Volume 15, issue 6 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
The $L^2$–Alexander torsion is symmetric

Jérôme Dubois, Stefan Friedl and Wolfgang Lück

Algebraic & Geometric Topology 15 (2015) 3599–3612
Abstract

We show that the L2–Alexander torsion of a 3–manifold is a symmetric function. This can be viewed as a generalization of the symmetry of the Alexander polynomial of a knot.

Keywords
$L^2$–Alexander torsion, duality, Thurston norm, knot genus
Mathematical Subject Classification 2010
Primary: 57M27
Secondary: 57Q10
References
Publication
Received: 20 November 2014
Revised: 7 April 2015
Accepted: 24 April 2015
Published: 12 January 2016
Authors
Jérôme Dubois
Laboratoire de Mathématiques UMR 6620 – CNRS
Université Blaise Pascal
Campus des Cézeaux
BP 80026
63171 Aubière
France
Stefan Friedl
Fakultät für Mathematik
Universität Regensburg
D-93053 Regensburg
Germany
Wolfgang Lück
Mathematisches Institut
Rheinische Wilhelms-Universität Bonn
Endenicher Allee 60
D-53115 Bonn
Germany