Volume 16, issue 1 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Singular coefficients in the $K$–theoretic Farrell–Jones conjecture

Guillermo Cortiñas and Emanuel Rodríguez Cirone

Algebraic & Geometric Topology 16 (2016) 129–147
Abstract

Let G be a group and let k be a field of characteristic zero. We prove that if the Farrell–Jones conjecture for the K–theory of R[G] is satisfied for every smooth k–algebra R, then it is also satisfied for every commutative k–algebra R.

Keywords
K–theory, Farrell–Jones conjecture
Mathematical Subject Classification 2010
Primary: 18F25
Secondary: 19D55, 55N91
References
Publication
Received: 14 April 2014
Revised: 6 April 2015
Accepted: 4 June 2015
Published: 23 February 2016
Authors
Guillermo Cortiñas
Departamento de Matemática-IMAS
Universidad de Buenos Aires
Ciudad Universitaria Pabellón 1
1428 Buenos Aires
Argentina
http://mate.dm.uba.ar/~gcorti
Emanuel Rodríguez Cirone
Departamento de Matemática-IMAS
Universidad de Buenos Aires
Ciudad Universitaria Pabellón 1
1428 Buenos Aires
Argentina