similar notion due to Viro [29], called 2–braids.
Analogous to classical braids, 2–braids admit a closure operation yielding closed
surfaces in S4 . Viro [29] and Kamada [16] independently proved a 4–dimensional
Alexander theorem by showing that every closed oriented surface in S4 is isotopic
to the closure of a 2–braid. Kamada [15; 19] additionally proved a 4–dimensional
Markov theorem which relates any pair of 2–braids with isotopic closures.

Like their lower-dimensional counterparts, braided ribbon surfaces have found use in
various applications, including finding obstructions to sliceness in knot theory [27],
the study of Stein fillings of contact 3–manifolds and the construction of Lefschetz
fibrations on 4–dimensional 2–handlebodies (ie 4–manifolds admitting handle de-
compositions with no 3– or 4–handles). Indeed, using the fact that any oriented
4–dimensional 2–handlebody X admits a covering over D2 �D2 branched along an
orientable ribbon surface, Loi and Piergallini [22] were able to construct Lefschetz
fibrations on X and used them to give a topological characterization of Stein surfaces
with boundary.

As Rudolph’s braided surfaces do not include non-ribbon surfaces, the above techniques
were not sufficient for studying smooth 4–manifolds with 3– or 4–handles. Indeed, the
branched coverings of such manifolds over D2 �D2 do not have ribbon branch loci.
Expanding these applications thus requires a more general notion of braided surface.

In this paper we generalize these notions further, by defining braided link cobordisms
(or simply braided cobordisms). These are surfaces W � S3 � Œ0; 1�, smoothly and
properly embedded, on which the projection pr2W S

3�Œ0; 1�! Œ0; 1� restricts as a Morse
function with each regular level set W \ .S3�ftg/ a closed braid in S3�ftg. Braided
cobordisms generalize Viro’s closed 2–braids to oriented surfaces with boundary. We
prove the following:

Theorem 1.1 Let W � S3 � Œ0; 1� be an oriented surface smoothly and properly
embedded. Then W is isotopic to a braided cobordism. If the boundary links of @W
are already closed braids, then this isotopy can be chosen rel @W .

Theorem 1.1 can be thought of as a cobordism analogue to the classical Alexander’s
theorem and will be proven in Section 3. Our construction will be similar to Kamada’s
construction [16], which implies our result in the case that W is a closed surface. The
bulk of the additional work here will be in carrying out the construction in a way that
allows us to keep @W fixed during the required ambient isotopies. This boundary-fixing
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requirement is considered with an eye toward applications (see either Jacobsson [12]
for a construction using Khovanov homology, which is not invariant under general
isotopies of W , or below for other applications).

We also define a related class of surfaces in D2 �D2 , called braided surfaces with
caps, which generalize Rudolph’s braided surfaces (see Section 2.4), and which are
closely related to braided cobordisms. Theorem 1.1 then gives us the following:

Corollary 1.2 Let S be a smooth oriented properly embedded surface in D2 �D2 .
Then S is isotopic to a braided surface with caps. If @S is already a closed braid, then
the isotopy can be chosen rel @S .

These generalized surface braiding results make it possible to extend applications
which rely on Rudolph’s braiding algorithm. Here we outline one such application,
which involves extending Loi and Piergallini’s techniques to construct broken Lefschetz
fibrations on oriented smooth 4–manifolds. Let X be a smooth, oriented, compact
4–manifold and † a compact oriented surface. Then a surjective map f W X !† is
called a Lefschetz fibration if around every critical point the map f can be modeled
in orientation-preserving complex coordinates locally as f .u; v/ D u2 C v2 . It is
called a broken Lefschetz fibration if, along with these isolated critical points, it also
contains embedded circles of critical points near which f is locally modeled by
f .�;x;y; z/D .�;x2Cy2� z2/.

Lefschetz fibrations are closely related to symplectic structures on X — see Donald-
son [8] and Gompf and Stipsicz [11] — and allow us to express the 4–manifold X

combinatorially in terms of the monodromy of a regular fiber (see [11]). Broken
Lefschetz fibrations exist more generally, but share a similar relation to near-symplectic
structures — see Auroux, Donaldson and Katzarkov [3] — and can be used to define
invariants of smooth 4–manifolds and finitely presented groups; see Baykur [5]. They
were introduced in [3], which constructed a broken Lefschetz fibration on S4 . Later,
it was shown independently by Akbulut and Karakurt [1], Baykur [4] and Lekili [21]
that any oriented smooth 4–manifold admits a broken Lefschetz fibration over S2 .
Although their approaches differ, none of them build the desired fibration directly from
a given handle decomposition of X , instead relying on the modification of critical
points of generic maps or deep classification results from contact topology.

Corollary 1.2 allows us to extend Loi and Piergallini’s techniques to construct broken
Lefschetz fibrations from handle decompositions on a wide class of 4–manifolds.
Indeed, given a handle decomposition of X with @X ¤∅, we can construct a branched
covering hW X !D2 �D2 one handle at a time, so that the branch locus is a surface
with only cusp and node singularities. In many cases this branch locus can be made to
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be orientable and hence, by Corollary 1.2, can be isotoped to a braided surface with
caps in D2 �D2 . The desired fibration on X is then obtained as the composition
pr2 ıhW X !D2 . This construction yields fibrations directly from the handle decom-
position of X and can be combined with techniques of Gay and Kirby [10] to give
broken Lefschetz fibrations on closed 4–manifolds.

Another avenue of application lies in using algebraic information from a braid to answer
geometric questions about its closure. Indeed, Rudolph used braided ribbon surfaces
to study quasipositive links [26; 27; 28] (links which bound braided ribbon surfaces
with only positive branch points), as well as to find bounds on the ribbon genus of
a link in terms of algebraic information from the braid group [25]. Using braided
(non-ribbon) surfaces with caps, this latter approach can be extended further to look
for bounds on the genus of an arbitrary surface bounded by a link in terms of algebraic
information from its boundary. Furthermore, there are a number of link invariants
whose definitions require they be computed on closed braid diagrams (see eg [20]). By
examining links that are joined by a given braided cobordism W , one could attempt to
extend these invariants across W and uncover interesting relationships between the
invariants along @W and the surface W . The author intends to pursue these questions
further in upcoming work.

The remainder of this paper will be organized as follows. In Section 2 we define
various notions of surface braidings in D2�D2 and S3� Œ0; 1�, as well as outline the
relationship between them. In Section 3 we present diagrammatic methods for studying
1–dimensional braids and surfaces in 4–space and use them to prove Theorem 1.1 and
Corollary 1.2.

Acknowledgements The author would like to thank Oleg Viro for many helpful
comments and suggestions.

2 Braided surfaces in 4–space

2.1 Links as braid closures

Let D2�C be the closed unit disk, S1D@D2 and S3Df.z; w/ j jzj2Cjwj2D1g�C2

the unit 3–sphere. We set T1 D S3 \ fjzj � 1=
p

2g and T2 D S3 \ fjwj � 1=
p

2g,
which are both tori, and let U D S3 \ fw D 0g (ie the core of T2 ). We say that an
oriented link L in S3 is a closed braid if L� S3nU and arg.w/ is strictly increasing
as we traverse the components of L in the positively oriented direction. We call U the
axis of the closed braid.
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Alexander’s theorem then says that any oriented link in S3 is isotopic to a closed braid.
Markov’s theorem says that any two closed braids which are isotopic as links can be
joined by a sequence of isotopies through closed braids as well as stabilization and
destabilizations moves which increase and decrease the braid index, respectively.

2.2 Movie presentations of braided cobordisms

Recall from Section 1 that a braided cobordism is a surface W � S3� Œ0; 1�, smoothly
and properly embedded, on which the projection pr2W S

3 � Œ0; 1�! Œ0; 1� restricts as
a Morse function with each regular level set Wt D W \ .S3 � ftg/ a closed braid
in S3�ftg. We will assume in what follows that pr2jW is injective on its set of critical
points. Each regular Wt with t < 1 is oriented as the boundary of W \ .S3 � Œt; 1�/.

We now establish a diagrammatic method for describing braided cobordisms. Choose a
point p 2U �S3 with fpg� Œ0; 1� disjoint from W , and identify the complement of p

in .S3;U / with .R3; z–axis/. Choose the identification so that arg.w/ corresponds
to the angular cylindrical coordinate on R3 . Here we let .x;y; z/ denote the usual
coordinates on R3 , while t denotes the coordinate on Œ0; 1�.

Let � W R3!R2 denote the orthogonal projection to the xy –plane. After perturbing W

slightly if necessary, we can assume that � � idW R3� Œ0; 1�!R2� Œ0; 1� restricts to a
family of regular link projections Wt !R2 � Œ0; 1� for all but finitely many t 2 Œ0; 1�.
After decorating with over- and under-crossing information, we obtain a continuous
family of link diagrams with finitely many singular diagrams. As each regular Wt is a
closed braid, each regular diagram will be the diagram of a closed braid, while passing
a singular still will change the diagram by one of the following:

(1) Addition or deletion of a single loop around 0 2R2 disjoint from the rest of the
diagram (corresponding to local maximum and minimum points of W ).

(2) Addition or deletion of a single crossing between adjacent strands in the braid
diagram by a band surgery (corresponding to saddle points of W ).

(3) A single braid-like Reidemeister move of type II or III, where each strand
involved in the move is oriented in the positive direction.

We refer to this family of link diagrams as the movie presentation of W . Note that,
because we are not assuming W is in general position with respect to the z– and
t –projections, our definition of movie presentation differs slightly from that used by
other authors (see eg Carter, Kamada and Saito [7]). During the proof of Theorem 1.1,
we will also consider movie presentations using projections other than the orthogonal
projection � W R3!R2 to the xy –plane.
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Figure 1: Braided movie presentation

The surface W can then be described by taking a finite number of the nonsingular stills,
where each one differs from the previous still by a single modification as described
above, or by a planar isotopy preserving the closed braid structure. Some caution is
needed in using such descriptions, as different choices of planar isotopies linking two
adjacent diagrams can result in non-isotopic embeddings (see eg Jacobsson [12]). See
Figure 1 for a genus-1 example of a braided movie presentation between the trefoil
and the empty knot (the stills are read as lines of text, from left to right).

2.3 Braided surfaces in D2 � D2

Rudolph [25] defined a braided surface to be a smooth, properly embedded, oriented
surface S �D2�D2 on which the projection to the second factor pr2W D

2�D2!D2

restricts as a simple branched covering. Examples of these braided surfaces can be
obtained by taking intersections of nonsingular complex plane curves with 4–balls
in C2 and they can be used to study the links that arise as their boundaries in S3D @D4

(see eg [26; 27; 28]).
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Let S be a braided surface. In a neighborhood of any branch point p of the cover-
ing pr2jS , there are local complex coordinates u and v on D2 such that S is given
by the equation u2 D v in the coordinates .u; v/ on D2 �D2 .

The boundary of D2�D2 decomposes as @.D2�D2/D .D2�S1/[.S1�D2/ in the
obvious way and we set @1DD2�S1 and @2DS1�D2 . We then define closed braids
in @.D2�D2/ as links in @1 on which the projection pr2W @1!S1 restricts to a cover-
ing map. Note that the boundary of a braided surface is a closed braid in @.D2 �D2/.

One feature of Rudolph’s braided surfaces is that they are all necessarily ribbon. A
properly embedded surface S in D4 D f.z; w/ j jzj2Cjwj2 � 1g is said to be ribbon
embedded if the function jzj2Cjwj2 restricts to S as a Morse function with no local
maximal points on int S . A properly embedded surface in D4 is said to be ribbon
if it is isotopic to a surface which is ribbon embedded. By fixing an identification
of D2 �D2 with D4 , we can similarly consider ribbon surfaces in D2 �D2 (the
definition of ribbon embeddings in D2�D2 will depend on our choice of identification,
though the resulting class of ribbon surfaces will not).

Rudolph proved that any orientable ribbon surface in D2 �D2 is isotopic to a braided
surface, though in general this isotopy cannot be chosen to fix @S , even if @S is already
a closed braid.

Viro defined a similar notion, which he called a 2–braid, by additionally requiring
that @S � @1 D D2 �S1 be a trivial closed braid (ie @S D P �S1 for some finite
subset P �D2 ). These 2–braids come equipped with a closure operation, yielding
closed surfaces in S4 . Viro [29] and Kamada [16] independently proved that every
closed oriented surface in S4 is isotopic to the closure of a 2–braid. These 2–braids
were studied further by Kamada [14; 15; 17; 18; 19], who also proved a 4–dimensional
Markov theorem relating any two 2–braids with isotopic closures.

2.4 Braided surfaces with caps

The embedded surfaces in D2 �D2 we consider in this paper will not in general be
ribbon and hence cannot be braided via Rudolph’s algorithm. We thus consider a less
restrictive notion of braiding, which we define now.

Let �W F !† be a smooth map of oriented surfaces. Then a cap of F with respect
to � is an embedded disk D � F such that

(1) � restricts to embeddings on int D and on @D ,

(2) F and † admit coordinate charts of the form S1�Œ�1; 1� around @DDS1�f0g

and �.@D/D S1 � f0g, on which � is given by .�; t/ 7! .�; t2/,

(3) in the above coordinate chart around �.@D/, the curve S1�f1g lies in �.int D/.
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Figure 2: Cross-section of a braided surface with caps

Now let S �D2�D2 and let prS denote the restriction of pr2 to S . We say that S is
a braided surface with caps if the critical points of prS all correspond either to isolated
simple branch points or boundaries of caps of S with respect to prS . Moreover, we
will often assume that the critical values in D2 form a set of embedded concentric
circles (corresponding to the boundaries of caps), with isolated critical values lying
inside the innermost circle. See Figure 2 for a cross-sectional diagram of a braided
surface with a single cap.

2.5 Braided surfaces with caps from braided cobordisms

Braided cobordisms are closely related to braided surfaces with caps, a fact which we
illuminate here. We begin by defining a smooth map �W S3 ! D2 as follows. Let
�W Œ0; 1�! Œ0; 1� be a smooth function with �.t/D t on Œ0; 1

4
�, �� 1=

p
2 on Œ1=

p
2; 1�

and so that d�=dt > 0 on Œ0; 1=
p

2/. Then we define �W S3!D2 as

�.z; w/D

p
2w�.jwj/

jwj

for w ¤ 0 and �.z; 0/ D 0. Clearly � is smooth, with T1 D �
�1.@D2/ and T2 D

��1.int D2/. Furthermore, using � we can fix a fibering of T1 over S1 with fiber D2

and a fibering of T2 over D2 with fiber S1 . A link L� T1 is a closed braid if and
only if �jLW L! S1 is a covering map. We call the degree of the covering map �jL
the index of the closed braid L.

We now identify @.D2�D2/ with S3 by a smooth homeomorphism � , which smooths
the corners of @.D2 �D2/ and identifies @1 with T1 and @2 with T2 . Furthermore,
we assume that � is a diffeomorphism away from the corners of @.D2�D2/ and maps
the fibers of pr2 diffeomorphically onto the fibers of � .
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For 0 � t � 1, we can multiply @.D2 � D2/ � C2 by a factor of 1
2
.t C 1/ and

use � to identify the resulting set with S3 � ftg. We thus obtain an identification of
S3� Œ0; 1� with a collar neighborhood � of @.D2�D2/ in D2�D2 , which we denote
by �0W �! S3 � Œ0; 1�.

As any properly embedded surface S in D2 �D2 can easily be arranged to lie in the
collar neighborhood � , we see that after smoothing corners any such surface gives rise
to a smooth properly embedded surface in S3� Œ0; 1� whose boundary lies in S3�f1g,
and vice versa.

Lemma 2.1 Suppose W �S3�Œ0; 1� is a braided cobordism with W \.S3�f0g/D∅.
Then .�0/�1.W / will be a braided surface with caps in D2�D2 (after a small isotopy
smoothing corners around the boundaries of the caps).

Proof Let S D .�0/�1.W / and let prS denote the restriction of pr2 to S . Each local
maximum or minimum point of W � S3 � Œ0; 1� with respect to the height function
will lie in T2� Œ0; 1� and we can arrange that each saddle point of W lies in T1� Œ0; 1�.
Furthermore, by flattening a neighborhood of each local maximum and minimum point,
we can isotope W so that it intersects T2 � Œ0; 1�D S1 �D2 � Œ0; 1� in a collection of
disks of the form fpg �D2 � ftg. The image of any such disk under .�0/�1 will be
a disk in 1

2
.t C 1/ � @2 and the restriction of prS to its interior will be free of critical

points.

Now W 0t DW \ .T1 � ftg/ will be a (possibly singular) closed braid in T1 � ftg for
each 0 � t � 1. Each singular braid W 0t will consist of a closed braid with a pair
of strands intersecting at a point, with distinct tangent lines. These self-intersections
correspond to saddle points of the surface W . Each .�0/�1.W 0t / will thus also be a
possibly singular closed braid in 1

2
.t C 1/ � @1 , where each singular point gives rise to

a simple branch point of the projection prS . The nonsingular points of these closed
braids all correspond to regular points of prS .

Finally, it remains to consider what happens along the boundaries of the disks in
W \ .T2 � Œ0; 1�/. For any disk D corresponding to a local minimum of W , the
boundary of .�0/�1.D/ can be smoothed in such a way that the resulting points are all
regular points of the map prS . If D instead corresponds to a local maximum, then the
boundary of .�0/�1.D/ is instead smoothed in such a way that .�0/�1.D/ becomes a
cap of S with respect to prS . Since all critical points of prS are either isolated simple
branch points or lie along the boundary of a cap, S �D2 �D2 is a braided surface
with caps.
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3 Braiding link cobordisms

We start the proof of Theorem 1.1. For the duration of the proof, it will be convenient
to think of our cobordisms as lying in R3� Œ0; 1�, so that we can use the diagrammatic
approach described in Section 2.2. Suppose that W �R3�Œ0; 1� is a properly embedded
oriented link cobordism between closed braids B0 � R3 � f0g and B1 � R3 � f1g.
Assume furthermore that the restriction of the projection pr2W R

3� Œ0; 1�! Œ0; 1� to W

is a Morse function. For any such surface W �R3 � Œ0; 1� and any Œa; b�� Œ0; 1�, let
WŒa;b� DW \ .R3 � Œa; b�/ and Wt DW \ .R3 � ftg/.

3.1 Braiding around critical points

We begin by proving that W can be “braided” in a neighborhood of the critical points
of pr2jW . This will reduce the problem of proving Theorem 1.1 to proving it for
cobordisms W without critical points.

Lemma 3.1 There is an isotopy of W rel @W taking W to a surface W 0 such that
W 0
Œa;b�

is a braided cobordism for Œa; b� 2 fŒ0; 1
6
�; Œ1

3
; 2

3
�; Œ5

6
; 1�g and is free of critical

points for Œa; b� 2 fŒ1
6
; 1

3
�; Œ2

3
; 5

6
�g.

Proof As both B0 and B1 are closed braids, Wt will also be a closed braid for t

close to 0 and 1, so we can assume that Wt is a closed braid for all t 2 Œ0; 1
6
�[ Œ5

6
; 1�.

Push all minimal points into R3 � Œ0; 1
6
�, all maximal points into R3 � Œ5

6
; 1� and all

saddle points into R3 � f
1
2
g (see [19] for details). The maximal and minimal points

can easily be positioned in such a way that W 0
Œ0;1=6�

and W 0
Œ5=6;1�

remain braided.

Now, passing each saddle point changes the level set Wt by surgery along a 2–dimen-
sional 1–handle. After a small perturbation in a neighborhood of each saddle point,
we can assume that these 1–handles all lie in R3 � f

1
2
g. By adding a half-twist in

each band, we can arrange that each segment of W1=2C" and W1=2�" involved in the
surgeries are oriented in the positive direction (see Figure 3, where W1=2 is shown).
Keeping these bands in place, the remaining strands of W1=2 can be braided using the
standard proof of the classical Alexander’s theorem. Thus we can arrange W1=2 so
that it is a closed braid both before and after the surgeries, and can extend the closed
braid structure to the rest of W 0

Œ1=3;2=3�
.

The above argument is due to Kamada [19].
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Figure 3: Arranging 1–handles

3.2 Braiding critical point-free cobordisms

Any cobordism W which is free of critical points is topologically just a union of
cylinders, and is isotopic to a product cobordism. In general, however, the isotopy
taking W to a product cobordism cannot be chosen to fix the boundary. Consider, for
example, the movie presentation of the critical point-free cobordism W depicted in
Figure 4 (where the middle still is meant to imply that the bottom strand is given a
non-zero number of full twists as we look at the level sets moving down). Here, W is
isotopic to a product cobordism, but there is no such isotopy fixing @W .

The movie presentations of a critical point-free cobordism is described entirely by its
starting diagram and a sequences of Reidemeister moves and planar isotopies. We will
complete the proof of Theorem 1.1 in two stages, first by proving it for critical point-free
cobordisms whose movie presentation is described entirely by a planar isotopy (ie no Rei-
demeister moves take place between nearby stills) before proving it for the general case.
Before doing this however, we must first recall a geometric set of Markov moves for
classical links used by Morton [24], as well as his threading construction, which gives a
diagrammatic approach to studying isotopies of closed braids. The proof of Theorem 1.1
relies on enhancements of the arguments used in his proof of Markov’s theorem.

Figure 4: Critical point-free cobordism not isotopic rel boundary to product cobordism
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Figure 5: Simple Markov equivalence

3.3 Geometric Markov moves for closed braids in R3

Morton’s geometric formulation of Markov’s theorem states that two closed braids
which are isotopic as links can be joined by a sequence of braid isotopies and simple
Markov equivalences. A braid isotopy between two closed braids L0 and L1 in R3 is
an isotopy �˛ of R3 , ie a continuous family of maps �˛W R3!R3 parametrized by
˛2 Œ0; 1� with �0D idR3 such that �˛.L0/ is a closed braid for all ˛ and �1.L0/DL1 .

The second move on closed braids is a geometric version of braid stabilization. Let
B and B0 be closed braids and suppose there is an oriented embedded disk R�R3

intersecting the z–axis transversely in a single point. Suppose also that @RD c [ c0 ,
where c D B \R and c0 D B0\R are connected and where the boundary orientation
of @R is winding clockwise along c and counterclockwise along c0 . Suppose further
that Bnc D B0nc0 . Then B and B0 are said to be simply Markov equivalent (see
Figure 5, where the disk R is shaded).

The projections of such B and B0 to the xy –plane differ by a sequence of Reidemeister
moves which includes precisely one move of type I creating an extra loop around the
origin.

3.4 Threading construction

Let P be the xz–plane and let � 0W R3! P be the orthogonal projection. Let h� P

be the image of the z–axis under � 0 . Suppose D is the diagram in P of an oriented
link L. Let C �D denote the double points (crossings) of L under the projection � 0 .

A choice of overpasses for D is a pair of disjoint finite subsets S , F � DnC such
that each link component contains points from S [F and points of S alternate with
points of F when traveling along any component. Furthermore, when traveling in the
positively oriented direction, each arc of the form Œs; f � contains no under-crossings
and each arc Œf; s� contain no over-crossings.
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Figure 6: Trefoil as a closed braid given by a threading

Now let PCDP\fx> 0g and P�DP\fx< 0g be the right- and left-hand regions of
P separated by h, respectively. Although h is not a component of L, we can enhance
the diagram D by assigning a crossing choice whenever D intersects h transversely.

Given such an enhanced diagram, h is said to thread the diagram D for some choice
of overpasses .S;F / if h intersects D transversely, S � P� , F � PC and

(1) D crosses over h when traveling from P� to PC ,

(2) D crosses under h when traveling from PC to P� .

Threadings of link diagrams allow us to study closed braids on the level of link diagrams.
The following lemma is due to Morton (see [24]):

Lemma 3.2 Suppose D is a diagram that is threaded by h for some choice of over-
passes. Then there is a closed braid L with diagram D .

The idea behind the proof of the lemma is summarized in Figure 6. Note that, even if
the over- and under-crossing information of D with h has not been specified, there
is a unique assignment to each such crossing so that the resulting diagram lifts to a
closed braid. Conversely, it is also easy to show that any closed braid is braid-isotopic
to one whose diagram is threaded by h for some choice of overpasses.
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3.5 Braiding movie presentations without Reidemeister moves

Now suppose that W � R3 � Œ0; 1� is a critical point-free cobordism between two
closed braids and consider the movie presentation of W , this time projecting each
Wt � R3 � ftg D R3 to the plane P via the projection � 0 . We let Dt denote the
(possibly singular) diagram of Wt in P for each t 2 Œ0; 1�. As W is free of critical
points, nearby diagrams will differ by either a planar isotopy or Reidemeister move. If
the movie presentation of W does not involve any Reidemeister moves, then it can be
described completely by specifying the initial diagram D0 and a planar isotopy �˛
of P , with �˛.D0/DD˛ for all ˛ . In what follows it will be convenient to specify
the movie presentations of such surfaces in this way.

We prove Theorem 1.1 first in the special case when D0 and D1 are threaded and the
movie presentation of W does not involve any Reidemeister moves:

Proposition 3.3 Suppose W has no critical points and that its movie presentation
does not involve any Reidemeister moves. Suppose further that W0 and W1 are closed
braids with diagrams D0 and D1 threaded by h for some choices of overpasses. Then
W is isotopic relative its boundary to a braided cobordism.

In order to prove the above proposition we will need to lift the planar isotopy joining D0

and D1 to a sequence of braid isotopies and simple Markov equivalences in R3 . For
the rest of this section we assume W is as described in the statement of Proposition 3.3.
The first lemma we will need is the following:

Lemma 3.4 Let  ˛ be a planar isotopy of P taking D0 to D1 which fixes h setwise.
Suppose further that  ˛ �  0 and  1�˛ �  1 for ˛ in a small neighborhood of 0.
Then there is a braid isotopy �˛ taking W0 to W1 such that � 0 ı�˛.W0/D  ˛.D0/

for all ˛ 2 Œ0; 1�.

Proof For any p 2 W0 and ˛ 2 Œ0; 1�, the x– and z–coordinates of �˛.p/ are
determined by  ˛ . The y–coordinate of �˛.p/ can then be chosen uniquely so that
the radial coordinate of �˛.p/ remains constant for all ˛ . It thus suffices to note that
any two closed braids with the same diagram are also braid-isotopic, via a straight line
isotopy.

Let .S0;F0/, .S1;F1/ � P denote the overpasses chosen for the threadings of D0

and D1 , respectively, and let  ˛ denote a planar isotopy of P associated to the movie
presentation of W , ie  ˛.D0/DD˛ for all ˛ 2 Œ0; 1�. We can assume that

S0\ 
�1
1 .S1/D F0\ 

�1
1 .F1/D∅:
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The following lemma will allow us to assume that the choices of overpasses for both
D0 and D1 coincide and that they can be assumed to be fixed by the planar isotopy  ˛ .

Lemma 3.5 W is isotopic relative its boundary to a cobordism whose movie presen-
tation is determined by the diagram D0 and a planar isotopy '˛ , where '˛.S0/D S0

and '˛.F0/D F0 for 0� ˛ � 1
2

, and '˛.S1/D S1 and '˛.F1/D F1 for 1
2
� ˛ � 1.

Proof We can assume that, for all q2S1[F1 , the sets f �1
˛ .q/ j0�˛�1g are disjoint

embedded arcs in P which do not intersect S0[F0 (see for example [6, Lemma 10.4]).
For each q 2S1[F1 choose a small regular neighborhood Aq of f �1

˛ .q/ j 0�˛� 1g

so that the Aq are pairwise disjoint and also do not intersect S0[F0 .

Now let �˛ be a planar isotopy of P which restricts to the identity on the complement
of
S

Aq and is such that for all ˛ 2 Œ0; 1� and all p 2  �1
1
.S1 [ F1/ we have

�˛.p/D 
�1
1�˛
ı 1.p/. Let ��;˛ be the one-parameter family of planar isotopies of P ,

with � 2 Œ0; 1�, defined by

��;˛ D

�
�2�˛ if 0� ˛ � 1

2
;

��.2�2˛/ if 1
2
� ˛ � 1:

After an isotopy of W which rescales the t –coordinate, we can arrange that the movie
presentation of W is instead described by the planar isotopy

ˆ˛ D

�
idP if 0� ˛ � 1

2
;

 2˛�1 if 1
2
� ˛ � 1:

Now consider the composition ˆ˛ı��;˛ . Letting � range from 0 to 1 shows that the sur-
face W , which is described by the diagram D0 and the planar isotopy ˆ˛Dˆ˛ ı�0;˛ ,
is isotopic to a surface described by D0 and the planar isotopy

'˛ WDˆ˛ ı�1;˛ D

�
�2˛ if 0� ˛ � 1

2
;

 2˛�1 ı �2�2˛ if 1
2
� ˛ � 1:

As the �˛ is the identity outside of
S

Aq , for any p 2 S0[F0 and any ˛ 2 Œ0; 1
2
� we

have '˛.p/D �2˛.p/D p . For ˛ 2 Œ1
2
; 1� and q 2 S1[F1 we have

'˛.q/D  2˛�1 ı �2�2˛.q/D  2˛�1 ı 
�1
1�.2�2˛/.q/D q;

as required. Note that all the isotopies described above fix W0[W1 D @W .

By the above lemma it is enough to prove Proposition 3.3 in the case when SDS0DS1 ,
F D F0 D F1 and all points in S [F are fixed by  ˛ . Indeed, since the points in
S0 [F0 are stationary during the first half of the planar isotopy '˛ and since they
form a choice of overpasses for which D0 is threaded, they must also form a choice
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h hhhh h h h

Figure 7: Reidemeister-like moves involving h

of overpasses which give rise to a threading of D1=2 . Likewise, D1=2 is threaded by
h with the choice of overpasses .S1;F1/, since they remain stationary for during the
second half of '˛ and give a threading of D1 . By Lemma 3.2 we can arrange W

locally near R3�f
1
2
g so that W1=2 is a closed braid with diagram D1=2 threaded with

either choice of overpasses and prove Proposition 3.3 for WŒ0;1=2� and WŒ1=2;1� .

Suppose then that W is as above. Although the movie presentation of W does not
involve any Reidemeister moves, it will (after perturbing W slightly away from the
boundary) contain Reidemeister II– and III–like moves involving components of the
diagrams and the z–axis h (see Figure 7). These Reidemeister-like moves are like
classical Reidemeister moves, but where no crossing information is specified at double
points of the projection involving h. The absence of crossing information with h

reflects the fact that the movie presentation of W does not specify the relative position
of the links Wt above or below P and that the components of the link are free to pass
through the z–axis during isotopies in R3 .

We can thus break the planar isotopy  ˛ determining W into a sequence of transfor-
mations that take into account the relative position of the diagrams Dt with h. More
precisely, we can divide the interval Œ0; 1� into smaller subintervals Œtj�1; tj � such that
for each j there is either

(1) a planar isotopy �j
˛ of P that fixes h setwise with �j

˛.Dtj �1
/DDtj �1C˛.tj�tj �1/

for all ˛ 2 Œ0; 1�, or

(2) a Reidemeister-like move of type II or III taking Dtj �1
to Dtj involving (but

fixing) h.

We will simplify notation and write Dj and W j instead of Dtj and Wtj , respectively,
for each j . Since we are assuming that the points of S [F are fixed throughout the
planar isotopy  ˛ , we can fix .S;F / as a choice of overpass for each Dj . Furthermore,
for each diagram we fix the unique choice of h–crossing information so that Dj is
threaded by h.

Before proceeding, we need to eliminate any situations as in Figure 8. Here we have
a Reidemeister-like move of type III where the center crossing cannot pass to the

Algebraic & Geometric Topology, Volume 15 (2015)



Braiding link cobordisms and non-ribbon surfaces 3723

h hh h

Figure 8: Reidemeister-like move of type III which does not lift to a braid isotopy

other side of h without first introducing crossing changes. These can be eliminated by
making a local replacement as in Figure 9, where the offending move has been replaced
by a sequence consisting of three Reidemeister-like moves, two of type II and one of
type III (which lifts to an isotopy avoiding the z–axis). This local replacement does
not change the isotopy class of W rel @W .

Lemma 3.6 If W j�1 is a closed braid, then the transformation Dj�1 ! Dj lifts
to R3 as a sequence of braid isotopies and simple Markov equivalences on W j�1 .

Proof Note first that, since W j�1 is a closed braid and Dj�1 is threaded, the
h–crossing information on Dj�1 will match that coming from the projection of W j�1 .

For transformations of type (1) above, Lemma 3.4 shows that the planar isotopy between
Dj�1 and Dj can be lifted to a braid isotopy on W j�1 .

Suppose now that Dj is obtained from Dj�1 by a Reidemeister-like move of type II
(or its inverse) as in Figure 7. Then, as Dj�1 is threaded, locally it must look like
either the right- or left-hand side of one of the transformations in Figure 10. Note
that by assumption no points of S or F can occur anywhere in these local pictures.
Clearly Dj can be lifted to a closed braid W j which agrees with W j�1 away from
the Reidemeister-like move of type II, so that W j�1 and W j are simply Markov
equivalent.

Now suppose that Dj is obtained from Dj�1 by a Reidemeister-like move of type III.
It is easy to verify that for most configurations of Dj�1 the move can be lifted to a braid

h h h hh h h h

Figure 9: Replacing bad Reidemeister-like moves of type III with a sequence
of moves that lift to braid isotopies and simple Markov equivalences
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hh hh

hh hh

h h h h

h h h h

Figure 10: Reidemeister-like moves of type II

isotopy taking W j�1 to a closed braid W j with diagram Dj . The only exceptions
arise as in Figure 8, but these were all replaced previously by sequences of moves that
can be lifted.

Starting with the closed braid W0 �R3 � f0g, we can construct a new surface W 0 by
tracing the path of W0 in R3� Œ0; 1� as we apply the sequence of lifted braid isotopies
and simple Markov equivalences obtained from the previous lemma. Away from the
simple Markov equivalences each level set W 0t will be a closed braid. By construction,
the movie presentation of W 0 will be the same as that of W , hence it will be isotopic
to W rel @W 0 . To prove Proposition 3.3 it thus remains only to show that W can be
braided in neighborhoods of the simple Markov equivalences.

Proof of Proposition 3.3 Suppose that, for some s 2 Œ0; 1� and " > 0, the closed
braids Ws�" and WsC" differ by a simple Markov equivalence spanned by a disk R.
After a small isotopy in the neighborhood of the hyperplane R3 � fsg we can assume
that R lies entirely in this hyperplane and that the orthogonal projection of @R to the
xy –plane yields a figure eight.

Decompose R as the boundary sum of two closed disks R0 and R00 (equipped with
the orientation of W ), where R0 intersects the z–axis transversely in a single point
and @R0 is a simple curve which is strictly monotone in the angular direction (see
Figure 11). Push R0 to either R3 � fsC "g or R3 � fs � "g (depending on whether
@R0 is monotone increasing or decreasing, respectively) while keeping R00 fixed. This
gives rise to a new maximal disk (minimal disk, respectively) while R00 yields a new
saddle band. After a slight local perturbation these new critical disks can be changed
to isolated critical points, completing the proof of Proposition 3.3.
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R′

R′′R00

R0

Figure 11: Decomposing R as the boundary sum of R0 and R00

3.6 Braiding movie presentations with Reidemeister moves

Now consider an arbitrary critical point-free cobordism W between two closed braids.
The movie presentation of W under the projection to P will in general include
Reidemeister moves as well as planar isotopies. Recycling notation from above, let
Dt denote the diagram of Wt and divide the interval Œ0; 1� into smaller subintervals
Œtj�1; tj � such that for each j there is either

(1) a planar isotopy �
j
˛ of P which has �j

˛.Dtj �1
/ D Dtj �1C˛.tj�tj �1/ for all

˛ 2 Œ0; 1�, or

(2) a Reidemeister move taking Dtj �1
to Dtj .

As above we will simplify notation and write Dj and W j instead of Dtj and Wtj ,
respectively, for each j . To complete the proof of Theorem 1.1 we need:

Lemma 3.7 Suppose Dj is obtained from Dj�1 by a Reidemeister move of any
type. Then there is a planar isotopy �˛ of P such that �1.Dj�1/ and �1.Dj / are
both threaded by h for some choice of overpasses and, if W j�1 is a closed braid with
diagram �1.D

j�1/, then the Reidemeister move taking �1.Dj�1/ to �1.Dj / lifts to a
braid isotopy of W j�1 .

To see that this completes the proof of Theorem 1.1, note first that by [24, Theorem 2]
there are braid isotopies taking W0 and W1 to closed braids whose diagrams in P

are threaded by h for some choices of overpasses. Thus we can assume that the
diagrams D0 and D1 are both threaded. We also assume that in the movie presentation
of W the sequence involved alternates between planar isotopies and Reidemeister
moves, beginning and finishing with planar isotopies. Suppose for some j that Dj is
obtained from Dj�1 by a Reidemeister move and let �j�1

˛ and �jC1
˛ be the planar

isotopies taking Dj�2 to Dj�1 and Dj to DjC1 , respectively. Then we can replace
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Figure 12: Overpass choices in a neighborhood of type I and II moves

Dj�1 and Dj with �1.Dj�1/ and �1.Dj /, respectively, and �j�1
˛ and �jC1

˛ with
�˛ ı�

j�1
˛ and �1�˛ ı�

jC1
˛ , respectively, without changing the isotopy class of W rel

@W . Performing a similar replacement one by one around all Reidemeister moves in
the movie presentation, we see that W is isotopic relative its boundary to a cobordism
whose movie presentation involves only Reidemeister moves and planar isotopies
between threaded diagrams.

Thus we can assume that each of the Dj are threaded and that the W j are all closed
braids. By Lemma 3.7, the portions of W corresponding to planar isotopies in the
movie presentation are then isotopic relative their boundaries to braided cobordisms,
while by Proposition 3.3 we see that the same is true for portions of W corresponding
to Reidemeister moves. Thus W itself is isotopic relative its boundary to a braided
cobordism, completing the proof.

Proof of Lemma 3.7 Begin by making a choice of overpasses for Dj�1 and Dj

which agree outside some small neighborhood of the move in question. In the small
neighborhood of the move we choose points which give a valid choice of overpasses
both before and after the move. See examples of different possible configurations in
Figure 12, where incoming strands are labeled with o if they are part of an overpass or
u if they are part of an underpass.
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Figure 13: Threading near a Reidemeister move of type III

Now let �˛ be a planar isotopy which repositions all of the S points to P� (the left
half of the plane P ) and all the F points to PC (the right half of P ). Once positioned
in this way, there is a unique way to assign over- and under-crossings of Dj�1 and Dj

with h so that both diagrams are threaded by h.

Note that, in the case of moves of type I and II, we can choose S , F and �˛ so that
the Reidemeister move of interest happens away from h. It is then easy to see that the
Reidemeister move of interest lifts to a braid isotopy.

Moves of type III cannot be arranged to take place away from h, however. Of the three
strands in this local picture, one strand will cross over the other two, one will pass
under the other two, while the third will pass over one and under the other. Choose
S and F away from this picture so that the top strand is part of an over-crossing, the
bottom strand is part of an under-crossing and place a single point from each of S

and F on the third strand to create a valid choice of overpasses.

Now we can arrange the diagrams so that h separates S and F , and so that the
uppermost strand crosses over h in a neighborhood of the move (the orientation of
this strand determines whether it will cross h at the top or bottom of the local picture).
Regardless then of the orientation on the other two strands or their shared crossing,
the uppermost strand is free to pass over the crossing and both the nearby S and F

points as in Figure 13, a move which can clearly be lifted to a braid isotopy in R3 .
This completes the proof of Lemma 3.7 and of Theorem 1.1.

Corollary 1.2 now follows easily by combining Theorem 1.1 with Lemma 2.1.

Remark Suppose now that the cobordism W we start with is in ribbon position, ie
has no local maximal points with respect to the t –coordinate. Although we may hope
to preserve this property during the braiding procedure described above, this will not
be possible in general. Indeed, Morton [23] gave an example of a 4–strand braid ˇ
with unknotted closure which is irreducible, meaning any simplification of ˇ using
Markov moves necessarily raises the braid index to 5. As noted by Rudolph [26], it
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is not difficult to see that any braided ribbon cobordism bounded by the closure of
ˇ must have genus at least 1, even though it clearly bounds a ribbon embedded disk
in S3 � Œ0; 1�.

References
[1] S Akbulut, Ç Karakurt, Every 4–manifold is BLF, J. Gökova Geom. Topol. GGT 2

(2008) 83–106 MR2466002

[2] J Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA 9
(1923) 93–95

[3] D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9
(2005) 1043–1114 MR2140998
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