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Geometry of the SL.3; C/–character
variety of torus knots

VICENTE MUÑOZ

JOAN PORTI

Let G be the fundamental group of the complement of the torus knot of type .m; n/ .
It has a presentation G D hx;y j xm D yni . We find a geometric description of
the character variety X.G/ of characters of representations of G into SL.3;C/ ,
GL.3;C/ and PGL.3;C/ .

14D20; 57M25, 57M27

1 Introduction

Since the foundational work of Culler and Shalen [1], the varieties of SL.2;C/–
characters have been extensively studied. Given a manifold M, the variety of represen-
tations of �1.M / into SL.2;C/ and the variety of characters of such representations
both contain information on the topology of M. This is especially interesting for 3–
dimensional manifolds, where the fundamental group and the geometrical properties of
the manifold are strongly related. This can be used to study knots K�S3 by analyzing
the SL.2;C/–character variety of the fundamental group of the knot complement
S3�K (these are called knot groups).

For a very different reason, the case of fundamental groups of surfaces has also been
extensively analyzed (see Hausel and Thaddeus [2], Hitchin [5], and Logares, Muñoz
and Newstead [9]), in this situation focusing more on geometrical properties of the
moduli space itself (cf nonabelian Hodge theory).

However, much less is known of the character varieties for other groups, notably for
SL.r;C/ with r � 3. The character varieties for SL.3;C/ for free groups have been
described by Lawton [7] and Lawton and Muñoz [8]. In the case of 3–manifolds,
little has been done. In this paper, we study the case of the torus knots Km;n of any
type .m; n/, which are the first family of knots where the computations are rather
feasible. The case of SL.2;C/–character varieties of torus knots was carried out by
Martín-Morales and Oller-Marcén [11] and Muñoz [12]. For SL.3;C/, the torus knot
K2;3 has been treated by Heusener and Porti [3].
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398 V Muñoz and J Porti

In the case of SL.2;C/–character varieties of torus knot groups, only one-dimensional
irreducible components appear. However, when we move to SL.3;C/, we see compo-
nents of different dimensions. In the case of torus knots, we shall see components of
dimension 4 and of dimension 2. Our main result is an explicit geometrical description
of the SL.3;C/–character variety of torus knots.

Theorem 1.1 Let m and n be coprime positive integers. By swapping them if nec-
essary, assume that m is odd. The SL.3;C/–character variety X3 of the torus knot
Km;n � S3 is stratified into the following components.

� There is one component consisting of totally reducible representations, isomor-
phic to C2 .

� There are Œ1
2
.n � 1/�Œ1

2
.m � 1/� components consisting of partially reducible

representations, each isomorphic to .C�f0; 1g/�C� .

� If n is even, there are .m � 1/=2 extra components consisting of partially
reducible representations, each isomorphic to f.u; v/ 2C2 j v ¤ 0; v ¤ u2g.

� There are 1
12
.n� 1/.n� 2/.m� 1/.m� 2/ components of dimension 4, consist-

ing of irreducible representations, all isomorphic to each other, and which are
described explicitly in Remark 8.5.

� There are 1
2
.n� 1/.m� 1/.nCm� 4/ components consisting of irreducible

representations, each isomorphic to .C�/2�fxCy D 1g.

Moreover, m and n can be recovered from the above information.

We also geometrically describe how these components fit into the whole of the SL.3;C/–
character variety; that is, we describe the closure of each of the strata in X3 . In particular,
the total space is connected. In Section 10, we give also the corresponding results
for the GL.3;C/–character variety and the PGL.3;C/–character variety of the torus
knots. Finally, we compute the K–theory class (in the Grothendieck ring of varieties)
of all these character varieties.

Potentially, the methods and results for a general r could be used to describe the
geometry of the SL.r;C/, GL.r;C/ and PGL.r;C/–character varieties for r > 3,
though the computations would become much more involved.

2 Moduli of representations and character varieties

Let � be a finitely presented group, and let G D SL.r;C/, GL.r;C/ or PGL.r;C/.
A representation of � in G is a homomorphism �W �!G . Consider a presentation
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SL.3;C/–character variety of torus knots 399

� D hx1; : : : ;xk j r1; : : : ; rsi. Then � is completely determined by the k –tuple
.A1; : : : ;Ak/ D .�.x1/; : : : ; �.xk// subject to the relations rj .A1; : : : ;Ak/ D Id,
1� j � s . The space of representations is

R.�;G/D Hom.�;G/

D f.A1; : : : ;Ak/ j rj .A1; : : : ;Ak/D Id; 1� j � sg �Gk :

Therefore R.�;G/ is an affine algebraic set.

We say that two representations � and �0 are equivalent if there exists P 2G such that
�0.g/DP�1�.g/P for every g2� . This corresponds to a change of basis in Cr. Note
that the action of G descends to an action of the projective group PGDPGL.r;C/. This
produces an action of PGL.r;C/ on R.�;G/. The moduli space of representations is
the GIT quotient

M.�;G/DR.�;G/==G:

Recall that, by definition of the GIT quotient for an affine variety, if we write R.�;G/D

Spec A, then M.�;G/D Spec AG .

A representation � is reducible if there exists some proper subspace V � Cr such
that for all g 2 G we have �.g/.V /� V ; otherwise � is irreducible. Note that if �
is reducible, then let V � Cr be an invariant subspace, and consider a complement
Cr D V ˚W . Let �1 D �jV and let �2 be the induced representation on the quotient
space W DCr=V . Then we can write �D

��1

f
0
�2

�
, where f W �!Hom.W;V /. Let

k D dim V and take

Pt D

�
tr�kId 0

0 t�kId

�
:

Then

P�1
t �Pt D

�
�1 0

trf �2

�
! �0 D

�
�1 0

0 �2

�
when t ! 0. Therefore � and �0 define the same point in the quotient M.�;G/.
Repeating this, we can substitute any representation � by some z�D

L
�i , where all

�i are irreducible representations. We call this process semisimplification, and z� a
semisimple representation; also � and z� are called S-equivalent. The space M.�;G/

parametrizes semisimple representations; see Lubotzky and Magid [10, Theorem 1.28].

Suppose now that G D SL.r;C/. Given a representation �W � ! G , we define its
character as the map ��W �!C , ��.g/D tr �.g/. Note that two equivalent represen-
tations � and �0 have the same character. There is a character map �W R.�;G/!C� ,
� 7! �� , whose image

X.�;G/D �.R.�;G//
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400 V Muñoz and J Porti

is called the character variety of � . Let us give X.�;G/ the structure of an algebraic
variety. The traces �� span a subring B �A. Clearly B �AG . As A is noetherian,
we have that B is a finitely generated C–algebra. Hence there exists a collection
g1; : : : ;ga of elements of G such that �� is determined by ��.g1/; : : : ; ��.ga/ for
any � . Such a collection gives a map

‰W R.�;G/!Ca; ‰.�/D .��.g1/; : : : ; ��.ga//;

and X.�;G/Š‰.R.�;G//. This endows X.�;G/ with the structure of an algebraic
variety, which is independent of the chosen collection. The natural algebraic map

M.�;G/!X.�;G/

is an isomorphism; see Sikora [14]. This is the same as to say that B DAG ; that is,
the ring of invariant polynomials is generated by characters.

3 Grothendieck ring of varieties

Let VarC be the category of quasiprojective complex varieties. We denote by K.VarC/

the Grothendieck ring of VarC . This is the abelian group generated by elements ŒZ� for
Z 2 VarC , subject to the relation ŒZ�D ŒZ1�C ŒZ2� whenever Z can be decomposed
as a disjoint union Z DZ1 tZ2 of a closed and a Zariski open subset.

There is a naturally defined product in K.VarC/ given by ŒY � � ŒZ�D ŒY �Z�. Note
that if � W Z! Y is an algebraic fiber bundle with fiber F , which is locally trivial in
the Zariski topology, then ŒZ�D ŒF � � ŒY �.

We denote by L D ŒC� the Lefschetz object in K.VarC/. Clearly Lk D ŒCk �. The
following result will be useful later on. Let �r � C� denote the group of r th roots
of unity.

Proposition 3.1 Let �r act on X D .C�/k by .t1; : : : ; tk/ 7! .�a1 t1; : : : ; �
ak tk/, for

� D e2�
p
�1=r and some weights a1; : : : ; ak 2 Z. Then X=�r Š .C�/k .

As a consequence, for the same action on Y DCk , we have ŒY=�r �D Lk D ŒY �.

Proof If the action is not free, then it factors through some quotient of �r , and we
substitute it by the action of the quotient group. So we can assume that the action is
free, namely that the greatest common divisor of a1; : : : ; ak ; r is 1. If k D 1 then the
result is trivially true, since the quotient C�=�r is parametrized by w D tr 2C� .

Suppose k > 1. There are integer numbers b1; : : : ; bk ; b such that a1b1C� � �CakbkC

rb D 1. Consider the quotient
Zk

r ! Zr
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given by .x1; : : : ;xk/ 7! a1x1C � � �C akxk , where Zr denotes the cyclic group of r

elements Z=rZ. This is surjective, and the choice of .b1; : : : ; bk/ gives a splitting. Let
K be the kernel. Then Zk

r ŠK˚Zr . Clearly, it must be K Š Zk�1
r . The inclusion

K ,! Zk
r defines a collection of k � 1 vectors .ci1; : : : ; cik/, i D 1; : : : ; k � 1. Now,

the matrix

M D

0BBB@
c11 � � � c1k
:::

: : :
:::

ck�1;1 � � � ck�1;k

b1 � � � bk

1CCCA
has determinant d D det.M /, which is a unit in Zr . We want to modify the entries of
the matrix M adding multiples of r so that we get det.M /D 1, and so M is invertible
over Z. First, multiply the first row by an integer x so that det.M /x� 1 .mod r/. So
M is still invertible modulo r and det.M /� 1 .mod r/. We can write M DABC ,
where A;C are invertible over the integers, and B D diag.e1; : : : ; ek/, e1je2j � � � jek .
Note that

Q
ei � 1 .mod r/. If we add multiples of r to the entries of B , we do the

same to the entries of M. So, without loss of generality, we can work with M D B .

If all ei D 1, we have finished. Moreover, if all ei � 1 .mod r/, we can change each
ei by adding multiples of r to arrange ei D 1. So now suppose that there is one entry
ej 6� 1 .mod r/. As

Q
ei � 1 .mod r/, there must be another entry el 6� 1 .mod r/.

Adding r to ej , we have that ej C r and el are coprime (recall that ej jel or el jej ,
and all ei are coprime to r ). Then we can diagonalize this new M again, getting
elementary divisors 1 and .ej C r/el instead of ej and el . This increases the number
of elements of the diagonal of M equal to 1. Repeating the process, we can finally
get all diagonal entries equal to 1.

Now consider uj D t
cj 1

1
� � � t

cj k

k
for j D 1; : : : ; k � 1, and uk D t

b1

1
� � � t

bk

k
. As

det M D 1, this is a change of variables, so .u1; : : : ;uk/ parametrizes .C�/k , and
the action of �r is given by .u1; : : : ;uk�1;uk/ 7! .u1; : : : ;uk�1; �uk/. Therefore
X=�r Š .C�/k=�r D .C�/k�1 � .C�=�r /Š .C�/k .

The last assertion follows by stratifying Y according to how many entries are zero.

4 Character varieties of torus knots

Let T 2 D S1 � S1 be the 2–torus and consider the standard embedding T 2 � S3 .
Let m and n be a pair of coprime positive integers. Identifying T 2 with the quotient
R2=Z2 , the image of the straight line y D .m=n/x in T 2 defines the torus knot of
type .m; n/, which we shall denote as Km;n � S3 ; see Rolfsen [13, Chapter 3].
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For any knot K�S3 , we denote by �K the fundamental group of the exterior S3�K

of the knot. It is known that

�m;n D �Km;n
Š hx;y j xn

D ym
i:

The purpose of this paper is to describe the character variety X.�m;n;G/, for G D

SL.r;C/;GL.r;C/ and PGL.r;C/.

We introduce the notation

Xr DX.�m;n;SL.r;C//;

zX r DX.�m;n;GL.r;C//;

X r DX.�m;n;PGL.r;C//;

dropping the reference to m and n in the notation.

Lemma 4.1 zX 1 ŠC� .

Proof Let .�; �/ 2 zX 1 . Then �n D �m , so there exists a unique t 2 C� such that
�D tm and �D tn (here we use that m and n are coprime). This means that zX 1ŠC�

via t 7! .tm; tn/.

There is a map detW zX r ! zX 1 given by .det �/.g/D det.�.g// for any g 2 � . Then
Xr D det�1.1/, where 1 is the trivial character. Otherwise said, if �D .A;B/ 2 zX r

then .det A; det B/ 2 zX 1 . Here det AD tm and det B D tn for some t 2C� . We shall
write det �D t . So .A;B/ 2 Xr when t D 1.

There is an action of C� on zX r given by


 � .A;B/D .
mA; 
 nB/:

Note that det.
 � �/ D 
 r det.�/. The kernel of C� �Xr ! zX r is given by the r th

roots of unity �r . So there is an isomorphism

(1) zX r Š .Xr �C�/=�r :

Now let .ŒA�; ŒB�/ 2 X r ; that is, ŒA�; ŒB� 2 PGL.r;C/ with ŒAm�D ŒBn�. There is a
surjective map SL.r;C/! PGL.r;C/ with kernel �r . So we can assume .A;B/ 2
SL.r;C/, and An D �Bm for some � 2C� . Take determinants, we have �r D 1. The
matrices A and B are well-defined up to multiplication by r th roots of unity. Let
�; " 2 �r . Then .�A/n D �0."B/m with �0 D ��n"�m . As m and n are coprime, we
can arrange �0 D 1 by choosing �; " suitably. Also, if �D 1 then �0 D 1 means that
� D tm , "D tn with t 2 �r . That is, we have the isomorphism

(2) X r Š Xr=�r :
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Equivalently,
X r Š zX r=C

�:

Note that, in particular, this means that the representations of �m;n in PGL.r;C/ all
lift to SL.r;C/ (this is not true for all fundamental groups of 3–manifolds).

Remark 4.2 The map zX r ! X r is a C�–fibration, locally trivial in the Zariski
topology. Therefore the K–theory classes satisfy Œ zX r �D .L� 1/ŒX r �. In particular,
the Euler characteristic of zX r is �. zX r /D 0 (this Euler characteristic is obtained by
the substitution L 7! 1 in the K–theory class).

Martín-Morales and Oller-Marcén [11] describe the character variety X2 by finding a
set of equations satisfied by the traces of the matrices of the image by the representation.
Muñoz [12] describes the same variety X2 by a geometric method based on the study
of eigenvectors and eigenvalues of the matrices. Here we shall extend the latter to study
the varieties X3 , zX 3 , X 3 .

5 Stratification of the character variety

We denote by � D .r1;
.a1/: : : ; r1; : : : ; rs;

.as/: : : ; rs/ a partition of r ; that is, a1r1C � � � C

asrs D r with r1 > � � � > rs > 0 and aj � 1. Let …r be the set of all partitions of r .
We decompose the character variety

zX r D

G
�2…r

zX�

into locally closed subvarieties, where zX� corresponds to representations

(3) �D

sM
tD1

atM
lD1

�t;l ; �t;l W � �! GL.rt ;C/:

Also,
Xr D

G
�2…r

X� ;

where X� D zX� \Xr ; that is, it consists of those (3) with
Q

t;l det �t;l.g/D 1.

For PGL.r;C/–representations, we have

X r D

G
�2…r

xX� ;

with xX� the image of X� under the projection Xr ! X r .

Algebraic & Geometric Topology, Volume 16 (2016)
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The irreducible representations correspond to �0 D .r/. We denote X �r D X�0
,

zX �r D zX�0
and X �r D xX�0

.

Proposition 5.1 We have zX� D
Qs

tD1 Symat zX �rt
.

The representations corresponding to �1 D .1;
.r/: : :; 1/ are called totally reducible since

they have matrices that diagonalize simultaneously in the same basis. The corresponding
sets will be denoted XTR DX�1

, zXTR D
zX�1

and xXTR D
xX�1

.

Proposition 5.2 We have zXTR ŠCr�1 �C� and XTR ŠCr�1 .

In particular, Œ zXTR �D Lr�1.L� 1/, ŒXTR �D Lr�1 and Œ xXTR �D Lr�1 .

Proof By Lemma 4.1, zX �1 Š C� , and it is formed by representations .tm; tn/. By
Proposition 5.1, zXTR D Symr zX �1 , where .A;B/ is given by A D diag.tm

1
; : : : ; tm

r /

and B D diag.tn
1
; : : : ; tn

r / for tj 2C� . Then

zXTR Š Symr C� ŠCr�1
�C�:

Here the last isomorphism is given by .t1; : : : ; tr / 7! .�1; : : : ; �r /, where �k D

�k.t1; : : : ; tr / is the k th elementary symmetric function on t1; : : : ; tr . Note that
ti ¤ 0;8i if and only if �r ¤ 0.

The condition that det A D det B D 1 means that
Q

tm
j D

Q
tn
j D 1. So

Q
tj D 1,

which is translated into �r D 1. Hence, XTR DCr�1 .

For analyzing the case of xXTR , we look at the action of �r on XTR . Note that � 2�r

acts as tj 7! �tj ; hence, it acts as .�1; �2; : : : ; �r�1/ 7! .��1; �
2�2; : : : ; �

r�1�r�1/.
Proposition 3.1 now gives the result.

Lemma 5.3 Suppose that �D .A;B/ 2 zX �r . Then A and B are both diagonalizable,
and An D Bm D$ Id for some $ 2C� . Moreover, neither A nor B is a multiple of
the identity. Furthermore, if .A;B/ 2 X �r , then $ 2 �r .

Proof Choose a suitable basis so that A is of Jordan form, with blocks J1; : : : ;Jk .
Let Ji be a Jordan block of size mi � 1 and eigenvalue �i . Then An has blocks
J n

1
; : : : ;J n

k
, and each J n

i is conjugated to a Jordan matrix of size mi with eigenvalue
�n

i . In particular, if vi is the eigenvector of Ji , then vi is the eigenvector of J n
i . The

span of eigenvectors of An is W D hv1; : : : ; vki. This satisfies A.W / �W . In an
analogous fashion, as An D Bm and B and Bm have the same span of eigenvectors,
we have that B.W /�W . By irreducibility, W DCr, so all mi D 1. That is, both A

and B are diagonalizable.
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Now let $ D �n
1

. Let W be the span of those vi such that �n
i D$ . Then A.W /�W .

In a similar fashion, B.W /�W , so W DCr. This means that An D$ Id. Note that
all eigenvalues �i of A and all eigenvalues �j of B satisfy �n

i D �
m
j D$ .

The last assertion is clear since det AD det B D 1 implies $r D 1.

Remark 5.4 Lemma 5.3 is true for m and n not coprime.

Corollary 5.5 The varieties Xr , zX r and X r are connected.

Proof By (1) and (2), it is enough to see that Xr is connected. We just need to
see that the closure of any component X� intersects XTR , which is connected by
Proposition 5.2.

Let us focus first on X �r . For .A;B/ 2 X �r , we diagonalize A and B (by Lemma 5.3).
This gives decompositions Cr DV1˚� � �˚Vs and Cr DW1˚� � �˚Wl into eigenspaces
given for A and B , respectively. Let viDdim Vi and wj Ddim Wj , where rD

P
viDP

wj . By Lemma 5.3, AnDBmD$ Id with $r D 1, and the eigenvalues �1; : : : ; �s

and "1; : : : ; "l for A and B , respectively, satisfy �n
i D "

m
j D$ . So there are finitely

many choices for vi ; wj ; �i ; "j . We denote

� D ..�1;
.v1/: : : ; �1; : : : ; �s;

.vs/: : : ; �s/; ."1;
.w1/: : : ; "1; : : : ; "l ;

.wl /: : : ; "l//;

repeating eigenvalues according to multiplicity. This gives a collection of (disjoint)
components

(4) X �r D
G
�

X �r;� :

Fix a component X �r;� . To determine the pair .A;B/, it is enough to give the eigenspaces
V1; : : : ;Vs and W1; : : : ;Wl . These are given by a point in the product

Q
Gr.vi ; r/�Q

Gr.wj ; r/. The set of possible points determining an irreducible representation is an
open (if nonempty) subset U� �

Q
Gr.vi ; r/�

Q
Gr.wj ; r/, and

(5) X �r;� D U�=PGL.r;C/:

This space is irreducible and hence connected. The choice of the subspaces Vi D

hev1C���Cvi�1C1; : : : ; ev1C���Cvi
i and Wj D hew1C���Cwj�1C1; : : : ; ew1C���Cwj

i with re-
spect to the standard basis fe1; : : : ; er g gives a representation in the closure of X �r;� ,
which is totally reducible. This completes the argument in this case.

Now consider another stratum X� , for � D .r1;
.a1/: : : ; r1; : : : ; rs;

.as/: : : ; rs/. We have,
by Proposition 5.1, zX� D

Qs
tD1 Symat zX �rt

. Take an irreducible component Yt;l of
X �rt

for each t D 1; : : : ; s and l D 1; : : : ; at . Let zYt;l be the image of C��Yt;l in zX �rt
.
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Consider the map
Q

t;l.C
� �Yt;l/! zX� . The condition of the determinant being 1

gives a hypersurface W � .C�/a1C���Cas , which is connected since a1C � � �C as > 1.
The image of W �

Q
t;l Yt;l in X� is connected, and all of them cover X� . Now

the closure of Yt;l contains elements in X
rt

TR
. Hence the closure of the image of

W �
Q

t;l Yt;l contains elements that are totally reducible, as required.

6 Maximal dimensional components

We will now count the number of maximal dimensional irreducible components of Xr

and give a geometric description of them.

Theorem 6.1 The character variety Xr has dimension at most .r � 1/2 . For r � 3,
the number of irreducible components of this dimension is

1

r

�
n� 1

r � 1

��
m� 1

r � 1

�
:

In particular, there are no such components if either n< r or m< r .

Proof We first bound the dimension of X �r . As seen in the proof of Corollary 5.5, the
space X �r consists of disjoint components X �r;� as in (4), and each component X �r;� is
of the form (5), where U� �

Q
Gr.vi ; r/�

Q
Gr.wj ; r/. Now

dimU� D
X

vi.r � vi/C
X

wj .r �wj /

<
�X

vi

�
.r � 1/C

�X
wj

�
.r � 1/D 2r.r � 1/;

unless all vi D wj D 1, in which case there is equality. We have to quotient by
PGL.r;C/, which has dimension r2�1, and hence dimX �r;� � 2r2�2r � .r2�1/D

r2� 2r � 1D .r � 1/2 , with equality only if all vi D wj D 1.

In general, for a stratum X� , using zX� D
Qs

tD1 Symat zX �rt
and r D

Ps
tD1 at rt ,

we have

dim X� C 1D dim zX� �
sX

tD1

at .r
2
t � 2rt C 2/ < r2

� 2r C 2D .r � 1/2C 1;

unless s D 1, a1 D 1 and r1 D r , in which case there is equality. This corresponds to
the component X �r .

Now let us count the number of irreducible components of dimension .r � 1/2 . It is
the same as to count the number of .�1; : : : ; �r / and ."1; : : : ; "r / subject to

� �1 � � � �r D 1; �i distinct,
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� "1 � � � "r D 1; "j distinct,

� �n
i D "

m
j D$ ,

� $r D 1.

Denote by

N.k1; k2/D #f.�1; : : : ; �r / distinct; ."1; : : : ; "r / distinct

j �n
i D e2�

p
�1k1=r ; "m

j D e2�
p
�1k2=r ; �1 � � � �r D "1 � � � "r D 1g;

for any pair of integers k1 and k2 . We have to compute the sum T D
Pr�1

kD0 N.k; k/.

As m and n are coprime, we have that the modulo-reduction map Znm!Zn�Zm is
a bijection. Therefore,

nm�1X
kD0

N.k; k/D

n�1X
k1D0

m�1X
k2D0

N.k1; k2/:

Now N.k1; k2/DNn.k1/Nm.k2/, where

Nn.k1/D #f.�1; : : : ; �r / distinct j �n
i D e2�

p
�1k1=r ; �1 � � � �r D 1g;

Nm.k2/D #f."1; : : : ; "r / distinct j "m
j D e2�

p
�1k2=r ; "1 � � � "r D 1g:

Writing �i D e2�
p
�1.k1=rCai /=n with ai 2 Z, the equality �1 � � � �r D 1 is equivalent

to a1C � � �C ar C k1 2 nZ. Thus, the sum
Pn�1

k1D0 Nn.k1/ is the number of different
a1; : : : ; ar 2 Zn ; therefore,

Pn�1
k1D0 Nn.k1/ D n!=.n� r/! and

Pm�1
k2D0 Nm.k2/ D

m!=.m� r/!. So

(6)
nm�1X
kD0

N.k; k/D
n!

.n�r/!

m!

.m�r/!
:

Note that the sum (6) is the same if we start at any other integer; ie
Pnm�1Ca

kDa N.k; k/

gives the same value. Therefore,

rnm�1X
kD0

N.k; k/D r

nm�1X
kD0

N.k; k/:

Also, N.k1; k2/DN.k1Car; k2Cbr/ for all a; b2Z. Therefore,
Prnm�1

kD0 N.k; k/D

nm
Pr�1

kD0 N.k; k/D nmT . Thus,

T D
r

nm

n!

.n� r/!

m!

.m� r/!
;
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and the number of irreducible components is (taking into account the permutations of
�i and of "j )

1

.r !/2
T D

r

nm

�
n

r

��
m

r

�
D

1

r

�
n� 1

r � 1

��
m� 1

r � 1

�
:

The proof of Theorem 6.1 gives us a way to label the maximal dimensional components
of X �r . Let

F 0 D f..�1; : : : ; �r /; ."1; : : : ; "r // distinct j
Q
�i D

Q
"j D !;!

r
D 1g;

and define the set F D F 0=.Sr �Sr /, where Sr denotes the symmetric group on r

elements, the first Sr acts by permutation on the components of .�1; : : : ; �r /, and the
second Sr acts by permutation on the components of ."1; : : : ; "r /. We shall denote a
� 2 F as � D Œ.�1; : : : ; �r /; ."1; : : : ; "r /�.

Now we geometrically describe the maximal dimensional components of Xr . For this,
we introduce some notation. Consider GL.r;C/. Let T Š .C�/r be the set of diagonal
matrices, and consider the action of T �T , where the first T acts on the left and the
second T acts on the right on GL.r;C/. The set D D f.�Id; ��1Id/g � T �T acts
trivially, so there is an effective action of T �D T .

Proposition 6.2 For � 2F , the .r�1/2 –dimensional component X �r;� is isomorphic to

X �r;� ŠM=.T �D T /;

where M� GL.r;C/ is the open subset of stable points for the .T �D T /–action. In
particular, all components for different � 2 F are isomorphic.

Proof A maximal dimensional component X �r;� is determined by � D Œ.�1; : : : ; �r /,
."1; : : : ; "r /� 2 F . We fix a lift to F 0 ; that is, we fix an order of the eigenvalues
throughout, say ..�1; : : : ; �r /; ."1; : : : ; "r //.

Given a pair .A;B/ 2X �r;� , recall that A and B are diagonalizable with the prescribed
eigenvalues. Let v1; : : : ; vr be the eigenvectors of A and w1; : : : ; wr be the eigenvec-
tors of B . These are well-defined up to scalar multiples. We use v1; : : : ; vr as a basis
for Cr and write wj D .a1j ; : : : ; arj / in these coordinates. This produces a matrix

(7) M D

0B@a11 : : : a1r
:::

: : :
:::

ar1 : : : arr

1CA :
Note that det.M /¤0, since the vectors w1; : : : ; wr are linearly independent. Let M be
the set of those M which yield irreducible representations .A;B/. This is equivalent

Algebraic & Geometric Topology, Volume 16 (2016)



SL.3;C/–character variety of torus knots 409

to the fact that there do not exist subcollections vb1
; : : : vbp

and wa1
; : : : ; wap

for
0< p < r such that W D hwa1

; : : : ; wap
i D hvb1

; : : : vbp
i since, in this case, such W

would be invariant. This condition translates to the fact that the subminor corresponding
to fa1; : : : ; apg � .f1; : : : ; rg� fb1; : : : ; bpg/ is identically zero. This is equivalent to
the condition that M is not a stable point for the action of T �D T ; that is, the orbit
of the point has another orbit in the closure, or the action is nonfree. Clearly, if .A;B/
is as above, then acting by .diag.xi/; diag.yj // 2 T �D T , where

xi D

�
� if i 2 fa1; : : : ; apg

��1 if i 62 fa1; : : : ; apg
and yj D

�
� if j 62 fb1; : : : ; bpg

��1 if j 2 fb1; : : : ; bpg
;

and then taking �! 0, we either get points in a different orbit or the action is not free
(the complementary minor tends to zero).

Let M�GL.r;C/ be the open subset of stable points for the .T �D T /–action. Then a
representation .A;B/ is determined by a matrix M 2M modulo the possible rescaling
of basis vectors v1; : : : ; vr (this corresponds to the action of T on the left) and of
the eigenvectors w1; : : : ; wr (this corresponds to the action of T on the right). Note
that the irreducible component M=.T �D T / has dimension r2� .2r �1/D .r �1/2 ,
as expected.

Remark 6.3 The closure of the stratum X �r;� is obtained by adding semisimple re-
ducible representations (which are direct sums of irreducible representations of smaller
rank). This corresponds to adding matrices M , as in (7), for which there is a subminor
corresponding to fa1; : : : ; apg� .f1; : : : ; rg�fb1; : : : ; bpg/ identically zero, and at the
same time the subminor .f1; : : : ; rg� fa1; : : : ; apg/� fb1; : : : ; bpg also vanishes. We
are therefore looking at a polystable point (direct sum of stable points) of the action of
T �D T . This means that the closure of X �r;� is isomorphic to the GIT quotient

GL.r;C/==.T �D T /:

Now we shall explain how to get the maximal dimensional components of zX r and X r ,
although we are not going to do the explicit count of them for general r (we shall do it
later for r D 2; 3).

Let � D Œ.�1; : : : ; �r /; ."1; : : : ; "r /� 2 F . For t 2 �r , we have t � � D Œ.t�1; : : : ; t�r /,
.t"1; : : : ; t"r /�, which gives another (or the same) component. The map t W Xr ! Xr

restricts to maps t W X �r;� ! X �r;t �� .

The maximal dimensional components of X r are parametrized by the coset space
F=�r . So the number of them is the cardinality of F=�r . For given Œ� � 2 F=�r , the
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corresponding component is

(8) X �r;Œ�� D
�G

t2�r

X �r;t ��

�
=�r :

Let S D Stab.�/ � �r . If t 2 S , then we have t W X �r;� ! X �r;� , and also there is
an element .ft ;gt / 2 Sr � Sr so that we have ..t�1; : : : ; t�r /; .t"1; : : : ; t"r // D

.ft .�1; : : : ; �r /;gt ."1; : : : ; "r //. Using the natural action of Sr �Sr on M (multi-
plication on the right and on the left by permutation matrices), we have that (8) is
isomorphic to

X �r;Œ�� D X �r;�=S DM=.H �S/;

where H D T �D T .

The maximal dimensional components of zX r are also parametrized by the coset space
F=�r . They are of dimension .r � 1/2C 1 and are isomorphic to

zX �r;Œ�� D
�

C� �

�G
t2�r

X �r;t ��

��
=�r Š .C

�
�X �r;� /=S D .C

�
�M/=.H �S/:

7 Character varieties for SL.2 ; C/; GL.2 ; C/

and PGL.2 ; C/

We can recover the results of Muñoz [12]. Actually, the arguments that we have
developed here are an extension (and a refinement) of those in Muñoz [12] for r � 2.

Proposition 7.1 The variety X2 consists of the following irreducible components:

� One component XTR ŠC .

� .n� 1/.m� 1/=2 components forming the irreducible locus, such that each is
isomorphic to C�f0; 1g, and the closure of each component is C and intersects
XTR in two points.

Proof Here the only possible representations are either totally reducible or irreducible.
The totally reducible locus is given by Proposition 5.2. The irreducible representations
must all be of type X �

2;�
for some � D ..�1; �2/; ."1; "2//. The number of them is given

in Theorem 6.1, and it is .n� 1/.m� 1/=2. Each of them is parametrized by M=H ,
where M is formed by the matrices

�
a
c

b
d

�
with all entries nonzero, and H D T �D T

(T are the diagonal matrices, and they act on the right and on the left on M). Using
the action of H , we can arrange aD b D c D 1. Hence, the matrix is determined by
d 2C�f0; 1g. However, we shall use the parameter r D 1=.1� d/ 2C�f0; 1g.
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The closure of M=H is given by GL.2;C/==H . By Remark 6.3, we have to add
matrices with two entries that are zero. If b D c D 0, then we have the reducible
representation .diag.�1; �2/; diag."1; "2//. This corresponds to r D 0. If aD d D 0,
then we have the reducible representation .diag.�1; �2/; diag."2; "1//. This corresponds
to r D 1.

Note that ŒX2�D LC 1
2
.n� 1/.m� 1/.L� 2/.

Proposition 7.2 The variety X 2 consists of the following irreducible components:

� One component xXTR ŠC .

� Œ1
2
.n � 1/�Œ1

2
.m � 1/� components of the irreducible locus, such that each of

them is isomorphic to C�f0; 1g, and the closure of each component is C and
intersects xXTR in two points.

� If n is even and m is odd, .m� 1/=2 components of the irreducible locus, such
that each of them is isomorphic to C�, and the closure of each component is C
and intersects xXTR in one point. (The case m even and n odd is analogous.)

Proof We use the description X 2 Š X2=�2 where �2 D f˙1g. For the reducible
component, we have xXTR DC=�2 ŠC .

The irreducible components of X2 are parametrized by the finite set F of eigenvalues of
A and B . If F 0Df..�1; �2/; ."1; "2// distinct, �1�2D "1"2D 1, �n

i D "
m
j D˙1g, then

�2 acts on F 0 by ..�1; �2/; ."1; "2// 7! ..�1/m�1; .�1/m�2/; ..�1/n"1; .�1/n"2//,
and F D F 0=.S2 �S2/. When both m and n are odd, there are no fixed points,
because fixed points occur when �2 D ��1 and "2 D �"1 or, equivalently, when
�2

1
D "2

1
D �1, which contradicts �n

1
D "m

1
D˙1. In this case, #.F=�2/D #F=2D

1
4
.n� 1/.m� 1/D .1

2
.n� 1//.1

2
.m� 1//.

Assume now that n is even; then the same calculation shows that fixed points occur
precisely when f�1; �2g D f˙

p
�1g for any admissible value of "j . This yields

.m� 1/=2 components. On those invariant components, the action of �2 permutes
two rows or two columns of the matrix

�
a
c

b
d

�
in the proof of Proposition 7.1. This

amounts to mapping the parameter d to 1=d or, equivalently, mapping the parameter
r to 1� r . So the component is isomorphic to .C�f0; 1g/=�2 ŠC� .

By Proposition 7.2, we have, for m and n odd, ŒX 2�DLC 1
4
.n�1/.m�1/.L�2/. For

n even and m odd, we have that ŒX 2�DLC 1
4
.n�2/.m�1/.L�2/C 1

2
.m�1/.L�1/.
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Proposition 7.3 The variety zX 2 consists of the following irreducible components:

� One component zXTR ŠC �C�.

� Œ1
2
.n�1/�Œ1

2
.m�1/� components of the irreducible locus, such that each of them

is isomorphic to .C�f0; 1g/�C�, and the closure of each component is C�C�

and intersects zXTR in two C�s.

� If n is even, .m � 1/=2 extra components of the irreducible locus, such that
each is isomorphic to f.u; v/ 2 C2 j v ¤ 0; v ¤ u2g, and the closure of each
component is C �C� and intersects zXTR along a C� . (The case m even and n

odd is analogous.)

Proof The component zXTR is given in Proposition 5.2. Now we use the description
zX 2 Š .X2 � C�/=�2 . By the proof of Proposition 7.2, when m and n are odd,
�2 switches components of X2 without preserving any of them, and the proposition
follows in this case. When n is even, �2 preserves .m� 1/=2 components of X2 ,
and, for each such component, it maps the parameters .r; �/ 2 .C � f0; 1g/�C� to
.1� r;��/. The quotient is ..C�f0; 1g/�C�/=�2 . The compactification is given as
.C�C�/=�2 and can be coordinatized with uD .2r � 1/� and v D �2 . The quotient
is given by f.u; v/ 2C2 j v¤ 0g, and the image of the curves .f0; 1g�C�/=�2 ŠC�

is given by v D u2 with u¤ 0. Hence, the component is isomorphic to f.u; v/ 2C2 j

v ¤ 0; v ¤ u2g.

By Remark 4.2, we know that Œ zX 2� D .L� 1/ŒX 2�. So, for m and n odd, we have
Œ zX 2� D

�
LC 1

4
.n � 1/.m � 1/.L � 2/

�
.L � 1/. For n even and m odd, we have

Œ zX 2�D
�
LC 1

4
.n� 2/.m� 1/.L� 2/C 1

2
.m� 1/.L� 1/

�
.L� 1/.

8 Character varieties for SL.3; C/

Now we move to the description of the SL.3;C/–character variety X3 .

Proposition 8.1 The components of reducible representations of X3 are the following:

� The component of totally reducible representations XTR DC2.

� Œ1
2
.n� 1/�Œ1

2
.m� 1/� components X

1;i
PR

of partially reducible representations,
each isomorphic to .C�f0; 1g/�C�.

� If n is even, .m� 1/=2 extra components X
2;i
PR

of partially reducible representa-
tions, each isomorphic to f.u; v/ 2C2 j v ¤ 0; v ¤ u2g. (The case m even and
n odd is analogous.)
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Proof The description of XTR is in Proposition 5.2. Now we move to partially
reducible representations. This corresponds to representations in SL.3;C/ which split
as C3 D W ˚W 0 where dim W D 2 and dim W 0 D 1. That is, the partition is
� D f.2; 1/g. Then X� Š zX

�

2 since a representation � 2 X� is determined by �jW ,
because �jW 0 is fully determined as .det �jW /�1 . The description of the components
now follows from Proposition 7.3.

Proposition 8.2 The set X �
3

of irreducible representations is composed by the follow-
ing components X �

3;�
:

�
1

12
.n� 1/.n� 2/.m� 1/.m� 2/ components of maximal dimension 4, which

are isomorphic to M=.T �D T /, where M�GL.3;C/ are the stable points for
the .T �D T /–action.

�
1
2
.n� 1/.m� 1/.nCm� 4/ components X �

3;�
, each isomorphic to .C�/2 �

fxCy D 1g.

Proof The number of irreducible components of maximal dimension is given by
Theorem 6.1, and its geometric description by Proposition 6.2.

Now we look at the remaining components. According to (4), these are of the form
X �r;� where some eigenvalues in � D ..�1; �2; �3/; ."1; "2; "3// are repeated. From
Lemma 5.3, neither A nor B are a multiple of the identity for any irreducible represen-
tation .A;B/. Therefore, the three eigenvalues cannot be the same. Also, it cannot be
that �1 D �2 and "1 D "2 since, in this case, the intersection of the two-dimensional
eigenspace of A with the two-dimensional eigenspace of B would give an invariant
nontrivial subspace of � . The only possibilities are as follows:

(1) �1 D �2 ¤ �3 and "1; "2; "3 are distinct,

(2) �1; �2; �3 are distinct and "1 D "2 ¤ "3 .

Assume that case (1) holds. Then �3 D �
�2
1

. As �1 ¤ �3 , we have �3
1
¤ 1. On the

other hand, since $ D �n
1

, we know �3n
1
D 1, so there are 3n� 3 choices for �1 .

Suppose n 6� 0 .mod 3/. For each value of $ there are n� 1 choices for �1 . So
there are a total of .n� 1/3.m2� 3mC 2/=6D .n� 1/.m� 1/.m� 2/=2 possibilities.
Suppose n � 0 .mod 3/. Then for $ D 1, there are n� 3 choices for �1 , and for
$ ¤ 1, there are n choices. Note that, in this case, m 6� 0 .mod 3/. The total is, again,
.3n� 3/.m2� 3mC 2/=6D .n� 1/.m� 1/.m� 2/=2 possibilities.

Now fix one strata, ie the eigenvalues of A and B . Let L and v be the plane and
vector which give eigenspaces of A, and let w1; w2 and w3 be the eigenvectors of B .
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Fix coordinates so that w1 D .1; 0; 0/; w2 D .0; 1; 0/ and w3 D .0; 0; 1/. The plane
L gives a line in P2 . It does not contain any of the points Œw1�; Œw2�; Œw3� 2 P2 .
Therefore, the line is given by a1x1C a2x2C a3x3 D 0; that is, its coordinates in
the dual space .P2/� , Œa1; a2; a3�, do not have any entry which is a zero. So we can
rescale the coordinates to arrange Œa1; a2; a3�D Œ1; 1; 1�. Therefore, we only have the
choice of Œv� 2 P2 with Œv� 62 L. If Œv� 2RD hŒw1�; Œw2�i, then take the intersection
of L with R, say L\RD hŒu�i. Then hu; vi is an invariant subspace, and so � is
reducible. So Œv� is not in any line hŒwi �; Œwj �i. The parameter space is thus P2 minus
four lines: .C�/2�fxCy D 1g.

Case (2) is analogous to case (1), with .m � 1/.n � 1/.n � 2/=2 strata. Note that
.m�1/.n�1/.n�2/=2C.n�1/.m�1/.m�2/=2D .n�1/.m�1/.nCm�4/=2.

We shall denote by G the index set of those � parametrizing the components X �
3;�

of
dimension 2 in Proposition 8.2.

Theorem 8.3 The K–theory class of the character variety X3 is as follows. For m

and n both odd,

ŒX3�D
1

12
.n� 1/.n� 2/.m� 1/.m� 2/.L4

C 4L3
� 3L2

� 15LC 12/

CL2
C

1
4
.n� 1/.m� 1/.L2

� 3LC 2/

C
1
2
.n� 1/.m� 1/.nCm� 4/.L2

� 3LC 3/:

For n even and m odd, it is

ŒX3�D
1

12
.n� 1/.n� 2/.m� 1/.m� 2/.L4

C 4L3
� 3L2

� 15LC 12/

CL2
C

1
4
.n� 2/.m� 1/.L2

� 3LC 2/

C
1
2
.m� 1/.L2

� 2LC 1/C 1
2
.n� 1/.m� 1/.nCm� 4/.L2

� 3LC 3/:

Proof We have to add the contributions from Proposition 8.1 and Proposition 8.2.
Here, ŒXTR �D L2 , ŒX �

3;�
�D .L� 1/2� .L� 2/D L2� 3LC 3 for � 2 G , ŒX 1;i

PR
�D

.L�2/.L�1/DL2�3LC2 and ŒX 2;i
PR
�D .L�1/2 DL2�2LC1. It only remains

to compute the class ŒM=.T �D T /�.

Consider the space M. We stratify it as follows:

� If a11; a21 and a31 are nonzero, then the first vector accounts for .L� 1/3 .
The second and third vectors should be independent, and this accounts for
.L3 � L/.L3 � L2/. However, they cannot lie in any coordinate plane, so
accounting for 3.L2� 1/.L2�L/. This gives a total of

.L� 1/3
�
.L3
�L/.L3

�L2/� 3.L2
� 1/.L2

�L/
�
:
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� Suppose one of a11; a21 and a31 is zero (say a31 D 0, so we have to multiply
by three at the end). Then the first vector accounts for .L� 1/2 . We have a
matrix

M D

0@a11 b c

a21 d e

0 a32 a33

1A :
It must be that a32 and a33 are nonzero, so accounting for .L � 1/2 . The
condition for det.M /D 0 is linear on b; c; d and e , and all the coefficients of
the linear equation are nonzero. So the choices for them yield L4 �L3 . We
have to subtract for accounting the cases where any column or row of

�
b
d

c
e

�
is

zero, that is, 4.L2�L/� 4.L� 1/. So the total is

3.L� 1/4
�
L4
�L3

� 4.L2
�L/C 4.L� 1/

�
:

Therefore,

ŒM=T �D T �D
ŒM�

.L� 1/5

D
.L3�L/.L3�L2/� 3.L2� 1/.L2�L/

.L� 1/2

C 3
L4�L3� 4.L2�L/C 4.L� 1/

L� 1

D L4
C 4L3

� 3L2
� 15LC 12:

By substituting L 7! 1 in Theorem 8.3, we obtain the Euler characteristic of X3 ,

�.X3/D�
1

12
.n� 1/.n� 2/.m� 1/.m� 2/C 1C 1

2
.n� 1/.m� 1/.nCm� 4/:

Corollary 8.4 The character variety X3 determines n and m up to order.

Proof With X3 we have the class ŒX3� 2 K0.VarC/ given in Theorem 8.3. The
coefficient of L4 gives us .n� 1/.n� 2/.m� 1/.m� 2/. Now, we subtract the term
1

12
.n � 1/.n � 2/.m � 1/.m � 2/.L4 C 4L3 � 3L2 � 15LC 12/. In the expression

that we obtain, we substitute L! 0, producing p D 1
2
.n� 1/.m� 1/.3nC 3m� 11/.

Substituting L! 1, it yields q D 1C 1
2
.n � 1/.m � 1/.nCm � 4/. The quantity

2p� 6qC 6D .n� 1/.m� 1/. Now we can recover .n� 2/.m� 2/ as well, and with
this we get nm and nCm. This proves the result.

Remark 8.5 Note that we can describe the 4–dimensional components M=.T �D T /

of Proposition 8.2 as follows. Each column of the matrix (7) gives a point pj D
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Œa1j ; a2j ; a3j � 2 P2 . These points must be independent, they cannot be equal to
q1D Œ1; 0; 0�; q2D Œ0; 1; 0� or q3D Œ0; 0; 1�, and two of them cannot be simultaneously
in a coordinate line L1 D hq2; q3i;L2 D hq1; q3i or L3 D hq1; q2i. Let

V D f.p1;p2;p3/ 2 .P
2
�fq1; q2; q3g/

3 independent

j no two of them lie simultaneously in either L1;L2;L3g:

Consider the .C�/2 action given by pj D Œa1j ; a2j ; a3j � 7! Œ˛a1j ; ˇa2j ; a3j � for
j D 1; 2; 3. Then

M=.T �D T /D V=.C�/2:

9 Intersection patterns

We have the stratification

(9) X3 DXTR t

�G
X

1;i
PR

�
t

�G
X

2;j
PR

�
t

�G
�2F

X �3;�

�
t

�G
�2G

X �3;�

�
into totally reducible representations, partially reducible representations (of type 1 and
type 2), and irreducible representations (of type I and of type II). The set XTR is closed,
and so we want to describe how the closures X 1;i

PR
, X 2;j

PR
, X �

3;�
and X �

3;�
intersect the

other strata.

The component XTR ŠC2 is closed. By Proposition 5.2, it is parametrized by .x;y/
where xD t1C t2C t3 , yD t1t2C t1t3C t2t3 and t1t2t3D 1, with the matrices .A;B/
being AD diag.tm

1
; tm

2
; tm

3
/ and B D diag.tn

1
; tn

2
; tn

3
/.

Proposition 9.1 The partially reducible components of both types, X
1;i
PR
DC�� .C�

f0; 1g/ and X
2;j
PR
DC� �C� , have closure C� �C . Their intersections with XTR are

the curves with equation

x2y2
� .ck C 2/.x3

Cy3/C .c2
k C 5ck C 4/xy � .ck C 1/3 D 0;

where ck D 2 cos.2�k=.mn// for k 2 Z, k 62mZ, and k 62 nZ.

Two curves, indexed by k and k 0 , belong to the closure of the same component if and
only if k 0 �˙k .mod m/ and k 0 �˙k .mod n/. A curve belongs to the closure of a
type 2 component precisely when, with n even, k � n=2 .mod n/.

Proof The first assertion follows from the description of the closure of irreducible
components in X2 and from the relationship between X2 , X 2 and zX 2 , as zX �2 is
isomorphic to the locus of partially reducible representations of X3 .
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To describe the incidence of those components, we first discuss the incidence in X2

of reducible and irreducible components. According to Heusener, Porti and Suárez
[4], the diagonal representation, with AD diag.sm; s�m/ and B D diag.sn; s�n/, can
be deformed into an irreducible representation in SL.2;C/ if and only if we have
�m;n.s

2/D 0, where

�m;n D
.tmn� 1/.t � 1/

.tm� 1/.tn� 1/

is the Alexander polynomial of the torus knot. For matrices of GL.3;C/, this leads to
curves in X �;i

PR
\XTR , determined by matrices diag.ıt; ı�1t; t�2/ with �m;n.ı

2/D 0.
In the coordinates of X3;TR , the equations with a parameter t 2C� are

x D .ıC ı�1/t C t�2; y D .ıC ı�1/t�1
C t2;

with �m;n.ı
2/D 0. Setting c D ı2C ı�2 , we obtain the curves of the statement. This

gives .m� 1/.n� 1/=2 curves, hence we obtain all of them.

The assertion on the components is proved by using the argument of Proposition 7.1.
Namely, the components of X2 are determined by the eigenvalues of A and B , which
are fım; ı�mg and fın; ı�ng, respectively, and then it follows from the discussion for
the components of zX �2 and the partially reducible components of X3 .

Proposition 9.2 The irreducible components of type I, X �
3;�
DM=H for H DT �D T ,

have closure X �
3;�
D GL.3;C/==H . The boundary strata are given as follows.

� Orbits coming from 3� 3 matrices M with two zeros in a row or a column. The
representation is S-equivalent to V ˚W , so it lies in some X

�;i
PR

.

� Orbits come from 3� 3 matrices M with three zeros, two in a row, and two in
a column (one of these zeros in common). This is S-equivalent to a diagonal
matrix, ie a totally reducible representation V ˚V 0˚V 00 lying in XTR .

The boundary strata consist of 9 lines of partially reducible representations that intersect
each other following the pattern of the full graph K3;3 . In addition, the intersection
points are precisely the totally reducible representations.

Proof The fact that the closure is GL.3;C/==H is explained in Remark 6.3. The
choice of two or three zeros as in the statement determines an invariant subspace or
an invariant flag of the representation. Furthermore, in the closure of the orbit of this
representation, we find another representation that is direct sum of irreducible ones (a
semisimple one). This corresponds to the partially reducible and the totally reducible
representations, and the eigenvalues of each factor can be computed. In particular, for
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the partially reducible representations, we obtain a whole component of X �
2

isomorphic
to C�f0; 1g, whose closure is C , by adding totally reducible representations.

The pattern of the compactification locus is the following:

� Draw a point for each totally reducible representation. This is the same as
selecting three entries in the matrix not in the same row or column. There is a
total of 6.

� Draw a line for each partially reducible representation. This is the same as fixing
one entry in the matrix. The 2–dimensional representation is given by the 2� 2

minor associated to it. There is a total of 9.

� Every line contains two points. Every point is in three lines.

� The pattern is the full graph K3;3 . It consists of all the edges connecting 3

points at the top with 3 points at the bottom in all possible ways.

Proposition 9.3 The irreducible components of type II, X �
3;�
D C2 � .fx D 0g [

fy D 0g [fxCy D 1g/, have closure X �
3;�
DC2 . The closure consists of adding three

lines of partially reducible representations that intersect pairwise. The three intersection
points are precisely the totally reducible representations.

Proof Recall that, in this component, A has an eigenvalue with multiplicity two, and
the eigenvalues of B are different (they could be the same changing the roles of A

and B ; the analysis would be similar in that case). This gives a point p0 2 P2 and a
line l0 � P2 fixed by A, and three points p1;p2;p3 2 P2 fixed by B , with all points
and lines in generic position. Putting l0 as the line at infinity, p1;p2 and p3 define an
affine frame of C2 , and the position of p0 parametrizes the component. The closure
is obtained by allowing p0 to be at any position in C2 . Notice that if p0 belongs
to the line through p1 and p2 , then, since this line also meets l0 , it is preserved by
both A and B ; hence, we obtain a partially reducible representation. Total reducibility
is obtained when p0 equals one of p1;p2;p3 2 P2 , because there are two invariant
projective lines.

Next, we want to understand the intersections of the components of X
�;i
PR

with the
closures of the components of irreducible representations. A component X

�;i
PR

is
determined by eigenvalues f�; 1=�g and f"; 1="g corresponding to an irreducible rep-
resentation in SL.2;C/. The twisted Alexander polynomial for the representation in
SL.2;C/ is constant on each component, and it equals

��;".t/D
.tmn� �n/2

.tm� �/.tm� 1=�/.tn� "/.tn� 1="/
:
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See Kitano and Morifuji [6] for the computation of ��;".t/, or Heusener and Porti [3]
for the trefoil.

Recall that X
1;i
PR
Š .C � f0; 1g/�C� and that X

2;i
PR
Š ..C � f0; 1g/�C�/=�2 . Let

z 2C� denote the coordinate in the factor C� .

Proposition 9.4 A component X
�;i
PR

intersects the closure X �
3

precisely at the curves
fzD z0g where ��;".z3

0
/D 0. In addition, a curve defined by zD z0 lies in the closure

of a four dimensional component if z3
0

is a root of multiplicity two of ��;" , and a two
dimensional component if it is a simple root.

Proof By Heusener and Porti [3], ��;".z3/D 0 is a necessary condition for a repre-
sentation with second coordinate z 2C� to be deformed to irreducible representations.
In addition, for simple roots, this condition is also sufficient, and the component
of the character variety of irreducible ones has dimension two. Thus, we prove the
proposition by counting the number of such curves obtained from the roots, and the
number of curves in the closure of the variety of irreducible characters. Firstly, the
degree of each polynomial ��;".t3/ is 3.2mn� 2m� 2n/. For m and n odd there
are 1

2
.m� 1/1

2
.n� 1/ possibilities for the eigenvalues f�; 1=�g and f"; 1="g; thus, we

find at most 31
2
.m� 1/1

2
.n� 1/2.mn�m� n/ curves in the closure, counted twice

for double roots. When n is even, we have 1
2
.m�1/1

2
.n�2/ components as above but

also .m� 1/=2 components that are the quotient of a component of X2 �C� by �2 .
The contribution of those components is half the contribution of the other components;
thus, we get the same upper bound: 3.1

2
.m�1/1

2
.n�2/C 1

4
.m�1//2.mn�m�n/D

31
2
.m� 1/1

2
.n� 1/2.mn�m� n/.

On the other hand, there are 1
12
.n�1/.n�2/.m�1/.m�2/ components of irreducible

representation of dimension 4 that have 9 lines in the adherence and that contribute to
double roots. There are also 1

2
.n� 1/.m� 2/.mC n� 4/ components of dimension

two that contribute with three lines each. Thus, the total number of such lines (counted
twice in the closure of a four dimensional component) is

2 � 9 1
12
.n� 1/.n� 2/.m� 1/.m� 2/C 31

2
.n� 1/.m� 2/.mC n� 4/

D
3
2
.n� 1/.m� 1/.mn�m� n/:

As we get precisely the previous upper bound, the proposition follows.

10 Character varieties for GL.3; C/ and PGL.3; C/

Now we describe the GL.3;C/ and PGL.3;C/–character varieties zX 3 and X 3 .
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Proposition 10.1 The components of the PGL.3;C/–character variety X 3 are:

� There is the component of totally reducible representations, which is isomorphic
to C2=�3 Š f.x;y; z/ 2C3 j xy D z3g.

� There are Œ1
2
.n�1/�Œ1

2
.m�1/� components of partially reducible representations,

each isomorphic to .C�f0; 1g/�C� .

� When n is even, there are .m�1/=2 additional components of partially reducible
representations, each isomorphic to f.u; v/ 2C2 j v ¤ 0; v ¤ u2g.

� When m; n 62 3Z, there are these components of irreducible representations:
– .n�1/.m�1/.nCm�4/=6 components isomorphic to .C�/2�fxCyD1g,
– .m� 1/.m� 2/.n� 1/.n� 2/=36 components of maximal dimension iso-

morphic to M=.T �D T /.

� When n 2 3Z, there are the following components of irreducible representations:
– .m � 1/.mnC n2 � 5n �mC 2/=6 components isomorphic to .C�/2 �
fxCy D 1g ,

– m�1 components isomorphic to f.x;y; z/2C3 jxyD z3; xCyC3z¤ 1g,
– .m� 1/.m� 2/n.n� 3/=36 components of maximal dimension isomorphic

to M=.T �D T /,
– .m�1/.m�2/=6 components of maximal dimension that are isomorphic to

M=.T �D T Ì�3/, where �3 acts by cyclic permutation of columns in M.

The case m 2 3Z is symmetric.

Proof Use the isomorphism X 3 D X3=�3 by (2) where �3 D f1;$;$
2g, and the

stratification (9). The component XTR ŠC2 is invariant by �3 , and $ maps a point
with coordinates .x;y/ to .$x;$2y/. Hence, the quotient is C2=�3 Š f.u; v; w/ 2

C3 j w3 D uvg, where uD x3; v D y3 and w D xy .

The components X
1;i
PR

correspond to components of zX �2�C� that are not preserved by
�2 . Here $ acts trivially on zX �2 and by multiplication by a third rood of unity on C� .
This yields Œ1

2
.n�1/�Œ1

2
.m�1/� components isomorphic to ..C�f0; 1g/�C�/=�3Š

.C�f0; 1g/�C� .

For n even, the components X
2;j
PR

are isomorphic to f.u; v/ 2C2 j v¤ 0; v¤ u3g. To
understand the action of �3 , we build on the proof of Proposition 7.3. Recall from the
proof of Proposition 7.3 that uD .2r � 1/� and v D �2 , where r 2C�f0; 1g is the
coordinate of a component X2 and � 2C� . Since $ acts trivially on r and maps �
to $�, the action of $ on those coordinates is .u; v/ 7! .$u;$2v/. The quotient is
isomorphic to f.z; w/ 2C2 j w ¤ 0; w ¤ z2g, via z D u=v2 and w D 1=v3 .
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We next discuss the irreducible components. The two-dimensional components, X �
3;�

for
� 2G , are parametrized by the eigenvalues of A and B : f�; �; 1=�2g and f"1; "2; "3g

subject to �nD"m
i D$

k , "1"2"3D1, �¤1=�2 , and "1; "2 and "3 being distinct. Then
$ maps those eigenvalues to f$m�;$m�; 1=.$m�/2g and f"1$

n; "2$
n; "3$

ng.
They happen to be the same set of eigenvalues precisely when m23Z and f"1; "2; "3gD

f1;$;$2g. Therefore �3 permutes all components X �
3;�

except when m 2 3Z, those
n�1 components are preserved. Thus, when m; n 62 3Z we obtain .n�1/.m�1/.nC

m� 4/=6 components isomorphic to .C�/2�fxCy D 1g. When m 2 3Z we obtain
.n�1/.mnCm2�5m�nC2/=6 such components, and n�1 additional components
isomorphic to ..C�/2�fxCyD 1g/=�3 , where �3 acts linearly on C2 and cyclically
permutes the three lines that we have removed; that is, .x;y/ 7! .1�x�y;x/. The
quotient is isomorphic to f.u; v; w/ 2 C3 j uv D w3; uC vC 3w ¤ 1g, by taking
coordinates u D 1

9
..3x � 1/ �$.3y � 1//3; v D 1

9
..3x � 1/ �$2.3y � 1//3 and

w D 9�2=3..3x� 1/�$.3y � 1//..3x� 1/�$2.3y � 1//.

The four dimensional components X �
3;�

are parametrized by f�1; �2; �3g and f"1; "2; "3g

distinct, subject to �n
i D "

m
j D$

k and �1�2�3 D "1"2"3 D 1, being the eigenvalues
of A and B , respectively. The generator of the cyclic group maps those eigenvalues
to f�1$

m; �2$
m; �3$

mg and f"1$
n; "2$

n; "3$
ng. An elementary computation

proves that a component is invariant precisely when n 2 3Z and f�1; �2; �3g D

f1;$;$2g, or m 2 3Z and f"1; "2; "3g D f1;$;$
2g. Hence, when m; n 62 3Z,

we obtain .m�1/.m�2/.n�1/.n�2/=36 components isomorphic to the components
of X �

3;�
. When n 2 3Z, we obtain .m� 1/.m� 2/n.n� 3/=36 such components and

.m� 1/.m� 2/=6 components that are quotiented by the action of �3 , which can be
interpreted as cyclic permutation of columns in M.

Remark 10.2 The closure of each component can be easily deduced from the closures
of the components of X3 . Just notice that, when n2 3Z, the closure of each component
isomorphic to f.x;y; z/2C3 j xyD z3; xCyC3z¤ 1g is the hypersurface xyD z3 ,
and the curve of reducible representations x C y C 3z D 1 is singular exactly at
�x D�y D z D 1, the totally reducible representation.

Corollary 10.3 The K–theory class of the character variety X 3 is as follows.

� If n;m� 1; 5 .mod 6/, then

ŒX 3�D P0C
1

36
.m� 1/.m� 2/.n� 1/.n� 2/P1

C
1
6
.n� 1/.m� 1/.nCm� 4/P3C

1
4
.n� 1/.m� 1/P5:
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� If n� 2; 4 .mod 6/, m� 1; 5 .mod 6/, then

ŒX 3�D P0C
1

36
.m� 1/.m� 2/.n� 1/.n� 2/P1

C
1
6
.n� 1/.m� 1/.nCm� 4/P3C

1
4
.n� 2/.m� 1/P5C

1
2
.m� 1/P6:

� If n� 3 .mod 6/, m� 1; 5 .mod 6/, then

ŒX 3�D P0C
1

36
.m� 1/.m� 2/n.n� 3/P1C

1
6
.m� 1/.m� 2/P2

C
1
6
.m� 1/.mnC n2

� 5n�m� 2/P3C .m� 1/P4C
1
4
.n� 1/.m� 1/P5:

� If n� 0 .mod 6/, m� 1; 5 .mod 6/, then

ŒX 3�D P0C
1

36
.m� 1/.m� 2/n.n� 3/P1C

1
6
.m� 1/.m� 2/P2

C
1
6
.m� 1/.mnC n2

� 5n�m� 2/P3

C .m� 1/P4C
1
4
.n� 2/.m� 1/P5C

1
2
.m� 1/P6:

� If n� 2; 4 .mod 6/, m� 3 .mod 6/, then

ŒX 3�D P0C
1

36
m.m� 3/.n� 1/.n� 2/P1C

1
6
.n� 1/.n� 2/P2

C
1
6
.n� 1/.mnCm2

� n� 5m� 2/P3

C .n� 1/P4C
1
4
.n� 2/.m� 1/P5C

1
2
.m� 1/P6:

Here, P0 D L2 , P1 D L4C 4L3� 3L2� 15LC 12, P2 D L4C 2L3� 3L2�LC 4,
P3 D L2� 3LC 3, P4 D L2�LC 1, P5 D L2� 3LC 2 and P6 D L2� 2LC 1.

Proof The proof is analogous to that of Theorem 8.3. First, ŒC2=�3� D L2 by
Proposition 3.1. Second, Œ..C�/2�fxCy D 1g/=�3�D L2� .L� 1/, since the three
lines in the quotient produce a single line with two points identified. Finally, it remains
to compute the K–theory class ŒM=.T �D T Ì�3/�.

For this, we use the description of M=.T �D T / given in Remark 8.5. The action of
�3 is given by cyclic permutation of p1;p2 and p3 . We divide the computation in
two cases:

� All of p1;p2 and p3 lie off L1 . Then p1;p2;p3 2 C2 D P2 �L1 . The quo-
tient .C2/3=�3 has class L6 by Proposition 3.1. Now we have to remove various
contributions as given in the definition of V :

(1) If the pi are equal, we get L2 .

(2) Suppose the pi are not equal but lie on a line. The space parametrizing lines is a
P2 minus a point corresponding to the line of infinity, hence giving ŒP2�� 1D

L2CL. The space parametrizing triples of points in a line is ŒC3=�3�D L3
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by Proposition 3.1. As we are considering unequal points, we have L3 �L.
Multiplying, we get .L2CL/.L3�L/.

(3) Suppose the pi are independent and that one is equal to q1 . Using �3 , we can
suppose p1 D q1 . Then p2 2C2�fq1g, and p3 lies off the line hq1;p2i. This
yields .L2� 1/.L2�L/.

(4) Suppose two of p1;p2 and p3 lie on L1 or L2 (and that the three are inde-
pendent and none is q1 ). Using the cyclic permutation, we can assume this
happens to p1 and p2 . Then we have 2.L� 1/.L� 2/.L2�L/, the last factor
accounting for the fact that p3 62 hp1;p2i.

This gives a total of

L6
� .L2

C .L2
CL/.L3

�L/C .L2
� 1/.L2

�L/C 2.L� 1/.L� 2/.L2
�L//

D .L� 1/2.L4
CL3

� 3L2
C 3L/:

� If one of p1;p2 and p3 lie in L1 , the cyclic permutation allows us to assume that
p1 2 L1 � fq2; q3g. This produces a factor .L� 1/. Also, p2;p3 2 C2 , producing
L4 . We remove:

(1) If pi are equal, we get L2 .

(2) Suppose the pi are not equal but lie on a line with direction given by p1 . This
gives L.L2�L/.

(3) Suppose one pi is equal to q1 , and the remaining pj is not collinear with the
other two. This yields 2.L2�L/.

(4) Suppose p2 and p3 lie on L1 or L2 (and neither is q1 ). Then we have
2.L� 1/.L� 2/.

This total is

.L� 1/.L4
� .L2

CL.L2
�L/C 2.L2

�L/C 2.L� 1/.L� 2///

D .L� 1/2.L3
� 4LC 4/:

Adding both contributions and dividing by .L� 1/2 , we get

ŒM=.T �D T Ì�3/�D L4
C 2L3

� 3L2
�LC 4:

By substituting L 7! 1 in Corollary 10.3, we obtain the Euler characteristic of X 3 . For
m and n coprime, we have:

� If m; n 6� 0; 3 .mod 6/, then

�.X 3/D 1� 1
36
.m� 1/.m� 2/.n� 1/.n� 2/C 1

6
.n� 1/.m� 1/.nCm� 4/:
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� If n� 0; 3 .mod 6/, then

�.X 3/D 1� 1
36
.m� 1/.m� 2/n.n� 3/C 1

2
.m� 1/.m� 2/

C
1
6
.m� 1/.mnC n2

� 5n�m� 2/C .m� 1/:

An argument similar (but longer) to that in Corollary 8.4 proves that one can recover n

and m up to order from the K–theory class ŒX 3�.

Proposition 10.4 The components of the GL.3;C/–character variety zX 3 are:
� There is the component of totally reducible representations, which is isomorphic

to C2 �C� .
� There are Œ1

2
.n� 1/�Œ1

2
.m� 1/� components of partially reducible representations,

each isomorphic to .C�f0; 1g/� .C�/2 .
� When n is even, there are .m�1/=2 additional components of partially reducible

representations, each isomorphic to f.x;y; z/ 2C3 j y; z ¤ 0;y ¤ z2g.
� When m; n 62 3Z, there are these components of irreducible representations:

– .n� 1/.m� 1/.nCm� 4/=6 components, each isomorphic to ..C�/2 �
fxCy D 1g/�C�.

– .m� 1/.m� 2/.n� 1/.n� 2/=36 components of maximal dimension, each
isomorphic to M=.T �D T /�C�.

� When n 2 3Z, there are the following components of irreducible representations:

– .m�1/.mnCn2�5n�mC2/=6 components, each isomorphic to ..C�/2�
fxCy D 1g/�C�.

– m�1 components isomorphic to f.u; v; w/ 2C3 j u3Cv3C3uv�w¤ 0;

w ¤ 0g.
– .m� 1/.m� 2/n.n� 3/=36 components of maximal dimension isomorphic

to M=.T �D T /�C�.
– .m� 1/.m� 2/=6 components of maximal dimension, each isomorphic to
.M=.T �D T /�C�/=�3 , where �3 acts by cyclic permutation of columns
in M and multiplication on C�.

The case m 2 3Z is symmetric.

To prove this proposition, one may use the isomorphism between zX 3 and .X3�C�/=�3

and the proof is analogous to the discussion in the proof of Proposition 10.1. Namely,
the components of X3 that are invariant (or not) by the action of �3 correspond to
the components of X3 �C� that are invariant (or not), and the computation of the
quotients of the invariant ones is changed by the factor C�.

Finally, the K–theory class is Œ zX 3�D .L� 1/ŒX 3�, by Remark 4.2.
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