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The L2–Alexander torsion is symmetric

JÉRÔME DUBOIS

STEFAN FRIEDL

WOLFGANG LÜCK

We show that the L2 –Alexander torsion of a 3–manifold is a symmetric function.
This can be viewed as a generalization of the symmetry of the Alexander polynomial
of a knot.

57M27; 57Q10

1 Introduction

An admissible triple .N; �; 
 / consists of an irreducible, orientable, compact 3–
manifold N ¤S1�D2 with empty or toroidal boundary, a class �¤ 02H 1.N IZ/D
Hom.�1.N /;Z/ and a homomorphism 
 W �1.N /!G such that � factors through 
 .
In [4; 5] we used the L2 –torsion (see for example Lück [14]) to associate to an
admissible triple .N; �; 
 / the L2 –Alexander torsion � .2/.N; �; 
 / which is a function

� .2/.N; �; 
 /W R>0!R�0

that is well defined up to multiplication by a function of the type t 7! tm for some
m 2 Z. We recall the definition in Section 6.

The goal of this paper is to show that the L2 –Alexander torsion is symmetric. In order
to state the precise symmetry result we need to recall that given a 3–manifold N the
Thurston norm [16] of some � 2H 1.N IZ/D Hom.�1.N /;Z/ is defined as

xN .�/ WDminf��.S/ j S �N properly embedded surface dual to �g:

Here, given a surface S we define its complexity as ��.S/ WD ��.S 0/, where S 0 is
the result of deleting all components from S that are disks or spheres. Thurston [16]
showed that xN is a (possibly degenerate) norm on H 1.N IZ/. Now we can formulate
the main result of this paper.
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Theorem 1.1 Let .N; �; 
 / be an admissible triple. Then for any representative � of
� .2/.N; �; 
 / there exists an n 2 Z with n� xN .�/ mod 2 such that

�.t�1/D tn
� �.t/ for any t 2R>0:

It is worth looking at the case that N D S3 n �K is the complement of a tubular
neighborhood �K of an oriented knot K � S3 . We denote by �K W �1.N /! Z the
epimorphism sending the oriented meridian to 1. Let 
 W �1.N /!G be a homomor-
phism such that �K factors through 
 . We define

� .2/.K; 
 / WD � .2/.S3
n �K; �K ; 
 /:

If we take 
 D id to be the identity, then we showed in [4] that

� .2/.K; id/D�.2/
K
.t/ �maxf1; tg;

where �.2/
K
.t/W R>0!R�0 denotes the L2 –Alexander invariant of Li and Zhang [12;

13], which was also studied by Dubois and Wegner [6; 7] and Aribi [1; 2].

If we take 
 D�K , then we showed in [4] that the L2 –Alexander torsion � .2/.K; �K / is
fully determined by the Alexander polynomial �K .t/ of K and that in turn � .2/.K; �K /

almost determines the Alexander polynomial �K .t/. In this sense the L2 –Alexander
torsion can be viewed as a “twisted” version of the Alexander polynomial, and at least
morally it is related to the twisted Alexander polynomial of Wada [20] and to the
higher-order Alexander polynomials of Cochran [3] and Harvey [10]. We refer to [5]
for more on the relationship and similarities between the various twisted invariants.

If K is a knot, then any Seifert surface is dual to �K and it immediately follows that
x.�K / � maxf2 � genus(K) � 1; 0g. In fact an elementary argument shows that for
any non-trivial knot we have the equality x.�K /D 2 � genus(K)� 1. In particular the
Thurston norm of �K is odd. We thus obtain the following corollary to Theorem 1.1.

Theorem 1.2 Let K � S3 be an oriented non-trivial knot and let 
 W �1.N /!G be
a homomorphism such that �K factors through 
 . Then there exists an odd n with

� .2/.K; 
 /.t�1/D tn
� � .2/.K; 
 /.t/ for any t 2R>0:

The proof of Theorem 1.1 has many similarities with the proof of the main theorem in
Friedl, Kim and Kitayama [9], which in turn builds on the ideas of Turaev [17; 18; 19].
In an attempt to keep the proof as short as possible we will on several occasions refer
to [9] and [17] for definitions and results.
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Conventions All manifolds are assumed to be connected, orientable and compact. All
CW–complexes are assumed to be finite and connected. If G is a group then we equip
CŒG� with the involution given by complex conjugation and by Ng WD g�1 for g 2G .
We extend this involution to matrices over CŒG� by applying the involution to each entry.
Given a ring R we will view all modules as left R–modules, unless we say explicitly
otherwise. Furthermore, given a matrix A 2Mm;n.R/ we denote by AW Rm! Rn

the R–homomorphism of left R–modules obtained by right multiplication with A and
thinking of elements in Rm as the only row in a .1;m/–matrix.

Acknowledgments The second author gratefully acknowledges the support provided
by the SFB 1085 Higher Invariants at the University of Regensburg, funded by the
Deutsche Forschungsgemeinschaft (DFG). The paper is also financially supported by
the Leibniz Prize of the third author granted by the DFG. We are also grateful to the
referees for carefully reading an earlier version of this paper.

2 Euler structures

In this section we recall the notion of an Euler structure of a pair of CW–complexes and
manifolds which is due to Turaev. We refer to [17; 18; 9] for full details. Throughout
this paper, given a space X , we denote by H1.X / the first integral homology group
viewed as a multiplicative group.

2A Euler structures on CW–complexes

Let X be a CW–complex of dimension m and let Y be a proper subcomplex. We
denote by pW zX ! X the universal covering of X and we write zY WD p�1.Y /. An
Euler lift is a set of cells in zX such that each cell of X nY is covered by precisely one
of the cells in the Euler lift.

Using the canonical left action of � D �1.X / on zX we obtain a free and transitive
action of � on the set of cells of zX n zY lying over a fixed cell in X nY . If c and c0

are two Euler lifts, then we can order the cells such that c D fcij g and c0 D fc0ij g and
such that for each i and j the cells cij and c0ij lie over the same i –cell in X nY . In
particular there exist unique gij 2 � such that c0ij D gij � cij . We denote the projection
map �!H1.X / by ‰ . We define

c0=c WD

mY
iD0

Y
j

‰.gij /
.�1/i
2H1.X /:

Algebraic & Geometric Topology, Volume 15 (2015)
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We say that c and c0 are equivalent if c0=c 2H1.X / is trivial. An equivalence class
of Euler lifts will be referred to as an Euler structure. We denote by Eul.X;Y / the set
of Euler structures. If Y D∅ then we will also write Eul.X /D Eul.X;Y /.

Given g 2 H1.X / and e 2 Eul.X;Y / we define g � e 2 Eul.X;Y / as follows: pick
representatives c for e and zg 2 �1.X / for g , then act on one i –cell of c by g.�1/i .
The resulting Euler lift represents an element in Eul.X;Y / which is independent of the
choice of the cell. We denote by g � e the Euler structure represented by this new Euler
lift. This defines a free and transitive H1.X /–action on Eul.X;Y /, with .g �e/=eD g .

If .X 0;Y 0/ is a cellular subdivision of .X;Y /, then there exists a canonical H1.X /–
equivariant bijection � W Eul.X;Y /! Eul.X 0;Y 0/ which is defined as follows. Let
e 2 Eul.X;Y / and pick an Euler lift for .X;Y / which represents e . There exists
a unique Euler lift for .X 0;Y 0/ such that the cells in the Euler lift of .X 0;Y 0/ are
contained in the cells of the Euler lift of .X;Y /. We denote by �.e/ the Euler structure
represented by this Euler lift. This map equals the map of Turaev [17, Section 1.2].

2B Euler structures of smooth manifolds

Let N be a manifold and let @0N � @N be a union of components of @N such
that �.N; @0N /D 0. A triangulation of N is a pair .X; t/ where X is a simplicial
complex and t W jX j ! N is a homeomorphism. Throughout this section we write
Y WD t�1.@0N /. For the most part we will suppress t from the notation. Following [17,
Section I.4.1] we consider the projective system of sets fEul.X;Y /g.X ;t/ , where .X; t/
runs over all C 1 –triangulations of N and where the maps are the H1.N /–equivariant
bijections between these sets induced either by C 1 –subdivisions or by smooth isotopies
in N . We define Eul.N; @0N / by identifying the sets fEul.X;Y /g.X ;t/ via these
bijections. We refer to Eul.N; @0N / as the set of Euler structures on .N; @0N /.
For a C 1 –triangulation X of N we get a canonical H1.N /–equivariant bijection
Eul.X;Y /! Eul.N; @0N /.

3 The L2–torsion of a manifold

3A The L2–torsion of a chain complex

First we recall some key properties of the Fuglede–Kadison determinant and the
definition of the L2 –torsion of a chain complex of free based left CŒG�–modules.
Throughout the section we refer to [14] and to [4] for details and proofs.

We fix a group G . Let A be a k � l –matrix over CŒG�. There exists the notion of A

being of determinant class. (To be more precise, we view the k� l –matrix A as a map
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N .G/l !N .G/k , where N .G/ is the von Neumann algebra of G , and then there is
the notion of being of determinant class.) We treat this entirely as a black box, but we
note that if G is residually amenable, eg a 3–manifold group [11] or solvable, then by
[8] any matrix over QŒG� is of determinant class. If the matrix A is not of determinant
class then for the purpose of this paper we define detN .G/.A/D 0. On the other hand,
if A is of determinant class, then we define

detN .G/.A/ WD Fuglede–Kadison determinant of A 2R>0 .

Here we do not assume that A is a square matrix. In an attempt to keep the paper as
short as possible we will not provide the (somewhat lengthy) definition of the Fuglede–
Kadison determinant. Instead we summarize a few key properties in the following
theorem which is a consequence of [14, Example 3.12] and [14, Theorem 3.14].

Theorem 3.1 .1/ If A is a square matrix with complex entries such that the usual
determinant det.A/ 2C is non-zero, then detN .G/.A/D jdet.A/j.

.2/ The determinant does not change if we swap two rows or two columns.

.3/ Right multiplication of a column by ˙g , g 2G does not change the determinant.

.4/ For any matrix A over CŒG� we have detN .G/.A/D detN .G/.At /.

Note that (2) implies that when we study Fuglede–Kadison determinants of homomor-
phisms we can work with unordered bases. Now let

C� D .0! Cl

@l
�! Cl�1

@l�1
���! � � �

@2
�! C1

@1
�! C0! 0/

be a chain complex of free left CŒG�–modules. We refer to [14] for the definition
of the L2 –Betti numbers b

.2/
i .C�/ 2 R�0 . Now suppose that the chain complex is

equipped with bases Bi � Ci , i D 0; : : : ; l . If one of the L2 –Betti numbers b.2/i .C�/

is non-zero or if one the boundary maps is not of determinant class, then we define the
L2 –torsion � .2/.C�;B�/ WD 0. Otherwise we define the L2 –torsion to be

� .2/.C�;B�/ WD

lY
iD1

detN .G/.Ai/
.�1/i
2R>0;

where the Ai denote the boundary matrices corresponding to the given bases. This
definition is the multiplicative inverse of the exponential of the L2 –torsion as defined
in [14, Definition 3.29].
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3B The twisted L2–torsion of CW–complexes and manifolds

Let .X;Y / be a pair of CW–complexes and let e2Eul.X;Y /. We denote by pW zX!X

the universal covering of X and we write zY WD p�1.Y /. The deck transformation
turns C�. zX ; zY / naturally into a chain complex of left ZŒ�1.X /�–modules.

Now let G be a group and let 'W �.X /! GL.d;CŒG�/ be a representation. We view
elements of CŒG�d as row vectors. Right multiplication via '.g/ thus turns CŒG�d

into a right ZŒ�1.X /�–module. We consider the chain complex

C
'
� .X;Y ICŒG�

d / WDCŒG�d ˝ZŒ�1.X /� C�.
zX ; zY /

of left CŒG�–modules. Let e 2Eul.X;Y /. We pick an Euler lift fcij g that represents e .
Throughout this paper we denote by v1; : : : ; vd the standard basis for CŒG�d . We
equip the chain complex C

'
� .X;Y ICŒG�

d / with the basis provided by the vk ˝ cij .
Therefore we can define

� .2/.X;Y; '; e/ WD � .2/
�
C
'
� .X;Y ICŒG�

d /; fvk ˝ cij g
�
2R�0:

Lemma 3.2 .1/ The number � .2/.X;Y; '; e/ is well defined.

.2/ If g 2H1.X /, then

� .2/.X;Y; ';ge/D detN .G/.'.g
�1// � � .2/.X;Y; '; e/:

.3/ If .X 0;Y 0/ is a cellular subdivision of .X;Y / and if e0 2 Eul.X 0;Y 0/ is the
Euler structure corresponding to e , then

� .2/.X 0;Y 0; '; e0/D � .2/.X;Y; '; e/:

The proofs are completely analogous to the proofs for ordinary Reidemeister torsion as
given in [18; 9]. In the interest of space we will not provide the proofs.

Finally let N be a manifold and let @0N � @N be a union of components of @N with
�.N; @0N /D0. Let G be a group and let 'W �.N /!GL.d;CŒG�/ be a representation.
Let e 2 Eul.N; @0N /. Recall that for any C 1 –triangulation f W X ! N we get a
bijection Eul.X;Y / f��!Eul.N; @0N /. We define

� .2/.N; @0N; '; e/ WD � .2/.X;Y; ' ıf�; f
�1
� .e//:

By Lemma 3.2(3) and the discussion in [17] the invariant � .2/.N; @0N; '; e/ 2R�0 is
well defined, ie independent of the choice of the triangulation.
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4 Duality for torsion of manifolds equipped with Euler
structures

4A The algebraic duality theorem for L2–torsion

Let G be a group and let V be a right CŒG�–module. We denote by V the left CŒG�–
module with the same underlying abelian group but with the module structure given by
p �V v WD v �V Np for p 2 CŒG� and v 2 V . If V is a left CŒG�–module then we can
consider HomCŒG�.V;CŒG�/, the set of all left CŒG�–module homomorphisms. Since
the range CŒG� is a CŒG�–bimodule we can naturally view HomCŒG�.V;CŒG�/ as a
right CŒG�–module.

In the following let C� be a chain complex of length m of left CŒG�–modules with
boundary operators @i . Suppose that C� is equipped with a basis Bi for each Ci .
We denote by C # the dual chain complex whose chain groups are the CŒG�–left
modules C #

i WD HomCŒG�.Cm�i ;CŒG�/ and where the boundary map @#
i W C

#
iC1
! C #

i

is given by .�1/m�i@�m�i�1 . This means that for any c 2 Cm�i and d 2 C #
iC1

we
have @#

i .d/.c/D .�1/m�id.@m�i.c//. We denote by B#
� the bases of C # dual to the

bases B� .

Lemma 4.1 If � .2/.C�;B�/D 0, then � .2/.C #
� ;B

#
�/D 0, otherwise we have

� .2/.C�;B�/D �
.2/.C #

� ;B
#
�/
.�1/mC1

:

Proof By the proof of [14, Theorem 1.35(3)] the L2 –Betti numbers of C� vanish
if and only if the L2 –Betti numbers of C #

� vanish. In particular, if either L2 –Betti
number does not vanish, then both torsions are zero.

Now we suppose that the L2 –Betti numbers of C� vanish. We denote by Ai the
corresponding matrices of the boundary maps of C� . The boundary matrices of the
chain complex C #

� with respect to the basis B#
� are given by .�1/m�iAt

i . Now the
lemma is an immediate consequence of the definitions and of Theorem 3.1(4).

4B The duality theorem for manifolds

Before we state our main technical duality theorem we need to introduce two more
definitions.

(1) Let G be a group and let 'W �! GL.d;CŒG�/ be a representation. We denote
by '| the representation which is given by g 7! '.g�1/t .

(2) Let N be an m–manifold and let e 2 Eul.N; @N /. Pick a triangulation X for
N . We denote by Y the subcomplex corresponding to @N . Let X | be the
CW–complex that is given by the cellular decomposition of N dual to X . Pick
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an Euler lift fcij g that represents e 2 Eul.X;Y /D Eul.N; @N /. For any i –cell
c in zX n zY we denote by c| the unique oriented .m� i/–cell in zX | which
has intersection number C1 with c . The Euler lift fc|

ij g defines an element in
Eul.X |/D Eul.N / that we denote by e| . This map is an H1.N /–equivariant
bijection and we denote the inverse map Eul.N; @N /!Eul.N / again by e 7! e| .
We refer to [15, Chapter 70], [18, Section 14] and [9, Section 4] for details.

Theorem 4.2 Let N be an m–manifold. Let G be a group and let 'W �.N / !

GL.d;CŒG�/ be a representation. Let e 2 Eul.N; @N /. Then either � .2/.N; @N; '; e/
and � .2/.N; '|; e|/ are both zero, or the following equality holds:

� .2/.N; @N; '; e/D � .2/.N; '|; e|/.�1/mC1

:

Proof Pick a triangulation X for N and denote by Y the subcomplex corresponding
to @N . Let X | be the CW–complex which is given by the cellular decomposition of N

dual to X . We identify � D �1.X /D �1.N /D �1.X
|/. We pick an Euler lift fcij g

which represents e 2 Eul.N; @N /D Eul.X;Y /. We denote by c
|
ij the corresponding

dual cells. The theorem follows from the definitions and the following claim.

Claim Either both � .2/.C
'
� .X;Y ICŒG�

d /; fvk ˝ cij g/ and � .2/.C
'|

� .X |ICŒG�d /,
fvk ˝ c

|
ij g/ are zero, or the following equality holds:

� .2/
�
C
'
� .X;Y ICŒG�

d /; fvk ˝ cij g
�
D � .2/

�
C
'|

� .X |
ICŒG�d /; fvk ˝ c

|
ij g
�.�1/mC1

:

In order to prove the claim we first note that there is a unique, sesquilinear paring

Cm�i. zX ; zY /�Ci. zX
|/! ZŒ��;

.a; b/ 7! ha; bi WD
X
g2�

.a �gb/g�1

such that a �b|D ıab for any two cells a and b of zX n zY . Here sesquilinear means that
for any a 2 Cm�i. zX ; zY /, b 2 Ci. zX

|/ and p; q 2 ZŒ�� we have hpa; qbi D qha; bi Np .
It is straightforward to see that the pairing is non-singular. It follows immediately from
[18, Claim 14.4]) that these maps give rise to well-defined maps

Ci. zX ; zY /! HomZŒ��.Cm�i. zX |/;ZŒ��/;

a 7! .b 7! ha; bi/

that define an isomorphism of based chain complexes of right ZŒ��–modules. In fact it
follows easily from the definitions that the maps define an isomorphism

.C�. zX ; zY /; fcij g/!
�
HomZŒ��.Cm��. zX |/;ZŒ��/; f.c|

ij /
�
g
�
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of based chain complexes of left ZŒ��–modules. Tensoring these chain complexes with
CŒG�d we obtain an isomorphism�
CŒG�d ˝ZŒ�� C�. zX ; zY /; fvk ˝ cij g

�
!
�
CŒG�d ˝ZŒ�� HomZŒ��.Cm��. zX |/;ZŒ��/; fvk ˝ .c

|
ij /
�
g
�

of based chain complexes of CŒG�–modules. Furthermore the maps

CŒG�d ˝ZŒ�� HomZŒ��.Ci. zX |/;ZŒ��/! HomCŒG�

�
C
'|

i .X |ICŒG�d /;CŒG�
�
;

v˝f 7!

�
C
'|

i .X |
ICŒG�d /!CŒG�;

w˝ � 7! v'.f .�//wt

�
induce an isomorphism�

C
'
� .X;Y ICŒG�

d /; fvk ˝ cij g
�
!
�
C
'|

� .X |
ICŒG�d /#; f.vk ˝ c

|
ij /

#
g
�

of based chain complexes of CŒG�–modules. The claim follows from Lemma 4.1.

5 Twisted L2–torsion of 3–manifolds

5A Canonical structures on tori

Let T be a torus. We equip T with a CW–structure with one 0–cell p , two 1–cells x

and y and one 2–cell s . We write � D �1.T;p/ and by a slight abuse of notation we
denote by x and y the elements in � represented by x and y . We denote by zT the
universal cover of T . There exist lifts of the cells such that the chain complex C�. zT /

of left ZŒ��–modules with respect to the bases given by these lifts is of the form

(1) 0! ZŒ��
.y�1 1�x/

��������! ZŒ��2

�
1�x

1�y

�
�����! ZŒ��! 0:

We refer to the corresponding Euler structure of T as the canonical Euler structure
on T . Given a group G we say that a representation 'W �!GL.1;CŒG�/ is monomial
if for any x 2 � we have '.x/D zg for some z 2C and g 2G . The following is [4,
Lemma 5.6].

Lemma 5.1 Let 'W �1.T /! GL.1;CŒG�/ be a monomial representation such that
b
.2/
� .T ICŒG�/D 0 and e be the canonical Euler structure on T . Then � .2/.T; '; e/D 1.
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5B Chern classes on 3–manifolds with toroidal boundary

Let N be a 3–manifold with toroidal incompressible boundary and let e 2Eul.N; @N /.
Let X be a triangulation for N . We denote the subcomplexes corresponding to
the boundary components of N by S1 [ � � � [ Sb . We denote by pW zX ! X and
pi W
zSi! Si ; i D 1; : : : ; b the universal covering maps of X and Si ; i D 1; : : : ; b . For

each i we identify a component of p�1.Si/ with zSi

Pick an Euler lift c that represents e . For each boundary torus Si pick an Euler lift zsi

to zSi � p�1.Si/ � zX that represents the canonical Euler structure. The set of cells
fQs1; : : : ; Qsb; cg defines an Euler structure K.e/ for N , which only depends on e . Put
differently, we defined a map KW Eul.N; @N /! Eul.N / which is easily seen to be
H1.N /–equivariant. Given e 2Eul.N / there exists a unique element g 2H1.N / such
that e D g �K.e|/. Following Turaev [19, page 11] and [9, Section 6.3] we define
c1.e/ WD g 2H1.N IZ/ and we refer to c1.e/ as the Chern class of e .

5C Torsions of 3–manifolds

Let � and G be groups and let 'W � ! GL.1;CŒG�/ be a monomial representation.
By the multiplicativity of the Fuglede–Kadison determinant, see [14, Theorem 3.14],
given g 2� the invariant detN .G/.'.g// only depends on the homology class of g . Put
differently, detN .G/ ı'W �!R�0 descends to a map detN .G/ ı'W H1.� IZ/!R�0 .

Theorem 5.2 Let N be a 3–manifold which is either closed or which has toroidal,
incompressible boundary. Let G be a group and let 'W �.N /! GL.1;CŒG�/ be a
monomial representation such that b

.2/
� .@N ICŒG�/D 0. For any e 2 Eul.N / we have

� .2/.N; @N; '; e|/D detN .G/.'.c1.e/// � �
.2/.N; '; e/:

Proof The assumption that b
.2/
� .@N ICŒG�/D 0 together with the proof of [14, The-

orem 1.35(2)] implies that b
.2/
� .N ICŒG�/D 0 if and only if b

.2/
� .N; @N ICŒG�/D 0.

If both are non-zero, then both torsions � .2/.N; @N; '; e|/ and � .2/.N; '; e/ are zero.
For the remainder of this proof we assume that b

.2/
� .N ICŒG�/D 0.

Pick a triangulation X for N . As usual denote by Y the subcomplex corresponding
to @N . Let e 2 Eul.N /. Pick an Euler lift c� which represents e| 2 Eul.N; @N /D

Eul.X;Y /. Denote the components of Y by Y1[ � � � [Yb and pick Qs1
�; : : : ; Qs

b
� as in

the previous section. We write Qs� D Qs1
� [ � � � [ Qs

b
� . Denote by fQs�[ c�g the resulting

Euler lift for X . Recall that this Euler lift represents K.e|/.

Claim � .2/
�
C
'
� .X;Y ICŒG�/; fc�g

�
D � .2/

�
C
'
� .X ICŒG�/; fQs�[ c�g

�
:
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We consider the following short exact sequence of chain complexes

0!

bM
iD1

C
'
� .Yi ICŒG�/! C

'
� .X ICŒG�/! C

'
� .X;Y ICŒG�/! 0;

with the bases fsi
�giD1;:::;b , fQs�[ c�g and fc�g. These bases are in fact compatible, in

the sense that the middle basis is the image of the left basis together with a lift of the
right basis. By Lemma 5.1 we have � .2/.C '

� .Yi ICŒG�/; fzs i
�g/ D 1 for i D 1; : : : ; b .

Now it follows from the multiplicativity of torsion, see [14, Theorem 3.35], that

� .2/
�
C
'
� .X;Y ICŒG�/; fc�g

�
D � .2/

�
C
'
� .X ICŒG�/; fc�[ Qs�g

�
:

Here we used that the complexes are acyclic. This concludes the proof of the claim.

Finally it follows from this claim, the definitions and Lemma 3.2 that

� .2/.N; @N; '; e|/D � .2/
�
C
'
� .X;Y ICŒG�/; fc�g

�
D � .2/

�
C
'
� .X ICŒG�/; fQs�[ c�g

�
D � .2/.N; ';K.e|//D � .2/.N; '; c1.e/

�1e/

D detN .G/.'.c1.e/// � �
.2/.N; '; e/:

6 The symmetry of the L2–Alexander torsion

Let .N; �; 
 W �1.N /!G/ be an admissible triple and let e 2Eul.N /. Given t 2R>0

we consider the representation 
t W �1.N /! GL.1;CŒG�/ that is given by 
t .g/ WD

.t�.g/
 .g//. We denote by � .2/.N; �; 
; e/ the function

� .2/.N; �; 
; e/W R>0!R�0;

t 7! � .2/.N; 
t ; e/:

For another e0 2 Eul.N / we have e0 D ge for some g 2H1.N /. By Lemma 3.2

� .2/.N; �; 
;ge/.t/D t��.g/� .2/.N; �;g; e/.t/ for all t 2R>0:

Put differently, the functions � .2/.N; �; 
; e/ and � .2/.N; �; 
;ge/ are equivalent. We
denote by � .2/.N; �; 
 / the equivalence class of the functions � .2/.N; �; 
; e/ and we
refer to � .2/.N; �; 
 / as the L2 –Alexander torsion of .N; �; 
 /.
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Proof of Theorem 1.1 Let e 2 Eul.N / and t 2R>0 . We write � D � .2/.N; 
; �; e/.
Note that .
t /

| D 
t�1 . It follows from Theorems 4.2 and 5.2 that

�.t/D � .2/.N; 
; �; e/D � .2/.N; 
t ; e/

D � .2/.N; @N; .
t /
|; e|/D � .2/.N; @N; 
t�1 ; e|/

D detN .G/.
t�1.c1.e/// � �
.2/.N; 
t�1 ; e/

D detN .G/.t
��.c1.e//c1.e// � �

.2/.N; 
t�1 ; e/

D t��.c1.e// � � .2/.N; 
t�1 ; e/D t��.c1.e// � �.t�1/:

Now it suffices to show that for any � 2 H 1.N IZ/ we have �.c1.e// D xN .�/

mod 2.

So let S be a Thurston norm minimizing surface which is dual to some � 2H 1.N IZ/.
Since N is irreducible and since N ¤ S1 �D2 we can arrange that S has no disk
components. Therefore we have

xN .�/� ��.S/� b0.@S/ mod 2Z:

On the other hand, by [19, Lemma VI.1.2] and [19, Section XI.1] we have that
b0.@S/ � c1.e/ � S mod 2Z where c1.e/ � S is the intersection number of c1.e/ 2

H1.N /DH1.N / with S . Since S is dual to � , we obtain the desired equality

�.c1.e//� c1.e/ �S � b0.@S/� ��.S/� xN .�/ mod 2Z:

Finally, a real admissible triple .N; �; 
 / is defined like an admissible triple, except
that now we also allow � to lie in H 1.N IR/DHom.�1.N /;R/. The same definition
as in Section 6 associates to .N; �; e/ a function � .2/.N; �; e/W R>0! R�0 that is
well defined up to multiplication by a function of the form t 7! tr for some r 2 R.
The same argument as in the proof of Theorem 1.1 gives us the following result.

Theorem 6.1 Let .N; �; 
 / be a real admissible triple. Then for any representative �
of � .2/.N; �; 
 / there exists an r 2R such that �.t�1/D tr � �.t/ for any t 2R>0 .

The only difference to Theorem 1.1 is that for real cohomology classes � 2H 1.N IR/
we cannot relate the exponent r to the Thurston norm of � .
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