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Obstructions to Lagrangian concordance

CHRISTOPHER CORNWELL

LENHARD NG

STEVEN SIVEK

We investigate the question of the existence of a Lagrangian concordance between
two Legendrian knots in R3. In particular, we give obstructions to a concordance
from an arbitrary knot to the standard Legendrian unknot, in terms of normal rulings.
We also place strong restrictions on knots that have concordances both to and from
the unknot and construct an infinite family of knots with nonreversible concordances
from the unknot. Finally, we use our obstructions to present a complete list of knots
with up to 14 crossings that have Legendrian representatives that are Lagrangian slice.

57M25; 57R17, 53D42, 53D12

1 Introduction

In symplectic and contact topology, there has been a great deal of recent interest in the
subject of Lagrangian cobordisms between Legendrian submanifolds; see, for example,
Baldwin and the third author [1], Boranda, Traynor and Yan [3], Bourgeois, Sabloff
and Traynor [5], Cao, Gallup, Hayden and Sabloff [6], Chantraine [8; 9], Ekholm [13],
Ekholm, Honda and Kálmán [14], Golovko [26], Hayden and Sabloff [27], and Sabloff
and Traynor [44]. A key motivation is that one can construct a category whose objects
are Legendrian submanifolds and whose morphisms are exact Lagrangian cobordisms,
and this category fits nicely into symplectic field theory; see Eliashberg, Givental
and Hofer [17]. In particular, Legendrian contact homology gives a functor from the
category of Legendrians to the category of differential graded algebras.

In this paper, we restrict ourselves to the setting of Legendrian knots in standard contact
R3, and address the question of when there exists an exact Lagrangian concordance
between two such knots. Let R3 be equipped with the standard contact structure
ker˛ with ˛ D dz�y dx , and let R4 DRt�R3 be the symplectization of R3 with
symplectic form ! D d.et˛/. Recall that a knot ƒ� R3 is Legendrian if ˛jƒ D 0,
and a surface L�R4 is Lagrangian if !jL D 0.
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Definition 1.1 Let ƒ�; ƒC � R3 be Legendrian knots. A Lagrangian cobordism
from ƒ� to ƒC is an embedded Lagrangian L�R4 such that

L\ ..�1;�T ��R3/D .�1;�T ��ƒ�

L\ .ŒT;1/�R3/D ŒT;1/�ƒC

for some T > 0. This cobordism is exact if there exists f W L!R such that df D ˛jL .
A Lagrangian cobordism of genus 0 (ie a cylinder) is a Lagrangian concordance. Define
a relation � on the set of Legendrian knots by ƒ� � ƒC if there is a Lagrangian
concordance from ƒ� to ƒC .

We note that any Lagrangian concordance is automatically exact: since ˛ vanishes on
ƒ� and ƒ� generates H1.L/ if L is a concordance, ˛ must equal 0 in the de Rham
cohomology of L.

It is clear that � is transitive. If ƒ0 and ƒ1 are isotopic as Legendrian knots, then
ƒ0 � ƒ1 and ƒ1 � ƒ0 as shown by Chantraine [8]. It follows that � descends to
a well-defined, reflexive relation on the set of isotopy classes of Legendrian knots.
Chantraine [9] also showed that � is not symmetric (see below for further discussion).

At present, it is unknown whether � is antisymmetric: that is, if ƒ0�ƒ1 and ƒ1�ƒ0 ,
must ƒ0 be Legendrian isotopic to ƒ1 ? We remark that although our definition of �
involves only concordances rather than general cobordisms, this is no restriction in
this setting. By a result of Chantraine [8], if there is a Lagrangian cobordism L from
ƒ0 to ƒ1 , then tb.ƒ1/� tb.ƒ0/D 2g.L/� 0, where tb is the Thurston–Bennequin
number, and so the existence of cobordisms in both directions between ƒ0 and ƒ1

implies that tb.ƒ0/D tb.ƒ1/ and that the cobordisms are concordances.

The special case when one of the Legendrian knots is the standard tbD�1 unknot U

is of particular interest. A cobordism from U to a Legendrian knot ƒ can be filled at
the negative end by a Lagrangian disk, resulting in a Lagrangian filling of ƒ. Such
fillings are relatively common; see eg Hayden and Sabloff [27]. In the case when
the cobordism is a cylinder (U �ƒ), the smooth knot type of ƒ must be smoothly
slice, and we say that ƒ is Lagrangian slice. It is currently unknown whether any
Lagrangian slice knot besides U is concordant to U . Chantraine proved in [9], using
the augmentation category of Bourgeois and Chantraine [4], that there is a Lagrangian
slice knot ƒ of type 946 (the mirror of 946 ) such that ƒ 6� U .

One of the goals of this paper is to give strong and easily computable obstructions to
the existence of a concordance ƒ� U . In particular, we show the following result.

Theorem 1.2 (See Theorem 2.7) If ƒ has at least two normal rulings, then ƒ 6� U .
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In particular, the 946 knot considered by Chantraine satisfies this condition, and so we
have a new, simpler proof of Chantraine’s result. We also use this result in Theorem 2.10
to construct an infinite family of Legendrian knots ƒ with U �ƒ and ƒ 6�U . It should
be noted that Baldwin and the third author [1] previously presented a different infinite
family of nonreversible concordances involving stabilized unknots rather than U .

The proof of Theorem 1.2 involves two ingredients. One is the fact proved by Ekholm,
Honda and Kálmán [14] that exact Lagrangian cobordisms induce maps on Legendrian
contact homology and, in particular, that an exact Lagrangian filling of ƒ� induces an
augmentation for the differential graded algebra of ƒC . The second is a study of a
particular 2–cable of Legendrian knots to prove Theorem 1.2. This study relies in turn
on the following observation; see Section 2.2 for the definition of Legendrian satellite.

Theorem 1.3 (See Theorem 2.4) If ƒ�; ƒC are Legendrian knots in R3 such that
ƒ� � ƒC , then their Legendrian satellites satisfy S.ƒ�; ƒ

0/ � S.ƒC; ƒ
0/ for any

Legendrian solid torus knot ƒ0 � J 1.S1/.

Applying this result not just to ƒ but to a particular family of satellites of ƒ, we arrive
at an infinite family of obstructions to ƒ � U that depend only on the underlying
smooth knot type.

Theorem 1.4 (See Theorem 2.15) Let ƒ be a Legendrian knot of smooth knot
type K , and let Kn denote the 0–framed n–cable of K . If U � ƒ � U , and
pn.a; z/ is either the HOMFLY-PT or Kauffman (Dubrovnik) polynomial of Kn , then
max-dega pn.a; z/ D n� 1, and pn.a; z/ has an�1–coefficient equal to z1�n for all
n� 1.

In particular, one can use this result to obstruct ƒ � U when U � ƒ by finding
two distinct rulings of a Legendrian representative S.ƒ; twn/ of Kn ; one ruling is
guaranteed by the existence of a ruling on ƒ, but the second violates the conclusion of
Theorem 2.15. See Theorem 2.13 for more details and Section 4.4 for applications of
this technique.

In a different direction, a result of Ekholm, Honda, and Kálmán [14] gives explicit
exact Lagrangian cobordisms between Legendrian knots whose fronts are related by
two elementary moves, unknot filling and pinch moves, which correspond topologically
to 0–handle and 1–handle attachment. We call a Lagrangian cobordism decomposable
if it can be broken into these elementary pieces; decomposable cobordisms currently
form a central tool for constructing exact Lagrangian cobordisms.

Although we do not answer the general question of whether a nontrivial Legendrian knot
ƒ can satisfy U �ƒ� U , we prove a special case of this in Section 3: no nontrivial
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ƒ can have a decomposable Lagrangian concordance to U ; see Theorem 3.2. The
proof of this is purely topological, relying on work of Kronheimer and Mrowka [31].
We do, however, expect that indecomposable Lagrangian concordances exist, and we
exhibit a possible example in Conjecture 3.4, but we do not know of any potential
examples from U to another knot.

Finally, in Section 4, we enumerate all knots up through 14 crossings with Legendrian
representatives that are Lagrangian slice. Necessary conditions for a knot K to have
such a Legendrian representative are that K must be smoothly slice and satisfy tb.K/D
�1, where tb is the maximal Thurston–Bennequin number. Through 14 crossings,
we show that these conditions are sufficient as well, using explicit decomposable
cobordisms for each knot type. To help with the census of Lagrangian slice knots, we
prove that no nontrivial alternating knot can be Lagrangian slice (see Theorem 4.3),
which has the side benefit of giving a new, contact-geometric proof of a result of
Nakamura [34] that any reduced alternating diagram of a positive knot can only have
positive crossings.

2 Legendrian satellites and concordance

In this section, we present new obstructions to the existence of a Lagrangian concor-
dance between two Legendrian knots. We assume basic familiarity with the theory of
Legendrian knots along the lines of Etnyre’s survey [18]. Throughout this section (and,
indeed, for the rest of the paper), we use U to denote the standard Legendrian unknot
with tbD�1.

Normal rulings, introduced by Chekanov and Pushkar [38] and Fuchs [22], will play
a significant role; to review their definition see eg Sabloff [43, Section 2.3]. While
a ruling is defined in reference to a particular front projection of ƒ, the number of
rulings, and the more refined count given by the ruling polynomial, are invariants of
ƒ; see the footnote in Section 2.3.

A ruling of a front projection of ƒ is determined by the set of crossings that are switches
in the ruling. In figures, we specify a ruling by decorating those crossings. Sometimes
we will depict a front projection by a grid diagram; the corresponding front is obtained
by rotating 45ı counterclockwise, making upper left and lower right corners into cusps,
and smoothing other corners of the grid diagram.

2.1 Review of functoriality of Legendrian contact homology under cobor-
disms

Associated to any Legendrian knot in R3 is the Chekanov–Eliashberg differential
graded algebra (DGA) [10; 15], whose homology is the Legendrian contact homology
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of the knot. As part of the symplectic field theory package [17], this DGA behaves
functorially under exact Lagrangian cobordism. Since this behavior underlies our study
of obstructions, we briefly review the statement here, as proved by Ekholm, Honda,
and Kálmán [14].

Proposition 2.1 [14] If ƒ�; ƒC are Legendrian knots such that there is an exact
Lagrangian cobordism from ƒ� to ƒC , then there is a morphism of Legendrian contact
homology DGAs

�W AƒC !Aƒ� :

For our purposes, it will be convenient to clarify the statement of Proposition 2.1 in
two ways, which we present as the following two remarks.

Remark 2.2 (Coefficient ring) The morphism in Proposition 2.1 restricts to the
identity map on the coefficient ring of the DGA, which is F D Z=2Z in [14]. In
fact, when the cobordism is a concordance, Proposition 2.1 can be extended to give a
morphism of DGAs over ZŒt; t�1� where the coefficients are lifted to ZŒt; t�1� as in
Etnyre, Ng and Sabloff [19]. As noted in [14], a proof over Z (or ZŒt; t�1�) would
entail a consideration of orientations of moduli spaces. However, working mod 2 and
lifting Proposition 2.1 to DGAs over F Œt; t�1� simply entails choosing base points on
both ends of the concordance, joining the base points by a path on the concordance
cylinder, and keeping track of intersections of boundaries of holomorphic disks with
this path. We omit the details of the proof here.

Remark 2.3 (Grading) The extent to which the morphism � in Proposition 2.1
preserves the grading in the DGAs depends on the Maslov index of the Lagrangian
cobordism L, defined to be the gcd of the Maslov indices of all closed curves in L,
including ƒ� and ƒC . If L is oriented, then � preserves grading mod 2; if L is
unoriented, then � may not preserve the grading at all. There is no reason in general
that � needs to preserve the full Z grading, even if ƒ� and ƒC have rotation number
0. However, we will be particularly interested below in the special case where ƒ�
is the standard Legendrian unknot U. In this case, since U can be filled in with a
Lagrangian disk D and curves in L are null-homotopic in L[D , � does preserve
the full Z grading.

2.2 Solid torus knots and concordance

Our obstructions rely on considering satellites of Legendrian knots. We begin by
reviewing Legendrian solid torus knots and the Legendrian satellite construction from
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the second author and Traynor [37]. We identify the open solid torus S1 �R2 as the
1–jet space of the circle, ie as J 1.S1/Š T �S1 �R, which equips it with a natural
contact form ˛ D dz � y dx ; here, x and y are the base and fiber coordinates on
T �S1, and z is the R–coordinate. Just as in the case of R3 Š J 1.R/, we can recover
a Legendrian knot from its front projection onto S1

x �Rz , which, in practice, is drawn
by representing S1 as an interval and identifying its endpoints.

Given a Legendrian companion knot ƒ � R3 and a Legendrian pattern knot ƒ0 �
J 1.S1/, the contact neighborhood theorem (see eg Geiges [24, Corollary 2.5.9]) says
that ƒ has a standard neighborhood N.ƒ/, and the zero section in J 1.S1/ has a
neighborhood N.0/, for which there is a contactomorphism 'W N.0/ ��!N.ƒ/, and
we define the Legendrian satellite S.ƒ;ƒ0/�R3 to be the image '.ƒ0/ (after suitably
rescaling ƒ0 to lie inside N.0/). We remark that this requires a choice of framing for
N.ƒ/, which we fix to be the contact (Thurston–Bennequin) framing.

We can produce a front projection of S.ƒ;ƒ0/ as follows. If the front projection of
L intersects the ends of the S1 interval in n points, then we produce a front for the
n–copy of ƒ by taking n copies of the front for ƒ and shifting each one a very small
distance in the z–direction. (Topologically, the n–copy is the .n; n � tb.ƒ//–cable of
ƒ, in which the first coordinate denotes the longitudinal winding.) We then take a
point where ƒ is oriented from left to right, cut the front open along the n–copy of
that point, and insert the front diagram for ƒ0 . See Figure 1 for an example satellite in
which the companion ƒ is a right handed trefoil with .tb; r/D .1; 0/ and the pattern
�2 is a positive half twist on two strands, whose name is borrowed from work of the
second author and Rutherford [36]. Topologically, S.ƒ;�2/ is the .2; 3/–cable of the
right handed trefoil.

 

Figure 1: Using the companion ƒ and pattern �2 to produce the satellite S.ƒ;�2/ .

Our main theorem says that Lagrangian concordance is preserved by Legendrian satellite
operations. This is an analogue of a well-known fact in classical knot concordance,
and indeed, the proofs are nearly identical once we observe that Lagrangian cylinders
have standard neighborhoods.

Algebraic & Geometric Topology, Volume 16 (2016)



Obstructions to Lagrangian concordance 803

Theorem 2.4 Let ƒ0 be a Legendrian knot in J 1.S1/. If ƒ� and ƒC are Legendrian
knots in R3 such that ƒ� �ƒC , then S.ƒ�; ƒ

0/� S.ƒC; ƒ
0/.

Proof Let L be a Lagrangian concordance from ƒ� to ƒC in the symplectization
R�R3, and restrict to some Œ�T;T ��R3 such that L is a product cylinder outside
this region. If ƒ0� � J 1.S1/ is the core of the solid torus given by y D z D 0, then
ƒ0� is Legendrian, and so the cylinder Œ�T;T � �ƒ0� � Œ�T;T � � J 1.S1/ is also
Lagrangian. The Weinstein neighborhood theorem thus provides a symplectomorphism
'W N.Œ�T;T ��ƒ0�/

�
�!N.L/ between neighborhoods of the two Lagrangian cylinders,

and since Œ�T;T � is compact we can isotope ƒ0 close enough to ƒ0� to ensure that
the Lagrangian Œ�T;T ��ƒ0 lies inside N.Œ�T;T ��ƒ0�/.

Choosing the Thurston–Bennequin framing on ƒ� for the neighborhood of f�T g�ƒ�
in f�T g �R3, it follows that '.f�T g �ƒ0/ is the Legendrian satellite S.ƒ0; ƒ

0/

and that '.Œ�T;T ��ƒ0/ is a Lagrangian cylinder. Its restriction to fT g �R3 is a
Legendrian satellite of ƒ1 , and since ƒ� � ƒC implies that tb.ƒ�/ D tb.ƒC/ by
[8], this satellite is also tb–framed; hence it is S.ƒ1; ƒ

0/. We conclude, after gluing
on cylindrical ends, that '.Œ�T;T ��ƒ0/ is the desired concordance.

2.3 A.2/–compatibility and the Legendrian unknot

In this section, we examine a particular obstruction to the existence of Lagrangian
concordances. Following the second author and Rutherford [36], we say that a Legen-
drian knot ƒ is A.2/ –compatible if the satellite S.ƒ;�2/ admits a normal ruling or,
equivalently, if it admits an augmentation, ie a DGA morphism AS.ƒ;�2/!FDZ=2Z;
see Fuchs [22], Fuchs and Ishkhanov [23], and Sabloff [43] for the proof of equivalence.
The standard Legendrian unknot U is not A.2/ –compatible. This follows since the
satellite S.U; �2/ is a topological unknot with tbD�3, and is hence a stabilization.

Theorem 2.5 Let ƒ be a Legendrian knot. If ƒ� U then ƒ is not A.2/ –compatible.

Proof If ƒ � U , then Theorem 2.4 says that S.ƒ;�2/ � S.U; �2/, and then
Proposition 2.1 provides a morphism AS.U;�2/!AS.ƒ;�2/ between the Legendrian
contact homology DGAs of the two satellites over F D Z=2Z. If ƒ were A.2/ –
compatible, then composing this morphism with an augmentation AS.ƒ;�2/ ! F
would give an augmentation of S.U; �2/, which does not exist.

Remark 2.6 We know from [36] that ƒ is A.2/ –compatible if and only if the DGA
Aƒ defined over F Œt; t�1� has a 2–dimensional representation sending t to

�
p
1

1
0

�
for

some p . Since AU has no such representations, Theorem 2.5 also follows from the
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extension of Proposition 2.1 to F Œt; t�1� coefficients. This can be reworked to give an
obstruction to concordance to U that does not explicitly mention A.2/ –compatibility.
For example, for the 946 knot ƒ considered by Chantraine [9] (see Example 2.8 below),
ƒ 6�U since it can be checked that the DGA for ƒ over F Œt; t�1� has a 2–dimensional
representation sending t to

�
0
1

1
0

�
(and in fact another sending t to

�
1
1

1
0

�
), while the

DGA for U does not.

In order to apply Theorem 2.5, it is convenient to have sufficient conditions for A.2/ –
compatibility. The second author and Rutherford [36, Theorem 5.4] showed that if
the ruling polynomial Rƒ.z/ has positive degree, then ƒ is A.2/ –compatible.1 The
following result is similar but allows for Rƒ.z/ to be a constant as well.

Theorem 2.7 If ƒ has at least two normal rulings, then ƒ is A.2/ –compatible, and
thus ƒ 6� U .

Proof We will use two distinct rulings �1 and �2 of ƒ to produce an explicit ruling
of S.ƒ;�2/. First, note that �1 and �2 induce a ruling of the 2–copy of ƒ whose
switches are the switches of �1 in the first copy and the switches of �2 in the second
copy. We will construct a ruling of S.ƒ;�2/ that agrees with this 2–copy ruling away
from a neighborhood of the crossing in �2 .

1a
2a
1b
2a

1a
2b
1b
2b

1a
2a

1b
2b
1a
2b
1b
2a

1a
2a
1b
2b
1a
2b

1b
2a

Figure 2: The switches placed at the 2–copy of c in the proof of Theorem 2.7.
Strands with the same number and letter are paired, and the number indicates
whether a strand corresponds to �1 or to �2 .

Let c be the rightmost crossing of a front diagram for ƒ where �1 and �2 differ, and
label the rulings so that �1 does not have a switch at c but �2 does. The 2–copy of

1The convention in [36] is that a ruling � with s switches and c right cusps contributes zs�c to
the ruling polynomial, so their condition is deg Rƒ.z/ � 0 . We instead use the convention zs�cC1 of
Rutherford [42], so that the 2–graded and ungraded ruling polynomials match the appropriate coefficients
of the HOMFLY-PT and Kauffman polynomials, respectively.
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the given front has four crossings for every crossing in the front of ƒ; we place the
half-twist �2 inside the four crossings corresponding to c along the 2–copy of the
undercrossing strand. At all other crossings of ƒ, we place switches as in the 2–copy
ruling: a switch at the corresponding north crossing of the 2–copy if �1 has a switch,
and likewise for the south crossing if �2 has a switch.

At the 2–copy of the distinguished crossing c , we place switches at the south and west
of these four crossings. This is illustrated in Figure 2 in three different cases. It then
remains to check that the set of switches we have described provides a normal ruling
of S.ƒ;�2/. Indeed, outside of a neighborhood of c , this agrees with the 2–copy
ruling, while inside the neighborhood, an inspection of Figure 2 shows that the depicted
switches are normal.

Example 2.8 In Figure 3, we display two different rulings of a Legendrian knot ƒ of
topological type 946 and the corresponding ruling of S.ƒ;�2/. (Here, 946 denotes the
mirror of 946 ; see Remark 4.5.) By Theorem 2.7, it follows that there is no Lagrangian
concordance from ƒ to U, reproving the main result of Chantraine [9].

Figure 3: Constructing a normal ruling of S.ƒ;�2/ from two different
rulings of ƒ .
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Corollary 2.9 If ƒ � U , then ƒ has ungraded ruling polynomial Rƒ.z/ equal to
either 0 or 1. In particular, if U �ƒ as well, then the d –graded ruling polynomial of
ƒ is equal to 1 for all d .

Proof Theorem 2.5 says that ƒ is not A.2/ –compatible, so by [36, Theorem 5.4],
the ungraded ruling polynomial Rƒ.z/ must have degree 0. If its constant term is at
least 2, then it has two or more rulings, which is ruled out by Theorem 2.7, so the only
remaining possibilities are 0 and 1.

If we also have U � ƒ, then the morphism Aƒ ! AU Š F induced by such a
concordance is by definition an augmentation of ƒ. Thus ƒ has at least one graded
normal ruling, and any other d –graded ruling would also be a second ungraded ruling
of ƒ, which cannot exist.

We can now generalize the 946 example of [9] and Example 2.8 by providing an infinite
family of irreversible Lagrangian concordances. The simplest of these is a Legendrian
14n15581 knot, which will appear later in Table 1.

Theorem 2.10 There are infinitely many Legendrian knots ƒ such that U � ƒ

but ƒ 6� U .

Figure 4: Grid diagrams for the first four members of an infinite family of
Lagrangian slice knots, beginning with ƒ1 D 14n15581 .

Proof We can form an infinite family ƒ1; ƒ2; : : : of Legendrian knots by adding half-
twists to the 14n15581 knot of Table 1, as shown in Figure 4. Each ƒn is Lagrangian
slice: surgering along the dotted line indicated in the figure produces a two-component
Legendrian unlink, and we cap off one component to get a concordance from the
Legendrian unknot to ƒn , so U �ƒn . However, each ƒn admits at least two normal
rulings, as illustrated in Figure 5 for ƒ3 ; we generalize to all ƒn by placing a switch
at every one of the added half-twists and by using the same set of switches as in either
ruling of Figure 5 away from the half-twists. We conclude that ƒn 6� U for all n.
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Figure 5: Two rulings of the third member ƒ3 of the family of Figure 4.

2.4 Satellites that fix the Legendrian unknot U

If ƒ0 is a Legendrian pattern for which S.U; ƒ0/ is Legendrian isotopic to U , then
applying Theorem 2.4 to any concordance U �ƒ or ƒ�U tells us that U �S.ƒ;ƒ0/

or S.ƒ;ƒ0/ � U , respectively. In this subsection we will investigate a family of
such patterns.

Figure 6: The Legendrian solid torus knot Pn , shown here for nD 4 .

Let Pn denote the knot in J 1.S1/ depicted in Figure 6, where n is the winding number
of Pn around the solid torus. We can describe Pn as the concatenation of a full positive
twist twn on n strands and a cascade of n� 1 clasps, where the i th clasp connects the
i th and .i C 1/st strands as numbered from top to bottom.

Lemma 2.11 The satellite S.U;Pn/ is Legendrian isotopic to U for all n� 1.

Proof The lemma is true for nD 1 by inspection, and a straightforward computation
shows that tb.S.U;Pn//D�1, so it suffices to check that S.U;Pn/ is topologically
isotopic to S.U;Pn�1/ for all n � 2. This is illustrated in Figure 7: the highlighted
portion of S.U;Pn/ can be pushed back through the middle of the satellite, lifted
behind it, and then twisted to remove the top clasp, leaving S.U;Pn�1/.

Theorem 2.12 The d –graded ruling polynomials of S.ƒ;Pn/ and S.ƒ; twn/ are
related by

Rd
S.ƒ;Pn/.z/D zn�1

�Rd
S.ƒ;twn/.z/

for any Legendrian knot ƒ and any d j 2r.ƒ/.
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Figure 7: The satellite S.U;P4/ is isotopic to S.U;P3/ , as can be seen by
moving the highlighted portion appropriately to simplify the knot diagram.

Proof Each of the n� 1 clasps in Pn contains three crossings and two right cusps,
and the gradings of these crossings are 0 .mod 2r.ƒ// since the Maslov potentials
on parallel strands coming from adjacent copies of ƒ differ by 2r.ƒ/. In a clasp,
each of the two right cusps is connected to a left cusp by a curve that participates in
no crossings. Hence these left and right cusps must be paired by a normal ruling of
S.ƒ;Pn/, which, therefore, must have switches at all three crossings. Once we remove
the pairs of short strands incident to these cusps from the ruling, then what remains is a
normal ruling of S.ƒ; twn/. Conversely, any ruling of S.ƒ; twn/ gives rise to a ruling
of S.ƒ;Pn/ in this fashion, and so there is a bijection between the sets of rulings of
the two satellites.

Let �tw be a ruling of S.ƒ; twn/ with s switches, and suppose that S.ƒ; twn/ has c

right cusps. Then �tw contributes zs�cC1 to its ruling polynomial. The above bijection
pairs �tw with some ruling �P of S.ƒ;Pn/ which has s C 3.n� 1/ switches, and
S.ƒ;Pn/ has cC 2.n� 1/ right cusps, so �P contributes

z.sC3.n�1//�.cC2.n�1//C1
D zn�1

� zs�cC1

to the ruling polynomial of S.ƒ;Pn/. Since this is true for all rulings �tw of S.ƒ;Pn/,
the ruling polynomials of the two satellites differ by a factor of zn�1 as desired.

Theorem 2.13 Let ƒ be a Legendrian knot such that U �ƒ� U . Then S.ƒ; twn/

has d –graded ruling polynomial Rd
S.ƒ;twn/

.z/D z1�n for all n� 1 and all d .

Proof Taking satellites S. � ;Pn/ and applying Theorem 2.4 gives U D S.U;Pn/�

S.ƒ;Pn/ and S.ƒ;Pn/�S.U;Pn/DU . This implies that r.S.ƒ;Pn//D r.U /D 0;
hence from Corollary 2.9, we must have Rd

S.ƒ;Pn/.z/D 1 for all d , and the conclusion
about Rd

S.ƒ;twn/
.z/ is a consequence of Theorem 2.12.
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Remark 2.14 Under the hypotheses of Theorem 2.13, the satellite S.ƒ; twn/ has
exactly one ruling for each n. We can construct such a ruling as the n–copy of the
unique ruling of ƒ by taking each switch of that ruling and placing switches among
the corresponding n2 crossings of S.ƒ; twn/ at exactly the n crossings where both
strands belong to the same component. Thus if U �ƒ, then we can prove ƒ 6� U by
exhibiting a single ruling of some S.ƒ; twn/ (or even of the n–copy of ƒ) that is not
the n–copy of a ruling of ƒ.

Since a knot ƒ for which U �ƒ� U must have Thurston–Bennequin invariant �1,
the n–copy of ƒ is topologically the .n;�n/–cable of ƒ. We obtain S.ƒ; twn/ from
the n–copy by inserting a full positive twist, so the Legendrian satellite S.ƒ; twn/ is
topologically the .n; 0/–cable of ƒ, ie the Seifert-framed n–stranded cable of ƒ. We
will denote this n–cable by ƒn .

In the cases d D 1 and d D 2, Rutherford [42] showed that the d –graded ruling
polynomials of a Legendrian link ƒ of topological type K are determined by its Kauff-
man polynomial FK .a; z/ (the Dubrovnik version) and its HOMFLY-PT polynomial
PK .a; z/. More precisely, these polynomials both have maximum a–degree at most
�tb.K/� 1 (see Rudolph [40], Franks and Williams [21], and Morton [32]), and in
fact, he proved that R1

ƒ
.z/ and R2

ƒ
.z/ are the coefficients of a� tb.ƒ/�1 in FK .a; z/

and PK .a; z/, respectively. We can compute that tb.S.ƒ; twn//D n2.tb.ƒ/C 1/�n,
so if U �ƒ�U , then tb.S.ƒ; twn//D�n. Therefore, we have proved the following.

Theorem 2.15 If a smooth knot K has a Legendrian representative ƒ such that
U �ƒ�U , and Kn denotes the topological n–cable of K , then the HOMFLY-PT and
Kauffman polynomials PKn

.a; z/ and FKn
.a; z/ both have maximal a–degree equal

to n� 1 and an�1 –coefficient equal to z1�n for all n� 1.

Remark 2.16 The conclusion of Theorem 2.15 depends only on the smooth knot type,
so if the theorem can be used to prove that ƒ 6� U for one Legendrian representative
ƒ of K with U �ƒ, then it proves ƒ 6� U for all such representatives.

3 Concordances to the unknot

We say that a Lagrangian concordance ƒ0 � ƒ1 is decomposable if it can be built
as a composition of elementary moves, namely isotopies, minimum cobordisms, and
saddle cobordisms in the language of Ekholm, Honda and Kálmán [14, Section 6]. Our
goal in this section is to prove that ƒ1 can never be a topological unknot in such a
concordance; the proof will make no use of any contact topology, proceeding instead
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by considering branched double covers of knots. We thus begin with the following
theorem, which may be of independent interest.

Theorem 3.1 Let †.K/ denote the double cover of S3 branched over the knot K .
Then the fundamental group of †.K/ admits a nontrivial representation

�W �1.†.K//! SO.3/

if and only if K is not an unknot.

Proof In the case where K is the unknot, this is immediate since †.K/ Š S3 is
simply connected.

For nontrivial K , a theorem of Kronheimer and Mrowka [31, Corollary 7.17] says that,
given a meridian � of K , there is an irreducible homomorphism 'W �1.S

3 nK/!

SU.2/ such that '.�/ D i . (Here, we view SU.2/ as the unit quaternions.) Since
�1.S

3 nK/ is normally generated by �, it has a unique normal subgroup N of index
2, namely the kernel of the composition of the abelianization and mod 2 reduction
maps �1.S

3 nK/! Z! Z=2Z, corresponding to the double cover of S3 nK . This
subgroup contains �2, and in fact, �1.†.K// D N=h�2i, so we wish to use ' to
produce a map N=h�2i ! SO.3/.

Consider the composition z'W �1.S
3 nK/! SO.3/ of ' with the quotient SU.2/!

SO.3/. Since '.�2/D i2 D �1 in SU.2/, it follows that z'.�2/D 1 in SO.3/, and
so z'jN descends to a map

�W �1.†.K//DN=h�2
i ! SO.3/:

We need to check that � is nontrivial. But since �1.S
3 nK/ is generated by meridians

of K , and since ' is irreducible, there must be some meridian � such that '.�/¤˙i .
The product �� lies in N , and since '.�/ ¤ ˙i , we cannot have '.��/ D ˙1, so
�.��/¤ 1 as desired.

Theorem 3.2 There are no decomposable Lagrangian concordances of the form ƒ�
zU , where ƒ is a topologically nontrivial Legendrian knot and zU is any topologically
unknotted Legendrian knot.

Proof Given such a concordance L, we can take a front diagram for zU and perform
a sequence of pinch moves, isotopies, and capping off tb D �1 unknots to produce
a front diagram for K , where K is the smooth knot type of ƒ. Since L has Euler
characteristic zero, there must be exactly as many pinch moves as there are capping
moves; call this number n. Moreover, we can postpone any capping moves until the end
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by taking tbD�1 unknots U which are about to be capped off and instead isotoping
them far away from the rest of the diagram so that they no longer interact with any other
components. Thus we can suppose that there is a sequence of Legendrian isotopies
and n pinch moves which transforms a front diagram for zU into a front diagram
for ƒt nU .

A pinch move can be performed by taking a small ball B3 with two unknotted arcs
passing through it and replacing those arcs with a different pair of unknotted arcs. The
branched double cover of B3 over either pair of arcs is a solid torus, so pinch moves
correspond to Dehn surgeries on the branched double cover. It follows that there must
be an n–component link LDL1[ � � � [Ln in †. zU /D S3 upon which some Dehn
surgery produces †.KtnU /D†.K/#n.S1�S2/. Since H1.†.K/#n.S1�S2//D

H1.†.K// ˚ Zn is presented by the n � n framing matrix of L, we must have
H1.†.K// D 0, and the framing matrix must be identically zero. In particular, we
must perform 0–surgery on each Li .

We can now build a 4–dimensional handlebody X with boundary †.K/ by taking
B4, attaching n 0–framed 2–handles to its boundary along L to produce †.K/ #
n.S1 �S2/ on the boundary, and then attaching n 3–handles to eliminate each of the
S1�S2 summands. Then X does not have any 1–handles, and an easy exercise shows
that X is contractible since H1.†.K//D 0. Following an argument from Kirby [30,
Section I.3], we now turn X upside down to construct it by attaching n 1–handles,
n 2–handles, and a 4–handle to †.K/, and thus we see that the trivial group can
be constructed from �1.†.K// by adding n generators and n relations. But this is
ruled out by a theorem of Gerstenhaber and Rothaus [25, Theorem 3] since �1.†.K//

admits a nontrivial map into the compact connected Lie group SO.3/ by Theorem 3.1,
so the claimed decomposable concordance cannot exist.

Since Legendrian representatives of the unknot are uniquely determined by their classi-
cal invariants tb and r , as proved by Eliashberg–Fraser [16], it follows that there can
only be a decomposable Lagrangian concordance ƒ� zU if ƒ is Legendrian isotopic
to zU . In fact, the proof of Theorem 3.2 establishes more.

Corollary 3.3 If L is a smooth concordance from a nontrivial knot to the unknot in
R�S3, then L must have a local maximum with respect to the R–coordinate.

Proof Suppose not; then the R–coordinate can be C 2 –approximated by a Morse
function on L with no local maxima, providing a handle decomposition of L consisting
only of 0–handles and 1–handles. The proof of Theorem 3.2 only used the fact that
capping and pinch moves correspond to smooth 0–handles and 1–handles, so by
repeating the same argument, we have a contradiction.
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One might be tempted to conjecture that all Lagrangian concordances are decomposable,
but we believe that this is not the case. If W � J 1.S1/ denotes the Legendrian
Whitehead double pattern W0 of [37, Figure 23] and U is the standard Legendrian
unknot as usual, then S.U;W / is the Legendrian right-handed trefoil T with tbD 1;
see Figure 8.

   

Figure 8: The satellite S.U;W / is a right-handed trefoil with tbD 1 .

Letting ƒ be the Legendrian 946 knot of Example 2.8 for which U � ƒ, we apply
Theorem 2.4 to construct a Lagrangian concordance C from T to S.ƒ;W /; these
knots are displayed in Figure 9. Topologically, S.ƒ;W / is the positively clasped,
�1–twisted Whitehead double of 946 .

�

Figure 9: There is a Lagrangian concordance from T to S.ƒ;W / .

Conjecture 3.4 Let C be the Lagrangian concordance constructed above from T to
S.ƒ;W /. Then C is not decomposable.

We believe that this conjecture may hold more generally if ƒ is replaced with any
other topologically nontrivial Legendrian knot with U �ƒ.

4 A census of Lagrangian slice knots

Recall that a Legendrian knot ƒ is said to be Lagrangian slice if it bounds a Legendrian
disk in B4 or, equivalently, if U �ƒ where U is the standard unknot. In this section,
we provide a complete list of nontrivial topological knot types through 14 crossings
that have Legendrian representatives that are Lagrangian slice. Our data support the
following conjecture:
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Conjecture 4.1 If K is smoothly slice and tb.K/D�1, then K bounds a Lagrangian
disk in B4 .

Note that the converse of this conjecture is true.

Our results are summarized in Table 1, which provides a list of smoothly slice knots K

with up to 14 crossings such that tb.K/D�1, along with a Legendrian representative
that bounds a Lagrangian disk; this table verifies Conjecture 4.1 when K has up to
14 crossings.

In Section 4.1 and Section 4.2, we show that nontrivial alternating knots cannot be
Lagrangian slice and then rule out all but 23 nonalternating knot types of crossing
numbers � 14. In Section 4.3, for each of the remaining 23 knot types, Table 1 gives a
Legendrian representative ƒ with U �ƒ, completing the census through 14 crossings.
We conclude by discussing in Section 4.4 the extent to which we can establish ƒ 6� U

for these knots.

4.1 Alternating knots

We will first show that no Lagrangian slice knot can be alternating unless it is an unknot,
using the following description, by the second author, of tb.K/ for an alternating K .

Proposition 4.2 [35, page 1646] Let L be an oriented, alternating, nonsplit link, and
D a reduced alternating diagram for L with n�.D/ negative crossings. Then

tb.L/D �.L/� n�.D/� 1;

where �.L/ denotes signature, normalized so that the right-handed trefoil has signa-
ture C2.

Theorem 4.3 An alternating knot K bounds an oriented Lagrangian surface † in
the standard symplectic 4–ball if and only if K is also a positive knot, in which case
its Seifert, smooth, and topological 4–ball genera and the genus of † are all equal
to �.K/=2.

Proof The “if” direction is due to Hayden and Sabloff [27], who showed that all
positive links bound exact Lagrangian surfaces. Conversely, suppose that K bounds a
Lagrangian surface †. Chantraine [8] showed that tb.K/D 2g.†/� 1 and gs.K/D

g.†/, where gs denotes the smooth slice genus. Now Proposition 4.2 tells us that

2g.†/� 1D tb.K/D �.K/� n�.D/� 1
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for a reduced alternating diagram D of K ; hence �.K/ D 2gs.K/C n�.D/. We
apply Murasugi’s bound j�.K/j � 2g4.K/ [33], with g4.K/ the topological 4–ball
genus, to get

2gs.K/C n�.D/D �.K/� 2g4.K/� 2gs.K/;

and hence each inequality is an equality, implying that n�.D/ D 0 and gs.K/ D

g4.K/D g.†/ as desired. The claim that g.K/D gs.K/ follows from Rasmussen
[39, Theorem 4] because K is positive.

This gives a new, contact geometric proof of the result of Nakamura [34] that a reduced
alternating diagram of a positive knot has no negative crossings.

Corollary 4.4 Nontrivial alternating knots are not Lagrangian slice.

Proof By Theorem 4.3, if K is alternating and Lagrangian slice, then g.K/D 0.

4.2 Knots with at most 14 crossings

By Corollary 4.4, to enumerate Lagrangian slice knots, it suffices to restrict to nonalter-
nating knots. Here we narrow the list of candidates with up to 14 crossings to a list of
23, which we then show are all Lagrangian slice in Table 1 in Section 4.3.

4.2.1 Up to 12 crossings If a Legendrian knot ƒ of smooth type K bounds a
Lagrangian disk, then it must have tbD�1 (see [8]) and be smoothly slice, and the latter
implies tb.K/D�1 by the slice-Bennequin inequality tb.ƒ/Cjr.ƒ/j � 2gs.K/� 1,
proved by Rudolph [41]. According to KnotInfo [7], there are exactly six nontrivial
knot types of at most 12 crossings that are smoothly slice and have tbD�1, namely

946; 10140; 11n139; 12n582; 12n768; 12n838:

all of which are Lagrangian slice.

Remark 4.5 A note on chirality: We use xK to denote the mirror of K . There is some
discrepancy in the literature over which of each mirror pair is specified by a particular
numbered knot. Our conventions align with the KnotTheory` package, available
from the Knot Atlas [2], which provides the Rolfsen knot tables for knots through
10 crossings and the Hoste–Thistlethwaite enumeration for 11 crossings and above.
We note that this sometimes differs from KnotInfo; for instance, by the Thurston–
Bennequin data in KnotInfo, 946 rather than 946 has tbD �1. It may be helpful to
note that the Lagrangian slice knots which we have labeled 946; 10140; 11n139; 12n582

are unambiguously described as the P .�m;�3; 3/ pretzel knots for mD 3; 4; 5; 6.
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4.2.2 13– and 14–crossing knots We searched in KnotTheory` for nonalternating
13– and 14–crossing knots satisfying the conditions of the following lemma.

Lemma 4.6 Suppose that K admits a Legendrian representative ƒ which is La-
grangian slice. If �K .t/, PK .a; z/, FK .a; z/ and KhK .q; t/ denote the Alexander,
HOMFLY-PT, and Kauffman (Dubrovnik) polynomials of K and the Poincaré polyno-
mial of its Khovanov homology over Q, respectively, then:

(1) det.K/ is a perfect square, the signature �.K/ is zero, and �K .t/Df .t/f .t
�1/

for some polynomial f .

(2) We have max-dega PK .a; z/Dmax-dega FK .a; z/D 0.

(3) If p.z/ and f .z/ denote the a0 –coefficients of PK .a; z/ and FK .a; z/, then
f .z/� p.z/� 0, ie the coefficients of f �p and of p are all nonnegative.

(4) We have min-degq KhK .q; t=q/� �1.

(5) If the Khovanov homology of K has width at most 3, then KhK .q;�q�4/ D

qC q�1 .

Proof We know that K must be smoothly slice, that ƒ admits a graded ruling, and
that tb.K/ D tb.ƒ/ D �1. Thus (1) follows from K being topologically slice, and
in particular, �K .t/D f .t/f .t

�1/ is the Fox–Milnor condition [20], and det.K/D
f .�1/2 . Item (2) follows from achieving equality in the HOMFLY-PT [21; 32] and
Kauffman [40] bounds on tb.K/, namely tb.K/ � �max-dega PK .a; z/ � 1, and
likewise for FK .a; z/ because Rutherford [42] showed that this equality follows from
ƒ admitting a ruling. Indeed, the leading coefficients p.z/ and f .z/ are then the
2–graded and ungraded ruling polynomials of ƒ, and every 2–graded ruling is an
ungraded ruling, so (3) is an immediate consequence.

Item (4) is the weak Khovanov bound tb.K/�min-degq KhK .q; t=q/ of the second
author [35]. Finally, we observe that Rasmussen [39, Proposition 5.3] says that knots
of width at most 3 satisfy

KhK .q; t/D qs.K /.qC q�1/C .1C tq4/QK

for some polynomial QK . Furthermore, s.K/D 0 since K is smoothly slice, and we
conclude (5).

There are six 13–crossing knot types satisfying all of the conditions of Lemma 4.6,
namely

13n579; 13n3158; 13n3523; 13n4236; 13n4514; 13n4659I
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and 17 such knot types with 14 crossings, namely 14nm for m in

2459; 2601; 8091; 8579; 9271; 12406; 14251; 14799; 15489;

15581; 17376; 18212; 21563; 22150; 22789; 24246; 25967:

Six of these knot types actually have tb.K/ <�1; we prove this by noting that they do
not have arc index at most 10 (see Jin et al. [28]) or 11 (see Jin and Park [29]) and using
Gridlink [11] to find grid diagrams of complexity 12 for each of them, which must then
be minimal. We then apply Dynnikov and Prasolov’s theorem that grid diagrams which
minimize complexity maximize the Thurston–Bennequin invariant within a given knot
type; see [12]. Specifically, the knot types

13n4236; 14n8091; 14n9271; 14n14799; 14n15489; 14n17376

all have arc index 12, and in each case we find that tb.K/D�2.

The remaining knot types are

13n579; 13n3158; 13n3523; 13n4514; 13n4659;

14n2459; 14n2601; 14n8579; 14n12406; 14n14251; 14n15581;

14n18212; 14n21563; 14n22150; 14n22789; 14n24246; 14n25967;

and in Section 4.3 we verify that these are all Lagrangian slice.

Remark 4.7 Applying Lemma 4.6, we determine that there are at most 48 Lagrangian
slice knot types with 15 crossings, namely 15nm for m in

1481; 11562; 11847; 11848; 38594; 41697; 43982; 46734; 46855;

57450; 73973; 77224; 77245; 77461; 81490; 83506; 83742; 88825;

96161; 96452; 96790; 103488; 104659; 110305; 110461; 112479;

127845; 127852; 130682; 131344; 132539; 133913; 134517; 135516;

136561; 138242; 138810; 139311; 144052; 145082; 153611; 153975;

154694; 155137; 155659; 155828; 162371; 164338:

(The Khovanov homology of 15n115646 has width 4 but satisfies the weaker condition
of Shumakovitch [45, Proposition 2.1], so we can still use the proof of item (5) to show
that s.15n115646/D 2 and thus rule it out.) However, we do not claim that all of these
actually are Lagrangian slice.
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4.3 The census

For each of the 23 knot types K described in the previous subsection, Table 1 provides
one Legendrian knot ƒ (depicted as a grid diagram), marked to indicate where one
can perform surgery (a pinch move) to construct a Lagrangian concordance U �ƒ.
We also note the cases in which we can prove that ƒ 6� U ; see Section 4.4.

K ƒ Coordinates ƒ 6� U ?

946
X W 1; 6; 7; 5; 3; 4; 2; 8

O W 5; 2; 4; 8; 6; 1; 7; 3
X

10140
X W 1; 2; 8; 6; 7; 4; 5; 3; 9

O W 6; 7; 4; 9; 3; 1; 2; 8; 5

11n139
X W 1; 8; 9; 7; 3; 4; 2; 6; 5; 10

O W 7; 2; 4; 10; 8; 1; 5; 3; 9; 6

12n582
X W 1; 2; 10; 8; 9; 4; 5; 3; 7; 6; 11

O W 8; 9; 4; 11; 3; 1; 2; 6; 5; 10; 7

12n768
X W 2; 3; 10; 1; 9; 6; 7; 5; 8; 4

O W 6; 9; 7; 8; 5; 10; 4; 2; 3; 1
X

12n838
X W 8; 6; 9; 7; 4; 5; 2; 10; 1; 3

O W 5; 2; 3; 10; 8; 1; 9; 4; 6; 7
X

13n579
X W 9; 7; 8; 6; 2; 11; 1; 10; 4; 5; 3

O W 4; 10; 1; 9; 7; 5; 6; 3; 11; 2; 8
X
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K ƒ Coordinates ƒ 6� U ?

13n3158
X W 11; 9; 10; 8; 6; 7; 5; 3; 4; 1; 2

O W 3; 1; 7; 2; 9; 4; 8; 6; 11; 5; 10
X

13n3523
X W 1; 10; 11; 9; 3; 4; 2; 6; 5; 8; 7; 12

O W 9; 2; 4; 12; 10; 1; 5; 3; 7; 6; 11; 8

13n4514
X W 2; 10; 11; 4; 9; 8; 6; 1; 7; 3; 5

O W 9; 6; 7; 8; 5; 10; 3; 4; 2; 11; 1

13n4659
X W 4; 8; 5; 10; 3; 9; 11; 7; 2; 1; 6

O W 11; 2; 9; 7; 8; 4; 6; 1; 10; 5; 3

14n2459
X W 5; 7; 1; 11; 12; 9; 4; 3; 2; 6; 10; 8

O W 9; 12; 10; 2; 8; 6; 7; 1; 5; 3; 4; 11

14n2601
X W 2; 9; 7; 10; 5; 8; 4; 6; 1; 3; 11

O W 8; 6; 1; 2; 11; 3; 9; 10; 5; 7; 4
X

14n8579
X W 8; 5; 10; 2; 9; 6; 7; 4; 1; 3; 11

O W 1; 9; 7; 8; 3; 11; 2; 10; 5; 6; 4
X

14n12406
X W 8; 6; 11; 2; 10; 1; 3; 9; 5; 7; 4

O W 1; 10; 7; 9; 5; 6; 8; 4; 2; 3; 11
X
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K ƒ Coordinates ƒ 6� U ?

14n14251
X W 10; 4; 3; 9; 5; 7; 8; 6; 2; 11; 1

O W 5; 2; 8; 4; 11; 10; 1; 9; 7; 3; 6

14n15581
X W 1; 9; 8; 5; 11; 7; 10; 4; 6; 2; 3

O W 4; 2; 10; 9; 6; 3; 5; 8; 1; 7; 11
X

14n18212
X W 1; 2; 12; 10; 11; 4; 5; 3; 7; 6; 9; 8; 13

O W 10; 11; 4; 13; 3; 1; 2; 6; 5; 8; 7; 12; 9

14n21563
X W 4; 1; 10; 11; 9; 6; 7; 8; 5; 2; 3

O W 11; 7; 5; 8; 2; 10; 4; 3; 1; 6; 9
X

14n22150
X W 10; 6; 8; 5; 12; 7; 1; 9; 11; 4; 2; 3

O W 4; 1; 2; 11; 9; 10; 8; 6; 3; 12; 5; 7
X

14n22789
X W 2; 12; 6; 11; 8; 4; 10; 9; 3; 7; 5; 1

O W 11; 8; 10; 7; 3; 1; 2; 5; 6; 4; 12; 9

14n24246
X W 11; 9; 10; 7; 8; 6; 2; 1; 5; 4; 12; 3

O W 8; 12; 4; 11; 5; 1; 7; 3; 9; 2; 6; 10

14n25967
X W 9; 1; 12; 5; 8; 6; 7; 4; 2; 3; 10; 11

O W 12; 10; 2; 1; 11; 9; 3; 8; 5; 6; 4; 7

Table 1: Lagrangian slice knots through 14 crossings.
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4.4 Nonreversible concordances

Here we study the question of which concordances U �ƒ from the census in Section 4.3
are nonreversible in the sense that ƒ 6� U , ie there is a concordance from U to ƒ but
not vice versa. Our results are summarized in Table 2 below.

K n zn�1R1
ƒn
.z/

946 1 2

10140 > 2

11n139 > 2

12n582 > 2

12n768 2 z12C 12z10C 49z8C 78z6C 41z4C 4z2C 1

12n838 1 2

13n579 2 z12C 9z10C 25z8C 21z6C 4z4C 1

13n3158 1 z4C 3z2C 3

13n3523 > 2

13n4514 > 2

13n4659 > 2

14n2459 > 2

14n2601 1 z4C 3z2C 3

14n8579 2 3z12C 27z10C 81z8C 93z6C 38z4C 4z2C 1

14n12406 2 3z12C 26z10C 72z8C 68z6C 17z4C 1

14n14251 > 2

14n15581 1 z4C 2z2C 2

14n18212 > 2

14n21563 1 z4C 3z2C 2

14n22150 2 z12C 8z10C 18z8C 8z6C 1

14n22789 > 2

14n24246 > 2

14n25967 > 2

Table 2: For each Lagrangian slice knot K through 14 crossings with Legen-
drian representative ƒ from Table 1, we give the least n for which the ruling
polynomial of the n–cable of ƒ is known to differ from 1 . An entry of the
form “n> 2” indicates that zn�1R1

ƒn
.z/D 1 for all n� 2 .

An obstruction to the existence of a concordance giving ƒ � U is provided by
Corollary 2.9. For 6 of the 23 Legendrian knots ƒ from Table 1 (of types 946 ,
12n838 , 13n3158 , 14n2601 , 14n15581 , 14n21563 ), the ungraded ruling polynomial
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R1
ƒ.z/ is not equal to 1, and so ƒ 6�U by Corollary 2.9. In 5 additional cases (12n768 ,

13n579 , 14n8579 , 14n12406 , 14n22150 ), we may similarly apply Theorem 2.13 to the
2–cable ƒ2 of ƒ: the ungraded ruling polynomial for ƒ2 is not equal to z�1 , and
hence Theorem 2.13 shows that ƒ 6� U . Note that this argument shows ƒ 6� U for
all Legendrian representatives ƒ of these knot types, not just the particular ones from
Table 1; see Remark 2.16.

We have not been able to rule out the possibility that ƒ � U for ƒ representing
the remaining 12 knot types. One indication that it may be difficult to do so for at
least some of these knots is the curious family of Legendrian P .�m;�3; 3/ pretzel
knots for m� 4, of which 10140 , 11n139 , 12n582 , 13n3523 , 14n18212 are shown in
Table 1; these have a natural generalization to all m� 4. For this family of Legendrian
knots, it can be shown that the Legendrian contact homology DGA is stable tame
isomorphic to the DGA for the unknot U (even over ZŒt; t�1�), and so these knots are
indistinguishable from U from the viewpoint of contact homology. It follows from
this fact that any n–cable of these knots has the same ungraded ruling polynomial as
the n–cable of the unknot, though we omit the proof.
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