Volume 15, issue 6 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The $L^2$–Alexander torsion is symmetric

Jérôme Dubois, Stefan Friedl and Wolfgang Lück

Algebraic & Geometric Topology 15 (2015) 3599–3612
Abstract

We show that the L2–Alexander torsion of a 3–manifold is a symmetric function. This can be viewed as a generalization of the symmetry of the Alexander polynomial of a knot.

Keywords
$L^2$–Alexander torsion, duality, Thurston norm, knot genus
Mathematical Subject Classification 2010
Primary: 57M27
Secondary: 57Q10
References
Publication
Received: 20 November 2014
Revised: 7 April 2015
Accepted: 24 April 2015
Published: 12 January 2016
Authors
Jérôme Dubois
Laboratoire de Mathématiques UMR 6620 – CNRS
Université Blaise Pascal
Campus des Cézeaux
BP 80026
63171 Aubière
France
Stefan Friedl
Fakultät für Mathematik
Universität Regensburg
D-93053 Regensburg
Germany
Wolfgang Lück
Mathematisches Institut
Rheinische Wilhelms-Universität Bonn
Endenicher Allee 60
D-53115 Bonn
Germany