Recent Issues
Volume 22, 6 issues
Volume 22
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472
Volume 21, 7 issues
Volume 21
Issue 7, 3221–3734
Issue 6, 2677–3220
Issue 5, 2141–2676
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541
Volume 20, 7 issues
Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529
Volume 19, 7 issues
Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532
Volume 18, 7 issues
Volume 18
Issue 7, 3749–4373
Issue 6, 3133–3747
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
1
A K Aiston ,
Skein
theoretic idempotents of Hecke algebras and quantum group
invariants , PhD thesis, University of Liverpool
(1996)
2
D Bar-Natan ,
Khovanov’s homology
for tangles and cobordisms , Geom. Topol. 9 (2005) 1443
MR2174270
3
S Bigelow , A homological
definition of the Jones polynomial , from: "Invariants
of knots and 3–manifolds", Geom. Topol. Monogr. 4 (2002) 29
MR2002601
4
S Bigelow , A homological
definition of the HOMFLY polynomial , Algebr. Geom.
Topol. 7 (2007) 1409 MR2350288
5
S Cautis , Rigidity
in higher representation theory , preprint (2014) arXiv:1409.0827
6
S Cautis , Clasp technology
to knot homology via the affine Grassmannian , Math.
Ann. 363 (2015) 1053 MR3412353
7
S Cautis , J
Kamnitzer , A Licata , Categorical
geometric skew Howe duality , Invent. Math. 180 (2010)
111 MR2593278
8
S Cautis , J
Kamnitzer , A Licata , Derived equivalences for
cotangent bundles of Grassmannians via categorical 𝔰𝔩 2
actions , J. Reine Angew. Math. 675 (2013) 53 MR3021447
9
S Cautis , J
Kamnitzer , S Morrison , Webs and quantum
skew Howe duality , Math. Ann. 360 (2014) 351 MR3263166
10
J Chuang , R
Rouquier , Derived
equivalences for symmetric groups and 𝔰𝔩 2 –categorification , Ann. of Math.
167 (2008) 245 MR2373155
11
M Ehrig , C
Stroppel , Nazarov–Wenzl algebras, coideal subalgebras
and categorified skew Howe duality , preprint (2013)
arXiv:1310.1972
12
P Freyd , D
Yetter , J Hoste , W B R Lickorish ,
K Millett , A Ocneanu , A new
polynomial invariant of knots and links , Bull. Amer.
Math. Soc. 12 (1985) 239 MR776477
13
S Garoufalidis , The
colored HOMFLY polynomial is q –holonomic , preprint (2012) arXiv:1211.6388
14
N Geer , B
Patureau-Mirand , On the colored
HOMFLY–PT, multivariable and Kashaev link invariants ,
Commun. Contemp. Math. 10 (2008) 993 MR2468374
15
N Geer , B
Patureau-Mirand , Multivariable
link invariants arising from Lie superalgebras of type
I , J. Knot Theory Ramifications 19 (2010) 93 MR2640994
16
N Geer , B
Patureau-Mirand , V Turaev , Modified quantum
dimensions and re-normalized link invariants , Compos.
Math. 145 (2009) 196 MR2480500
17
B Gornik , Note on
Khovanov link cohomology , (2004) arXiv:math/0402266
18
E Gorsky , S
Gukov , M Stošić , Quadruply-graded colored
homology of knots , preprint (2013) arXiv:1304.3481
19
S Gukov , M
Stošić , Homological algebra
of knots and BPS states , from: "Proceedings of the
Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom.
Topol. Monogr. 18 (2012) 309 MR3084243
20
L H Kauffman ,
S Lambropoulou , On the
classification of rational tangles , Adv. in Appl. Math.
33 (2004) 199 MR2074397
21
M Khovanov ,
A
categorification of the Jones polynomial , Duke Math. J.
101 (2000) 359 MR1740682
22
M Khovanov ,
Triply-graded
link homology and Hochschild homology of Soergel
bimodules , Internat. J. Math. 18 (2007) 869 MR2339573
23
M Khovanov ,
A D Lauda , A
diagrammatic approach to categorification of quantum groups,
I , Represent. Theory 13 (2009) 309 MR2525917
24
M Khovanov ,
A D Lauda , A categorification of quantum
sl ( n ) , Quantum Topol. 1 (2010) 1 MR2628852
25
M Khovanov ,
A D Lauda , A
diagrammatic approach to categorification of quantum groups,
II , Trans. Amer. Math. Soc. 363 (2011) 2685 MR2763732
26
M Khovanov ,
A D Lauda , M Mackaay , M Stošić ,
Extended
graphical calculus for categorified quantum sl (2) ,
1029, Amer. Math. Soc. (2012) MR2963085
27
M Khovanov , L
Rozansky , Matrix factorizations and
link homology , Fund. Math. 199 (2008) 1 MR2391017
28
M Khovanov , L
Rozansky , Matrix
factorizations and link homology, II , Geom. Topol. 12
(2008) 1387 MR2421131
29
A D Lauda ,
A
categorification of quantum sl (2) ,
Adv. Math. 225 (2010) 3327 MR2729010
30
A D Lauda ,
Categorified
quantum sl (2) and equivariant cohomology of iterated flag
varieties , Algebr. Represent. Theory 14 (2011) 253
MR2776785
31
A D Lauda , An
introduction to diagrammatic algebra and categorified quantum
𝔰𝔩 2 , Bull. Inst. Math. Acad. Sin. 7
(2012) 165 MR3024893
32
A D Lauda , H
Queffelec , D E V Rose , Khovanov homology
is a skew Howe 2 –representation of
categorified quantum 𝔰𝔩 m , Algebr. Geom. Topol. 15 (2015)
2517 MR3426687
33
R J Lawrence ,
Homological
representations of the Hecke algebra , Comm. Math. Phys.
135 (1990) 141 MR1086755
34
E S Lee ,
An
endomorphism of the Khovanov invariant , Adv. Math. 197
(2005) 554 MR2173845
35
S G Lukac ,
Homfly
skeins and the Hopf link , PhD thesis, University of
Liverpool (2001)
36
M Mackaay , M
Stošić , P Vaz , The
1 , 2 –coloured
HOMFLY–PT link homology , Trans. Amer. Math. Soc. 363
(2011) 2091 MR2746676
37
C Manolescu ,
Nilpotent
slices, Hilbert schemes, and the Jones polynomial , Duke
Math. J. 132 (2006) 311 MR2219260
38
C Manolescu ,
Link
homology theories from symplectic geometry , Adv. Math.
211 (2007) 363 MR2313538
39
V Mazorchuk , C
Stroppel , A combinatorial approach
to functorial quantum 𝔰𝔩 k
knot invariants , Amer. J. Math. 131 (2009) 1679
MR2567504
40
H R Morton ,
The
multivariable Alexander polynomial for a closed braid ,
from: "Low-dimensional topology" (editor H Nencka), Contemp.
Math. 233, Amer. Math. Soc. (1999) 167 MR1701681
41
H R Morton ,
S G Lukac , The Homfly
polynomial of the decorated Hopf link , J. Knot Theory
Ramifications 12 (2003) 395 MR1983094
42
H Murakami , T
Ohtsuki , S Yamada , Homfly polynomial via an
invariant of colored plane graphs , Enseign. Math. 44 (1998)
325 MR1659228
43
N Y Reshetikhin ,
V G Turaev , Ribbon graphs
and their invariants derived from quantum groups , Comm.
Math. Phys. 127 (1990) 1 MR1036112
44
D E V Rose ,
P Wedrich , Deformations of colored 𝔰𝔩 ( N ) link homologies
via foams , preprint (2015) arXiv:1501.02567
45
L Rozansky ,
An infinite
torus braid yields a categorified Jones–Wenzl
projector , Fund. Math. 225 (2014) 305 MR3205575
46
P Seidel , I
Smith , A link
invariant from the symplectic geometry of nilpotent
slices , Duke Math. J. 134 (2006) 453 MR2254624
47
V G Turaev ,
The Conway
and Kauffman modules of a solid torus , Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988)
79, 190 MR964255
48
P Turner , A
hitchhiker’s guide to Khovanov homology , preprint (2014)
arXiv:1409.6442
49
B Webster , G
Williamson , A geometric construction of colored HOMFLYPT
homology , preprint (2010) arXiv:0905.0486
50
P Wedrich ,
q –holonomic formulas for
colored HOMFLY polynomials of 2 –bridge links , preprint (2014) arXiv:1410.3769
51
E Witten , Quantum field theory and
the Jones polynomial , Comm. Math. Phys. 121 (1989) 351
MR990772
52
H Wu , A colored 𝔰𝔩 ( N ) homology for
links in S 3 , Dissertationes Math. (Rozprawy
Mat.) 499 (2014) MR3234803