Volume 16, issue 1 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Embeddability and quasi-isometric classification of partially commutative groups

Montserrat Casals-Ruiz

Algebraic & Geometric Topology 16 (2016) 597–620
Bibliography
1 A R Ahlin, The large scale geometry of products of trees, Geom. Dedicata 92 (2002) 179 MR1934017
2 J Aramayona, C J Leininger, Finite rigid sets in curve complexes, J. Topol. Anal. 5 (2013) 183
3 J Aramayona, J Souto, A remark on homomorphisms from right-angled Artin groups to mapping class groups, C. R. Math. Acad. Sci. Paris 351 (2013) 713
4 J A Behrstock, T Januszkiewicz, W D Neumann, Quasi-isometric classification of some high dimensional right-angled Artin groups, Groups Geom. Dyn. 4 (2010) 681 MR2727658
5 J A Behrstock, W D Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008) 217 MR2376814
6 I Belegradek, On co-Hopfian nilpotent groups, Bull. London Math. Soc. 35 (2003) 805 MR2000027
7 M Bestvina, B Kleiner, M Sageev, The asymptotic geometry of right-angled Artin groups, I, Geom. Topol. 12 (2008) 1653 MR2421136
8 M Casals-Ruiz, Embeddability and universal theory of partially commutative groups, Int. Math. Res. Not. 2015 (2015) 13575
9 M Casals-Ruiz, A Duncan, I Kazachkov, Lyndon’s completion for partially commutative groups, preprint
10 M Casals-Ruiz, A Duncan, I Kazachkov, Embedddings between partially commutative groups: two counterexamples, J. Algebra 390 (2013) 87
11 M Clay, When does a right-angled Artin group split over  ?, preprint (2014) arXiv:1403.1842
12 C Droms, Graph groups, coherence, and three-manifolds, J. Algebra 106 (1987) 484 MR880971
13 C Droms, Subgroups of graph groups, J. Algebra 110 (1987) 519 MR910401
14 M Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981) 53 MR623534
15 J Huang, Quasi-isometry rigidity of right-angled Artin groups, I: The finite out case, preprint (2014) arXiv:1410.8512
16 M Kapovich, B Kleiner, B Leeb, Quasi-isometries and the de Rham decomposition, Topology 37 (1998) 1193 MR1632904
17 S h Kim, T Koberda, Embedability between right-angled Artin groups, Geom. Topol. 17 (2013) 493 MR3039768
18 S H Kim, T Koberda, The geometry of the curve graph of a right-angled Artin group, Internat. J. Algebra Comput. 24 (2014) 121
19 T Koberda, Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups, Geom. Funct. Anal. 22 (2012) 1541
20 L Mosher, M Sageev, K Whyte, Quasi-actions on trees, I : Bounded valence, Ann. of Math. 158 (2003) 115 MR1998479
21 A G Myasnikov, V N Remeslennikov, Exponential groups, II : Extensions of centralizers and tensor completion of CSA-groups, Internat. J. Algebra Comput. 6 (1996) 687 MR1421886
22 P Papasoglu, Quasi-isometry invariance of group splittings, Ann. of Math. 161 (2005) 759 MR2153400