Volume 16, issue 1 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Embeddability and quasi-isometric classification of partially commutative groups

Montserrat Casals-Ruiz

Algebraic & Geometric Topology 16 (2016) 597–620
Bibliography
1 A R Ahlin, The large scale geometry of products of trees, Geom. Dedicata 92 (2002) 179 MR1934017
2 J Aramayona, C J Leininger, Finite rigid sets in curve complexes, J. Topol. Anal. 5 (2013) 183
3 J Aramayona, J Souto, A remark on homomorphisms from right-angled Artin groups to mapping class groups, C. R. Math. Acad. Sci. Paris 351 (2013) 713
4 J A Behrstock, T Januszkiewicz, W D Neumann, Quasi-isometric classification of some high dimensional right-angled Artin groups, Groups Geom. Dyn. 4 (2010) 681 MR2727658
5 J A Behrstock, W D Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008) 217 MR2376814
6 I Belegradek, On co-Hopfian nilpotent groups, Bull. London Math. Soc. 35 (2003) 805 MR2000027
7 M Bestvina, B Kleiner, M Sageev, The asymptotic geometry of right-angled Artin groups, I, Geom. Topol. 12 (2008) 1653 MR2421136
8 M Casals-Ruiz, Embeddability and universal theory of partially commutative groups, Int. Math. Res. Not. 2015 (2015) 13575
9 M Casals-Ruiz, A Duncan, I Kazachkov, Lyndon’s completion for partially commutative groups, preprint
10 M Casals-Ruiz, A Duncan, I Kazachkov, Embedddings between partially commutative groups: two counterexamples, J. Algebra 390 (2013) 87
11 M Clay, When does a right-angled Artin group split over  ?, preprint (2014) arXiv:1403.1842
12 C Droms, Graph groups, coherence, and three-manifolds, J. Algebra 106 (1987) 484 MR880971
13 C Droms, Subgroups of graph groups, J. Algebra 110 (1987) 519 MR910401
14 M Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981) 53 MR623534
15 J Huang, Quasi-isometry rigidity of right-angled Artin groups, I: The finite out case, preprint (2014) arXiv:1410.8512
16 M Kapovich, B Kleiner, B Leeb, Quasi-isometries and the de Rham decomposition, Topology 37 (1998) 1193 MR1632904
17 S h Kim, T Koberda, Embedability between right-angled Artin groups, Geom. Topol. 17 (2013) 493 MR3039768
18 S H Kim, T Koberda, The geometry of the curve graph of a right-angled Artin group, Internat. J. Algebra Comput. 24 (2014) 121
19 T Koberda, Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups, Geom. Funct. Anal. 22 (2012) 1541
20 L Mosher, M Sageev, K Whyte, Quasi-actions on trees, I : Bounded valence, Ann. of Math. 158 (2003) 115 MR1998479
21 A G Myasnikov, V N Remeslennikov, Exponential groups, II : Extensions of centralizers and tensor completion of CSA-groups, Internat. J. Algebra Comput. 6 (1996) 687 MR1421886
22 P Papasoglu, Quasi-isometry invariance of group splittings, Ann. of Math. 161 (2005) 759 MR2153400