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Explicit Koszul-dualizing bimodules in
bordered Heegaard Floer homology

BOHUA ZHAN

We give a combinatorial proof of the quasi-invertibility of 1CFDD.IZ/ in bordered
Heegaard Floer homology, which implies a Koszul self-duality on the dg-algebra
A.Z/ , for each pointed matched circle Z . We do this by giving an explicit description
of a rank 1 model for 1CFAA.IZ/ , the quasi-inverse of 1CFDD.IZ/ . To obtain this
description we apply homological perturbation theory to a larger, previously known
model of 1CFAA.IZ/ .

57R58; 57R56

1 Introduction

Bordered Heegaard Floer homology, introduced by Robert Lipshitz, Peter Ozsváth, and
Dylan Thurston in [1; 4], gives a way of extending the hat version of Heegaard Floer
homology to 3–manifolds with boundary. Besides its theoretical interest, it has shown
to be an effective computational tool, for example in giving an efficient, algorithmic
way to compute the Heegaard Floer homology of any 3–manifold [3].

The theory associates invariants to 3–manifolds with parametrized boundaries. A
parametrization of the boundary is a diffeomorphism from the boundary to some
standard genus g surface. A standard genus g surface is, in turn, described by a
pointed matched circle, which can be considered as a handle decomposition of the
surface. For a pointed matched circle Z , we denote by F.Z/ the standard surface
parametrized by Z . Let �Z denote Z with reversed orientation, then F.�Z/ is the
orientation reversal of F.Z/.

To each pointed matched circle Z , the theory associates a combinatorially defined dg-
algebra A.Z/. To every 3–manifold Y with boundary parametrized by Z , it associates
two invariants: the type A invariant bCFA.Y /A.Z/ , which is a right A1–module over
A.Z/, and the type D invariant A.�Z/ bCFD.Y /, which is a left type D structure over
A.�Z/ (we will briefly review these algebraic concepts in the next section). The
modules are well-defined up to homotopy equivalence (denoted by ').
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The type D and type A invariants are related to each other by taking the box tensor
product, � � �, with one of two special bimodules: 1CFDD.IZ/ and 1CFAA.IZ/. They
are called the identity type DD and type AA bimodules, respectively. More explicitly,
the relations are

bCFA.Y /A.Z/ '1CFAA.IZ/A.�Z/;A.Z/� bCFD.Y /A.�Z/ ;(1)
A.�Z/ bCFD.Y /' bCFA.Y /A.Z/� 1CFDD.IZ/A.Z/;A.�Z/ :(2)

The bimodule 1CFDD.IZ/ is quasi-invertible, with 1CFAA.IZ/ being its quasi-inverse;
that is, we have 1CFDD.IZ/� 1CFAA.IZ/' I , where I denotes the identity type DA
bimodule. This implies that taking box tensor product with 1CFDD.IZ/ induces an
equivalence of categories between the category of right A1–modules over A.Z/ and
the category of type D structures over A.�Z/. In particular, the invariants bCFA.Y /A.Z/
and A.�Z/ bCFD.Y / actually contain the same information about Y .

Both 1CFAA.IZ/ and 1CFDD.IZ/ are defined by holomorphic curve counts. While
1CFDD.IZ/ can be described combinatorially (see [2; 3]), the quasi-invertibility of
1CFDD.IZ/ is verified in [4] using holomorphic curve methods.

The aim of this paper is to describe combinatorially the type AA invariant 1CFAA.IZ/.
More precisely, we construct an explicit rank 1 A1–bimodule N with the following
property.

Theorem 1.1 N � 1CFDD.IZ/ has rank 1. Furthermore, N is quasi-invertible, in
the sense that there exists a type DA bimodule N 0 , such that N � N 0 is homotopy
equivalent to the identity bimodule (N 0 is called the quasi-inverse of N ).

This quickly leads to a combinatorial proof that 1CFDD.IZ/ itself is quasi-invertible.
By construction, the bimodule N is in the homotopy class of 1CFAA.IZ/, so we know
from analysis that it is the actual quasi-inverse of 1CFDD.IZ/. This stronger statement
will be proved combinatorially by the author in [5].

Considering 1CFDD.IZ/ as a left–right type DD bimodule A.Z/ 1CFDD.IZ/A.Z/ , its
quasi-invertibility also implies a kind of Koszul self-duality of A.Z/; see [2, Section 8]
for details. One consequence of this Koszul duality is the existence of an A1 morphism
from A.Z/ to the cobar resolution of A.Z/, inducing an isomorphism on homology.
We will give some explicit computations of this map as an application.

Besides giving a more concrete understanding of Koszul duality in A.Z/, an explicit
description of 1CFAA.IZ/ can be useful in various computations. In addition to bCFD
and bCFA , there are also bimodule invariants 1CFDD; 1CFDA and 1CFAA associated
to any 3–manifold with two boundaries, in particular mapping cylinders of surface
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diffeomorphisms. In general, it is easier to compute bCFD and 1CFDD , since it involves
counting simpler holomorphic curves, and there are known methods to exploit the
type DD structure equations. These methods are used to compute 1CFDD.IZ/ in [2;
3], and 1CFDD.�/ for any arcslide � . With an explicit description of 1CFAA.IZ/, we
can then obtain descriptions of type A and type DA invariants with the same number
of generators whenever the type D and type DD invariants can be computed. This is
used in [5] to give a combinatorial construction and proof of invariance for bHF using
bordered Floer theory.

The construction of the rank 1 model of 1CFAA.IZ/ begins with a previously known
model M of 1CFAA.IZ/. The chain complex M underlying M has far more generators
than is necessary for 1CFAA.IZ/. The tool used to reduce the number of generators is
homological perturbation theory. To use this theory, we find a smaller chain complex N

that is homotopy equivalent to M . Since the theory is over F2 , we may take N to be the
homology of M . Homological perturbation theory will construct an A1–bimodule N
homotopy equivalent to M, whose underlying chain complex is N .

To construct N , we need the additional data that verifies the homotopy equivalence
between M and N . That is, morphisms f W M ! N and gW N ! M such that
gıf D IN , and a homotopy map H W M !M such that IMCf ıgD d ıHCH ıd .
Both f and g will become obvious after we describe the chain complex and its
homology. So the focus of this paper will be on constructing H and verifying that it is
indeed a homotopy.

When Z is the (unique) genus 1 pointed matched circle, the size of the chain complex M

is small enough that H can be found directly. This is done in [3, Section 8.4]. The
computation here works for pointed matched circles of any genus, and one can easily
check that it agrees with the previous computation in the genus 1 case.

We now describe plans for the rest of this paper. In Section 2, we will review some
algebraic concepts, and describe the initial, larger model M of 1CFAA.IZ/. In Section 3
we describe the homotopy map H . In Section 4 we verify that it satisfies the homotopy
equation. In Section 5, we apply homological perturbation theory to describe the rank-1
model N of 1CFAA.IZ/, and prove the quasi-invertibility of 1CFDD.IZ/. Finally,
in Section 6 we give an application calculating some homology classes in the cobar
resolution of A.Z/.

Acknowledgements I would like to thank Peter Ozsváth for suggesting this problem,
and him and Zoltán Szabó for many helpful discussions in the course of writing this
paper. Finally, I would like to thank the referee for pointing out various improvements
to the presentation in the paper.
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2 Algebraic preliminaries

In this section we briefly review some algebraic concepts, and describe the initial model
M of the A1–bimodule 1CFAA.IZ/A.�Z/;A.Z/ .

We assume that the reader is familiar with pointed matched circles and the dg-algebra
A.Z/ associated to a pointed matched circle Z . In most parts of this paper, we will
have in mind some fixed pointed matched circle Z . Then, a generator of A.Z/ will
be represented by upward-veering strands, and a generator of A.�Z/ by downward-
veering ones. Paired horizontal strands in the generator will be shown using dashed
lines. Later on, when we are dealing solely with generators of A.Z/, we will also omit
the direction markers on strands.

After fixing a pointed matched circle Z , we will write A and A0 for the dg-algebras
A.Z/ and A.�Z/. For any element a 2A, its corresponding element in A0 is denoted
Na. In particular this applies to idempotents. If i 2A is an idempotent, we also define
o.i/ 2A to be the idempotent complementary to i .

Let A be a dg-algebra over a ground ring k (which will be the direct sum of copies
of F2 ). Recall that a right A1–module MA over A consists of a module M over k,
together with multilinear maps

m1;i W M ˝A˝i
!M

for all i � 0, where A˝i denotes the tensor product of i copies of A, and A˝0 is
just k. All tensor products are implicitly taken over k. These maps satisfy the A1
structure equation

(3) 0D
X

iCjDn

m1;j .m1;i.x; a1; : : : ; ai/; aiC1; : : : ; an/

C

nX
iD1

m1;n.x; a1; : : : ; dai ; : : : ; an/C

n�1X
iD1

m1;n�1.x; a1; : : : ; aiaiC1; : : : ; an/:

If we ignore those maps m1;i with i > 0, we get a chain complex, which is called the
chain complex underlying M.

A left type D structure AN over A consists of a module N over k, together with a
map

ı1
W N !A˝N;

satisfying the type D structure equation

(4) .�2˝ IN / ı .IA˝ ı
1/ ı ı1

C .�1˝ IN / ı ı
1
D 0:
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Here �1W A!A and �2W A˝A!A denote differential and multiplication on the
dg-algebra A (in keeping with the notation for the more general case, where A is an
A1–algebra). Later on we will also call type D structures modules.

In bordered Floer theory, the ground ring k is the direct sum of copies of F2 , one for
each indecomposable idempotent in A.Z/. For each dg-algebra A.Z/ and each A1–
module or type D structure, it is always possible to choose (often canonically) a set of
generators over F2 , such that each generator x has an indecomposable idempotent i.x/

satisfying x D i.x/x . Intuitively, we can think of algebras and modules as generated
over F2 , but each generator has an idempotent, such that idempotents are required to
match in algebra actions and in structure equations like (3) and (4).

Given a right A1–module MA and a left type D structure AN , the box tensor product
MA � NA is a chain complex whose underlying vector space is M ˝N , and whose
differential is given by

(5) @.x˝y/D

1X
kD0

.m1;k ˝ IN /.x˝ ı
k.y//:

Here ık W N !A˝k˝N is given by applying ı1 repeatedly on the N factor k times,
while applying the identity map on all A factors at each step. The sum in (5) is finite
under certain boundedness conditions on MA and AN . In bordered Floer theory,
these boundedness conditions correspond to admissibility conditions on the Heegaard
diagrams; see [1, Sections 2.4 and 4.4].

There are analogous definitions for bimodules, and the box tensor products between
them. They are given in detail in [4]. Given dg-algebras A and A0 , a right A1–
bimodule MA;A0 over A and A0 is a module M over k with structure maps

m1;i;j W M ˝A˝i
˝A0˝j

!M:

A type DA structure (or bimodule) ANA0 over A and A0 is a module N over k with
structure maps

ı1
i W N ˝A0˝i

!A˝N:

Finally, a type DD structure (or bimodule) A;A0N over A and A0 is a module N over
k with structure maps

ı1
W N !A˝A0˝N:

In each case, the structure maps satisfy a structure equation analogous to Equations
(3) and (4). Note each generator of the bimodules has two idempotents, one for each
algebra action. Also, we used the notational convention of writing each dg-algebra on

Algebraic & Geometric Topology, Volume 16 (2016)



236 Bohua Zhan

the side it acts on, with superscripts indicating type D action, and subscripts indicating
A1 (or type A) action.

For any module or bimodule M, we denote its opposite by M (see [4, Defini-
tion 2.2.31]). Taking the opposite switches the side of all algebra actions (or equivalently,
replaces the action of an algebra A by its opposite Aopp ).

In all examples of chain complexes and modules that we will encounter in this paper,
there is a canonical choice of generators of the underlying vector space. In such cases,
we can describe the differentials or structure maps as a sum of arrows. For chain
complexes, the differential is a sum of arrows x!y , where x and y are generators of
the chain complex. The arrow maps x to y , and all other generators to zero. Similarly,
the structure map of a left type D module over A is a sum of arrows x! a˝y , where
x and y are generators of the module, and a is a generator of A. The structure map of
a right A1–module over A is a sum of arrows of the form m1;i.x; a1; : : : ; ai/! y ,
where x and y are generators of the module, and a1; : : : ; ai are generators of A. This
terminology extends in a straightforward way to the various types of bimodules.

For dg-algebras A and B with ring of idempotents k, we say a bimodule M (of type
DD, DA, or AA) over A and B has rank 1 if its underlying module over k is free
of rank 1. There is a correspondence between rank-1 type DA bimodules BMA with
ı1

1
D 0 and A1–morphisms �W A! B (see [4, Lemma 2.2.50]). Given �W A! B ,

the corresponding bimodule is denoted B Œ��A . It has type DA actions ı1
1
D 0 and

ı1
kC1.1; a1; : : : ; ak/D �.a1; : : : ; ak/˝ 1:

We now describe in detail the initial model M of the A1–bimodule 1CFAA.IZ/, using
the formula from [4, Proposition 9.2]:

(6) 1CFAA.IZ/A;A0 DMorA. 1CFDD.IZ/A
A0 ; IA

A/

DMorA. A0A0 A0 � 1CFDD.IZ/A;A0

; IA
A/

D 1CFDD.IZ/A
0;A � AA A � A0A0 A0 ;

where the second line expands the definition of 1CFDD.IZ/A
A0 , and the third line uses

the identity Mor.M;N /DM � N . We begin by describing each of the three factors
in the last line of (6).

The type DD structure 1CFDD.IZ/A;A0

is computed in [3]. It is generated over F2 by
the set of pairs of complementary idempotents i ˝ i 0 , where i 2A and i 0 D o.i/ 2A0 .
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The type DD action on i ˝ i 0 is given by

(7) ı1.i ˝ i 0/D
X

�2C; ia.�/Da.�/j ;

i0a.�/Da.�/j 0

.a.�/˝ a.�//˝ .j ˝ j 0/:

Here C is the set of chords on Z , a.�/ 2A is the algebra element formed by summing
all ways of adding horizontal strands to � , and a.�/ is the corresponding element in
A0 . For example, an arrow in the genus 1 case is

(8) ı1

 !
!

 
˝

!
˝ ;

where

i D ; j D ; and a.�/D :

Note that the generators of 1CFDD.IZ/ are in one-to-one correspondence with idem-
potents of A. So 1CFDD.IZ/ has rank 1 as a module over k.

On taking the opposite, the directions of the arrows are reversed while the coefficients
are kept the same (that is, an arrow x ! a ˝ y in M corresponds to the arrow
y ! a˝ x in M). For later convenience we will also reverse the order of the two
algebra actions, so that idempotents and algebra elements in A0 come first.

As an example, the arrow in (8) gives rise to the following arrow in 1CFDD.IZ/A
0;A ,

which is ı1.j 0˝ j /! .a.�/˝ a.�//˝ .i 0˝ i/:

(9) ı1

 !
!

 
˝

!
˝

This is shown graphically in Figure 1.

The bimodule AAA is a left–right A1–bimodule with the same generators as A. The
A1–bimodule actions simply come from the dg-algebra actions on A. That is,8<:

m0;1;0.a/! b for each generator b in da;

m1;1;0.bI a/! ba whenever ba¤ 0;

m0;1;1.aI b/! ab whenever ab ¤ 0:

Here mi;1;k is the part of the A1–bimodule action with i algebra inputs on the left
and k algebra inputs on the right. We write the algebra and module inputs in order,
omitting any part with zero elements.
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ı1

a.�/ 2A0 a.�/ 2A

j 0 j

i 0 i

Figure 1: An example of an arrow in 1CFDD.IZ/A
0;A . Strands in A go

upward and strands in A0 go downward. For later convenience, we put A0 on
the left and A on the right, but remember that both are right type D actions.

The bimodule A0A0A0 is defined the same way, based on the dg-algebra A0 . By taking
opposites, the directions of the arrows are reversed. The algebra coefficients stay the
same, but acting on the opposite side. So the actions on A0A0A0 can be written as8<:

m0;1;0.b/! a for each generator b in da;

m0;1;1.baI b/! a whenever ba¤ 0;

m1;1;0.bI ab/! a whenever ab ¤ 0:

We can now describe the bimodule M in (6). The underlying vector space is generated
by triples Œa0; i 0˝ i; a� such that i 0 D o.i/, the idempotent i 0 agrees with the right
idempotent of a0 , and i agrees with the left idempotent of a. Since i 0 and i are
determined by a0 and a, we will omit them and simply write the pair Œa0; a�. The
condition on idempotents becomes that the right idempotent of a0 is complementary to
the left idempotent of a (using the identification between idempotents of A and A0 ).

The differentials in A0A0A0 and AAA give rise to the following arrows in M:�
Œa0; a�! Œa0; b� for each generator b in da;

Œb0; a�! Œa0; a� for each generator b0 in da0:

There is a third type of arrow, coming from the type DD action on 1CFDD.IZ/A
0;A

combined with the m1;1;0 actions on AAA and A0A0 A0 . The arrows are of the form

Œa0a.�/; a�! Œa0; a.�/a�
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for each chord � , and a 2A; a0 2A0 such that a.�/a¤ 0 and a0a.�/¤ 0.

As an example, we show in Figure 2 how one such arrow follows from the definition
of � � � . This example involves the type DD arrow in Figure 1. From left to right, the
three arrows composing the arrow in Figure 2 come from

� the A1–bimodule action m1;1;0 on A0 ,
� the type DD action ı1 on 1CFDD.IZ/, and

� the A1–bimodule action m1;1;0 on A.

ı1

m1;1;0 m1;1;0

A0 A

Figure 2: Example of the formation of an arrow in M .

The right A1 actions on M are simply the ones inherited from those on A0 and A
(this is because AAA and A0A0A0 have no A1 actions with both left and right algebra
inputs). They are given by the arrows�

m1;1;0.Œa
0; a�I b/! Œa0; ab� whenever ab ¤ 0;

m1;0;1.Œb
0a0; a�I b0/! Œa0; a� whenever b0a0 ¤ 0:

Here m1;j ;k is the part of the A1–bimodule action with j inputs from A and k

inputs from A0 . The first of the two equations comes from the action on A, and the
second from the action on A0 .

For simplicity of the discussion later, we will write everything in terms of elements
of A, so that the pair Œa0; a� is written as the pair Œa1; a2�, where a1 D a0 and a2 D a.
Translating the differential and the condition on idempotents, we arrive at the following
statement.
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Proposition 1 The A1–bimodule M is generated by pairs Œa1; a2�, where a1 and
a2 are generators of A, such that the left idempotent of a1 is complementary to the left
idempotent of a2 . There are three types of arrows in the differential:8<:
Œa1; a2�! Œa1; b� for each generator b in da2.
Œb; a2�! Œa1; a2� for each generator b in da1.
Œa.�/c; a�! Œc; a.�/a� for each chord � and a; c 2A such that

a.�/c ¤ 0 and a.�/a¤ 0.

The A1–bimodule action consists of the following arrows:�
m1;1;0.Œa1; a2�I a/! Œa1; a2a� whenever a2a¤ 0:

m1;0;1.Œa1a0; a2�I a
0/! Œa1; a2� whenever a1a0 ¤ 0:

In the following sections, we will draw a generator of M by drawing a1 and a2 side
by side. All strands are then going upward, so we omit directions on strands. Using
this convention, examples of the three types of arrows in the differential are shown in
Figure 3.

d d

d

Figure 3: Examples of arrows in the chain complex M underlying M .

3 Description of the homotopy

Let .M; d/ be the chain complex underlying M, described in the previous section.
There is a distinguished set of generators of M , consisting of Œa1; a2�, where both a1

and a2 are idempotents (which are necessarily complementary). By abuse of notation
we will also call these generators idempotents. It is clear that there are no arrows in the
differential in or out of these generators. Let .N; d 0 D 0/ be the subcomplex of M
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generated by the idempotents. We will show that N is the homology of M , so that
N and M are homotopy equivalent. There are obvious chain maps f W N !M and
gW M !N , where f is the inclusion map and g is the map sending the idempotents to
themselves and all other generators to zero. It remains to find a homotopy H W M !M

satisfying
d ıH CH ı d D IM Cf ıg:

We set H.x/D 0 for all idempotents x . Then the above equation holds trivially on
idempotents. On the other generators, we have f ıg D 0, so the equation reduces to
d ıH CH ı d D IM .

We now describe H on the non-idempotents, and verify the required relation in the
next section. From now on all generators that we mention are assumed to be a non-
idempotent. We will call the arrows in the differential of M the d –arrows, and the
arrows in the map H the H –arrows.

For a generator Œa1; a2� in C , we define the multiplicity mult.Œa1; a2�/ 2H1.Z n z; a/

to be the sum of multiplicities of a1 and a2 . Note that this is invariant under the
differential. So the chain complex splits into disjoint parts according to multiplicity,
and to specify the homotopy, it is sufficient to do so on each part. We say an element
Œa1; a2� has multiplicity one if its multiplicity on each component of Z n a is at most
one. The construction of H for generators of multiplicity one is different from that for
other generators.

3.1 Multiplicity one

We begin with generators of multiplicity one. Let S be the set of components of Z na

not containing the basepoint z (that is, the generators of H1.Z n z; a/). There is an
ordering <Z on S , depending on the pointed matched circle Z , given as follows.
Attach handles to Z according to the matching on a . Then, traverse the boundary
of Z with handles attached, starting from the top (with Z oriented so that strands in
A.Z/ go upwards). Order S according to when we encounter each element. Note that
we will encounter each element of S exactly once before reaching the bottom, due to
the condition that must be satisfied for the matching on a pointed matched circle. An
example is shown in Figure 4.

Let .p;pC 1/ be an element of S (with pC 1 above p ). The segment immediately
before .p;pC 1/ in the ordering <Z can be found as follows. Let q be the point
paired with pC 1 in Z . If q is the topmost point of a � Z , then .p;pC 1/ is the
initial segment. Otherwise .q; qC 1/ is the segment prior to .p;pC 1/. See Figure 5
for a demonstration.
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3

2

1

4

7

6

5

Figure 4: Example of traversal on the split pointed matched circle with
genus 2. The numbers denote the ordering <Z on S . Note that strands in
A.Z/ go upwards.

p

pC 1

q

key segment

empty

q

p

pC 1

empty

key segment

Figure 5: Identifying the segment prior to .p;pC 1/ . In the first case the
segment .q; qC 1/ may be the component of Z containing the basepoint.

Given a generator x D Œa1; a2� with multiplicity one, we define the key segment of
x to be the first segment in S , according to the ordering <Z , at which mult.x/ is
one. Let .p;pC 1/ be the key segment, and q be the point paired with pC 1. Define
the pair fpC 1; qg to be the key pair of x . The main property that results from this
construction is that while x has multiplicity 1 at .p;pC 1/, it must have multiplicity
zero at .q; qC 1/ (one possibility is that q is the topmost point).

In the following, given a generator Œa1; a2�, we say that the key segment is occupied
on the left if it is covered by a1 , and on the right if it is covered by a2 . Since the left
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idempotents of a1 and a2 are complementary, one of them contains the key pair. We
say the key pair is occupied on the left if it is contained in the left idempotent of a1 ,
and on the right if it is contained in the left idempotent of a2 . We also distinguish
whether the algebra element realizes the key pair as a double-horizontal or as the start
of a non-horizontal (moving) strand. Note that in the latter case, since the multiplicity
at .q; qC 1/ is zero, the strand must start at pC 1.

The above classification divides all (non-idempotent) generators into eight types. We
will define H.x/ based on the type of x .

In the following, let a! b denote the strand starting at a and ending at b (so we
always have a < b ). By moving the strand a! b to the left, we mean that starting
from Œa1; a2�, we construct a new generator Œa0

1
; a0

2
�, with the strands in a0

2
obtained

from those in a2 by either removing the strand a! b , or by factoring a! b from the
end of a longer strand in a2 ; and with the strands in a0

1
obtained from those in a1 by

adding the strand a! b . If rather than adding the strand a! b , we wish to attach it
to an existing strand in a1 , we will state so explicitly. Similarly we have the notion of
moving the strand a! b to the right. Sometimes we will do two moves at the same
time (with the intermediate state possibly not valid strand diagrams). The location of
double horizontals on a0

1
and a0

2
is usually clear (noting that the left idempotents of

a0
1

and a0
2

must be complementary). We will clarify it when it is ambiguous.

In all figures illustrating multiplicity one cases, we will use a dotted parenthesis to
denote the key pair. We will also show q to be above rather than below pC 1, so the
key segment is just below the dotted parenthesis, but the definition of H is the same in
both cases.

For exactly four types of x , we have H.x/¤ 0. The values of H.x/ in these four
types are as follows (see Figure 6):

(1) If the key segment is occupied on the left and the key pair is occupied on the left
as a double-horizontal, then there is a strand a! b on the left with a<pC1< b .
Set H to resolve the crossing involving the horizontal strand at pC 1.

(2) If the key segment is occupied on the right and the key pair is occupied on the
right by a moving strand, then there must be strands i ! pC 1 and pC 1! j

on the right. Set H to replace these two strands with the strand i ! j and the
double-horizontal at fpC 1; qg.
If there is a strand ending at q on the left, then there is an additional term in H ,
moving the strand ending at q to the right and the strand i ! pC 1 to the left.

(3) If the key segment is occupied on the right by a strand i! j , and the key pair is
occupied on the left as a double-horizontal, then H factors the strand i! pC1

from the right and moves it to the left.
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(4) If the key segment is occupied on the right, and the key pair is occupied on the
left by a moving strand, then there must be a strand pC 1! j on the left and
a strand i ! pC 1 on the right. Set H to move the strand i ! pC 1 to the

Case 1

H

Case 2

Hord Hsp

Case 3

H

Case 4

Hord Hsp

Hsp

Figure 6: Diagrams for the homotopy map in multiplicity-one cases.
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left attaching it to the pC 1! j strand, and leaving a double horizontal at
fpC 1; qg at right.
There are two special cases: first, if there is a strand j ! q with j ¤ pC 1

on the left, then H contains an additional term moving j ! q to the right and
i!pC1 to the left. Second, if there is a strand pC1! q on the left (possible
only if q > pC 1), then H contains an additional term moving pC 1! q to
the right and i ! pC 1 to the left.

The overall picture is as follows. We partition all generators of multiplicity one into
ordered pairs, such that for each ordered pair .xi ;yi/, there is a d –arrow xi ! yi .
The part of H not including the three special cases maps each yi to xi and xi to zero.
In verifying the relation d ıH CH ıd D IM , the compositions d ıH W yi! xi! yi

and H ı d W xi! yi! xi account for the identity. If .xi ;yi/ is an ordered pair, we
say xi is on the d –side and yi is on the H –side. The three special cases in H are
additional maps from the H –side to the d –side (that is, mapping yi to xj for some
i ¤ j ). Intuitively, the part of H mapping each yi to xi performs the inverse of a
d –arrow around pC 1. The special arrows perform a different move around pC 1,
along with moving a strand ending at q to the right.

Whether a generator is on the d –side or the H –side depends solely on the type of
the generator. The eight types are summarized in Table 1. The numbers after d or H

indicate which case they will be covered under in the proof in the next section, and if
labeled H , also the case of H in the above description.

key seg.
key pair left, double-hor. right, double-hor. left, moving right, moving

left H–1 d–7 d–5 d–8
right H–3 d–6 H–4 H–2

Table 1: Summary of cases for multiplicity one generators.

It would be simpler if there were no special cases in H ; that is, if the only H –arrows
were those from the H –side to the d –side of the same pair. However, this is impossible
as demonstrated in Figures 7 and 8. Each figure shows four generators x;y ; z;w such
that

dx D y Cw and dzDw;

with no other d –arrows involving these generators. This forces the homotopy to be

Hy D xC z and HwD z:
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d d
d

Case 4, second special H .

Figure 7: Examples of why special cases of homotopy are needed, part 1.

3.2 Other generators

We now consider generators that do not satisfy the multiplicity one condition. Let
xD Œa1; a2� be such a generator. This means mult.x/ is greater than 1 at some segment
in S . Let Œi; i C 1� be the bottom-most segment with multiplicity greater than 1 (note
that we are no longer using the ordering <Z on S ). Since two strands cannot start
from the same point i , this segment must have multiplicity 2, and the segment Œi �1; i �

must have multiplicity 1. There is a unique strand starting at i (call it the i strand) and

d d
d

d d
d

Case 2, special H Case 4, first special H .

Figure 8: Examples of why special cases of homotopy are needed, part 2.
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a unique strand that covers Œi � 1; i �. Let j be the starting point of the strand covering
Œi � 1; i �, and call that strand the j strand. Note that i , but not j , is unchanged in any
d –arrow.

The definition of H consists of the following cases (see Figure 9):

(1) If both the i strand and the j strand are on the left, and they cross each other,
the H –arrow uncrosses the two strands.

(2) If both the i strand and the j strand are on the right, and they do not cross, the
H –arrow crosses the two strands.

(3) If the i strand is on the left and the j strand is on the right, the H –arrow factors
the strand j ! i from the right and moves it to the left attaching to the i strand.

Case 1 Case 2

H H

Case 3

H

Figure 9: Diagrams for the homotopy map in the non-multiplicity-one cases.

On all other generators H is zero. The cases are summarized in Table 2. There is again
a pairing of generators .xi ;yi/, so that for each pair there is a d –arrow xi! yi . In
this case, there are no special cases in H , so H is exactly the map sending yi to xi

and xi to 0 in each pair .xi ;yi/.

4 Verification of the homotopy

4.1 Multiplicity one

In this section we verify that the map H defined above satisfies the equation d ıH C

H ı d D IM on the non-idempotent part of M , beginning with the multiplicity one
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i strand
j strand left right

left (d ,H )-1 H -3
right d -4 (d ,H )-2

Table 2: Summary of cases for generators not of multiplicity one.

case. We do so by checking the equation

(10) d ıH CH ı d D IM

on each of the eight types of generators. Depending on the type, the generator appears
on one side of some pair .xi ;yi/. For every such pair, there is a d –arrow xi ! yi

and an H –arrow yi! xi . So there is a natural identity term in d ıH CH ıd , and it
remains to check that all other terms sum to zero.

Write H D Hord CHsp , where Hsp contains arrows coming from the three special
cases of H , and Hord is the remaining part of H . So for each pair .xi ;yi/ we have
Hordyi D xi . It is also not difficult to determine yi from xi : simply take the obvious
differential around pC 1. We call a generator special if it appears on either side of a
pair .xi ;yi/ such that Hspyi ¤ 0. One easily checks that a generator is special if and
only if there is a strand ending at q on the left. Generators of type H -1, H -3, d -5
and d -8 can never be special (the first two due to a double horizontal on the left, the
last two due to a strand ending at pC 1 on the left).

The strategy for verifying (10) is different for generators on the H side and the d side,
so we will describe them separately. For a generator y on the H –side, we define three
sets of generators of M . Let G1 be the set of terms in dy that are on the H side,
G2 be the set of all terms in d.Hordy/ excluding y , and G3 be the set of all terms in
d.Hspy/. For a non-special y , G3 is of course empty. We will show that in this case
all generators in G1 are also non-special, and that Hord induces a bijection between
G1 and G2 . For special y we will show the following:

� There is a generator yo common to both G2 and G3 .

� All generators in G1 are also special.

� The map Hord induces a bijection between G1 and G2 n fyog.

� The map Hsp induces a bijection between G1 and G3 n fyog.

These imply that the terms in d ıH CH ı d other than the natural identity term sum
to zero.
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A large part of the bijection can be considered “trivial”, since it involves d –arrows that
do not modify strands around pC1 or q . They can be carried out in the “same” way on
either side of an H –arrow. So a term in dy coming from a d –arrow away from pC1

and q corresponds to the term obtained by performing the “same” move in d.Hordy/

or d.Hspy/. Since H –arrows can introduce double horizontals at fpC 1; qg on the
right side, it can affect whether a strand ending at q on the left can be moved to the
right in a d –arrow. This is essentially the reason why special cases are needed.

The main checks are therefore for differentials involving strands around pC 1 and q .
The cases are described below, and the reader is advised to follow along using the
illustrations in the online supplement [6]. In each cancellation diagram in the supple-
ment, the top-left generator is y , the top-right generator is either Hordy or Hspy (as
indicated on the top edge). The bottom-left generator is an element in G1 , and the
bottom-right generator is the corresponding element in G2 or G3 . For generators that
are special, there is one more diagram showing the cancellation involving yo . In these
diagrams, y is on the top left, Hordy is on the bottom left, Hspy is on the top right,
and yo is on the bottom right.

We now turn to the case of a generator x on the d –side. The first term in d ıHCH ıd

is zero. There is a distinguished term y in dx : the generator paired with x . If x is
non-special, then y is also non-special, and we show that this is the only term in dx

on the H side. If x is special, then y is also special, and we show there is exactly one
other, non-special, term y 0 in dx on the H side, and that Hspy DHy 0 . This verifies
the equation for x . In the supplement, we will show a diagram for each type of the
last cancellation, with x on the top-left, y on the bottom-left, y 0 on the top-right, and
Hspy DHy 0 on the bottom-right.

We will assume throughout that in the key pair fpC 1; qg the point q is above pC 1.
The reader may check that in the other case the situation is the same or simpler.

H

Figure 10: Homotopy, Case 1.

4.1.1 Case 1 In this case we consider generators y with key segment at left and key
pair at left as a double horizontal. The H –arrow y ! x is shown in Figure 10. There
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are no special generators. The d –arrows starting at y involving the one strand around
pC 1 include:

(Case 1.1) Merging with a strand above.

(Case 1.2) Merging with a strand below.

(Case 1.3) Moving a part not containing pC 1 to the right.

(Case 1.4) Moving a part containing pC 1 to the right.

The d –arrows starting at x involving the two strands shown include:

(Case 1.1) Merging upper strand with a strand above.

(Case 1.2) Merging lower strand with a strand below.

(Case 1.3) Moving a part of the lower strand.

(Case 1.4) Moving a part of the upper strand.

Crossing the two strands gets back to y .

Hord Hsp

Figure 11: Homotopy, Case 2.

4.1.2 Case 2 In this case we consider generators y with key segment at right and
key pair at right as the start of a moving strand. The Hord –arrow y ! x and the
possible Hsp –arrow y ! x0 are shown in Figure 11. First suppose the generator y is
non-special (that is, no strand of y ends at q ). The d –arrows starting at y involving
the two strands shown include:

(Case 2.1) Splitting the lower strand.

(Case 2.2) Splitting the upper strand.

(Case 2.3) Moving a strand from left to attach to lower strand.

The d –arrows starting at x involving the single strand shown include:

(Case 2.1) Splitting the single strand below pC 1.
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(Case 2.2) Splitting the single strand above pC 1.

(Case 2.3) Moving a strand from left to attach to the single strand.

Uncrossing the single strand gets back to y .

Now suppose y is special. There is one more d –arrow starting at x . This is because
the homotopy produces a double-horizontal at fpC 1; qg, so a strand ending at q on
the left can now move to the right. This term cancels against a special d –arrow starting
at x0 , as shown in Case 2.4.

For the case when y is special, there is one more relevant strand: the strand ending
at q . The d –arrows starting at y involving this strand include:

(Case 2.5) Merging with a strand below.

(Case 2.6) Moving part of the strand to the right.

The d –arrows starting at x involving this strand are exactly the same. The cancellations
are shown in Cases 2.5a and 2.6a. The d –arrows starting at x0 involving this strand
include:

(Case 2.5) Attaching with a strand moved from the left.

(Case 2.6) Splitting the strand.

The cancellations are shown in Cases 2.5b and 2.6b. The d –arrows starting at x0

involving the two strands around pC 1 include:

(Case 2.7b) Moving part of the lower strand to the right.

(Case 2.8b) Splitting the upper strand.

(Case 2.9b) Merging the lower strand with a strand below.

These cancel against d –arrows starting at y as in Cases 2.1, 2.2, and 2.3, respectively.

4.1.3 Case 3 In this case we consider generators y with key segment at right and
key pair at left as a double horizontal. The H –arrow y ! x is shown in Figure 12.
Note if the single strand on the H side ends exactly at pC 1, then a double horizontal
is produced on the right side (however, since no strand can end at q on the left, there
are no special cases). The d –arrows starting at y involving the single strand include:

(Case 3.1) Splitting at a point above pC 1.
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H

Figure 12: Homotopy, Case 3.

(Case 3.2) Splitting at a point below pC 1.

(Case 3.3) Attaching with a strand moved from the left.

The d –arrows starting at x include:

(Case 3.1) Splitting the right strand.

(Case 3.2) Moving part of the left strand to the right.

(Case 3.3) Merging the left strand with a strand below.

Moving all of the left strand to the right gets back to y .

Hord Hsp

Hsp

Figure 13: Homotopy, Case 4.

4.1.4 Case 4 In this case we consider generators y with key segment at right and
key pair at left as the start of a moving strand. The Hord –arrow y ! x and the two
possible Hsp –arrows y ! x0 are shown in Figure 13. Note that the conditions for the
two possible Hsp –arrows are mutually exclusive, so there is at most one Hsp –arrow in
any given case.

We first consider the case where y is non-special. The d –arrows starting at y involving
the two strands shown include:
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(Case 4.1) Splitting the right strand.

(Case 4.2) Attaching the right strand with a strand moved from the left.

(Case 4.3) Moving part of the left strand to the right.

(Case 4.4) Merging the left strand with a strand above.

The d –arrows starting at x involving the single strand shown include:

(Case 4.1) Moving to the right a part not containing pC 1.

(Case 4.3) Moving to the right a part strictly containing pC 1.

(Case 4.2) Merging with a strand below.

(Case 4.4) Merging with a strand above.

Moving a part containing pC 1 on the boundary gets back to y .

Now suppose y is special. Since H creates a double horizontal at fpC 1; qg, there
is one more d –arrow starting at x , moving the strand ending at q to the right. This
strand may or may not extend to pC 1, giving the two special cases. This cancels
against a special d –arrow starting at x0 in both cases, as shown in Cases 4.5 and 4.6.

For the other cases, there is again one more relevant strand, ending at q . The d –arrows
starting at y involving this strand include:

(Case 4.7) Merging with a strand below, resulting in a strand starting above pC 1.

(Case 4.8) Moving part of the strand to the right.

(Case 4.9) Merging with a strand below, resulting in the strand pC 1! q .

The d –arrows starting at x are exactly the same for Cases 4.7 and 4.8. For Case 4.9 the
strand ending at q is merged with a longer strand (shown in Case 4.9a). The d –arrows
starting at x0 involving this strand include:

(Case 4.7b) Attaching a strand moved from the left, resulting in a strand starting
above pC 1.

(Case 4.8b) Splitting the strand.

(Case 4.9b) Attaching a strand moved from the left, resulting in the strand pC1!q .

Finally, we consider d –arrows starting at x0 involving the two strands around pC 1.
They include:
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(Case 4.10b,c) Moving part of the lower strand to the right.

(Case 4.11b,c) Joining the lower strand with a strand below.

(First special case, Case 4.12b) Moving part of the upper strand to the right.

(Second special case, Case 4.12c) Splitting the upper strand.

(First special case, Case 4.13b) Joining the upper strand with a strand above.

These cancel against d –arrows starting at y as in Cases 4.1 through 4.4.

d H

Figure 14: Identity term in Case 5.

4.1.5 Case 5 In this and the next three cases we consider generators on the d side.
In this case, the generator x has key segment at left and key pair at left as the start of a
moving strand. There are no special generators in this case (due to a strand ending at
pC1 on the left). The only d –arrow x! y to the H side and the H –arrow y! x ,
giving the identity term, are shown in Figure 14.

The only other d –arrow starting at x that changes the type of the generator is shown
in Figure 15, but we are still on the d side.

d

Figure 15: A d –arrow that moves to a different type, but still on the d side.

4.1.6 Case 6 In this case, the generator x has key segment at right and key pair at
right as a double horizontal. If x is not special, Figure 16 shows the only d –arrow
x! y to the H side. If x is special — that is, if there is a strand ending at q on the
left — then the d –arrow moving that strand to the right will move the double horizontal
to the left, making a generator on the H side. This corresponds to the special case in
Case 2 (Case 6.1).
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d H

Figure 16: Identity term in Case 6.

d

Figure 17: A d –arrow that maps to the H side in Case 6, forcing a special case.

d H

d H

Figure 18: Identity term in Case 7.

4.1.7 Case 7 In this case, the generator x has key segment at left and key pair at
right as a double horizontal. Figure 18 shows the obvious d –arrow x! y to the H

side. If there is a strand ending at q (only possible in the second of the two cases in
Figure 18), this strand can be moved to the right, moving the double horizontal to the
left and changing the type of the generator. There are two ways this can happen, as
shown in Figure 19. They correspond to the special cases in Case 4 (Cases 7.1 and 7.2).
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d d

Figure 19: d –arrows that map to the H side in Case 7, forcing two special cases.

4.1.8 Case 8 In this case, the generator x has key segment at left and key pair at
right as the start of a moving strand. The only d –arrow x! y to the H side is shown
in Figure 20. There are no special generators.

This concludes the check for generators of multiplicity one.

d H

Figure 20: Identity term in Case 8.

4.2 Other generators

We now consider generators that do not have multiplicity one. They can be classified
into four types as in Table 2. We will again check each type separately. The strategy is
even simpler than before, as there are no special cases. For a generator on the H side,
we check that there is a bijection between the corresponding sets G1 and G2 . For a
generator on the d side, we check that there is exactly one differential to the H side,
carrying it to the generator in the same pair.

The checks for Cases 1 and 2 in the definition of H have a common ingredient:
checking those terms where both the d –arrow and the H –arrow are restricted to the
same side. For Case 2, the argument is the same as the one used to show H�.A.Z//D 0

on generators with multiplicity greater than one. This is given in [4, Section 4]. While
the proof there uses a slightly different homotopy, the argument easily adapts to the
homotopy we give here. For Case 1 we use the dual of that argument. With these cases
covered, we will only consider terms in d ıH CH ı d that involve both sides.
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H

Figure 21: Homotopy in Case 1.

4.2.1 Case 1 In this case both the i strand and the j strand are on the left. The
H –arrow y ! x is shown in Figure 21.

We begin by verifying the equation for y . The d –arrows starting at y involve moving
a part of the j strand to the right. The end of that part can be:

(Case 9.1) Lower than i .

(Case 9.2) Higher than the endpoint of the i strand.

(Case 9.2’) Coinciding with the endpoint of the i strand.

(Case 9.3) In between i and the endpoint of the i strand.

Note that if part of the shorter strand is moved, we remain on the d side (Figure 22).
As stated in the beginning of this section, we may ignore d –arrows within the left side.

d

Figure 22: A term in the differential that remains on the d side.

The d –arrows starting at Hy D x include:

� (Case 9.1) Moving part of the j strand not containing i .

� Moving part of the i strand. The end of that part can be:

(Case 9.2) Above the endpoint of the j strand.
(Case 9.2’) Coinciding with the endpoint of the j strand.
(Case 9.3) Below the endpoint of the j strand.
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Note that it is impossible to move part of lower strand containing j , due to the
multiplication rule that double crossing gives zero.

Now we verify the equation for x on the d side. Crossing the two strands shown is the
only way to go to a generator of type 1 on the H side (note that we already covered
the case where the d –arrow happens within the left side). It is impossible to reach
type 2 (both strands on the right). To reach type 3, we need to arrange that the new
j strand is at right. This means we will need to move a part of the current j strand
containing i to the right. However, this will produce a double crossing.

H

Figure 23: Homotopy in Case 2.

4.2.2 Case 2 In this case, both the i strand and the j strand are on the right. The
H –arrow y ! x is shown in Figure 23.

For generators on the H side, the d –arrows that involve only the right side are again
covered by the computation of H�.A.Z//. There is only one other case that involves
the displayed strands: moving a strand from the left to attach to the j strand (for both
dy and d.Hy/). This is shown in Case 10.1. Note that the interval Œj ; i � cannot be
occupied on the left side.

For generators on the d side, there is no way to reach the H side other than by
d –arrows involving only the right side.

H

Figure 24: Homotopy in Case 3.

4.2.3 Case 3 In this case, the i strand is on the left and the j strand is on the right.
The H –arrow y! x is shown in Figure 24. We consider the generator y in this case.

The d –arrows starting at y include:
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(Case 11.1) Merging the i strand with a strand above.

(Case 11.2) Splitting the j strand below i .

(Case 11.3) Splitting the j strand above i .

(Case 11.4) Attaching the j strand with a strand moved from left.

(Case 11.5) Moving part of the i strand to the right, so that the new strand on the
right does not cross the j strand.

If the new strand on the right does cross the i strand, we remain on the d side
(Figure 25).

d

Figure 25: A term in the differential that remains on the d side.

The d –arrows starting at Hy D x include:

(Case 11.1) Merging the j strand with a strand above.

(Case 11.4) Merging the j strand with a strand below.

(Case 11.3) Splitting the i strand.

(Case 11.2) Moving part of j strand not containing i to the right.

(Case 11.5) Moving part of j strand to the right, so that the new strand on the right
crosses the i strand.

Note that if the new strand on the right interleaves, and does not cross the i strand, the
term is zero by double crossing (Figure 26).

4.2.4 Case 4 In this case we consider the generator x in the H –arrow in the previous
case, with the i strand on the right and the j strand on the left. Besides the obvious
d –arrow to y , the only other possible way to reach the H side is by moving part
of the j strand containing i to the right. However, this is impossible due to double
crossing (same example as in Figure 26).

This concludes the check for generators with multiplicity greater than one, and the
verification that H is indeed a homotopy.
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No d

Figure 26: An example of a term that is not in the differential of Hx due to
double crossing.

5 A rank-1 model of 2CFAA.I/Z/

Having found a homotopy H on the chain complex underlying the A1–bimodule M,
we can use homological perturbation theory to describe the smaller bimodule N . We
refer the reader to [3, Section 8.2] on how to construct an A1–bimodule action using
homological perturbation theory. The result is summarized in the following theorem.

Theorem 5.1 The A1–bimodule NA0;A , described below, is homotopy equivalent to
the bimodule M given in (6), and is therefore a model of the invariant 1CFAA.IZ/A0;A .

The vector space N underlying N is generated over F2 by the indecomposable
idempotents of A (using the definitions in Section 2, N is a rank-1 bimodule). The
arrows in the A1–bimodule action are in one-to-one correspondence with sequences
Œa1;1; a1;2�; : : : ; Œa2n;1; a2n;2� of generators of A that satisfy these three conditions:

(i) Œa1;1; a1;2�D Œi
0; i � and Œa2n;1; a2n;2�D Œj

0; j � for some idempotents i; j 2 A,
and i 0 D o.i/, j 0 D o.j /.

(ii) Each Œa2k;1; a2k;2� is obtained from Œa2k�1;1; a2k�1;2� by either factoring out
some b02A from a2k�1;1 on the right (so that a2k�1;1Da2k;1b0 and a2k�1;2D

a2k;2 ), or by multiplying a2k�1;2 with some b 2A on the right (so that a2k;2D

a2k�1;2b and a2k;1 D a2k�1;1 ). The elements b0 and b are not necessarily
equal between steps.

(iii) Each Œa2kC1;1; a2kC1;2� is obtained from Œa2k;1; a2k;2� by one of the H arrows
described in Section 3.

Let b0
1
; : : : ; b0p be the sequence of b0 2A0 and let b1; : : : ; bq be the sequence of b 2A

used in condition (ii). The arrow corresponding to this sequence is

m1;p;q. Œi �I b
0
1; : : : ; b

0
pI b1; : : : ; bq/! Œj �:

Here m1;p;q is the part of the A1–bimodule action on N with p inputs on the A0 side
and q inputs on the A side. The idempotent of a generator Œi � of this A1–bimodule is
i on the A side and o.i/ on the A0 side.
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For example, let Z be the genus 1 pointed matched circle. The sequence of Œai;1; ai;2�

given by

! ! ! ! !

gives rise to the following arrow in the action:

m1;1;2

 " #
I I ;

!
!

" #
;

where Œi � for an idempotent i 2A denotes the corresponding generator of N .

Since A0 and A are opposite algebras, we can also consider N as a left-right A1–
bimodule ANA . We will use this form of N in the next section.

The bimodule N inherits a relative grading from the larger model M. Since the
generators in N are those in M composed of idempotents, we may choose the relative
grading so that the grading of all generators in N are zero (this is also the grading
one would obtain from the standard Heegaard diagram for the identity diffeomorphism,
starting with a zero grading for any one of the generators).

We now prove the main results of this chapter.

Proof of Theorem 1.1 Let

(11) LA
A D

1CFAA.IZ/A0;A � 1CFDD.IZ/A;A0

'NA0;A � 1CFDD.IZ/A;A0

:

Since the vector spaces underlying both N and 1CFDD.IZ/ are generated by idempo-
tents, the vector space underlying L is also generated by idempotents. So L is a rank-1
bimodule. Furthermore, the type DA–bimodule action in L satisfies ı1

1
D 0 since

all arrows in N involve non-idempotent algebra inputs from both A0 and A. Hence
[4, Lemma 2.2.50] applies, showing LA

A D Œ��A
A for some A1–algebra morphism

�W A!A.

From the grading on N and 1CFDD.IZ/, there is a relative grading on L with all
generators having grading zero. This implies that the A1 morphism � respects the
G.Z/–grading on A. By classifying arrows in N involving only one length 1 chord on
each side, it is clear that �1.�/D� for any length 1 chord � . By [4, Proposition 4.11], we
conclude that �1 induces the identity map on homology. So � is a quasi-isomorphism
and L is quasi-invertible.

Corollary 5.2 1CFDD.IZ/ is quasi-invertible, hence the functor �� 1CFDD.IZ/ in-
duces an equivalence of categories between the category of right A1–modules over
A.Z/, and the category of left type D structures over A.�Z/.
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Proof With L as in (11), there is an L0 such that

AIA ' L0�L' L0�N � 1CFDD.IZ/;

which means L0�N is the quasi-inverse to 1CFDD.IZ/.

Remark The stronger statement, that N is the quasi-inverse of 1CFDD.IZ/, will be
proved combinatorially in [5].

6 Examples of Koszul duality

In this section, we use our description of N ' 1CFAA.IZ/ to give an explicit A1
morphism from ADA.Z/ to Cob.A/, inducing an isomorphism on homology. We
will assume in this section that N is in fact the quasi-inverse of 1CFDD.IZ/. First, we
review some material from [4] and [2, Section 8].

Definition 1 An augmentation of a dg-algebra A is a map �W A ! k satisfying
�.1/D 1 and �.a1a2/D �.a1/�.a2/. Given an augmentation, we let AC D ker.�/ be
the augmentation ideal of A.

The strand algebra A is augmented with the augmentation map � sending each idempo-
tent to itself and other generators to zero. So the augmentation ideal AC is generated
by the non-idempotents.

Definition 2 Given an augmented dg-algebra A, the cobar resolution Cob.A/ is
defined as T �.ACŒ1�

�/, the tensor algebra of the dual of the augmentation ideal. This
can be given the structure of a dg-algebra, with product being the one on the tensor
algebra, and the differential consisting of the following arrows:

a�1˝ � � �˝ b�˝ � � �˝ a�k ! a�1˝ � � �˝ a�i ˝ � � �˝ a�k

for each i and term b in dai , and

a�1˝ � � �˝ a�i ˝ � � �˝ a�k ! a�1˝ � � �˝ b�˝ b0�˝ � � �˝ a�k

for each i and generators b; b0 such that bb0 D ai .

For any augmented dg-algebra A, there is a type DD bimodule Cob.A/KA , of rank 1
over k, and with type DD action given by

ı1.1/D
X

i

a�i ˝ 1˝ ai ;
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where the sum is over a set of generators of AC (the sides of the action are reversed in
comparison to [2], for ease of computation later). One may check that this satisfies
the structure equation for type DD bimodules. The fact that this bimodule is always
quasi-invertible shows that A is Koszul dual to Cob.A/ (see [2, Proposition 8.12]).

The following is contained in the proof of [2, Proposition 8.11].

Proposition 2 Let ANA be a rank-1 representative of A 1CFAA.IZ/A . Then

KCob.A/ A � NA A

is of the form Cob.A/Œ��A , where � is an A1 morphism A! Cob.A/ that induces an
isomorphism on homology.

In particular �1 (the part of � taking one input) maps representatives of homology
classes of A to representatives of homology classes of Cob.A/. Unwinding all the
definitions, we obtain the following rule for computing this map.

Proposition 3 Let a 2 A be a generator of A. Then terms in �1.a/ 2 Cob.A/
correspond to arrows in the A1 action of ANA of the form

mp;1;1.a1; : : : ; ap; Œi �; a/! Œj �;

with the above arrow giving rise to the term

a�p˝ � � �˝ a�1

in �1.a/.

We now give some examples. In each case, there is exactly one algebra input a 2A on
the right. So in the notation of Theorem 5.1, the sequence must start with a2;2 D a,
then alternate between applying an H –arrow and factoring from a2k�1;1 .

For a length 1 strand a 2 A, we get �1.a/ D a� . For the first non-trivial case, we
consider a length 2 strand, when none of the three points are paired. There are two
possible orderings of the two intervals in <Z . If the upper interval comes first, the
sequence

! ! !

gives

(12) �1

� �
D ;

where we used the same diagram to represent a and a� .
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If the lower interval comes first, the sequence

! ! ! ! !

gives:

(13) �1

� �
D ˝

The right side of Equations (12) and (13) represent the same homology class in Cob.A/,
since their difference is given by

d
� �

:

Now we consider a more complicated example, which shows the possible complications
that can arise in such a computation.

Consider a length 4 interval in a larger pointed matched circle, where the second and
fourth of the five points are paired. There are two possibilities for the relative orderings
of the four intervals in <Z . This is because the second interval (counting from below)
must immediately precede the third interval, and the fourth interval must immediately
precede the first interval. The two possible relative orderings are given as follows:

1
4
3
2

3
2
1
4

We will simply refer to them as 1-4-3-2 and 3-2-1-4 from now on. The two generators

(14) a1 D ; a2 D

represent the same homology class in A. Consider first the ordering 1-4-3-2, using
the representative a1 . There are three terms in �1.a1/. The first term comes from the
following sequence:

! ! ! ! !

The second term comes from:

! ! ! ! !
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The third term comes from:

! ! ! ! !

! ! ! !

Note the use of a special H –arrow in the fourth step of the last sequence. This produces:

(15) �1

 !
D ˝ C ˝

C ˝ ˝ ˝

If the ordering is 3-2-1-4, a straightforward sequence gives:

(16) �1

 !
D ˝ ˝ ˝

The difference between the right sides of Equations (15) and (16) is:

d

 
˝ C ˝ C ˝ ˝ C ˝ ˝

!

Now we consider representative a2 of the same homology class of A. If the ordering
is 1-4-3-2, the sequence is straightforward, giving:

(17) �1

 !
D ˝ ˝ ˝

The difference between the right sides of Equations (17) and (15) is

d

 !
:
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Finally, if the ordering is 3-2-1-4, one can check there is a single sequence, which uses
a special H –arrow in the fourth step:

! ! ! ! !

! ! ! !

This produces:

(18) �1

 !
D ˝ ˝ ˝

The right side is the same as that in Equation (16). This finishes the consistency check
that the same homology class in Cob.A/ is obtained using any valid local ordering of
the intervals, and any representative of the same homology class in A. In general, one
can expect the computation to be more complicated as the length of elements in the
homology class increases.
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