
msp
Algebraic & Geometric Topology 16 (2016) 675–709

Spin structures on loop spaces
that characterize string manifolds

KONRAD WALDORF

Classically, a spin structure on the loop space of a manifold is a lift of the structure
group of the looped frame bundle from the loop group to its universal central extension.
Heuristically, the loop space of a manifold is spin if and only if the manifold itself
is a string manifold, against which it is well known that only the if part is true in
general. In this article we develop a new version of spin structures on loop spaces that
exists if and only if the manifold is string. This new version consists of a classical
spin structure plus a certain fusion product related to loops of frames in the manifold.
We use the lifting gerbe theory of Carey and Murray, recent results of Stolz and
Teichner on loop spaces, and some of our own results about string geometry and
Brylinski–McLaughlin transgression.

57R15; 58B05, 53C08

1 Introduction

The Witten genus was introduced by Witten [29], using supersymmetric sigma models
with a spin manifold M for a target space, and S1 –equivariant Dirac operators on the
free loop space LM . Although the Witten genus is well defined (it is a power series
in the Pontryagin numbers of M ), the approach via loop space geometry still lacks a
rigorous understanding.

Dirac operators can be considered on manifolds with a spin structure, ie with a lift
of the structure group of the frame bundle to its universal covering group. The frame
bundle of the loop space of an n–dimensional spin manifold M is an LSpin.n/–bundle.
Killingback defined [8] a spin structure on LM to be a lift of the structure group of
the frame bundle of LM to the universal central extension

(1) 1! U.1/! CLSpin.n/!LSpin.n/! 1:

Killingback showed that the existence of spin structures on LM is obstructed by a
class �LM 2 H3.LM;Z/. This class is often called the string class of M . In view of
the following discussion, however, we’d better call it the spin class of LM .
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676 Konrad Waldorf

Killingback showed1 that the class �LM is the transgression of the first fractional
Pontryagin class 1

2
p1.M / 2H4.M;Z/, ie the image of 1

2
p1.M / under the homomor-

phism

� W H4.M;Z/! H3.LM;Z/; x 7!

Z
S1

ev�x;

where evW S1 �LM !M is the evaluation map. See also Pilch and Warner [15],
Carey and Murray [7] and McLaughlin [10].

Spin manifolds with vanishing first fractional Pontryagin class, 1
2
p1.M / D 0, are

called string manifolds. Given the relation

�
�

1
2
p1.M /

�
D �LM

it is clear that the loop space of a string manifold is spin. In this article we are concerned
with the converse proposition: is a manifold string when its loop space is spin? We recall
three seminal results concerning this question. With methods of algebraic topology,
McLaughlin showed the following.

Theorem 1.1 (McLaughlin [10, Theorem 3.1]) Suppose M is a 2–connected spin
manifold of dimension greater than 5. Then LM is spin if and only if M is string.

Similarly, but with more advanced methods using Hochschild cohomology, Kuribayashi
and Yamaguchi proved that the assumption of 2–connectedness may be replaced by a
condition that admits nontrivial �2 .

Theorem 1.2 (Kuribayashi and Yamaguchi [9, Theorem 1.2]) Let M be a simply
connected smooth manifold. Suppose M is 4–dimensional, or M has the structure of
a compact homogenous space, or M is a product of such spaces. Then LM is spin if
and only if M is string.

In contrast to the previous two results, Pilch and Warner have shown that the assumption
of simple connectedness cannot not be dropped (at least not when we consider a general
principal Spin.n/–bundle P instead of the frame bundle).

Theorem 1.3 (Pilch and Warner [15, Section 3]) There exists a non-simply connected
smooth manifold M and a principal Spin.n/–bundle P over M such that 1

2
p1.P /¤ 0

and LP is spin.

1In fact, Killingback defers the proof to a paper “in preparation” that I was not able to find. The earliest
reference I know that contains a proof is [10].
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The situation that the loop space of a spin manifold M is spin while M is not string
occurs evidently when the transgression homomorphism � is not injective. Loosely
speaking, the passage to the loop space loses information. The question is how this lost
information can be restored on the loop space side. On a geometric level, this means to
add additional structure to spin structures on loop spaces. To come back to the Dirac
operators on the loop space: such operators could then be required to preserve this
additional structure.

Witten [29] proposes that spin structures on the loop space have to be equivariant with
respect to the rotation action of S1 on LM , and accordingly considers S1 –equivariant
Dirac operators. This leads to S1 –equivariant index theory on loop spaces; see eg
Alvarez, Killingback, Mangano and Windey [1; 2]. The addition of S1 –equivariance,
or more general, equivariance under the group DiffC.S1/ of orientation-preserving
diffeomorphisms of S1 , indeed eliminates the counterexample of Theorem 1.3, as
proved in Pilch and Warner [15]. In general, however, it is, to my best knowledge,
not known whether a manifold is string if and only if its loop space has a DiffC.S1/–
equivariant spin structure.

One of the problems with DiffC.S1/–equivariance is that DiffC.S1/ is connected
and hence acts separately on each connected component of LM . Assuming for a
moment that M is connected, these components are labeled by the fundamental group
�1.M /, so that the obstruction against lifting a spin structure on LM to a DiffC.S1/–
equivariant spin structure splits into j�1.M /j many unrelated obstructions.

In this article, we introduce a new additional structure for spin structures on loop
spaces. In particular, we establish a relation between the separate spin structures on
different connected components of LM . This new additional structure is called a
fusion product, and the corresponding spin structures are called fusion spin structures;
see Definition 3.6. For the convenience of the reader, let me summarize the main idea
behind fusion products.

In a more general context, the author [26] defined fusion products for U.1/–bundles
over loop spaces. A fusion product defines a relation between the fibers of the bundle
over the three loops emerging from three paths connecting a common initial point with
a common end point. In particular, since these three loops may be elements of different
connected components of the loop space, the existence of a fusion product cannot be
explored separately over each connected component.

To apply the general concept of a fusion product to the present situation, we make
two observations. The first is that the central extension CLSpin.n/, considered as a
U.1/–bundle over LSpin.n/, carries a canonical fusion product. In fact, we prove in
Theorem 4.7 the existence of canonical fusion products for a large class of central
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extensions of loop groups. Our result includes the universal central extension of a
compact, connected, simple and simply connected Lie group.

The second observation is that a spin structure on the loop space LM can equivalently
be understood as a U.1/–bundle S over LFM , the loop space of the total space of
the frame bundle of M , together with a certain action of CLSpin.n/. Now, our new
additional structure for spin structures on loop spaces is a fusion product on S, subject
to the condition that the CLSpin.n/–action on S is compatible with the two fusion
products on CLSpin.n/ and S; see Definition 3.6.

The main result of this article is that fusion products for spin structures sufficiently
confine the before-mentioned loss of information in the transgression process.

Theorem 1.4 Let M be a spin manifold of dimension nD 3 or n > 4. Then M is
string if and only if LM is fusion spin.

This paper is organized as follows. Section 2 is complementary and concerns the
problem of characterizing spin manifolds by orientations of loop spaces, as well as its
solution by Stolz and Teichner. This problem is analogous to the one addressed in the
present article but in “one degree lower”. The content of Section 2 is not used in the
main text, but might be useful for getting familiar with the topic.

Section 3 gives the definition of our new notion of fusion spin structures (Definition 3.6),
and introduces and reviews the necessary material. In particular, we reveal the canonical
fusion product on the central extension CLSpin.n/. For this, we use an explicit model
of CLSpin.n/, introduced by Mickelsson [11] and motivated by conformal field theory.

The next two sections prepare the machinery for the proof of our main result. Section 4
is concerned with the loop space side. There we recast fusion spin structures in the
context of lifting bundle gerbes. The theory of lifting bundle gerbes was invented by
Murray [12] for ordinary central extensions of Lie groups. The main result of Section 4
is an extension of this theory to fusion extensions, ie to central extensions of loop
groups by U.1/ whose underlying principal bundle carries a fusion product. This
section includes a new additional structure for bundle gerbes over loop spaces called
an internal fusion product (Definition 4.13). Lifting bundle gerbes with internal fusion
products serve as a bundle gerbe-theoretic setting for fusion spin structures.

In Section 5 we provide a similar, gerbe-theoretic setting for string structures, on the
basis of my paper [28]. That is, we regard string structures as trivializations of a
certain bundle 2–gerbe, namely the Chern–Simons 2–gerbe of Carey, Johnson, Murray,
Stevenson and Wang [6]. As the main point in Section 5, we introduce a categorical
version of the transgression homomorphism � , which takes a bundle 2–gerbe over
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M to a bundle gerbe over LM with internal fusion product. We prove that the
transgression of the Chern–Simons 2–gerbe gives the spin lifting bundle gerbe with its
internal fusion product (Proposition 5.12). This geometrical transgression procedure
establishes the relation between string structures on M and fusion spin structures on
LM . In Section 6 we assemble the pieces and prove Theorem 1.4.

I remark that we do not discuss the relation between the set of string structures on M

and the set of fusion spin structures on LM . Although (according to Theorem 1.4)
one set is empty if and only if the other is empty, fusion spin structures are still not
good enough to achieve a bijection between the two sets. Such bijection is the subject
of ongoing research, and will additionally employ a certain equivariance under thin
homotopies of loops. As a consequence, we can – at the moment – not provide any
new insights into the theory of Dirac operators on the loop space.

Acknowledgements This work is supported by the Deutsche Forschungsgemeinschaft
(DFG) within the scientific network “String Geometry” (project code 594335). I thank
the Department of Mathematics at Hamburg University for kind hospitality and support
during the summer term. Many thanks to Ulrich Bunke, André Henriques, Thomas
Nikolaus, Ulrich Pennig, Peter Teichner, Chris Schommer-Pries, Urs Schreiber, and
Christoph Wockel for helpful questions, comments, and discussions.

2 Spin manifolds and loop space orientations

Analogous to the question how spin structures on loop spaces can characterize string
manifolds is the question how orientations of loop spaces can characterize spin mani-
folds. This question was considered early by Atiyah [3] and recently solved by Stolz
and Teichner [20]. What follows is a sketch of their argument.

There is a canonical double covering OLM of LM , the orientation bundle of the loop
space, whose construction we now recall: The monodromy in the central extension

1! Z2! Spin.n/! SO.n/! 1

is a smooth map mW LSO.n/! Z2 . Taking free loops in the oriented frame bundle
FM of M produces an LSO.n/–bundle LFM over LM , and OLM is obtained by
extending the structure group of LFM along m, ie

OLM WDLFM �LSO.n/Z2:

Accordingly, an orientation of LM is defined to be a section of OLM .
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On the level of cohomology classes, the class in H1.LM;Z2/ of OLM is the trans-
gression of the second Stiefel–Whitney class w2.M / 2 H2.M;Z2/, ie the image of
w2.M / under the Z2 –reduced transgression homomorphism

� W H2.M;Z2/! H1.LM;Z2/:

In particular, LM is orientable if M is spin.

In [3], Atiyah remarked that for a simply connected manifold M the converse statement
is true. Thus a simply connected manifold M is spin if and only if LM is orientable.
This statement was later proved in detail by McLaughlin [10, Proposition 2.1].

The problem of characterizing nonsimply connected spin manifolds was solved by Stolz
and Teichner [20]. Using methods of spin geometry, they recognized a crucial additional
structure on the orientation bundle OLM , a so-called fusion product. Accordingly,
among all orientations of LM , there is a subclass consisting of fusion-preserving
orientations. Stolz and Teichner showed:

Theorem 2.1 [20, Theorem 9] Let M be an oriented Riemannian manifold. Then
there is a bijectionnEquivalence classes of

spin structures on M

o
Š

nFusion-preserving
orientations of LM

o
:

In particular, M is spin if and only if LM is fusion orientable.

Speaking in terms of the framework used in the present article, the bijection of
Theorem 2.1 is induced by a version of the Brylinski–McLaughlin transgression functor
for abelian gerbes; see [26, Section 1.2] for a complete discussion.

The notion of a fusion product is crucial for the new version of spin structures we
introduce in this article, and is explained in the following section.

3 Fusion spin structures

In this section we explain our new version of spin structures on loop spaces, which
we call fusion spin structure; see Definition 3.6. We consider a spin manifold M of
dimension nD 3 or n> 4. In these dimensions, the group Spin.n/ is simple, connected,
simply connected and compact. We fix a generator 
can 2 H3.Spin.n/;Z/Š Z. The
loop group LSpin.n/ has a universal central extension [16, Section 4.4]

(2) 1 �! U.1/ �! CLSpin.n/
p
�!LSpin.n/ �! 1:
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This universal extension is determined up to a sign, which we fix by requiring the
following identity for its first Chern class (when considered as a principal U.1/–bundle
over LSpin.n/):

(3) �.
can/C c1.CLSpin.n//D 0 2 H2.LSpin.n/;Z/:

This sign convention is opposite to the one of Pressley and Segal; see [16, Propo-
sition 4.4.4 and 4.5.6]. We also remark that the transgression homomorphism �

is an isomorphism for simply connected Lie groups; see the discussion after [16,
Equation 4.4.3].

We start by reviewing the classical notion of spin structures on loop spaces. We denote
by FM the spin-oriented frame bundle of M . It is a smooth Spin.n/–principal bundle
over M . Since Spin.n/ is connected, LFM is a Fréchet principal LSpin.n/–bundle
over LM ; see [23, Lemma 5.1] and [17, Proposition 1.9].

Definition 3.1 [8] A spin structure on LM is a lift of the structure group of the looped
frame bundle LFM from LSpin.n/ to the central extension CLSpin.n/.

Thus, a spin structure on LM is a pair .S; �/ of a Fréchet principal CLSpin.n/–bundle
S over LM together with a smooth map � W S!LFM such that the diagram

S� CLSpin.n/

��p

��

// S

�

��

((
LM

LFM �LSpin.n/ // LFM

66

is commutative. A morphism between spin structures .S1; �1/ and .S2; �2/ is a smooth
bundle morphism 'W S1! S2 such that �1 D �2 ı' . The following lemma states an
obvious general fact in lifting theory, which we need later.

Lemma 3.2 Suppose .S; �/ is a spin structure on LM . Define a right U.1/–action
on S by

S�U.1/! S; .q; z/ 7! q � i.z�1/:

Here i W U.1/! CLSpin.n/ is the inclusion of the central subgroup, and � is the principal
CLSpin.n/–action on S. Under this action, � W S!LFM is a principal Fréchet U.1/–
bundle.

An important role in this article is played by so-called fusion in loop spaces. Fusion
is a constraint for structure on a loop space LX that is characteristically satisfied for
structure obtained via transgression from X . This will be explained in Section 4.2.
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In the following we explain in detail the notion of a fusion product on a principal
bundle over LX . We start with some technical preliminaries about paths. Let X be
a connected smooth manifold. By PX we denote the set of paths in X with “sitting
instants”, ie smooth maps 
 W Œ0; 1�!X that are locally constant near the endpoints.
One can show that the set PX is not a manifold, and in the following we will only treat
it as a set. We denote by PX Œk� the k–fold fiber product of PX over the evaluation
map evW PX ! X �X , ie the set of k–tuples of paths with a common initial point
and a common end point. We have a map

[W PX Œ2�
!LX; .
1; 
2/ 7! 
2 ? 
1;

where ? denotes the path concatenation, and 
 denotes the reversed path. This map is
well-defined (it produces smooth loops) due to the sitting instants of the paths.

Definition 3.3 [26, Definition 2.1.3] Let A be an abelian Lie group, and let E be a
Fréchet principal A–bundle over LX . A fusion product on E assigns to each triple
.
1; 
2; 
3/ 2 PX Œ3� a smooth, A–equivariant map

�
1;
2;
3
W E
1[
2

˝E
2[
3
! E
1[
3

;

such that the following two conditions are satisfied:

(i) Associativity For .
1; 
2; 
3; 
4/ 2 PX Œ4� and qij 2 E
i[
j ,

�
1;
3;
4
.�
1;
2;
3

.q12˝ q23/˝ q34/D �
1;
2;
4
.q12˝�
2;
3;
4

.q23˝ q34//:

(ii) Smoothness If U is a smooth manifold and cW U !PX Œ3� is a map for which
the three induced maps eij WD [ı prij ı cW U !LX are all smooth, then

�c W e
�
12E˝ e�23E! e�13E

is a smooth morphism between bundles over U .

Given a principal A–bundle E over LX with fusion product, one can construct a bundle
gerbe over X whose transgression is E. It has the surjective submersion ev1W PX!X ,
and the fusion product provides the bundle gerbe product. See Section 4.2 for more
details.

I remark that in my papers [25; 26; 27] I have treated the smoothness of fusion products
by regarding PX as a diffeological space. The above definition is equivalent to that
treatment, but completely avoids diffeological spaces.

In the present article, fusion products are considered for two cases of principal U.1/–
bundles over loop spaces. The first case is the principal U.1/–bundle S over LFM
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associated to a spin structure on LM via Lemma 3.2. The second case is the underlying
principal bundle of a central extension of the loop group LG of a Lie group G . Our
definition of a fusion spin structure (Definition 3.6 below) then combines both cases.

We shall first explain how a fusion product on a central extension of a loop group is
required to be compatible with the group structure of the central extension.

Definition 3.4 Let G be a Lie group and let A be an abelian Lie group. A fusion
extension of LG by A is a central extension

1!A! G!LG! 1

of Fréchet Lie groups, together with a multiplicative fusion product � on the principal
A–bundle G.

Here, a multiplicative fusion product satisfies

(4) �
1;
2;
3
.q12˝ q23/ ��
 0

1
;
 0

2
;
 0

3
.q012˝ q023/D �
1


0
1
;
2


0
2
;
3


0
3
.q12q012˝ q23q023/

for all elements qij 2G
i[
j and q0ij 2G
 0i[

0
j

and all .
1; 
2; 
3/; .

0
1
; 
 0

2
; 
 0

3
/2PGŒ3� .

Fusion extensions occur in the present article because of the following fact:

Theorem 3.5 The universal central extension CLSpin.n/ is a fusion extension (in a
canonical way).

We will give two proofs of this theorem. The first proof is given in the next paragraphs:
we construct an explicit model L for the central extension CLSpin.n/ and exhibit its
fusion product. The second proof appears in Section 4.3 as Corollary 4.8. There we
describe a construction of the central extension by transgression of the basic gerbe
over Spin.n/. A central result of my articles [25; 26; 27] is that fusion products
are a characteristic feature of structure in the image of transgression; this explains
Theorem 3.5 in a conceptual way. In Section 4.3 we also show that the two constructions
of CLSpin.n/ are canonically isomorphic (Proposition 4.10).

Our explicit model L is motivated by conformal field theory and was introduced by
Mickelsson [11]. It exists for any 2–connected Lie group G , such as Spin.n/. We
consider pairs .�; z/, where �W D2!G is a smooth map and z 2U.1/. For technical
reasons, we require � to be radially constant near the boundary, ie there exists � > 0

such that �.re2� i'/D �.e2� i'/ for all 1� � < r � 1. On the set of pairs we impose
the equivalence relation

.�; z/� .�0; z0/ , @� D @�0 and z D z0 � e2� iSWZ.ˆ/:
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Here @� denotes the restriction of � to the boundary, and ˆW S2 ! G is the map
defined on the northern hemisphere by � (with the orientation-preserving identification)
and on the southern hemisphere by �0 (with the orientation-reversing identification).
Since � and �0 are radially constant, this gives a smooth map. The symbol SWZ stands
for the Wess–Zumino term defined as follows. Because G is 2–connected, the map ˆ
can be extended to a smooth map ẑ W D3!G defined on the solid ball. Then

(5) SWZ.ˆ/ WD

Z
D3

ẑ�H with H WD 1
6
h� ^ Œ� ^ ��i 2�3.G/:

Here, � 2�1.G; g/ is the left-invariant Maurer–Cartan from on G . The bilinear form
h�;�i is the Killing form on the Lie algebra g, normalized such that the closed 3–form
H represents the fixed generator 
can 2H3.G;Z/. Now, the total space of the principal
U.1/–bundle L of our model is the set of equivalence classes of above pairs:

L WD f.�; z/g =� :

The bundle projection sends .�; z/ to @� 2 LG , and the U.1/–action is given by
multiplication in the U.1/–component. One can show that

c1.L/D��.
can/:

This is already enough to identify the universal central extension.

The group structure on L turning it into a central extension is given by the Mickelsson
product [11],

L�L! L; ..�1; z1/; .�2; z2// 7!

�
�1�2; z1z2 � exp

�
�2� i

Z
D2

.�1; �2/
��

��
;

where � is defined by

(6) � WD 1
2

˝
pr�1� ^ pr�2 x�

˛
2�2.G �G/:

The two differential forms H and � , which are the only parameters of the construction,
satisfy the identities

Hg1g2
DHg1

CHg2
� d�g1;g2

and �g1;g2
C �g1g2;g3

D �g2;g3
C �g1;g2g3

for all g1;g2;g3 2G . The first identity assures the well-definedness of the Mickelsson
product on equivalence classes, and the second implies its associativity.

Now we come to the fusion product. For .
1; 
2; 
3/ 2 PGŒ3� , we define

(7) �
1;
2;
3
W L
1[
2

˝L
2[
3
! L
1[
3

;

.�12; z12/˝ .�23; z23/ 7!
�
�13; z12z23 � e2� iSWZ.‰/

�
;
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where �13W D
2!G is an arbitrarily chosen smooth map with @�13 D 
1[ 
3 , and

‰W S2 ! G is obtained by trisecting S2 along the longitudes 0, 2�=3 and 4�=3,
and prescribing ‰ on each sector with the maps �12 , �23 (with orientation-reversing
identification) and �13 (with orientation-preserving identification). This map ‰ is
smooth due to the sitting instants of the paths and the requirement that the maps �ij

are radially constant.

That definition (7) of the fusion product on L is independent of the choice of �13

follows from the identity

SWZ.‰/D SWZ.‰
0/SWZ.ˆ13/

for Wess–Zumino terms, where ‰0 is obtained as described above, but using a different
map �0

13
instead of �13 , and ˆ13 is obtained in the way described earlier from �13

and �0
13

. Definition (7) is also well-defined under the equivalence relation � due to a
similar identity for Wess–Zumino terms. Finally, the fusion product on L is associative
in the sense of Definition 3.3.

Now that we have explained that CLSpin.n/ is a fusion extension, we proceed to
introduce our new version of a spin structure on LM .

Definition 3.6 A fusion spin structure on LM is a spin structure .S; �/ together
with a fusion product �S on the associated principal U.1/–bundle � W S!LFM of
Lemma 3.2, such that the CLSpin.n/–action on S is fusion-preserving,

�S.q12 �ˇ12˝ q23 �ˇ23/D �S.q12˝ q23/ ��.ˇ12˝ˇ23/;

where � is the fusion product of the fusion extension CLSpin.n/, and the elements
q12; q23 2 S and ˇ12; ˇ23 2

CLSpin.n/ are supposed to be such that the fusion products
are defined.

Explicitly, the condition on the elements means there are paths .˛1; ˛2; ˛3/ 2PFM Œ3�

and .
1; 
2; 
3/ 2 PSpin.n/Œ3� such that �.qij /D ˛i [ j̨ and p.ˇij /D 
i [ 
j .

4 Lifting gerbes for fusion extensions

The main objective of this section is to embed the definition of a fusion spin structure
into a more general theory. The results we derive in this setting will be used in the
proof of the main result.
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4.1 Lifting gerbes

We briefly review the theory of lifting bundle gerbes for the convenience of the reader,
following [12, Section 4]. The setup is a central extension

(8) 1 �!A �! bG t
�!G �! 1

of (possibly Fréchet) Lie groups, and a principal G –bundle P over a (possibly Fréchet)
manifold X .

A bG –lift of P is a principal bG –bundle bP over X together with a bundle map
f W bP ! P satisfying f .bp � bg/ D f .bp / � t.bg/ for all bp 2 bP and bg 2 bG . The
existence of bG –lifts is obstructed by a class �P 2 LH2.X;A/ obtained in the following
way. Suppose the principal G –bundle P has transition functions g˛ˇW U˛ \Uˇ!G

with respect to an open cover of X . Then �P is the image of the Čech cohomology
class of g˛ˇ under the connecting homomorphism

LH1.X;G/! LH2.X;A/:

Explicitly, upon passing to an appropriate refinement, one chooses lifts bg˛ˇW U˛\Uˇ!bG . These satisfy the cocycle condition up to a Čech 2–cochain f˛ˇ
 W U˛\Uˇ\U
!

A, and �P is the cohomology class of f˛ˇ
 . The class �P vanishes if and only if one
can choose lifts bg˛ˇ that actually form a Čech cocycle. This, in turn, is equivalent
to the existence of a bG –lift bP .

A stronger statement (Theorem 4.2) can be achieved about the category bG –Lift.P /
of bG –lifts of the principal G–bundle P . For this purpose we consider the lifting
bundle gerbe GP over X associated to P . Its surjective submersion is the bundle
projection � W P ! X . Over the two-fold fiber product P Œ2� WD P �X P , the lifting
bundle gerbe has the principal A–bundle Q WD ı�bG , obtained by regarding bG as a
principal A–bundle over G , and pulling it back along the “difference map”

(9) ıW P Œ2�
!G; with p � ı.p;p0/D p0:

Finally, the multiplication of bG defines a bundle gerbe product, ie a bundle isomorphism

(10) �W pr�12Q˝ pr�23Q! pr�13Q;

.p1;p2;g12/˝ .p2;p3;g23/ 7! .p1;p3;g12g23/

over P Œ3� that is associative over P Œ4� . Here, prij W P
Œ3�!P Œ2� denote the projections

to the indexed components. The characteristic class of the lifting gerbe GP in LH2.X;A/

coincides with the obstruction class �P . In the case of AD U.1/, it can be identified
with a class in H3.X;Z/, the Dixmier–Douady class of GP .
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Example 4.1 If P D FM is the oriented frame bundle of an oriented Riemannian
manifold, and the central extension is

1! Z2! Spin.n/! SO.n/! 1;

the associated lifting gerbe GFM is the spin lifting gerbe of M . Its characteristic class
�FM 2

LH2.M;Z2/ is the second Stiefel–Whitney class w2 .

A trivialization of a bundle gerbe G is an isomorphism T W G! I , where I denotes
the trivial bundle gerbe [21]. Trivializations form a category we denote by Triv.G/. In
case of the lifting bundle gerbe GP , a trivialization is a principal A–bundle T over P

together with a bundle isomorphism

(11) �W Q˝ pr�2T ! pr�1T

over P Œ2� satisfying a compatibility condition with the bundle gerbe product �, namely

(12) �.q12˝ �.q23˝ t//D �.�.q12˝ q23/˝ t/

for all .p1;p2;p3/ 2P Œ3� and all t 2 Tp3
, q12 2Qp1;p2

, and q23 2Qp2;p3
. We have

the following result of [12, Section 4].

Theorem 4.2 Let P be a principal G –bundle over X . Then the above constructions
constitute an equivalence of categories,

Triv.GP /Š bG –Lift.P /:

Let us briefly sketch the two functors that establish the equivalence of Theorem 4.2.
Suppose .T; �/ is a trivialization of GP . We equip bP WD T with the projection
T ! P ! X and the bG–action bp � bg WD �.bg�1˝ bp /. This defines a principal bG–
bundle over X . Together with the map f W T !P it forms a bG –lift of P . Conversely,
suppose f W bP ! P is a bG–lift of P . We equip T WD bP with the map f W T ! P

and the A–action
T �A! T; .t; a/ 7! t � i.a�1/;

where i W A! bG is the inclusion of the central subgroup, and � is the principal bG –action
on bP . This equips T with the structure of a principal A–bundle over P . Together
with the bundle morphism � defined by �.bg ˝ bp / WD bp � bg�1 it is a trivialization
of GP .

Example 4.3 If P DLFM is the looping of the frame bundle of a spin manifold, andbG D CLSpin.n/ is the universal central extension of GDLSpin.n/, then the spin struc-
tures on LM of Section 3 form precisely the category CLSpin.n/–Lift.LFM /. The ob-
struction class �LFM 2 H2.LM;U.1// can be identified with a class in H3.LM;Z/;
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this is the spin class �LM of LM mentioned in Section 1. The lifting bundle gerbe is
denoted SLM and called the spin lifting gerbe. Its Dixmier–Douady class satisfies

dd.SLM /C�LM D 0:

Theorem 4.2 implies an equivalence˚
Spin structures on LM

	
Š

nTrivializations of the
spin lifting gerbe SLM

o
:

Under this equivalence, a spin structure .S; �/ corresponds to a trivialization .T; �/ of
SLM whose principal U.1/–bundle T is the one of Lemma 3.2.

4.2 Transgression and regression

In this section, we explain the role of fusion products from a more general perspective.
Based on Definition 3.3, fusion bundles with structure group A over the loop space
LX of a smooth manifold X form a category we denote by FusBun

A
.LX /. These

categories are monoidal and natural with respect to looped maps, ie if f W X ! Y is
a smooth map between smooth manifolds, and Lf W LX !LY denotes the induced
map on loop spaces, pullback is a functor

(13) Lf �W FusBunA.LY /! FusBunA.LX /:

Fusion bundles are those bundles over LX that correspond to bundle gerbes over X .
This correspondence can be seen in both directions. First, fusion products furnish a
regression functor

(14) Rx W FusBunA.LX /! GrbA.X /;

landing in the 2–category of bundle gerbes over X ; see [26, Section 5.1]. The regression
functor Rx is defined for connected manifolds X and depends on the choice of a base
point x 2 X (up to canonical, natural equivalence). It is weak (ie it has nontrivial
compositor 2–morphisms), but induces a honest functor into the category h1GrbA.X /

obtained from the 2–category GrbA.X / by identifying 2–isomorphic 1–morphisms.
We remark two evident properties:

Lemma 4.4 The functor Rx has the following properties:

(i) It is monoidal.

(ii) It is natural with respect to smooth, base-point-preserving maps.

Second, in the other direction, there is a transgression functor

(15) h1GrbrA.X /! FusBunA.LX /; G 7! TG
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defined on the category of A–bundle gerbes with connections over X . It was introduced
by Brylinski and McLaughlin [5] and lifted to fusion bundles in [26, Section 4.2]. For
AD U.1/ it satisfies, on the level of characteristic classes, the relation

(16) c1.TG/D��.dd.G// 2 H2.LX;Z/:

We shall describe some details of the transgression functor following [22; 26]. If G is
a bundle gerbe with connection over X , the fiber of TG over a loop � 2LX is

(17) TGj� WD h0Trivr.��G/;

ie it consists of isomorphism classes of connection-preserving trivializations of ��G . A
connection-preserving isomorphism AW G1! G2 induces a bundle morphism given by

(18) TAW TG1
! TG2

; T 7! T ı ��A�1:

The lift of this construction to the category of fusion bundles over LX is established by
recognizing a fusion product �G on the bundle TG . Let us recall how �G is characterized.
We denote by �1; �2W Œ0; 1�! S1 the inclusion of the interval into the left and the right
half of the circle. Let .
1; 
2; 
3/ be a triple of paths with a common initial point x

and a common end point y , and let Tij be trivializations of the pullback of G to the
loops 
i [ 
j , for .ij /D .12/; .23/; .13/. Then the relation

(19) �G.T12˝ T23/D T13

holds if and only if there exist 2–isomorphisms

�1W �
�
1T12) ��1T13; �2W �

�
2T12) ��1T23 and �3W �

�
2T23) ��2T13

between trivializations of the pullbacks of G to the paths 
1 , 
2 , and 
3 , respectively,
whose restrictions to the two common points x and y satisfy the cocycle condition
�1 D �3 ı�2 .

Example 4.5 The orientation bundle OLM of the loop space, mentioned in Section 2,
is the transgression of the spin lifting gerbe GFM of M ; see Example 4.1. This
explains the existence of a fusion product on OLM , independently of its discovery by
Stolz and Teichner [20].

The regression functor Rx and the transgression functor T are inverse to each other,
in a way that has various formulations. For the purpose of this article we need the
following aspect.
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Theorem 4.6 The diagram

FusBun
A
.LX /

Rx

&&

h1GrbrA.X /

T
88

// h1GrbA.X /

of functors whose bottom arrow is the functor that forgets connections, is commutative
up to a canonical natural equivalence.

I remark that transgression and regression can be turned into an honest equivalence of
categories, by either including the connection on the loop space side or dropping the
connections on the gerbes; see the main results of [26; 27].

4.3 Multiplicative gerbes and fusion extensions

In this section we explain how fusion extensions (Definition 3.4) can be obtained by
transgression of multiplicative gerbes. Let A be an abelian Lie group. We recall from
[22, Definition 1.3] that a multiplicative A–bundle gerbe with connection over a Lie
group G is a triple .G; �;M; ˛/ consisting of an A–bundle gerbe G with connection
over G together with a 2–form � 2�2.G �G; a/ with values in the Lie algebra a of
A, a connection-preserving isomorphism

(20) MW pr�1G˝ pr�2G!m�G˝ I�

between gerbes over G � G , and a connection-preserving transformation ˛ over
G �G �G , that serves as an associator for the multiplication (20) and satisfies the
pentagon axiom. In (20) we have denoted by I� the trivial bundle gerbe equipped with
the curving 2–form � . That (20) is connection-preserving implies for H WD curv.G/ 2
�3.G/ the identity

(21) Hg1g2
DHg1

CHg2
� d�g1;g2

and the existence of ˛ implies the identity

(22) �g1;g2
C �g1g2;g3

D �g2;g3
C �g1;g2g3

:

Let us first explain how a central extension is produced from a multiplicative bundle
gerbe with connection. The transgression of G is a principal A–bundle G WD TG over
LG . Next, the transgression of M is a bundle isomorphism

TMW pr�1G˝ pr�2G!m�G˝TI� :
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As described in [22, Section 3.1] the U.1/–bundle TI� has a canonical trivialization

(23) t�W TI� ! I:

Together, we obtain a bundle isomorphism

(24) pr�1G˝ pr�2G
TM
��!m�G˝TI�

id˝t�
����!m�G:

This bundle morphism induces a smooth map zmW G�G!G covering the multiplication
of LG along the projection G!LG . The transgression of the associator ˛ guarantees
the associativity of zm. Then the principal A–bundle G together with this product
becomes a central extension

1!A! G!LG! 1

of Fréchet Lie groups [22, Theorem 3.1.7].

Theorem 4.7 Let G be a multiplicative A–bundle gerbe with connection over G .
Then TG is a fusion extension of LG by A.

Proof We notice that TG is a fusion bundle; see (15). The bundle morphism (24) is
fusion-preserving, since the isomorphism M transgresses to a fusion-preserving bundle
morphism, and the trivialization (23) is fusion-preserving [23, Lemma 3.6]. This shows
the multiplicativity of the fusion product of TG in the sense of Definition 3.4.

Suppose that G is a compact, connected, simple and simply connected Lie group. Let

can 2H3.G;Z/ be a generator. There is a canonical multiplicative U.1/–bundle gerbe
with connection, the basic bundle gerbe Gbas , whose Dixmier–Douady class is 
can ;
see [22, Example 1.5] and [24]. The curvature of Gbas is H D 1

6
h� ^ Œ� ^ ��i, and

the 2–form of its multiplicative structure is �D 1
2
hpr�

1
� ^ pr�

2
x�i; both forms appeared

already in Section 3. Since

c1.TGbas/
(16)
D ��.dd.Gbas//D��.
can/

we have, according to our sign convention (3), the following consequence.

Corollary 4.8 Suppose that G is a compact, connected, simple and simply connected
Lie group. Then TGbas is the universal central extension eLG . In particular, the universal
central extension of LG is a fusion extension.

We have now described two models for the universal central extension of a compact,
connected, simple and simply connected Lie group: the explicit construction L of
Section 3, and the transgression TGbas of the basic bundle gerbe. Both models are fusion
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extensions, ie they come equipped with multiplicative fusion products. In the remainder
of this section we show that the two models are isomorphic as fusion extensions.

We shall first describe an explicit isomorphism between the underlying principal U.1/–
bundles of the two models. It is given by the formula

(25) 'W L! TGbas ; .�; z/ 7! @T � z � exp
�
�2� i

Z
D2

!

�
:

Here T W ��Gbas! I! is an arbitrarily chosen trivialization of ��Gbas over D2 and
@T denotes its restriction to the boundary; the latter is a trivialization of @��Gbas over
S1 , ie an element in TGbas over the loop @� ; see (17).

Proposition 4.9 The formula (25) defines an isomorphism of principal U.1/–bundles
over LG .

Proof The main point is to show the independence of ' from the choice of T
and its well-definedness under the equivalence relation from the definition of L. If
T 0W ��Gbas! I!0 is a different choice of a trivialization, then there exists a principal
U.1/–bundle P with connection over D2 with curv.P / D !0 � ! and @T 0 D @T �
HolP .S1/ as elements in TGbas j@� ; see [22, Section 3.1] for some more details. Since

HolP .@D2/D exp
�

2� i
Z

D2

curv.P /
�
;

the two contributions cancel. Now suppose that .�0; z0/ is an equivalent representative of
the element in L, ie @� D @�0 and z D z0 � e2� iSWZ.ˆ/ . We may choose a trivializationeT W ˆ�Gbas ! Iz! and use its restrictions T and T 0 to the two hemispheres in the
definition of ' . Now, well-definedness follows from the fact that

exp .2� iSWZ.ˆ//D exp
�

2� i
Z

D3

ẑ�H

�
D exp

�
2� i

Z
S2

z!

�
;

the latter equality being a consequence of the integrality of H and the relation ˆ�H D
curv.ˆ�Gbas/D dz! (as for any trivialization). Finally, the map ' is fiber-preserving
and U.1/–equivariant; hence, a bundle isomorphism.

Proposition 4.10 The bundle isomorphism ' is a group homomorphism and fusion-
preserving, and thus defines an equivalence between the fusion extensions TGbas and L.

Proof In order to see that ' preserves the group structure, consider two elements
.�1; z1/ and .�2; z2/ in L, and recall that

.�1; z1/ � .�2; z2/D

�
�1�2; z1z2 � exp

�
�2� i

Z
D2

.�1; �2/
��

��
:
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Let T1W �
�
1
Gbas ! I!1

and T2W �
�
2
Gbas ! I!2

be trivializations. We define a new
trivialization T12W .�1�2/

�Gbas! I!12
as the composite

.�1�2/
�Gbas D .�1; �2/

�m�Gbas˝ I.�1;�2/��˝ I�.�1;�2/��

.�1;�2/
�M�1˝id

��

��
1
Gbas˝�

�
2
Gbas˝ I�.�1;�2/�� T1˝T2˝id

// I!1C!2�.�1;�2/��:

Restricting to the boundary S1D @D2 , we have @T12D @T1 �@T2 in the group structure
of the Fréchet Lie group TGbas , compare (18) and (24). Hence

'.�1; z1/ �'.�2; z2/D @T1 � @T2 � z1z2 � exp
�
�2� i

Z
D2

!1C!2

�
D @T12 � z1z2 � exp

�
�2� i

Z
D2

!12C .�1; �2/
��

�
D '.�1�2; z1z2/ � exp

�
�2� i

Z
D2

.�1; �2/
��

�
D '..�1; z1/ � .�2; z2//:

This shows that ' is a group homomorphism.

In order to see that ' is fusion-preserving, we assume that .
1; 
2; 
3/ 2 PGŒ3� , that
�ij W D

2!G are smooth maps with @�ij D
i[
j , and that ‰W S2!G is constructed
from the latter ones as described in Section 3. Thus, we have

�L..�12; z12/˝ .�23; z23//D .�13; z12z23 � e2� iSWZ.‰//:

We choose a trivialization T W ‰�Gbas!I! , and restrict to trivializations Tij W �
�
ijGbas!

I!ij
. In this situation, Definition (19) of the fusion product �Gbas on TGbas shows that

�Gbas.@T12˝ @T23/D @T13:

Thus

�Gbas.'.�12; z12/˝'.�23; z23//D @T13 � z12z23 � exp
�
�2� i

Z
D2

.!12C!23/

�
D @T13 � z12z23 � exp

�
�2� i

Z
D2

.!13�!/

�
D @T13 � z12z23 � e2� iSWZ.‰/ � exp

�
�2� i

Z
D2

!13

�
D '

�
�13; z12z23 � e2� iSWZ.‰/

�
:

This shows that ' is fusion-preserving.
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4.4 Fusion lifts

In Section 4.1 we have obtained a formulation of spin structures on LM in terms of
trivializations of the spin lifting gerbe SLM . The goal of this section is to extend this
formulation to fusion spin structures of Definition 3.6 (see Corollary 4.17 below).

For this purpose we develop a general theory for lifting problems along fusion exten-
sions. We show that lifting gerbes for fusion extensions are equipped with certain
additional structure that we call internal fusion product (Definition 4.13). The relevant
trivializations are then identified as those that respect this internal fusion product
(Theorem 4.16).

We consider a connected Lie group G , an abelian Lie group A, a fusion extension

1!A! G!LG! 1;

and a principal G –bundle E over a smooth manifold M . The fusion product on G will
be denoted by �G . We recall that LE is a Fréchet principal LG –bundle over LM .

Definition 4.11 A fusion lift of the structure group of LE from LG to G is a G–
lift .S; �/ together with a fusion product �S on the associated principal A–bundle
� W S!LE , such that the G–action on S is fusion-preserving,

�E.q12 �ˇ12˝ q23 �ˇ23/D �E.q12˝ q23/ ��G.ˇ12˝ˇ23/

for all qij 2 S˛i[ j̨
, ˇij 2 G
i[
j , and all .˛1; ˛2; ˛3/ 2 PEŒ3� and .
1; 
2; 
3/ 2

PGŒ3� .

Here, by associated A–bundle we mean the bundle defined analogously to the one of
Lemma 3.2: its total space is S and its bundle projection is the map � W S!LE . The
principal A–action is given by the formula

S�A! S; .q; a/ 7! S � i.a�1/;

where i W A! G is the inclusion of the central subgroup, and � is the principal G–
action on S. A morphism between fusion lifts .S1; �1; �S1

/ and .S2; �2; �S2
/ is called

fusion-preserving, if the induced morphism S1! S2 of principal A–bundles over LE

preserves the fusion products �1 and �2 . Fusion lifts form a category denoted by
G–FusLift.LE/.

Example 4.12 In this notation, the fusion spin structures introduced in Definition 3.6
form precisely the category CLSpin.n/–FusLift.LFM /.
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In the following we describe fusion lifts in terms of lifting bundle gerbes, and equip,
for this purpose, the ordinary lifting bundle gerbe GLE for lifting the looped bundle
LE from LG to G with an additional structure.

Definition 4.13 Let G be an A–bundle gerbe over LM whose surjective submersion
is the looping of a surjective submersion � W Y ! M . Let P denote its principal
A–bundle over LY Œ2� and � denote its bundle gerbe product. An internal fusion
product on G is a fusion product on P such that � is fusion-preserving.

The condition that � is fusion-preserving makes sense since � is a morphism

�W pr�12P ˝ pr�23P ! pr�13P

between fusion bundles over LY Œ3� . In order to spell it out explicitly, we must consider
three paths 
1; 
2; 
3 2 PY Œ3� with a common initial point in Y Œ3� and a common end
point in Y Œ3� . The composition of a path 
k with one of the projections pri W Y

Œ3�!PY

gives a path 
 i
k
2PY , and these give in turn loops which we denote by �ij WD 


1
i [


1
j 2

LY and � 0ij D 

2
i [ 


2
j 2 LY , as well as � 00ij D 


3
i [ 


3
j 2 LY . Now, the condition

is that

�.�.q12˝ q23/˝�.q
0
12˝ q023//D �.�.q12˝ q012/˝�.q23˝ q023//

for all qij 2 P.�ij ;�
0
ij
/ and q0ij 2 P.� 0

ij
;� 00

ij
/ .

There are two important examples of bundle gerbes with internal fusion products. One
is when the bundle gerbe G is the transgression of a bundle 2–gerbe over M ; this will
be explained in Section 5.1. The other example is when G is the lifting bundle gerbe
GLE associated to the problem of lifting the structure group of LE from LG to the
fusion extension G.

Indeed, in this case the surjective submersion of GLE is the looping of the bundle
projection E!M , and the principal A–bundle P DLı�G is the pullback of a fusion
bundle along a looped map, and thus a fusion bundle; see (13). We will denote this
internal fusion product on GLE by �LE .

In order to check that the bundle gerbe product (10) is fusion-preserving, we con-
sider paths 
1; 
2; 
3 2 PEŒ3� as above, and write qij D .�ij ; �

0
ij ; ˇij / and q0ij D

.� 0ij ; �
00
ij ; ˇ

0
ij / for elements ˇij 2 G
ij

and ˇ0ij 2 G
 0ij , where 
ij WDLı.�ij ; �
0
ij / 2LG

and 
 0ij WDLı.� 0ij ; �
00
ij / 2LG . Note that now

(26) �LE.q12˝ q23/D �LE..�12; �
0
12; ˇ12/˝ .�23; �

0
23; ˇ23//

D .�13; �
0
13; �G.ˇ12˝ˇ23//;
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and similarly for the primed elements. Then we calculate

�.�LE.q12˝ q23/˝�LE.q
0
12˝ q023//

(26)
D �..�13; �

0
13; �G.ˇ12˝ˇ23//˝ .�

0
13; �

00
13; �G.ˇ

0
12˝ˇ

0
23///

(10)
D .�13; �

00
13; �G.ˇ

0
12˝ˇ

0
23/ ��G.ˇ12˝ˇ23//

(4)
D .�13; �

00
13; �G.ˇ

0
12ˇ12˝ˇ

0
23ˇ23//

(26)
D �LE..�12; �

00
12; ˇ

0
12ˇ12/˝ .�23; �

00
23; ˇ

0
23ˇ23//

(10)
D �LE.�.q12˝ q012/˝�.q23˝ q023//:

This shows that � is fusion-preserving. Summarizing, we have defined an internal
fusion product on the lifting bundle gerbe GLE .

Example 4.14 The spin lifting gerbe SLM over the loop space of a spin manifold
(see Example 4.3) is equipped with an internal fusion product.

If a bundle gerbe G is equipped with an internal fusion product �, we can consider
trivializations that “respect” the fusion product in the following way:

Definition 4.15 Let G be a bundle gerbe over LM whose surjective submersion is
the looping of a surjective submersion � W Y !M . A fusion product on a trivialization
T D .T; �/ of G is a fusion product �T on the principal A–bundle T over LY . It is
called compatible with an internal fusion product � on G if � is a fusion-preserving
bundle morphism.

A morphism 'W .T1; �1; �1/! .T2; �2; �2/ between trivializations with compatible
fusion products is an ordinary morphism 'W .T1; �1/! .T2; �2/ between the trivi-
alizations that is additionally fusion-preserving. The category of trivializations with
compatible fusion product is denoted by FusTriv.G; �/.

Theorem 4.16 The equivalence of Theorem 4.2 between trivializations of GLE and
G–lifts of LE extends to an equivalence in the fusion setting:

FusTriv.GLE ; �LE/Š G–FusLift.LE/:

Proof We recall that the equivalence of Theorem 4.2 sends a trivialization .T; �/
to the principal G–bundle E WD T with projection T ! LE! LM and G–action
given by

q �ˇ WD �.ˇ�1
˝ q/:
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The additional structure we want to take into account is the same on both sides: a
fusion product �T on the principal A–bundle T !LE . It remains to check that the
conditions are equivalent: on the left hand side the condition that � is fusion-preserving,
and on the right hand side the condition that the G–action on T is fusion-preserving in
the sense of Definition 4.11. Suppose first that � is fusion-preserving. Then

�E.q12 �ˇ12˝ q23 �ˇ23/D �E.�.ˇ
�1
12 ˝ q12/˝ �.ˇ

�1
23 ˝ q23//

D �.�G.ˇ
�1
12 ˝ˇ

�1
23 /˝�E.q12˝ q23//

D �.�G.ˇ12˝ˇ23/
�1
˝�E.q12˝ q23//

D �E.q12˝ q23/ ��G.ˇ12˝ˇ23/I

this shows that the G–action is fusion-preserving. In the middle we have used that the
multiplicativity (4) of �G implies

�G.ˇ12˝ˇ23/
�1
D �G.ˇ

�1
12 ˝ˇ

�1
23 /:

The converse can be proved similarly. The condition for morphisms is evidently the
same on both sides.

Applied to fusion spin structures on loop spaces, Theorem 4.16 implies via Exam-
ples 4.12 and 4.14:

Corollary 4.17 There is an equivalence˚
Fusion spin structures on LM

	
Š

nTrivializations of the spin lifting gerbe
SLM with compatible fusion product

o
:

5 Transgression of string structures

In this section we prepare another important tool for the proof of our main result: we
discuss string structures in the setting of bundle 2–gerbes.

5.1 Bundle 2–gerbes and string structures

We start with recalling some basic definitions.

Definition 5.1 [18, Definition 5.3] A bundle 2–gerbe over M is a surjective sub-
mersion � W Y !M together with a bundle gerbe P over Y Œ2� , an isomorphism

MW pr�12P˝ pr�23P! pr�13P
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of bundle gerbes over Y Œ3� , and a transformation

pr�
12
P˝ pr�

23
P˝ pr�

34
P

pr�
123

M˝id
//

id˝pri�
234

M
��

pr�
13
P˝ pr�

34
P

�

px
pr�

134
M

��

pr�
12
P˝ pr�

24
P

pr�
124

M
// pr�

14
P

over Y Œ4� that satisfies the pentagon axiom.

The isomorphism M is called bundle 2–gerbe product and the transformation � is
called associator. The pentagon axiom implies the cocycle condition for a certain
degree three cocycle on M with values in U.1/. This, in turn, defines a class in
H4.M;Z/; see [18, Proposition 7.2] for the details. For a bundle 2–gerbe G , this class
is denoted by cc.G/ 2 H4.M;Z/.

Definition 5.2 [18, Definition 11.1] Let G D .Y; �;P;M; �/ be a bundle 2–gerbe
over M . A trivialization of G is a bundle gerbe S over Y , together with a isomorphism

AW P˝ pr�2S! pr�1S

of bundle gerbes over Y Œ2� and a transformation

pr�
12
P˝ pr�

23
P˝ pr�

3
S

id˝pr�
23

A
//

M˝id

��

pr�
12
P˝ pr�

2
S

�

px
pr�

12
A

��

pr�
13
P˝ pr�

3
S

pr�
13

A
// pr�

1
S

over Y Œ3� that satisfies a compatibility condition with the associator �.

As one expects, the characteristic class cc.G/ 2 H4.M;Z/ of G vanishes if and only
if G admits a trivialization [18, Proposition 11.2]. An example of a bundle 2–gerbe
that will be important later is the Chern–Simons 2–gerbe CSP .G/ [6]; it is associated
to a principal G –bundle P over M and a multiplicative bundle gerbe G over G . Its
construction is similar to the one of the lifting bundle gerbe in Section 4.1. We consider
the difference map ıW P Œ2�!G of (9) and its generalization to higher fiber products,

ıW P ŒkC1�
!Gk with .p1; : : : ;pk/ � ı.p1; : : : ;pkC1/D .p2; : : : ;pkC1/:

Now the Chern–Simons 2–gerbe is obtained by pulling back the multiplicative bundle
gerbe G along ı ; explicitly:
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� The surjective submersion is the bundle projection P !M .

� The bundle gerbe P over P Œ2� is P WD ı�G .

� The bundle 2–gerbe product is given by the pullback of the multiplicative
structure (20):

ı�MW pr�12P˝ pr�23P! pr�13P:

� The associator � is given by the pullback of the transformation ˛ .

The similarity between the lifting bundle gerbe and the Chern–Simons 2–gerbe can be
explained by the fact that the Chern–Simons 2–gerbe is the lifting 2–gerbe of a lifting
problem for principal 2–bundles, or nonabelian gerbes; see [13, Theorem 7.1] and
[14, Remark 4.2.4 and Theorem 4.2.7]. In the present context, the theory of nonabelian
gerbes has two disadvantages that prevent us from using it here. The first is that
it requires a strict 2–group model for the string group, which necessarily would be
infinite-dimensional. The second disadvantage is that the only available formalism for
the transgression of nonabelian gerbes (namely the one developed in [14]) is defined
indirectly via the lifting bundle 2–gerbe. In this article, we will avoid these difficulties
and follow the approach of [28] to string structures.

For this purpose, we consider P D FM , the spin-oriented frame bundle of M , and
G D Gbas , the basic bundle gerbe over Spin.n/, whose Dixmier–Douady class is the
fixed generator 
can 2H3.Spin.n/;Z/. We write CSM WDCSP .Gbas/ for the associated
Chern–Simons 2–gerbe. We have [28, Theorem 1.1.3]

cc.CSM /D 1
2
p1.M /:

In particular, we see that M is a string manifold if and only if CSM admits a trivial-
ization. This motivates the following definition:

Definition 5.3 [28, Definition 1.1.5] Let M be a spin manifold. A string structure
on M is a trivialization of CSM .

Explicitly, a string structure on M is a triple .S;A; �/ consisting of a bundle gerbe S
over FM , of an isomorphism

AW ı�Gbas˝ pr�2S! pr�1S

between bundle gerbes over FM Œ2� , and of a transformation � over FM Œ3� .

One can show [14, Section 6] that a string structure in the sense of Definition 5.3
is the same as a lift of the structure group of FM to an infinite-dimensional, strict
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2–group model of the string group, in the framework of nonabelian gerbes (or principal
2–bundles).

Definition 5.3 of a string structure has many nice features, some of which are described
in [28]. For example, it is completely finite-dimensional and does not involve the string
group. A particular feature, which we need in the proof of the main theorem, is that
Definition 5.3 reproduces the topological notion of a string class: a cohomology class
� 2 H3.FM;Z/ that restricts on each fiber to the generator 
can 2 H3.Spin.n/;Z/.
Indeed, we have:

Proposition 5.4 [28, Theorem 1.1.4] The mapn Isomorphism classes of
string structures on M

o
!
˚
String classes on FM

	
; .S;A; �/ 7! �dd.S/

that sends a trivialization to minus the Dixmier–Douady class of the bundle gerbe S is
a bijection.

Let us recall one aspect of Proposition 5.4, namely the fact that the map is well-defined.
This follows from the following lemma, which will be used later.

Lemma 5.5 Let S be a bundle gerbe over FM , and let AW ı�Gbas˝pr�
2
S! pr�

1
S be

an isomorphism between bundle gerbes over FM Œ2� . Then �dd.S/ is a string class.

Proof Let p 2 FM be a point and �pW Spin.n/ ! FM , g 7! pg be the associ-
ated inclusion of the structure group of FM in the fiber of p . Consider the map
spW Spin.n/! FM Œ2� , g 7! .p;pg/. It satisfies pr2 ı sp D �p and ı ı sp D id, and
cp WD pr1 ı sp is the constant map with value p . We obtain an isomorphism

s�pAW Gbas˝ �
�
pS! c�pS:

Since the pullback of a bundle gerbe along a constant map is trivial, it has vanishing
Dixmier–Douady class. Thus, we get


canC �
�
pdd.S/D 0:

Hence, �dd.S/ is a string class.

Another nice feature of Definition 5.3 is that it provides a basis to include string
connections. The following definition summarizes the relevant notions concerning
connections on bundle 2–gerbes.

Definition 5.6 Let G D .Y; �;P;M; �/ be a bundle 2–gerbe over M .
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(i) A connection on G consists of a 3–form C 2�3.Y /, and of a connection on
the bundle gerbe P such that

(27) pr�2C � pr�1C D curv.P/;

and such that M and � are connection-preserving.

(ii) Suppose G is equipped with a connection, and T D .S;A; �/ is a trivialization
of G . A compatible connection on T is a connection on the bundle gerbe S
such that A and � are connection-preserving.

The Chern–Simons 2–gerbe CSP .G/ associated to a principal G –bundle P over M

and a multiplicative bundle gerbe G over G can be equipped with a connection that
only depends on two parameters: a connection A on the bundle P , and a multiplica-
tive connection on the bundle gerbe G , as recalled in Section 4.3, such that the two
differential forms H D curv.G/ and � are the canonical ones; see (5) and (6). In the
following we recall the data of the connection on the Chern–Simons 2–gerbe CSP .G/
on the basis of [22, Section 3.2].

� The 3–form is the Chern–Simons 3–form CS.A/ 2 �3.P / associated to the
connection A.

� The connection on the bundle gerbe PDı�G over P Œ2� is given by the connection
on ı�G shifted by the 2–form

! WD �
˝
ı�x� ^ pr�1A

˛
2�2.P Œ2�/:

In other words, we have P D ı�G˝ I! as bundle gerbes with connection.

The required identity (27) is here a well-known identity in Chern–Simons theory:

pr�2CS.A/� pr�1CS.A/D ı�H C d!:

This identity is the reason for the shift of the connection on ı�G by ! ; without that shift
(27) would not hold. That the bundle 2–gerbe product ı�M is connection-preserving
for the shifted connections follows from the identity

(28) ı��C pr�12! � pr�13!C pr�23! D 0

of differential forms over P Œ3� . Since the associator � is just the pullback of the
connection-preserving transformation ˛ , it is connection-preserving. This verifies that
we have a connection on the Chern–Simons 2–gerbe CSP .G/.

In the situation of a spin manifold M , the Chern–Simons 2–gerbe CSM DCSFM .Gbas/

carries a canonical connection, defined by the Levi-Civita connection on M and the
canonical connection on the basic bundle gerbe Gbas ; see [25, Theorem 1.2.1].
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Definition 5.7 [28, Definition 1.2.2] Let T be a string structure. A string connection
on T is a connection on T that is compatible with the canonical connection on CSM .

This concept of a string connection reproduces [28, Theorem 1.2.3] the original defini-
tion of Stolz and Teichner [19], formulated in terms of trivializations of Chern–Simons
theory. One important statement about string connections that we will need later is the
following theorem.

Theorem 5.8 [28, Theorem 1.3.4] Every string structure admits a string connection.

5.2 Transgression

We define transgression for (certain) bundle 2–gerbes and their trivializations. Let G
be a bundle 2–gerbe with connection over M , consisting of a surjective submersion
� W Y ! M , a curving C 2 �3.Y /, a bundle gerbe P with connection over Y Œ2� ,
and a connection-preserving bundle 2–gerbe product M with connection-preserving
associator �.

The restriction we impose on the admissible bundle 2–gerbes is that their surjective
submersion � W Y !M is loopable, ie L� W LY !LY is again a surjective submersion
(whereas in general L� is not even surjective). For example, the projection of a
principal bundle with connected structure group is loopable; see [23, Lemma 5.1]. For
G a bundle 2–gerbe with loopable surjective submersion, we define the following
bundle gerbe TG over LM . Its surjective submersion is L� W LY ! LM . The
principal U.1/–bundle over LY Œ2� is TP . Since transgression for bundle gerbes is
functorial, natural and monoidal, the transgression TM is a bundle gerbe product. It is
associative since the associator � of G transgresses to an equality.

The transgressed bundle gerbe TG over LM carries a connection coming from the con-
nections on the transgressed bundles. The curving this connection is B WD�

R
S1 ev�C 2

�2.LY /, with the sign due to (16). As a consequence, we obtain the relation

(29) curv.TG/D�

Z
S1

ev�curv.G/:

Moreover, the transgression G 7!TG fits well into the general context of transgression
in differential cohomology.

Proposition 5.9 Under the transgression homomorphism b� W bH4.M /! bH3.LM / in
differential cohomology, we have

b� .ŒG�/D�ŒTG �:
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Proof Transgression in differential cohomology is characterized axiomatically; see
[4, Definition 38]. One of the axioms is compatibility with the curvature. We
conclude from (29) that b� .ŒG�/ and �ŒTG � have the same curvature. Differential
cohomology classes with the same curvature differ by an element in H2.LM;U.1//Š
Hom.H2.LM /;U.1//. Every homology class in degree two is the image of the fun-
damental class of a closed oriented surface † under a smooth map �W †! LM .
The element in Hom.H2.LM /;U.1// is then given by the difference between the
holonomies of b� .ŒG�/ and �ŒTG � along � . We prove in the following that these
holonomies coincide; this shows the claim.

The homomorphism b� has the following property [4, Proposition 82]. Consider ˆW †�
S1!M defined by ˆ.s; z/ WD�.s/.z/. Then Holb� .ŒG�/.�/DHolG.ˆ/. We compute
HolG.ˆ/ explicitly. The pullback ˆ�G is trivializable for dimensional reasons. Its
surjective submersion is Z WD .†�S1/ˆ�� Y with the projection �Z W Z!†�S1 .
We denote by prY W Z ! Y the projection to Y . Let T be a trivialization of ˆ�G
with compatible connection, consisting of a bundle gerbe S with connection over
Z , a connection-preserving isomorphism AW pr�

Y
P ˝ pr�

2
S ! pr�

1
S over ZŒ2� , and

of a connection-preserving transformation over ZŒ3� . Let K 2 �3.†� S1/ be the
“covariant derivative” of the trivialization T . It is determined by the condition

(30) ��Z K D pr�Y C C curv.S/:

By definition of holonomy, we have

HolG.ˆ/D exp
�

2� i
Z
†�S1

K

�
:

Next we compute HolTG .�/. We consider the pullback ��TG to †. Its surjective
submersion is W WD†��L�LY with the projection �W W W !†. We define smooth
maps ˛W †! L.† � S1/ by ˛.s/.z/ WD .s; z/ and z̨W W ! LZ by i.s; �/.z/ WD

.s; z; �.z//. They fit into the commutative diagram

(31)

W
z̨

vv

prLY

''�W

��

LZ LprY
//

L�Z

��

LY

L�

��

†
�

&&

˛

vv

L.†�S1/
Lˆ

// LM:
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The map z̨ extends to the fiber products, z̨W W Œk�!LZŒk� . We define a trivialization
of ��TG with compatible connection. It consists of the principal U.1/–bundle z̨�TS
over W and of the connection-preserving isomorphism z̨�TA over W Œ2� . This trivial-
ization is equipped with a compatible connection. Its covariant derivative is a 2–form
! 2�2.†/ determined by ��

W
! D pr�

LY
.�
R

S1 C /C curv.z̨�TS/, ie the curving of
��TG plus the curvature of the U.1/–bundle of its trivialization. Using (30) and the
commutativity of (31), we conclude that ! D�˛�

R
S1 ev�K . This, in turn, is nothing

but ! D�
R

S1 K . We obtain

HolTG .�/D exp
�

2� i
Z
†

!

�
D exp

�
�

Z
†�S1

K

�
DHolG.ˆ/�1

DHolb� .ŒG�/.�/�1:

This shows that the holonomies of b� .ŒG�/ and �ŒTG � coincide.

Since the transgression homomorphism b� is compatible with the characteristic class,
see [4, Proposition 47], we obtain:

Corollary 5.10 dd.TG/D��.cc.G//.

It is crucial for this article to observe that the transgressed bundle gerbe TG over LM

is equipped with an internal fusion product (Definition 4.13). Indeed, the principal
U.1/–bundle over LY Œ2� in the structure of TG , namely TP , is the transgression of a
bundle gerbe, and hence equipped with a fusion product. We denote this fusion product
by �G . Further, the bundle gerbe product of TG , namely TM , is the transgression of
a bundle gerbe isomorphism, and hence fusion-preserving.

Next we discuss the transgression of trivializations of bundle 2–gerbes. If TD .S;A; �/
is a trivialization of G with compatible connection, we define a trivialization TT of
TG . The bundle gerbe S with connection transgresses to a principal U.1/–bundle TS
over LY . Since transgression is functorial, natural, and monoidal, the 1–morphism

AW P˝ pr�2S! pr�1S

over Y Œ2� transgresses to the required bundle morphism over LY Œ2� , and the 2–
isomorphism � implies the compatibility condition.

Since TS is a fusion bundle, the trivialization TT carries a fusion product, and since
TA is fusion-preserving, it is compatible with the internal fusion product �G of TG .
We obtain a functor

(32) TW h1Trivr.G/! FusTriv.TG; �G/:

In the following we specialize to the Chern–Simons 2–gerbe and use the functor (32)
to transgress (geometric) string structures.
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Theorem 5.11 [14, Proposition 6.2.1] Let G be a multiplicative bundle gerbe with
connection over a Lie group G , and let P be a principal G–bundle over M with
connection. Let CSP .G/ be the associated Chern–Simons 2–gerbe with connection.
Let GLP be the lifting gerbe associated to the problem of lifting the structure group of
LP from LG to the central extension TG . Then there is a canonical isomorphism

'W TCSP .G/! GLP

between bundle gerbes over LM .

The claimed isomorphism has been constructed in [14, Proposition 6.2.1]; since we
need it explicitly below, we recall this construction. The main problem is to treat the
occurrences of transgressions of trivial bundle gerbes, namely TI! over LP Œ2� (coming
from the shift in the connection on CSP .G/) and TI� (coming from the multiplicative
bundle gerbe G ). The construction proceeds as follows:

� Both bundle gerbes have the same surjective submersion, LP ! LM . In this
situation, an isomorphism between bundle gerbes can be given by an isomorphism
between the principal U.1/–bundles over LP Œ2� that belong to the two bundle gerbes.

� Now we look at these principal U.1/–bundles over LP Œ2� . The one of TCSP .G/
is TP , where P D ı�G ˝ I! , while the one of GLP is P WD Lı�TG . Naturality of
transgression and the canonical trivialization t! of TI! provide an isomorphism

TP ŠLı�TG ˝TI!
id˝t!
����!Lı�TG D P

between principal U.1/–bundles over LP Œ2� ; this gives all the data for the isomorphism
' we want to construct

� It remains to check that 'W TP ! P commutes with the bundle gerbes products of
TCSP .G/ and GLP in the sense that the diagram

pr�
12

TP ˝ pr�
23

TP

pr�
12
'˝pr�

23
'

��

TM0
// pr�

13
TP

pr�
13
'

��

pr�
12

P ˝ pr�
23

P
zm

// pr�
13

P
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is commutative. Indeed, substituting the definitions gives the diagram

Tı0�.pr�
1
G˝pr�

2
G/˝TIpr�

12
!Cpr�

23
!

id˝tpr�
12
!Cpr�

23
!

��

Tı�M˝id
// Tı0�m�G ˝TIpr�

13
!

id˝tpr�
13
!

��

Lı0�Tpr�
1
G˝pr�

2
G

Lı�TM

// Lı0�.Tm�G˝I� / id˝tı��

// Lı0�Tm�G

which is commutative due to the identity (28).

Summarizing, we have constructed an isomorphism 'W TCSP .G/ ! GLP of bundle
gerbes over LM .

In the situation of a spin manifold M we obtain an isomorphism

'W TCSM
! SLM

between the transgression of the Chern–Simons 2–gerbe CSM D CSFM .Gbas/ and
the spin lifting gerbe SLM ; see Example 4.3. With Corollary 5.10, we reproduce the
result of [10] mentioned in the introduction:

�
�

1
2
p1.M /

�
D �LM :

Next we come to a new, crucial property of the isomorphism ' .

Proposition 5.12 The isomorphism ' of Theorem 5.11 respects the internal fusion
products.

Proof We recall that the internal fusion product of TCSP
.G/ is the fusion product �P

on the U.1/–bundle TP , while the fusion product of GLP is the pullback of the fusion
product �G of TG along Lı . The claim is that ' , ie the map

TP ŠLı�TG ˝TI!
id˝t!
����!Lı�TG D P

is fusion-preserving. The canonical bundle morphism TP Š Lı�TG ˝TI! induced
by the naturality of the transgression functor T is fusion-preserving, and by [23,
Lemma 3.6] the trivialization t! is fusion-preserving. Thus ' is a composition of
fusion-preserving isomorphisms, and hence fusion-preserving.

Algebraic & Geometric Topology, Volume 16 (2016)



Spin structures on loop spaces that characterize string manifolds 707

6 Proof of Theorem 1.4

In this section we prove the main theorem of this article: the assertion that M is string
if and only if LM is fusion spin. By Corollary 4.17, LM is fusion spin if and only if
the spin lifting gerbe SLM has a trivialization with compatible fusion product.

Suppose first that M is string, so that there exists a string structure T (Definition 5.3).
By Theorem 5.8 T admits a string connection, together giving a trivialization of CSM

with compatible connection. Its transgression is a trivialization TT of TCSM
with

compatible fusion product; see Section 5.2. Since the isomorphism TCSM
Š SLM of

Theorem 5.11 preserves the internal fusion products (Proposition 5.12), TT induces a
trivialization of SLM with compatible fusion product.

Conversely, suppose SLM has a trivialization .T; �/ with compatible fusion product
�T . Let p 2 FM be a point. We may assume that M is connected, otherwise we
proceed with each connected component of M separately. Then FM is also connected.
Thus we have a well-defined regression functor

RpW FusBun.LFM /! Grb.FM /

and obtain a bundle gerbe S WD Rp.T; �T / over FM . In FM Œ2� we choose the
base point .p;p/. Then both projections pr1; pr2W FM Œ2� ! FM are base point-
preserving. Now, the fusion-preserving bundle morphism � over LFM Œ2� regresses to
an isomorphism

R.p;p/.P ˝ pr�2T /!R.p;p/.pr�1T /

between bundle gerbes over FM Œ2� , where P is the principal U.1/–bundle of the spin
lifting gerbe. Going through its construction using the model CLSpin.n/ D TGbas ,
we find that P D Lı�TGbas . Then we use that there is a (canonical) isomorphism
R1.TGbas/Š Gbas (see Theorem 4.6). We get an isomorphism

R.p;p/.P /DR.p;p/.Lı
�TGbas/D ı

�R1.TGbas/Š ı
�Gbas:

Using that regression is monoidal and natural (see Lemma 4.4), we end up with an
isomorphism

AW ı�Gbas˝ pr�2S! pr�1S:

By Lemma 5.5 �dd.S/ is a string class; thus, M is string.
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