Volume 15, issue 6 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On the $K$–theory of subgroups of virtually connected Lie groups

Daniel Kasprowski

Algebraic & Geometric Topology 15 (2015) 3467–3483
Bibliography
1 R C Alperin, P B Shalen, Linear groups of finite cohomological dimension, Bull. Amer. Math. Soc. 4 (1981) 339 MR609046
2 A C Bartels, On the domain of the assembly map in algebraic $K$–theory, Algebr. Geom. Topol. 3 (2003) 1037 MR2012963
3 A Bartels, S Echterhoff, W Lück, Inheritance of isomorphism conjectures under colimits, from: "$K$–theory and noncommutative geometry" (editors G Cortiñas, J Cuntz, M Karoubi, R Nest, C A Weibel), Eur. Math. Soc. (2008) 41 MR2513332
4 A Bartels, F T Farrell, W Lück, The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups, J. Amer. Math. Soc. 27 (2014) 339 MR3164984
5 A Bartels, T Farrell, L Jones, H Reich, On the isomorphism conjecture in algebraic $K$–theory, Topology 43 (2004) 157 MR2030590
6 A Bartels, W Lück, Isomorphism conjecture for homotopy $K$–theory and groups acting on trees, J. Pure Appl. Algebra 205 (2006) 660 MR2210223
7 A Bartels, W Lück, The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631 MR2993750
8 A Bartels, W Lück, Geodesic flow for $\mathrm{CAT}(0)$–groups, Geom. Topol. 16 (2012) 1345 MR2967054
9 A Bartels, W Lück, H Reich, Equivariant covers for hyperbolic groups, Geom. Topol. 12 (2008) 1799 MR2421141
10 A Bartels, W Lück, H Reich, The $K$–theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008) 29 MR2385666
11 A Bartels, H Reich, Coefficients for the Farrell–Jones conjecture, Adv. Math. 209 (2007) 337 MR2294225
12 G Carlsson, B Goldfarb, On homological coherence of discrete groups, J. Algebra 276 (2004) 502 MR2058455
13 Y de Cornulier, Answer to “If N and G/N are virtually solvable, then G is virtually solvable?” (2013)
14 J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$– and $L$–theory, $K$–Theory 15 (1998) 201 MR1659969
15 F T Farrell, L E Jones, Isomorphism conjectures in algebraic $K$–theory, J. Amer. Math. Soc. 6 (1993) 249 MR1179537
16 F T Farrell, L E Jones, The lower algebraic $K$–theory of virtually infinite cyclic groups, $K$–Theory 9 (1995) 13 MR1340838
17 L Ji, Asymptotic dimension and the integral $K$–theoretic Novikov conjecture for arithmetic groups, J. Differential Geom. 68 (2004) 535 MR2144540
18 L Ji, Integral Novikov conjectures and arithmetic groups containing torsion elements, Comm. Anal. Geom. 15 (2007) 509 MR2379803
19 H Kammeyer, W Lück, H Rüping, The Farrell–Jones conjecture for arbitrary lattices in virtually connected Lie groups, preprint (2014) arXiv:1401.0876v1
20 G G Kasparov, Equivariant $KK$–theory and the Novikov conjecture, Invent. Math. 91 (1988) 147 MR918241
21 D Kasprowski, On the $K$–theory of groups with finite decomposition complexity, Proc. Lond. Math. Soc. 110 (2015) 565 MR3342098
22 W Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2000) 177 MR1757730
23 W Lück, Survey on classifying spaces for families of subgroups, from: "Infinite groups: Geometric, combinatorial and dynamical aspects" (editors L Bartholdi, T Ceccherini-Silberstein, T Smirnova-Nagnibeda, A Zuk), Progr. Math. 248, Birkhäuser (2005) 269 MR2195456
24 W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in $K$– and $L$–theory, from: "Handbook of $K$–theory, Vol. 1, 2" (editors E M Friedlander, D R Grayson), Springer (2005) 703 MR2181833
25 W Möhres, Torsion-free nilpotent groups with bounded ranks of the abelian subgroups, from: "Group theory" (editors O H Kegel, F Menegazzo, G Zacher), Lecture Notes in Math. 1281, Springer (1987) 115 MR921696
26 E K Pedersen, C A Weibel, A nonconnective delooping of algebraic $K$–theory, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 166 MR802790
27 G Skandalis, J L Tu, G Yu, The coarse Baum–Connes conjecture and groupoids, Topology 41 (2002) 807 MR1905840
28 R B Warfield Jr., Nilpotent groups, Lecture Notes in Mathematics 513, Springer (1976) MR0409661
29 C Wegner, The $K$–theoretic Farrell–Jones conjecture for CAT(0)–groups, Proc. Amer. Math. Soc. 140 (2012) 779
30 C Wegner, The Farrell–Jones conjecture for virtually solvable groups, preprint (2013) arXiv:1308.2432v2