Volume 16, issue 1 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Asymptotics of a class of Weil–Petersson geodesics and divergence of Weil–Petersson geodesics

Babak Modami

Algebraic & Geometric Topology 16 (2016) 267–323
Bibliography
1 R L Bishop, B O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969) 1 MR0251664
2 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) MR1744486
3 J F Brock, The Weil–Petersson metric and volumes of 3–dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003) 495 MR1969203
4 J Brock, H Masur, Y Minsky, Asymptotics of Weil–Petersson geodesic, I : Ending laminations, recurrence, and flows, Geom. Funct. Anal. 19 (2010) 1229 MR2585573
5 J Brock, H Masur, Y Minsky, Asymptotics of Weil–Petersson geodesics, II : Bounded geometry and unbounded entropy, Geom. Funct. Anal. 21 (2011) 820 MR2827011
6 P Buser, Geometry and spectra of compact Riemann surfaces, 106, Birkhäuser (1992) MR1183224
7 I Chavel, Riemannian geometry, 98, Cambridge Univ. Press (2006) MR2229062
8 J Cheeger, D G Ebin, Comparison theorems in Riemannian geometry, AMS Chelsea Publishing (2008) MR2394158
9 P Eberlein, Geodesic flows on negatively curved manifolds, I, Ann. of Math. 95 (1972) 492 MR0310926
10 R L Foote, Regularity of the distance function, Proc. Amer. Math. Soc. 92 (1984) 153 MR749908
11 E Klarreich, The boundary at infinity of the curve complex, preprint (1999)
12 H A Masur, Y N Minsky, Geometry of the complex of curves, I : Hyperbolicity, Invent. Math. 138 (1999) 103 MR1714338
13 H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 MR1791145
14 Y N Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996) 121 MR1390685
15 B Modami, Prescribing the behavior of Weil–Petersson geodesics in the moduli space of Riemann surfaces, J. Topol. Anal. 7 (2015) 543 MR3400125
16 R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) MR1144770
17 S A Wolpert, Geometry of the Weil–Petersson completion of Teichmüller space, Surv. Differ. Geom. 8, International Press (2003) 357 MR2039996
18 S A Wolpert, Behavior of geodesic-length functions on Teichmüller space, J. Differential Geom. 79 (2008) 277 MR2420020
19 S A Wolpert, Extension of the Weil–Petersson connection, Duke Math. J. 146 (2009) 281 MR2477762
20 S A Wolpert, Families of Riemann surfaces and Weil–Petersson geometry, 113, Amer. Math. Soc. (2010) MR2641916
21 S A Wolpert, Understanding Weil–Petersson curvature, from: "Geometry and analysis, 1" (editor L Ji), Adv. Lect. Math. 17, Int. Press (2011) 495 MR2882436
22 S A Wolpert, Geodesic-length functions and the Weil–Petersson curvature tensor, J. Differential Geom. 91 (2012) 321 MR2971291