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Exactly fourteen intrinsically knotted graphs have 21 edges

MINJUNG LEE

HYOUNGJUN KIM

HWA JEONG LEE

SEUNGSANG OH

Johnson, Kidwell, and Michael showed that intrinsically knotted graphs have at least
21 edges. Also it is known that K7 and the thirteen graphs obtained from K7 by
rY moves are intrinsically knotted graphs with 21 edges. We prove that these 14
graphs are the only intrinsically knotted graphs with 21 edges.

57M25, 57M27

1 Introduction

Throughout the article we will take an embedded graph to mean a graph embedded in
R3 . We call a graph G intrinsically knotted if every embedding of the graph contains
a knotted cycle. Conway and Gordon [2] showed that K7 , the complete graph with
seven vertices, is an intrinsically knotted graph. A graph H is minor of another graph
G if it can be obtained from G by contracting or deleting some edges. An intrinsically
knotted graph is minor minimal intrinsically knotted provided no proper minor is
intrinsically knotted. Robertson and Seymour [9] proved that there are only finite minor
minimal intrinsically knotted graphs, but finding the complete set of them is still an
open problem. However, it is well known that K7 and the thirteen graphs obtained
from this graph by rY moves are minor minimal intrinsically knotted; see Conway
and Gordon [2], and Kohara and Suzuki [6].

A rY move is an exchanging operation that removes all edges of a triangle abc and
inserts a new vertex v and three edges va; vb and vc as in Figure 1. Its reverse
operation is called a Yr move. Since rY moves preserve intrinsic knottedness (see
Motwani, Raghunathan, and Saran [7]), we will only consider triangle-free graphs in
the article.

From the work of Johnson, Kidwell, and Michael [5], it follows that any intrinsically
knotted graph consists at least 21 edges. Here is the main theorem.
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Figure 1: rY and Yr moves

Theorem 1 The only triangle-free intrinsically knotted graphs with exactly 21 edges
are H12 and C14 . . H12 and C14 were described by Kohara and Suzuki in [6]./

Kohara and Suzuki [6] found fourteen intrinsically knotted graphs. Goldberg, Mattman,
and Naimi [3] constructed twenty graphs derived from H12 and C14 by Yr moves
as in Figure 2, and they showed that these six graphs, N9 , N10 , N11 , N 0

10
, N 0

11
, and

N 0
12

, are not intrinsically knotted. This fact was proved by Hanaki, Nikkuni, Taniyama,
and Yamazaki [4] independently. Theorem 1 guarantees that all intrinsically knotted
graphs with 21 edges can be obtained from H12 and C14 by Yr moves. Thus, we
have the following theorem.

Theorem 2 The only intrinsically knotted graphs with exactly 21 edges are K7 and
the thirteen graphs obtained from K7 by rY moves.

This theorem gives us the complete set of fourteen minor minimal intrinsically knotted
graphs with 21 edges.
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2 Terminology

From now on let G D .V; E/ denote a triangle-free graph with 21 edges. Here V and
E denote the sets of all vertices and edges of G , respectively. For any two distinct
vertices a and b , let yGa;bD . yVa;b ; yEa;b/ denote the graph obtained from G by deleting
two vertices a and b , and then contracting an edge incident to a vertex of degree 1 or
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Figure 2: The graph K7 and 19 more related graphs, where each arrow
represents a rY move
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2 repeatedly until no vertices of degree 1 or 2 exist. Removing vertices means deleting
interiors of all edges incident to these vertices as well as the resulting isolated vertices.

In a graph, the distance between two vertices a and b is the number of edges in the
shortest path connecting them and is denoted by dist.a; b/. The degree of a vertex
a is denoted by deg.a/. To count the number of edges of yGa;b , we introduce some
notation.

� E.a/ is the set of edges which are incident to a.
� V .a/D fc 2 V j dist.a; c/D 1g.
� Vn.a/D fc 2 V j dist.a; c/D 1; deg.c/D ng.
� Vn.a; b/D Vn.a/\Vn.b/.
� VY .a; b/D fc 2 V j 9 d 2 V3.a; b/ such that c 2 V3.d/ n fa; bgg.

First consider the graph Gnfa; bg for some distinct vertices a and b . In this graph each
vertex of V3.a; b/ has degree 1, and each vertex of V3.a/; V3.b/ (not in V3.a; b/),
and V4.a; b/ has degree 2. To derive yGa;b , we first delete all edges incident to a and b

from G , and then we also delete the remaining edges incident to V3.a; b/, and finally
we contract one edge of the remaining pair of edges incident to each vertex of V3.a/,
V3.b/ (not in V3.a; b/), V4.a; b/, and VY .a; b/ as dotted lines in Figure 3(a). Thus,
we have the following equation counting the number of edges of yGa;b which is called
a count equation:

j yEa;bjD21�jE.a/[E.b/j�.jV3.a/jCjV3.b/j�jV3.a; b/jCjV4.a; b/jCjVY .a; b/j/:

For short, NE.a; b/D jE.a/[E.b/j and NV3.a; b/D jV3.a/jC jV3.b/j� jV3.a; b/j.
If a and b are adjacent vertices (ie dist.a; b/D 1), then all of V3.a; b/; V4.a; b/, and
VY .a; b/ are empty because G is triangle-free. Note that this manner of deriving yGa;b

must be handled in a slightly different way when there is a vertex c in V such that more
than one vertex of V .c/ are contained in V3.a; b/ as in Figure 3(b). In this case, we
usually delete or contract more edges incident to c , even though c is not in VY .a; b/.

A graph is n–apex if one can remove n vertices from the graph to obtain a planar graph.
The following lemma gives an important condition for a graph to be not intrinsically
knotted.

Lemma 3 [1; 8] If G is 2�apex, then G is not intrinsically knotted.

The following two lemmas play an important role for G to be 2–apex.

Lemma 4 If j yEa;bj � 8, then yGa;b is a planar graph. Thus, G is not intrinsically
knotted.
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Figure 3: Deriving yGa;b

Lemma 5 If j yEa;bj D 9, then yGa;b is either a planar graph or homeomorphic to
K.3; 3/. Furthermore, if yGa;b is not homeomorphic to K.3; 3/, then G is not intrinsi-
cally knotted.

The graph K.3; 3/ is a bipartite graph where each part has three vertices and each
vertex is adjacent to every vertex in the opposite part, and so it is a triangle-free graph
and every vertex has degree 3.

To prove Theorem 1, we will show that any triangle-free graph with 21 edges is
eventually either a 2–apex or homeomorphic to one of H12 or C14 . Since intrinsically
knotted graphs have at least 21 edges [5], it is sufficient to consider simple and
connected graphs having no vertex of degree 1 or 2. Our process is constructing all
possible such triangle-free graph G with 21 edges, deleting two suitable vertices a

and b of G , and then counting the number of edges of yGa;b . If yGa;b has 9 edges or
less, we can use Lemma 4 or Lemma 5 in order to show that G is not intrinsically
knotted. In the event that yGa;b is not planar, we will show that G is homeomorphic to
H12 or C14 .

Before describing the proof of Theorem 1, we introduce more notation. Since G is
triangle-free, for any vertex a of G , no two vertices in V .a/ are adjacent. This means
that E.b/ and E.c/ do not contain an edge in common for any two distinct vertices b

and c in V .a/. We set:

� E2.a/D
[

b2V .a/

E.b/.

� E nE2.a/D fe1.a/; : : : ; e21�n.a/g if jE2.a/j D n < 21.

ei.a/ is called an extra edge, and the two endpoints of the edge are denoted as xi.a/

and yi.a/, where deg.xi.a//� deg.yi.a//.
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In order to visualize G , we perform the following steps. First choose a vertex a

with the maximal degree among all vertices and draw E2.a/. If jE2.a/j< 21, draw
E nE2.a/ apart from E2.a/ as in Figure 4(a). Then all vertices of degree 1 of E2.a/

and E nE2.a/ are merged into some vertices of degree at least 3 without adding new
edges as in Figure 4(b). Let V .a/ denote the set of all such vertices, and let ŒV .a/�

denote a sequence of the degrees of vertices in V .a/ as follows:
� V .a/DV n.V .a/[fag/Dfv1.a/; : : : ; vm.a/g with deg.vi.a//�deg.viC1.a//.
� ŒV .a/�D Œdeg.v1.a//; : : : ; deg.vm.a//�.
� jŒV .a/�j D deg.v1.a//C � � �C deg.vm.a//.

The graph in Figure 4(b) is an example satisfying deg.a/D 5; jV3.a/j D 1; jE2.a/j D

19, and ŒV .a/�D Œ4; 4; 4; 3; 3�.

a e1.a/ e2.a/
a

e1.a/

e2.a/

xv1.a/

xv2.a/

xv3.a/

xv4.a/

xv5.a/

(a) (b)
Figure 4: Visualization of G

The remaining three sections of the article are devoted to the proof of Theorem 1. From
now on, a denotes one of vertices with maximal degree in G . The proof is divided into
three parts according to the degree of a. In Section 3 we show that any graph G with
deg.a/� 5 cannot be intrinsically knotted. In Section 4 we show that an intrinsically
knotted graph with deg.a/D 4 is exactly H12 . Finally, in Section 5 we show that any
intrinsically knotted graph, all of whose vertices have degree 3, is always C14 .

3 deg.a/� 5

In this section we will show that for some a0; b0 2V either j yEa0;b0 j � 8 or j yEa0;b0 j D 9,
but that yGa0;b0 is not homeomorphic to K.3; 3/ by showing that it contains a vertex of
degree more than 3 or a triangle (or sometimes a bigon). Then, as a conclusion, G is
not intrinsically knotted by Lemmas 4 and 5. Recall that G has 21 edges, every vertex
has degree at least 3, and a has the maximal degree among them.
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3.1 Case deg.a/� 6 or deg.a/D 5 with jV3.a/j � 4

If deg.a/ � 6, then jV3.a/j � 3. Let c be any vertex in V3.a/. Choose a vertex
b which has the maximal degree among V .c/ n fag. Then jE.b/j C jVY .a; b/j � 4,
since jVY .a; b/j � 1 when deg.b/D 3. Note that jV3.b/j � jV3.a; b/j. By the count
equation, j yEa;bj � 8 in yGa;b .

Suppose that deg.a/D5 and jV3.a/j�4. The proof is similar to the previous paragraph.

3.2 Case deg.a/D 5 and jV3.a/j D 3

Let b and c be two vertices of V .a/ nV3.a/. First, suppose that both of them have
degree 5. Then NE.a; b/D 9 and jV3.a/j D 3, so j yEa;bj � 9. Furthermore, the vertex
c has degree 4 in yGa;b , so it follows that yGa;b is not homeomorphic to K.3; 3/. Thus,
G is not intrinsically knotted by Lemma 5.

Now assume that one of them, say b , has degree 4. If V .b/ n fag consists of three
vertices, all of which are of degree 3, then NE.a; b/ D 8 and NV3.a; b/ D 6, so
j yEa;bj � 7. If not, let d be a vertex of V .b/ which has degree at least 4. Then
NE.a; d/ � 9, jV3.a/j D 3, and jV4.a; d/j � 1, because V4.a; d/ 3 b . This implies
that j yEa;d j � 8.

3.3 Case deg.a/D 5 and jV3.a/j D 0

First, suppose that V .a/ contains a vertex of degree 5, say c . Since G has 21 edges,
the other four vertices of V .a/ have degree 4. By the previous cases, it is sufficient to
suppose that jV3.c/j�2. So V .c/nfag has at least two vertices, say b and d , of degree
4 or 5. Since jE2.a/j D 21 and G is triangle-free, all edges of E.b/ must be incident
to different vertices of V .a/, so jV4.a; b/j � 3. This implies that j yEa;bj � 9. Since
yGa;b has the vertex d of degree at least 4, it follows that yGa;b is not homeomorphic
to K.3; 3/.

Now, assume that all vertices of V .a/ have degree 4, giving jE2.a/j D 20. Let e1.a/

be the extra edge and recall that two endpoints of e1.a/ are x1.a/ and y1.a/ with
deg.x1.a//� deg.y1.a//. Since G is triangle-free, all edges of E.x1.a//[E.y1.a//

except e1.a/ must be incident to different vertices of V .a/. Thus the degrees of x1.a/

and y1.a/ must be either 4 and 3, or 3 and 3, respectively. If deg.x1.a//D 4, then
jV4.a; x1.a//j D 3 and jV3.x1.a//j D 1, so j yEa;x1.a/j D 8. If not, ŒV .a/� is either
Œ5; 3; 3; 3; 3� or Œ4; 4; 3; 3; 3�, because jŒV .a/�j D 17. Thus v1.a/ has degree 5 or 4

and differs from x1.a/ and y1.a/, so jV4.a; v1.a//j � 4. Therefore, j yEa;v1.a/j � 8.
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3.4 Case deg.a/D 5 and jV3.a/j D 1

In this case, V .a/ contains four vertices of degree 4 or 5. Let n be the number of such
vertices of degree 4, and so we have 4� n vertices of degree 5, where n D 2; 3; 4.
This implies that jE2.a/j D 21C.2�n/, and n�2 extra edges exist. If V .a/ contains
a vertex v1.a/ of degree 5, then five edges of E.v1.a// are extra edges or incident to
different vertices in V .a/. For any of the above n, at least two among these edges are
incident to vertices of degree 4 in V .a/. Then NE.a; v1.a//D 10, jV3.a/j D 1, and
jV4.a; v1.a//j � 2, implying j yEa;v1.a/j � 8.

Now, suppose that V .a/ contains vertices of degree 3 or 4 only. If nD2, jŒV .a/�jD16,
and so ŒV .a/� is either Œ4; 4; 4; 4� or Œ4; 3; 3; 3; 3�. For any vertex b in V5.a/, four
edges of E.b/ must be incident to different vertices of V .a/. Indeed, these four edges
are incident to four vertices of degree 4, or at least three edges among them are incident
to vertices of degree 3 in V .a/. This means that the vertex b has degree 5 with either
V3.b/D 0 or V3.b/� 3. Both cases are dealt with in previous cases 3.3, 3.1, and 3.2.

If nD 3, jŒV .a/�j D 17, and so ŒV .a/�D Œ4; 4; 3; 3; 3�. Let V5.a/D fbg. To avoid the
case 3.2, four edges of E.b/ must be incident to two vertices of degree 4 and two
vertices of degree 3 in V .a/, which are v1.a/, v2.a/, v3.a/, and v4.a/. Then there
is a vertex c of V4.a/ such that at most one edge of E.c/ is incident to v3.a/ and
v4.a/, ie two edges of E.c/ are incident to v1.a/, v2.a/, or v5.a/. This implies that
NE.b; c/D 9 and NV3.b; c/CjV4.b; c/j � 4, implying j yEb;cj � 8.

Finally, if nD 4, jŒV .a/�j D 18, and so ŒV .a/� is either Œ4; 4; 4; 3; 3� or Œ3; 3; 3; 3; 3; 3�.
Recall that two extra edges exist. In the former case let fv1.a/; v2.a/; v3.a/g be
the three vertices of degree 4 in V .a/. For each i D 1; 2; 3, if more than two
edges of E.vi.a// are incident to V4.a/, then NE.a; vi.a// D 9, jV3.a/j D 1, and
jV4.a; vi.a//j � 3, implying j yEa;vi .a/j � 8. So, each of at least two edges of E.vi.a//

must be either incident to the unique vertex of V3.a/ or an extra edge. Since G is
triangle-free, one of three vertices, say v1.a/, has the property that E.v1.a// contains
both extra edges, and V .v1.a// and V .vi.a// for each i D 2; 3 cannot share a vertex
in V .a/. This implies that V .v2.a// and V .v3.a// coincide as in Figure 5(a). Then
NE.v2.a/; v3.a// D 8, and either jV4.v2.a/; v3.a//j D 4 or jV4.v2.a/; v3.a//j D 3

and jV3.v2.a//j D 1. Thus, j yEv2.a/;v3.a/j � 9. In yGv2.a/;v3.a/ the vertex a still has
degree 4 or 5 so that yGv2.a/;v3.a/ is not homeomorphic to K.3; 3/.

In the latter case, let V4.a/D fb1; b2; b3; b4g. We claim that for some i; j D 1; 2; 3; 4,
jV3.bi ; bj /j � 1. Suppose not; that is, jV3.bi ; bj /j � 2 for all combinations of i

and j . By some combinatorics we can derive that all 12 edges of E.b1/[E.b2/[

E.b3/[E.b4/ nE.a/ are incident to only four vertices of V .a/ as in Figure 5(b).
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This means that two extra edges must be incident to the remaining two vertices of V .a/

at both endpoints. But a bigon is not allowed. Therefore, without loss of generality,
jV3.b1; b2/j � 1. Then NE.b1; b2/D 8 and NV3.b1; b2/� 5, implying j yEb1;b2

j � 8.

a
xv1.a/

xv2.a/

xv3.a/

a

b1

b2

b3

b4

xv1.a/

xv2.a/

xv3.a/

xv4.a/

(a) (b)

Figure 5: Œ4; 4; 4; 3; 3� and Œ3; 3; 3; 3; 3; 3� cases

3.5 Case deg.a/D 5 and jV3.a/j D 2

If V .a/ contains a vertex of degree 5, say b , then the previous four cases guarantee
that we only consider that jV3.b/j D 2, so NV3.a; b/D 4, which implies j yEa;bj D 8.
Therefore we assume that V .a/ contains three vertices of degree 4. In this case
three extra edges exist. Since jŒV .a/�j D 19, ŒV .a/� is one of Œ5; 5; 5; 4�, Œ5; 5; 3; 3; 3�,
Œ5; 4; 4; 3; 3�, Œ4; 4; 4; 4; 3�, or Œ4; 3; 3; 3; 3; 3�.

If, for some vertex vi.a/ with degree 5, one edge of E.vi.a// is incident to V4.a/,
then NE.a; vi.a//D 10, jV3.a/j D 2, and jV4.a; vi.a//j � 1, implying j yEa;vi .a/j � 8.
Thus, three edges of E.vi.a// are extra edges and the remaining two edges are incident
to V3.a/. In the first two cases, Œ5; 5; 5; 4� and Œ5; 5; 3; 3; 3�, both E.v1.a// and
E.v2.a// share three extra edges, but G does not have a bigon. In the third case,
Œ5; 4; 4; 3; 3�, E.v1.a// contains three extra edges and one of these extra edges must
be incident to v4.a/ or v5.a/, both of which have degree 3. Then NE.a; v1.a//D 10

and NV3.a; v1.a//� 3, implying j yEa;v1.a/j � 8.

If, for some vertex vi.a/ with degree 4, two edges of E.vi.a// are incident to V4.a/,
then NE.a; vi.a// D 9, jV3.a/j D 2, and jV4.a; vi.a//j � 2, implying j yEa;vi .a/j �

8. Thus, at most one edge of E.vi.a// is incident to V4.a/. In the fourth case,
Œ4; 4; 4; 4; 3�, at least twelve among sixteen edges incident to four vertices of degree
4 in V .a/ are not incident to V4.a/. This is impossible because there are only two
vertices in V3.a/ and three extra edges. In the last case, Œ4; 3; 3; 3; 3; 3�, since only one
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edge of E.v1.a// is possibly incident to V4.a/, there is a vertex b in V4.a/ such that
three edges of E.b/ are incident to vertices of degree 3 in V .a/. Then NE.a; b/D 8

and NV3.a; b/� 5, implying j yEa;bj � 8.

4 deg.a/D 4

Since jV j D jV4j C jV3j and 4jV4j C 3jV3j D 2jEj, the pair .jV4j; jV3j/ has three
choices: .3; 10/, .6; 6/, and .9; 2/. Here, Vn denotes the set of vertices of degree n.
As in the preceding section, we will show that for some a0; b0 2 V either j yEa0;b0 j � 8

or j yEa0;b0 j D 9, but yGa0;b0 is not homeomorphic to K.3; 3/, implying that G is not
intrinsically knotted. But one exception occurs so that G can possibly be H12 when
.jV4j; jV3j/D .6; 6/.

4.1 Case .jV4j; jV3j/D .3; 10/

First suppose that V4 has a vertex a such that all four vertices of V .a/ have degree 3.
Let b1 and b2 be the other vertices of V4 . For each i D 1; 2, NE.a; bi/D 8. If there
is a vertex of V3.bi/ which is not contained in V .a/, then NV3.a; bi/� 5, implying
j yEa;bi

j � 8. Thus each vertex of V .b1/ is the vertex b2 or contained in V .a/, and
similarly for b2 . This implies that the number of vertices of V3 which have distance 1

or 2 from the vertex a is at most 6. Take a vertex c of V3 with distance at least 3 from
a. Since each vertex of V .c/ is neither b1 nor b2 , it has degree 3. Thus NE.a; c/D 7

and NV3.a; c/� 7, implying j yEa;cj � 7.

Now, we only need to consider the case that each vertex of V4 is adjacent to at least
one vertex of degree 4. Then, without loss of generality, we have vertices a, b and
c of V4 such that V .b/ contains a and c . If V3.a/ and V3.c/ do not coincide, then
jV4.a; c/j D 1 and NV3.a; c/� 4, implying j yEa;cj � 8. If V3.a/ and V3.c/ coincide
and jVY .a; c/j � 2, then jV4.a; c/j D 1 and NV3.a; c/D 3, implying j yEa;cj � 7. If
not, for the unique vertex d of VY .a; c/, V3.a/D V3.c/D V .d/. Then, for a vertex
b0 of V3.b/, V3.b0/ is disjoint from V3.a/. Thus NE.a; b0/D 7, NV3.a; b0/D 5, and
jV4.a; b0/j D 1, implying j yEa;b0 j � 8.

4.2 Case .jV4j; jV3j/D .6; 6/

Consider the subgraph H of G consisting of all edges whose both end vertices have
degree 4. Since G has six vertices of degree 3 and the same number of vertices of
degree 4, H is not empty set.

Claim 1 If H has a vertex of degree 1, then G is not intrinsically knotted.
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Proof Suppose that H has a vertex a of degree 1. Let b be the unique vertex of degree
4 in V .a/. If jV3.b/jD 3, then NE.a; b/D 7 and NV3.a; b/D 6, implying j yEa;bj � 8.
Thus, there is another vertex c of V4.b/, and so we let V .c/D fb; d1; d2; d3g.

First, assume that jV3.c/j D 0. So the two vertices of V .b/nfa; cg must have degree 3,
because the six vertices a; b; c; d1; d2 , and d3 in V4 are all different. Thus NE.a; b/D7

and NV3.a; b/D 5, so j yEa;bj � 9. Since yGa;b has another vertex d1 of degree 4, it
follows that yGa;b is not homeomorphic to K.3; 3/.

Second, assume that jV3.c/j D 1, say d1 2 V3.c/. If d1 is not one of the vertices in
V .a/, then NE.a; c/D 8 and NV3.a; c/CjV4.a; c/j D 5, implying j yEa;cj � 8. So we
may assume that d1 is in V .a/ and let V .d1/D fa; c; v1g. If v1 has degree 3, then
NV3.a; c/CjV4.a; c/jD4 and VY .a; c/Dfv1g, implying j yEa;cj�8. Otherwise v1 has
degree 4 and it is different from d2 and d3 . For any i D 2; 3, each vertex of V .di/nfcg

either has degree 3 or is v1 . Thus NE.d2; d3/D 8 and NV3.d2; d3/CjV4.d2; d3/j� 4,
implying j yEd2;d3

j � 9. But yGd2;d3
has a triangle containing vertices a, b and d1 . See

Figure 6(a).

a b c

d1

d2

d3

v1

a b c

d1

d2

d3

v1

v2

(a) (b)

Figure 6: Some nonintrinsically knotted cases

Last, assume that jV3.c/j�2 and let d1 and d2 be two such vertices. As in the previous
case, we may say that d1 and d2 are in V .a/, and V .di/ D fa; c; vig for i D 1; 2

where vi has degree 4. When v1D v2 , jV3.a/j D 3, jV4.a; c/j D 1, and v1 has degree
2 when we construct yGa;c , implying j yEa;cj � 8. When dist.v1; v2/� 2, three cases
occur as follows: jV3.v1/j � 3, jV3.v2/j � 3, or for both i D 1; 2 jV3.vi/j D 2 and
V4.vi/DV4nfa; c; v1; v2g. All three cases satisfy that NV3.v1; v2/CjV4.v1; v2/j � 4,
implying j yEv1;v2

j � 9. But yGv1;v2
has a bigon containing vertices a and c . Finally,

when dist.v1; v2/D 1, two cases occur as follows. If d3 has degree 3, then by the same
reason as before we may say that d3 is also in V .a/, and V .d3/D fa; c; v3g where v3

has degree 4. By the previous argument any pair of v1 , v2 and v3 has distance 1. This
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implies that G contains a triangle. If d3 has degree 4, then jV3.d3/j � 2, because at
most one vertex of V .d3/ can be v1 or v2 . Thus, NV3.a; d3/�4, implying j yEa;d3

j�9.
But yGa;d3

has a triangle containing vertices c , v1 and v2 . See Figure 6(b).

Claim 2 If H is not a cycle with 6 edges, then G is not intrinsically knotted.

Proof By Claim 1, if H is not a cycle with 6 edges, then H contains a cycle with
4 or 5 edges. First assume that H contains a cycle with 5 edges. Let fa1; : : : ; a5g

be the set of five vertices of the cycle appearing in clockwise order. If the remaining
vertex b of V4 is contained in some V .ai/, say i D 1, then b must have distance
1 from one of a3 and a4 , say a3 , by Claim 1. See Figure 7. If V3.a2/ ¤ V3.b/,
NV3.a2; b/CjV4.a2; b/j � 5, implying j yEa2;bj � 8. Otherwise, V3.a2/D V3.b/. Let
c1 and c3 be the vertices of V3.a1/ and V3.a3/, respectively. If c1 D c3 , we still
have j yEa2;bj � 9 and yGa2;b has a triangle containing vertices a5 , a4 and c1 D c3 . If
c1 ¤ c3 , then j yEa1;a3

j � 9 and yGa1;a3
has a bigon as in the figure.

If b is not contained in V .ai/ for any i D 1; : : : ; 5, then jV3.ai/j D 2. If there is a
pair of vertices ai and aiC2 (or ai�3 if i D 4; 5) such that V3.ai/ and V3.aiC2/ are
disjoint, then NV3.ai ; aiC2/CjV4.ai ; aiC2/jD5, implying j yEai ;aiC2

j�8. Otherwise,
for any pair of vertices ai and aiC2 (or ai�3 if i D 4; 5), V3.ai/ and V3.aiC2/ share
vertices. Then they must share only one vertex as in Figure 7(b). Since there is only one
extra vertex b of degree 4, for some pair of vertices ai and aiC2 , NV3.ai ; aiC2/C

jV4.ai ; aiC2/j D 4 and VY .ai ; aiC2/� 1, implying j yEai ;aiC2
j � 8.

a1

a2

a3a4

a5

b

c1

c3

ai

aiC2

(a) (b)

Figure 7: Cycle with 5 edges

Now, assume that H contains a cycle with 4 edges. Let fa1; : : : ; a4g be the set of four
vertices of the cycle appearing in clockwise order. If V .a1/ and V .a3/ (or similarly
for V .a2/ and V .a4/) share only two vertices, a2 and a4 , then the remaining two
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vertices of V4 must be contained in V .a1/[V .a3/. Otherwise, since V .a1/[V .a3/

has four more vertices other than a2 and a4 , NV3.a1; a3/� 3 and jV4.a1; a3/j D 2,
implying j yEa1;a3

j � 8. By Claim 1, the two vertices have distance 1, so H contains
a cycle with 5 edges which was dealt in the previous case. If V .a1/ and V .a3/ (or
similarly for V .a2/ and V .a4/) share exactly three vertices, a2 , a4 and b , then let
c1 and c3 be the remaining vertices of V .a1/ and V .a3/, respectively. If both c1

and c3 have degree 3, then NV3.a1; a3/C jV4.a1; a3/j � 5. If both have degree 4,
then H contains a cycle with 5 edges as in the previous case. Finally, if only c1 (or
similarly c3 ) has degree 4, then, by Claim 1, V .c1/ contains another vertex, say d , of
V4 , and also d must have distance 1 from one of a2 and a4 , say a4 , as in Figure 8(a).
So NV3.a4; c1/CjV4.a4; c1/j � 4, implying j yEa4;c1

j � 9, and yGa4;c1
has a triangle

containing vertices a2 , a3 , and b . Now we may assume that V .a1/ D V .a3/ and
V .a2/ D V .a4/. Then NV3.a1; a3/C jV4.a1; a3/j D 4, implying j yEa1;a3

j � 9, and
so yGa1;a3

has a bigon as in Figure 8(b).

a1 a2

a3a4

b

c1

c3

d

a1 a2

a3a4

(a) (b)

Figure 8: Cycle with 4 edges

By Claim 2, H is exactly a cycle with 6 edges. Let fa1; : : : ; a6g be the set of six
vertices of the cycle with ai adjacent to aiC1 for i D 1; : : : ; 5, and a6 adjacent to a1 .
First, suppose that there is not a vertex b in V3 such that V .b/Dfa1; a3; a5g. If V3.a1/

and V3.a3/ are disjoint, then NV3.a1; a3/CjV4.a1; a3/j D 5. If V3.a1/ and V3.a3/

share exactly one vertex c , then the vertex of V .c/n fa1; a3g is not a5 , so it should be
one of VY .a1; a3/. Thus NV3.a1; a3/CjV4.a1; a3/jCjVY .a1; a3/jD5. If V3.a1/ and
V3.a3/ are same, then NV3.a1; a5/C jV4.a1; a5/j D 5, because V3.a1/ and V3.a5/

are disjoint. All three cases guarantee that G is not intrinsically knotted. Therefore we
may assume that there are two vertices b1 and b2 so that V .b1/D fa1; a3; a5g and
V .b2/D fa2; a4; a6g. See Figure 9(a).
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Suppose that there is a vertex c , with c¤ b1 , so that V .c/ contains a1 and a3 . Let d2

and d5 be the vertices of V3.a2/ and V3.a5/, other than b1 and b2 , respectively. If
d2 ¤ d5 , then NV3.a2; a5/D 4. If d2 D d5 , then NV3.a2; a5/D 3 and VY .a2; a5/

is not empty. Both cases provide j yEa2;a5
j � 9, and yGa2;a5

has a triangle containing
vertices a1 , a3 , and c . Therefore we may assume in general that for any vertex c ,
except b1 and b2 , V .c/ does not contain both ai and aiC2 for any i D 1; 2; 3; 4, and
both ai and ai�4 for any i D 5; 6.

Now we conclude E n fE2.b1/[E2.b2/g consists of three extra edges. Note that
each vertex of these edges has degree 3, and there are four more vertices of degree 3

besides b1 and b2 . These two facts guarantee that these extra edges must be connected
as a tree. This tree can be of two types; either all three edges are incident to one vertex
d , or two edges are incident to different endpoints of the other edge e , respectively. In
both cases, any two edges adjoined to the tree at the same vertex at the end must be
also incident to ai and aiC3 , respectively, for some i D 1; 2; 3. Therefore, G is one
of three graphs as in Figure 9(b)–(c), depending on the type of the tree. The graph G

in Figure 9(b) is H12 , which is intrinsically knotted. But the two graphs in Figure 9(c)
are not intrinsically knotted because, for some i , j yEai ;aiC2

j � 9, and yGai ;aiC2
has a

triangle.

4.3 Case .jV4j; jV3j/D .9; 2/

Let b1 and b2 be the vertices of V3 . Since jV3jD 2, there are at least three vertices, a1 ,
a2 , and a3 , in V4 such that all vertices of each V .ai/ have degree 4. If dist.a1; a2/D1,
then V .a1/ [ V .a2/ consists of 8 vertices of V4 , and so let c be the ninth vertex.
Let d be any vertex among V .a1/[V .a2/ n fa1; a2g which is not contained in V .c/.
We assume that d is in V .a1/. Then V .d/ should be contained in V .a2/[fb1; b2g.
This implies that NE.a2; d/D 8 and jV3.d/jCjV4.a2; d/j � 4, implying j yEa2;d j � 9.
Since c has degree 4 in yGa2;d , it follows that yGa2;d is not homeomorphic to K.3; 3/.
We have the same result for any choices of pairs among a1 , a2 , and a3 .

Now assume that the distance between any pair among a1 , a2 , and a3 is at least 2. We
separate into several cases according to the number jV4.a1; a2/j. If V4.a1; a2/ D

∅ (ie dist.a1; a2/ > 2), then jV4j � 10, a contradiction. If V4.a1; a2/ D fdg,
then V4 D V .a1/ [ V .a2/ [ fa1; a2g. This implies that a3 2 V .a1/ [ V .a2/, so
dist.a1; a3/D 1 or dist.a2; a3/D 1, both of which were dealt with in the previous case.
If V4.a1; a2/D fd1; d2g, then V .d1/[V .d2/ n fa1; a2g is contained in fa3; b1; b2g.
This implies that each V .di/ n fa1; a2g is a set of two vertices among fa3; b1; b2g,
so that jV3.d1; d2/j C jV4.d1; d2/j � 4, implying j yEd1;d2

j � 9. Since at least two
of four vertices in V .a1/[V .a2/ n fd1; d2g still have degree 4 in yGd1;d2

, it follows
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a1

a2

a3
a4

a5

a6

b1 b2

c
d

H12

(a) (b)

ai

aiC2

e

ai

aiC2

e

(c)

Figure 9: Constructing H12

that yGd1;d2
is not homeomorphic to K.3; 3/. If V4.a1; a2/ D fd1; d2; d3g, then

V .d1/[V .d2/[V .d3/ n fa1; a2g is contained in fa3; a4; b1; b2g, where a3 and a4

are the remaining two vertices of degree 4 other than V .a1/[V .a2/[fa1; a2g. Thus
each V .di/ n fa1; a2g is the set of two vertices among fa3; a4; b1; b2g. This implies
that jV3.di ; dj /j C jV4.di ; dj /j � 4 for some i; j D 1; 2; 3, implying j yEdi ;dj

j � 9.
Since at least one of three vertices V .a1/[V .a2/nfdi ; dj g still has degree 4 in yGdi ;dj

,
it follows that yGdi ;dj

is not homeomorphic to K.3; 3/. Finally, if jV4.a1; a2/j D 4,
then j yEa1;a2

j � 9. Since yGa1;a2
still has the remaining three vertices of degree 4, it

follows that yGa1;a2
is not homeomorphic to K.3; 3/.

5 deg.a/D 3

Since we are working on the graph with 21 edges and every vertex has degree 3, there
are exactly 14 vertices. First, suppose that there exists a pair of vertices a and b with
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dist.a; b/� 4. Then E2.a/ and E2.b/ can share vertices, but they do not share edges
in common. Since jE2.a/[E2.b/j D 18 and jV .a/[ V .b/[ fa; bgj D 8, the 18

endpoints of E2.a/, E2.b/, and three extra edges which are E n fE2.a/[E2.b/g,
meet at six vertices. If any two edges of E2.a/nE.a/ (and similarly for b ) are incident
to one vertex c of these six vertices, take the unique vertex d of V .a/ which is not
an endpoint of these two edges. Then NE.b; d/ D 6 and NV3.b; d/ D 6, implying
j yEb;d j D 9. But yGb;d has a triangle containing c and the two vertices of V .a/nfdg, so
it follows that yGb;d is not homeomorphic to K.3; 3/. If not, each of these six vertices
is a common endpoint of one edge of E2.a/, one edge of E2.b/, and one extra edge.
Now, take an extra edge e and let b1 and b2 be the two vertices of V .b/ which have
distance 1 from the endpoints of e . Let b3 be the remaining vertex of V .b/. Then
NE.b1; b2/ D 6, NV3.b1; b2/ D 5, and VY .b1; b2/ D fb3g, implying j yEb1;b2

j D 9.
But yGb1;b2

has a triangle containing a and two vertices of V .a/, so it follows that
yGb1;b2

is not homeomorphic to K.3; 3/. See Figure 10(a).

a

b1

b2

b3
b

e

a

b1

b2 b3

c1c2

c3

c4 c5

c6

d1

d2d3

d4

C14

(a) (b)

Figure 10: Constructing C14

Therefore, we assume that the distance between any pair of vertices cannot exceed 3.
Now we construct the intrinsically knotted graph G satisfying these conditions. Take a
vertex a and let V .a/D fb1; b2; b3g and V .bi/D fa; c2i�1; c2ig for i D 1; 2; 3. As
in Figure 10(b), the graph E.a/[E.c1/[ � � � [E.c6/ consists of 21 edges and 22

vertices. We show this is the only way to draw the graph with 21 edges such that all
vertices have distance at most 3 from a and 10 vertices a; b1; b2; b3; c1; : : : ; c5 , and
c6 have degree 3. Now we join 12 white dots in Figure 10(b) into 4 groups indicating
the remaining 4 vertices by d1 , d2 , d3 and d4 . Thus each V .dj /, j D 1; 2; 3; 4, has
three vertices among c1; : : : ; c6 . Since the distance between any ci and ci0 cannot
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exceed 3, the following two properties must be satisfied. The first property is that
V .dj / contains exactly one vertex from each group fc2i�1; c2ig for i D 1; 2; 3. For
example, if V .d1/ D fc1; c2; c3g (ie two vertices from the group fc1; c2g), then we
can connect c1 to at most two vertices among fc4; c5; c6g through some E.dj /. This
means that the distance between c1 and one among fc4; c5; c6g exceeds 3. The second
property is that different V .dj / and V .dj 0/ share at most one vertex. For example, if
they share two vertices c1 and c3 , then dist.c1; c4/D 4. From these two properties,
without loss of generality, we may say that

V .d1/D fc1; c3; c5g; V .d2/D fc1; c4; c6g;

V .d3/D fc2; c3; c6g; V .d4/D fc2; c4; c5g

as drawn in Figure 10(b). This graph is exactly C14 .
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