Volume 15, issue 6 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
The $L^2$–Alexander torsion is symmetric

Jérôme Dubois, Stefan Friedl and Wolfgang Lück

Algebraic & Geometric Topology 15 (2015) 3599–3612
Bibliography
1 F Ben Aribi, The $L^2$–Alexander invariant detects the unknot, C. R. Math. Acad. Sci. Paris 351 (2013) 215 MR3089681
2 F Ben Aribi, The $L^2$–Alexander invariant detects the unknot, C. R. Math. Acad. Sci. Paris 351 (2013) 215 MR3089681
3 T D Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004) 347 MR2077670
4 J Dubois, S Friedl, W Lück, The $L^2$–Alexander torsion of $3$–manifolds, preprint (2014) arXiv:1410.6918
5 J Dubois, S Friedl, W Lück, Three flavors of twisted knot invariants, preprint (2014) arXiv:1410.6924
6 J Dubois, C Wegner, $L^2$–Alexander invariant for torus knots, C. R. Math. Acad. Sci. Paris 348 (2010) 1185 MR2738924
7 J Dubois, C Wegner, Weighted $L^2$–invariants and applications to knot theory, Commun. Contemp. Math. 17 (2015) 1450010, 29 MR3291974
8 G Elek, E Szabó, Hyperlinearity, essentially free actions and $L^2$–invariants. The sofic property, Math. Ann. 332 (2005) 421 MR2178069
9 S Friedl, T Kim, T Kitayama, Poincaré duality and degrees of twisted Alexander polynomials, Indiana Univ. Math. J. 61 (2012) 147 MR3029395
10 S L Harvey, Higher-order polynomial invariants of $3$–manifolds giving lower bounds for the Thurston norm, Topology 44 (2005) 895 MR2153977
11 J Hempel, Residual finiteness for $3$–manifolds, from: "Combinatorial group theory and topology" (editors S M Gersten, J R Stallings), Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 379 MR895623
12 W Li, W Zhang, An $L^2$–Alexander–Conway invariant for knots and the volume conjecture, from: "Differential geometry and physics" (editors M L Ge, W Zhang), Nankai Tracts Math. 10, World Sci. Publ. (2006) 303 MR2327174
13 W Li, W Zhang, An $L^2$–Alexander invariant for knots, Commun. Contemp. Math. 8 (2006) 167 MR2219611
14 W Lück, $L^2$–invariants: Theory and applications to geometry and $K$–theory, Ergeb. Math. Grenzgeb. 44, Springer (2002) MR1926649
15 J R Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company (1984) MR755006
16 W P Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) MR823443
17 V G Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672 MR1013714
18 V G Turaev, Introduction to combinatorial torsions, Birkhäuser, Basel (2001) MR1809561
19 V G Turaev, Torsions of $3$–dimensional manifolds, Progress in Mathematics 208, Birkhäuser, Basel (2002) MR1958479
20 M Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994) 241 MR1273784