Volume 16, issue 1 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Asymptotics of a class of Weil–Petersson geodesics and divergence of Weil–Petersson geodesics

Babak Modami

Algebraic & Geometric Topology 16 (2016) 267–323
Abstract

We show that the strong asymptotic class of Weil–Petersson geodesic rays with narrow end invariant and bounded annular coefficients is determined by the forward ending laminations of the geodesic rays. This generalizes the recurrent ending lamination theorem of Brock, Masur and Minsky. As an application we provide a symbolic condition for divergence of Weil–Petersson geodesic rays in the moduli space.

Keywords
Teichmüller space, Weil–Petersson metric, ending lamination, strongly asymptotic geodesics, divergent geodesics, stable manifold, Jacobi field
Mathematical Subject Classification 2010
Primary: 30F60, 32G15
Secondary: 37D40
References
Publication
Received: 11 June 2014
Revised: 5 April 2015
Accepted: 5 May 2015
Published: 23 February 2016
Authors
Babak Modami
Department of Mathematics
University of Illinois at Urbana-Champaign
1409 W Green St
Urbana, IL 61801
USA