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On intersecting subgroups of Brunnian link groups

FENGCHUN LEI

JIE WU

YU ZHANG

Let G.Ln/ be the link group of a Brunnian n–link Ln and Ri be the normal closure
of the i th meridian in G.Ln/ for 1 � i � n . In this article, we show that the
intersecting subgroup R1 \R2 \ � � � \Rm coincides with the iterated symmetric
commutator subgroup

Q
�2†m

ŒŒR�.1/;R�.2/�; : : : ;R�.m/� for 2�m� n using the
techniques of homotopy theory. Moreover, we give a presentation for the intersecting
subgroup R1\R2\ � � � \Rn .

55Q40; 57M25

1 Introduction

An n–component link Ln D fl1; l2; : : : ; lng is called a Brunnian link, named for
Hermann Brunn [5], if it is a nontrivial link that becomes trivial when any component
is removed. The simplest and best known example of Brunnian link are the Borromean
rings. Milnor [25] classified Brunnian links up to link homotopy; he called them almost
trivial links before Debrunner [9] named them Brunnian in 1961. The Cn –moves and
the finite-type invariants have been studied by Habiro and Meilhan [13; 14; 15; 16] and
Miyazawa and Yasuhara [26]. We refer to Mangum and Stanford [23], Meilhan and
Yasuhara [24] and Ozawa [27] for more results. An important application of Brunnian
links to mathematical chemistry was given by Chichak et al [6].

For an n–link Ln D fl1; l2; : : : ; lng, we define the link group G.Ln/ as the funda-
mental group of the link complement S3 n Ln . From the work of Mangum and
Stanford [23], Brunnian links are determined by their link complements, so the
link group G.Ln/ plays an important role in studying a Brunnian link Ln . Let
diLn D fl1; l2; : : : ; li�1; liC1; : : : ; lng be the .n� 1/–link obtained by deleting the i th

component li from the n–link Ln . There is a group homomorphism hi from G.Ln/

to G.diLn/, induced by the inclusion of the link complements S3 nLn ,! S3 ndiLn .
The kernel of hi is denoted by Ri . If we let h˛ii be the normal closure of the meridian
of li in G.Ln/, then h˛ii DRi .
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In this paper, we are interested in exploring the intersecting subgroup R1\R2\� � �\Rm

of a Brunnian link group G.Ln/ for 2 �m � n. Let ˇi be the i th longitude of Ln .
Since Ln is Brunnian, the homotopy class Œˇi � is in R1\� � �\Ri�1\RiC1\� � �\Rn

for each i . For some Brunnian links Ln , for instance the Whitehead link, the homotopy
classes of all of the longitudes lie in the full intersecting subgroup R1\ � � � \Rn .

Let N and H be subgroups of a group G . Recall that the commutator subgroup ŒN;H �

is defined as the subgroup of G generated by the commutators Œg; h�D g�1h�1gh for
g 2 N and h 2H . If N and H are normal subgroups, then ŒN;H � is contained in
the intersecting subgroup N \H . Hence, for each permutation � 2†m , the iterated
commutator subgroup

ŒŒR�.1/;R�.2/�; : : : ;R�.m/��R1\R2\ � � � \Rm:

It follows that the symmetric commutator subgroup

ŒR1;R2; : : : ;Rm�S D
Y
�2†m

ŒŒR�.1/;R�.2/�; : : : ;R�.m/�

is a subgroup of R1\R2\� � �\Rm . Using a recent result of Ellis and Mikhailov [10] to-
gether with the techniques of homotopy theory, we are able to determine the intersecting
subgroup R1\R2\ � � � \Rm for 2�m� n.

Theorem 1.1 Suppose that Ln D fl1; l2; : : : ; lng is an n–component Brunnian link
and G.Ln/ is the link group of Ln . Let Ri be the normal closure of the i th meridian
in G.Ln/. Then m\

iD1

Ri D ŒR1; : : : ;Rm�S

for 2�m� n.

Let R1;R2; : : : ;Rm be subgroups of a group G . There is a Brown–Loday construction
of non-commutative tensor product T .R1;R2; : : : ;Rm/ defined in terms of generator-
relation system [4]. The construction of T .R1;R2; : : : ;Rm/ will be recalled in the
next section.

Our second result gives a presentation of the intersecting subgroup R1\ � � � \Rm in
terms of the Brown–Loday construction.

Theorem 1.2 Given the same assumptions of Theorem 1.1, we have:

(1) There is a short exact sequence of groups
n�1M

Z� T .R1;R2; : : : ;Rn/�
n\

iD1

Ri :
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(2) There is a short exact sequence of groups
1M

Z� T .R1;R2; : : : ;Rm/�
m\

iD1

Ri

for 2�m< n.

Remark The combinatorial problem of determining the intersecting subgroups is
technically difficult in general, and related to the longstanding unsolved classical
Whitehead asphericity question in low-dimensional topology; see Bogley [3]. The
question on the determination of Brunnian braids answered in Bardakov, Mikhailov,
Vershinin and Wu [1], Gurzo [12], Johnson [17], Levinson [18; 19] and Li and Wu [20]
concerns the intersecting subgroups of braid groups with connections to homotopy
theory; see Berrick, Cohen, Wong and Wu [2] and Cohen and Wu [7; 8]. As a
development of Brown and Loday’s program [4], recent progress made by Ellis and
Mikhailov gives a possibility to determine certain intersecting subgroups in terms
of commutator subgroups with obstructions given by homotopy groups. It was then
discovered by Fang, Lei and Wu [11] and Li and Wu [20] that the quotient group
.R1 \ � � � \Rn/=ŒR1; : : : ;Rn�S is isomorphic to the homotopy group �n.S

3/ for a
strongly nonsplittable n–link L, where Ri is the normal closure of the i th meridian
and a link is called strongly nonsplittable if any of its nonempty sublink is nonsplittable.
In other words, the determination of the intersecting subgroup of strongly nonsplittable
links L is equally difficult to the determination of the homotopy group �n.S

3/, even
in the simplest case that L is a Hopf n–link. Since the Brunnian links are not strongly
nonsplittable, we cannot apply the results of [11; 20] to answering the question of
the intersecting subgroup of Brunnian links. However, we observe in Claim 2.2 that
the connectivity hypothesis Ellis and Mikhailov [10] is satisfied for Brunnian link
groups. This gives us the chance to determine the intersecting subgroup of Brunnian
link groups in this article. As an application to Brunnian link groups, by Theorem 1.1
and Theorem 1.2(1) there is an exact sequence

1!

n�1M
Z! T .R1;R2; : : : ;Rn/!G.Ln/! F�n

n�1;

where Fn�1 is the free group of rank n� 1. This gives a connection between Brown
and Loday’s theory on non-commutative tensor products and Brunnian links.

We should point out that by Theorem 1.1, the connectivity hypothesis of Ellis and
Mikhailov [10] is also satisfied for almost Brunnian link groups along the lines of the
proof of Lemma 2.1, where a link is called almost Brunnian if it becomes Brunnian after
removing any of its components. Of course, the full determination of the intersecting
subgroup of almost Brunnian link groups will technically depend on the determination
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of the homotopy type of the homotopy colimit of a cubical diagram, as we will see in the
case of Brunnian link groups in this article. The procedure can be continued for more
general links until the intersecting subgroup differs from the symmetric commutator
subgroup with obstruction given by the homotopy group of the homotopy colimit. This
article highlights the homotopy theoretic methodology for determining the intersecting
subgroup of link groups.

In the next section, we will lay out the necessary preliminaries for proving our theorems.
In Section 3, we’ll study the homotopy type of the space X.Ln/

m . The proofs of
Theorems 1.1 and 1.2 will be given in Section 4.

Acknowledgements The first and the second authors were supposed by a grant of
NSFC number 11329101 of China. The second author was also supported by the
Academic Research Fund of the National University of Singapore R-146-000-190-112.
The third author was supported by a grant of NSFC number 11101103 of China.

2 Preliminaries

In this section we will review some results which we need to prove our main theo-
rems, including symmetric commutator subgroups, colimits of classifying spaces and
homotopy groups of homotopy colimits.

2A Symmetric commutator subgroups

Let G be a group with subgroups Rj for 1� j �n. The concept of the symmetric com-
mutator subgroup of R1;R2; : : : ;Rn , denoted by ŒR1;R2; : : : ;Rn�S , was introduced
by Li and Wu [20] with the equation

(1) ŒR1;R2; : : : ;Rn�S D
Y
�2†n

ŒŒR�.1/;R�.2/�; : : : ;R�.n/�;

where †n is the nth symmetric group and ŒŒR�.1/;R�.2/�; : : : ;R�.n/� is the subgroup
generated by the left iterated commutators ŒŒŒg1;g2�;g3�; : : : ;gn� with gi 2R�.i/ .

In the same paper, the following theorem was also shown.

Theorem [20, Theorem 1.2] Let Rj be any normal subgroup of a group G with
1� j � n. Then

(2) ŒR1; : : : ;Rn�S D
Y

�2†n�1

ŒŒR1;R�.2/�; : : : ;R�.n/�;

where †n�1 acts on f2; 3; : : : ; ng.
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A bracket arrangement of weight n in a group G is given by Magnus, Karrass and
Solitar [22] as a map ˇnW Gn!G defined inductively by

(3) ˇ1
D idG ; ˇ2.g1;g2/D Œg1;g2�;

where g1 and g2 are arbitrary elements in G and Œg1;g2� is the commutator of g1

and g2 . Inductively, suppose that the bracket arrangements of weight k , ˇk , are
defined for k D 1; 2; : : : ; n� 1. Then the bracket arrangements of weight n, ˇn , is
defined by the composition

(4) Gn
DGk

�Gn�k ˇk�ˇn�k

������!G �G
ˇ2

�!G

for any ˇk and ˇn�k .

Closely related to the symmetric commutator subgroup is the fat commutator subgroup.
For a group G with a sequence of subgroups Rj ; 1 � j � n. The fat commutator
subgroup ŒŒR1; : : : ;Rn�� is defined to be the subgroup of G generated by all of the
commutators

(5) ˇt .gi1
; : : : ;git

/;

where

(a) 1� is � n,

(b) fi1; : : : ; itg D f1; : : : ; ng, ie each integer in f1; 2; : : : ; ng appears as at least one
of the integers is ,

(c) gj 2Rj ,

(d) ˇt runs over all of the bracket arrangements of weight t; t � n.

From the definition, it is clear that the symmetric commutator subgroup is a subgroup
of the fat commutator subgroup. Moreover, the following result was also shown by Li
and Wu [20], and plays an important role in our proof of Theorem 1.1.

Theorem [20, Theorem 1.1] Let Rj be any normal subgroup of a group G with
1� j � n. Then

(6) ŒŒR1;R2; : : : ;Rn��D ŒR1; : : : ;Rn�S :

This theorem tells us that the fat commutator subgroup is in fact the same as the
symmetric commutator subgroup.

We’ll also need another result of Wu.
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Theorem [28, Corollary 3.5] Let G D F.S/ be a free group generated by S and
F.Ti/ be subgroups of G freely generated by Ti � S for 1 � i � k . Let Ri be the
kernel of the projection homomorphism �i W G! F.Ti/. Then

k\
iD1

Ri D ŒŒR1;R2; : : : ;Rk ��:

Commutator subgroups have many important applications, especially to homotopy
groups and geometric groups. In [20], Li and Wu used the commutator subgroups to
give a connection between links and homotopy groups. In the present paper, we apply
the commutator subgroups to study the homotopy groups of the homotopy colimits of
classifying spaces for Brunnian link groups.

2B Homotopy colimits of classifying spaces

In this section, we review some facts about the colimits of classifying spaces. Our
terminology here is coincident with that of Ellis and Mikhailov [10].

Roughly speaking, a classifying space BG of a topological group G is a topological
space that is the quotient of a weakly contractible space (ie a topological space whose
homotopy groups are all trivial) by a free action of G . The existence of a classifying
space for discrete groups is a classical result. For a discrete group G , the classifying
space BG is a path-connected topological space whose fundamental group is isomor-
phic to G and all higher homotopy groups are trivial, ie BG is a K.G; 1/–space. Of
course, for a group G , the classifying space is not unique. It was shown that if X is a
classifying space for G and Y is a classifying space for K , then X �Y is a classifying
space for G �K . Some of the simple examples of classifying spaces are:

(1) The circle S1 is a classifying space for the infinite cyclic group Z.

(2) The n–torus T n is a classifying space for the free abelian group of rank n, Zn .

(3) The wedge of n circles
Wn

S1 is a classifying space for the free group of rank n.
Suppose that Ln is an n–Brunnian link and Ri is the normal closure of the nth

meridian in G.Ln/. For each proper subset I � f1; 2; : : : ; ng;G.Ln/=
Q

I Ri

is a free group of rank n� jI j, so B.G.Ln/=
Q

I Ri/D
Wn�jI j

S1 .

(4) It has been shown [11, Theorem 2.1] that a link in S3 is nonsplittable if and
only if the link complement is a K.�; 1/–space. So for an n–Brunnian link Ln

with link group G.Ln/, BG.Ln/D S3 nLn is a classifying space.
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We are interested in the homotopy colimits of classifying spaces. In order to have an
intuitive image of homotopy colimits, we describe the homotopy push-out (colimit) of
a diagram of spaces

Z
g
 �X

f
�! Y:

We want the homotopy push-out to preserve the homotopy type of X . So, we will
first thicken X to get X � Œ0; 1� and then identify X 'X � f0g with f .X /� Y and
X 'X � f1g with g.X /�Z . Therefore, the homotopy push-out is just the quotient
space

QD Y q .X � Œ0; 1�/qZ=�;

where .x; 0/� f .x/ and .x; 1/� g.x/.

In a more general sense than homotopy push-out, the homotopy colimit will be a functor
from the category of diagrams of spaces into the category of topological spaces T.
Suppose that D is a small category, ie a category where both the class of objects and
class of morphisms are actually just sets. Denote by TD the category of functors
F W D! T and natural transformations. That is, TD is the category of diagrams of
spaces with the shape of D. Our homotopy colimit is a functor

hocolimDW TD
! T

which satisfies the following properties:

(1) (Homotopy invariance property) Suppose that F;F 0W D! T are two functors
and there is a natural transformation � W F ! F 0 such that �d W F.d/! F 0.d/

is a homotopy equivalence for all d 2 D, then

hocolim.F /' hocolim.F 0/:

(2) If all the maps between spaces are cofibrations, then the homotopy colimit is
coincident with the usual colimit, ie if F.˛/W F.d/! F.d 0/ is a cofibration for
every ˛W d ! d 0 in D, then

hocolim.F /' colim.F /:

What inspired us was the work on homotopy colimits given by cubical diagrams by
Ellis and Mikhailov [10]. In the next section, we will review some of their results and
settle down some important lemmas we need later for the proofs of our theorems.
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2C Homotopy groups of homotopy colimits

Let G be a group. We recall the definition of connectedness for m–tuples of normal
subgroups .R1;R2; : : : ;Rm/ from [10].

Definition The m–tuple .R1;R2; : : : ;Rm/ is connected if either m � 2 or m � 3

and for all subsets I;J � f1; 2; : : : ;mg with jI j � 2; jJ j � 1 we have

(7)
�\

i2I

Ri

�Y
j2J

Rj D

\
i2I

�
Ri

Y
j2J

Rj

�
:

In this paper, we study the homotopy colimit X of the spaces B.G=
Q

i2I Ri/, where
I ranges over all strict subsets I ¨ f1; 2; : : : ;mg. The following theorem of Ellis and
Mikhailov is important for our proofs.

Theorem [10, Theorem 1] If the .m�1/–tuple .R1; : : : ; ORi ; : : : ;Rm/ is connected
for each 1� i �m, then the homotopy colimit X satisfies

�m.X /Š
R1\ : : :\RmQ

I[JDf1;2;:::;mg;I\JD∅Œ
T

i2I Ri ;
T

j2J Rj �
;(8)

�mC1.X /Š ker.@W T .R1; : : : ;Rm/!G/:(9)

The connectivity condition in this theorem is crucial. The following lemma ensures the
connectivity property of the subgroups in our results.

Lemma 2.1 For a Brunnian link LnDfl1; l2; : : : ; lng as described above, the k –tuple
.Ri1

; : : : ;Rik
/ is connected for each 1� k � n� 1 and ij 2 f1; : : : ; ng.

Before we prove the lemma, we make the following claim for simplicity.

Claim 2.2 Let � W G! G=
Q

j2J Rj ; x 7! x be the quotient map. Equation (7) in
the definition of connectivity is equivalent to the equality

(10)
\
i2I

Ri D

\
i2I

Ri :

Proof First, suppose that (10) is true, ie\
i2I

Ri D

�\
i2I

Ri

�
=
Y
j2J

Rj D

\
i2I

�
Ri=

Y
j2J

Rj

�
D

\
i2I

Ri :
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Notice that .
T

i2I Ri/.
Q

j2J Rj /�Ri.
Q

j2J Rj /. Therefore .
T

i2I Ri/.
Q

j2J Rj /�T
i2I .Ri.

Q
j2J Rj //.

On the other hand, we pick any x 2
T

i2I .Ri.
Q

j2J Rj //, ie x 2 Ri.
Q

j2J Rj /

for any i . The image of x , �.x/, belongs to Ri for all i . So �.x/ 2
T

i2I Ri DT
i2I Ri , where the last equality follows from (10). There exists y 2

T
i2I Ri such that

�.y/D �.x/. So �.y�1x/D e , ie y�1x 2 ker� D
Q

j2J Rj . Then x D y �y�1x 2

.
T

i2I Ri/.
Q

j2J Rj /. Equation (7) holds.

For the other direction, we suppose (7) is true.
T

i2I Ri �Ri for any i , so
T

i2I Ri �T
i2I Ri . Now for any x 2

T
i2I Ri , x 2 Ri for any i . Then x 2 ��1.x/ �T

i2I .Ri.
Q

j2J Rj //D .
T

i2I Ri/.
Q

j2J Rj /, where the last equality follows from
(7). So �.x/ 2

T
i2I Ri . Equation (10) holds.

Proof of Lemma 2.1 For the cases that n� 3, the proofs are trivial. So without loss
of generality, we assume n> 3; I D f1; : : : ; n� 2g and J D fn� 1g. For other cases,
the proofs are similar.

Suppose that G D G.Ln/=
Q

j2J Rj . We notice that G is a free group gener-
ated by f˛i D ˛i j i 62 J g since J is nonempty. So G D F.˛1; : : : ; ˛n�2; ˛n/ D

F.˛1; : : : ; ˛n�2; ˛n/. There is a group homomorphism

F.˛1; : : : ; ˛n�2/! F.˛1; : : : ; ˛i�1; ˛iC1; : : : ˛n�2/;

so that Ri D h˛ii is the kernel. By [1, Lemma 5.1], we have R1 \ � � � \Rn�2 D

ŒR1; : : : ;Rn�2�S . We also notice that ŒR1; : : : ;Rn�2�S �
Tn�2

kD1 Rk . Now, if we think
of the quotient map

G.Ln/
q
�!G;

we have

(11)
\
k2I

Rk D q

� \
k2I

Rk

�
� q.ŒR1;R2; : : : ;Rn�2�S /

D ŒR1;R2; : : : ;Rn�2�S D
\
k2I

Rk :

The other direction is obvious.

The group T .R1;R2; : : : ;Rm/ in [10, Theorem 1] is generated by symbols

a˝A;B b;

Algebraic & Geometric Topology, Volume 16 (2016)
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where AtB D f1; 2; : : : ;mg; a 2RA; b 2RB (here for any I � f1; 2; : : : ;mg;RI DT
i2I Ri ), and it satisfies the relations

a˝A;B b D .b˝B;A a/�1;

aa0˝A;B b D .aa0˝A;B
ab/.a˝A;B b/;

.uŒu�1; v�˝U[V;W
uw/.w Œw�1;u�˝W [U;V

wv/.v Œv�1; w�˝V[W ;U
vu/D 1;

.a˝A;B b/.a0˝A0;B0 b
0/.a˝A;B b/�1

D
Œa;b�a0˝A0;B0

Œa;b�b0

for AtBDA0tB0Df1; 2; : : : ;mg; a2NA; a
0 2NA0 ; b 2NB; b

0 2NB0 ;U tV tW D

f1; 2; : : : ;mg;u 2NU ; v 2NV ; w 2NW . Here we define xy D xyx�1 .

For an m–tuple � 2 f0; 1gm , there is an m–cube of spaces B D B.G;R1; : : : ;Rm/W

f0; 1gm! (spaces) for which

B� D B

�
GQ

i2�Ri

�
is the classifying space of the quotient group G=

Q
i2�Ri . Here i 2 � means the

i th coordinate of � equals 1. This idea can be easily extended to an m–tuple � 2
f�1; 0; 1gm . It was shown [4; 21] that each m–cube of spaces corresponds to an
m–cube of fibrations F W f�1; 0; 1gm! (spaces). The homomorphism

T .R1; : : : ;Rm/! �1.F�1;�1;:::;�1;0/�G; x˝y 7! Œx;y�

has a crossed module structure @W T .R1; : : : ;Rm/!G;x˝y 7! Œx;y� such that for
any g 2G; g.x˝y/D .gx˝ gy/.

3 Homotopy type of X.Ln/m

In this section we will study the homotopy type of the classifying space X.Ln/
m .

When nD 2, it’s immediate to see that X.L2/
2 ' S3 , because S3 is the push-out of

K.�; 1/–spaces S3 n d2L2 S3 nL2! S3 n d1L2 . We choose the case nD 4 as
an experimental example; the case nD 3 is similar. The more general cases will be
studied inductively.

3A The experimental example n D 4

To get X.L4/
2 we study the cubical diagram

BG.L4/D S3
nL4

h�
1- B.G.L4/=R1/D

W3
S1

B.G.L4/=R2/D
W3

S1 -
�

h
�
2

X.L4/
2
�
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where h�
1

and h�
2

are induced from the group homomorphisms h1 and h2 .

In order to get the homotopy type of the push-out X.L4/
2 we need to look into the

structure of B.G.L4/=R1/ and B.G.L4/=R2/. Let d1L4D fl2; l3; l4g be the 3–link
obtained by deleting the first component of L4 . The link complement S3 n d1L4 has
same the homotopy type as .

W3
S1/_ .

W2
S2/ since d1L4 is splittable; we refer

to [11, Proposition 2.2] for more details. The 2–sphere S2
i ; i D 2; 3, is a separating

sphere which separates li from the other components. Then the classifying space
B.G.L4/=R1/ is obtained by filling in the 2–spheres from .

W3
S1/_.

W2
S2/ with 3–

balls, ie B.G.L4/=R1/D .S
3nd1L4/[.

S2
D3/D ..

W3
S1/_.

W2
S2/[.

S2
D3/DW3

S1 . The left side of Figure 1 will show us the idea more clearly.

l2
l1

l2

l3

l4

D3

D3

S1

S1

S1

S1

S2
2

S2
3

l1

l2

l3
l4

D3

D3

S1

S1

S1 S1

S2
1

S2
3

Figure 1: The classifying space B.G.L4/=R1/ is obtained by filling in the
2–spheres from .

W3
S1/_ .

W2
S2/ with 3–balls (left); B.G.L4/=R2/ is

obtained similarly (right).

l1 l2

l3
l4

D3

D3

D3

D3

D3

S1

S1

S1

S1

S1

S2
1 S2

2

S2
3

Figure 2: X.L4/
2 is homotopic to .

W2
S1/_ .

W3
S3/ .

By the same argument, we can determine the homotopy type and structure of the space
B.G.L4/=R2/, which is illustrated on the right in Figure 1.
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By definition, the homotopy push-out X.L4/
2 is homotopic to .

W2
S1/_ .

W3
S3/

as indicated in Figure 2.

Actually, the space X.L4/
2 is obtained from the disjoint union of B.G.L4/=R1/D

..
W3

S1/_.
W2

S2//[.
S2

D3/, B.G.L4/=R2/D ..
W3

S1/_.
W2

S2//[.
S2

D3/

and .S3nL4/�Œ0; 1� by identifying .S3nL4/�f0g (respectively .S3nL4/�f1g) with
h�

1
.S3 nL4/� B.G.L4/=R1/ (respectively h�

2
.S3 nL4/� B.G.L4/=R2/). Notice

that now the component l1 (respectively l2 ) is filled in, so one side of the 2–sphere
S2

1
(respectively S2

2
) is .D3 n l1/[ l1 DD3 (respectively .D3 n l2/[ l2 DD3 ) while

the other side is also a 3–ball, ie there is a 3–sphere.

For mD 3, we refer to the cubical diagram in Figure 3.

BG.L4/D S3 nL4 B.G.L4/=R1/D
W3

S1

X.L4/
2

B.G.L4/=R2/D
W3

S1 B.G.L4/=R1R2/D
W2

S1

B.G.L4/=R3/D
W3

S1 B.G.L4/=R1R3/D
W2

S1

P4;3

B.G.L4/=R2R3/D
W2

S1 X.L4/
3

Figure 3

There is a natural inclusion from X.L4/
2D.

W2
S1/_.

W3
S3/ to B.G.L4/=R1R2/DW2

S1 . Actually the space B.G.L4/=R1R2/ can be thought of as obtained from
X.L4/

2 by filling in the three S3 components by 4–balls, ie B.G.L4/=R1R2/ D

X.L4/
2[ .

S3
D4/D ..

W2
S1/_ .

W3
S3//[ .

S3
D4/D

W2
S1 .

Now, let’s study the bottom level of the cubical diagram. We have B.G.L4/=R3/D

.S3nd3L4/[.
S2

D3/D
W3

S1 . B.G.L4/=R1R3/ (respectively B.G.L4/=R2R3/)
can be thought of as obtained from the space B.G.L4/=R3/ by filling in the l1
(respectively l2 ) component and then capping off the resulting S3 boundary by a
D4 , ie B.G.L4/=R1R3/D .S

3 nd3L4/[ .
S2

D3/[ l1[D4D
W2

S1 (respectively
B.G.L4/=R2R3/D .S

3nd3L4/[.
S2

D3/[l2[D4D
W2

S1 ), as shown in Figure 4.
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By the definition of homotopy push-out, the space P4;3 is determined by the diagram

B.G.L4/=R3/D
W3

S1 - B.G.L4/=R1R3/D
W2

S1

B.G.L4/=R2R3/D
W2

S1 -
�

P4;3;
�

and P4;3 is isomorphic to S1 ; see Figure 5. On the other hand, P4;3 can also be
thought of as obtained from X.L4/

2 by removing the l3 component and capping off
all three S3 components by 4–balls; see Figure 6.

Then the space X.L4/
3 is determined by the diagram

X.L4/
2 - B.G.L4/=R1R2/D

W2
S1

P4;3 D S1 -
�

X.L4/
3;
�

where the space B.G.L4/=R1R2/ is obtained from X.L4/
2 by filling in the three

S3 components by 4–balls, as shown in Figure 7. We conclude that X.L4/
3 D

S1 _ .
W3

S4/.

l1 l2

l3

l4

D3

D3

S1

S1

S1

S1

S2
1 S2

2

l1 l2

l3

l4

D3

D3

D3

S1

S1

S1

S1

S2
1 S2

2

l1 l2

l3

l4

D3

D3

D3

S1

S1

S1

S1

S2
1 S2

2

Figure 4: The classifying spaces B.G.L4/=R3 , B.G.L4/=R1R3 , and
B.G.L4/=R2R3 , respectively
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The last case left is X.L4/
4 , which is determined by the following diagram:

X.L4/
3 D S1 _ .

W3
S4/ - B.G.L4/=R1R2R3/DX.L4/

3[ .
S3

D5/D S1

P4;4

?
- X.L4/

4;

?

where the space B.G.L4/=R1R2R3/ is obtained from X.L4/
3 by capping off the S4

components by 5–balls, and the space P4;4 is obtained by removing the l4 component

l4 l3

S1 S1

S1 S1

S3
S3

D3
D3 D3

D3

l1 l2
S2

1 S2
2

Figure 5: The pushout P4;3

is isomorphic to S1 .

l1 l2

l3

l4

S1

S1

S1
S1

S3 D3

D3

S3

D3

D3

S3

D3

D3

S2
1 S2

2

S2
3

Figure 6: On the other hand,
P4;3 can be thought of as
obtained from X.L4/

2 by
removing the l3 component
and capping off all the three
S3 components by D4 ’s.

l1 l2

l3

l4

S1

S1

S1
S1

S3 D3

D3

S3

D3

D3

S3

D3

D3

S2
1 S2

2

S2
3

Figure 7: The space B.G.L4/=R1R2/ is obtained from X.L4/
2 by filling

in the three S3 components by D4 ’s.
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from X.L4/
3 and capping off the S4 components by 5–balls, ie P4;4 is isomorphic

to a point. So X.L4/
4 D

W3
S5 .

3B The general cases

Based on the experimental example we studied in detail in the previous section, we’ll
sketch the procedure of finding the homotopy types of the homotopy colimits very
roughly in this section.

For any n> 4 and 2�m� n, we want to show that

X.Ln/
m
D

�n�m_
S1

�
_

�n�1_
SmC1

�
;

noticing that for nD 2; 3; 4 this equality holds. Now, for any n> 4, we assume that
the spaces X.Ln/

k ; 2� k �m� 1 satisfy this equation. By induction, we notice that
X.Ln/

m is determined by the diagram

X.Ln/
m�1
D .

Wn�mC1
S1/

_.
Wn�1

Sm/
-

B.G.Ln/=R1 ���Rm�1/

DX.Ln/
m�1
[.
Sn�1

DmC1/

D
Wn�mC1

S1

Pn;m

?
- X.Ln/

m;
?

where B.G.Ln/=R1 � � �Rm�1/ can be thought of as obtained from X.Ln/
m�1 by

filling in the Sm components, and Pn;m is obtained from X.Ln/
m�1 by removing

the lm component and capping off all the sphere components with solid balls. Then
Pn;m D

Wn�m
S1 , and the colimit X.Ln/

m D .
Wn�m

S1/_ .
Wn�1

SmC1/.

4 Proofs of theorems

In this section, we first study the nth and .nC 1/st homotopy groups of the homotopy
colimits, then the proofs of our theorems are just corollaries.

4A The homotopy groups of the homotopy colimits

We have already shown that X.Ln/
m D .

Wn�m
S1/_ .

Wn�1
SmC1/.
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For the case mD n, the homotopy groups of X.Ln/
n can be obtained by applying the

Hurewicz theorem. In fact, the homology groups of X.Ln/
n satisfy the equalities

Hn.X.Ln/
n/DHn

�n�1_
SnC1

�
D

n�1M
Hn.S

nC1/D 0;(12)

HnC1.X.Ln/
n/DHnC1

�n�1_
SnC1

�
D

n�1M
HnC1.S

nC1/D

n�1M
Z:(13)

So by the Hurewicz theorem, �n.X.Ln/
n/D 0 and �nC1.X.Ln/

n/D
Ln�1 Z.

For the case m<n, X.Ln/
mD .

Wn�m
S1/_.

Wn�1
SmC1/. We consider the universal

covering space zX of X.Ln/
m , which is an infinite tree with every vertex of valency

2.n�m/, and with n� 1 .mC 1/–spheres attached to each vertex. So we obtain

�m.X.Ln/
m/D �m. zX /D 0;(14)

�mC1.X.Ln/
m/D �mC1. zX /D

1M
Z:(15)

4B Proof of Theorem 1.1

According to (8),

0D �m.X.Ln/
m/Š

R1\ � � � \RmQ
I[JDf1;2;:::;mg;I\JD∅Œ

T
i2I Ri ;

T
j2J Rj �

for all m, ie R1\� � �\RmD
Q

I[JDf1;2;:::;mg;I\JD∅Œ
T

i2I Ri ;
T

j2J Rj �. Obviously,
ŒR1; : : : ;Rm�S �R1\ � � � \Rm . The following lemma will conclude the proof.

Lemma 4.1 Based on the assumptions of Theorem 1.1,

ŒR1; : : : ;Rm�S �
Y

I[JDf1;2;:::;mg;I\JD∅

�\
i2I

Ri ;
\

j2J

Rj

�
DR1\ � � � \Rm:

Proof According to [28, Corollary 3.5],
T

i2I RiD ŒŒRi1
; : : : ;RijIj �� and

T
j2J Rj D

ŒŒRj1
; : : : ;RjjJj ��, so

Y
I[JDf1;2;:::;mg;I\JD∅

�\
i2I

Ri ;
\

j2J

Rj

�
� ŒŒR1; : : : ;Rm��D ŒR1; : : : ;Rm�S :
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4C Proof of Theorem 1.2

According to (9),

ker.@W T .R1; : : : ;Rm/!G.Ln//D �mC1.X.Ln/
m/D

�Ln�1 Z when mD nL1Z when m< n.

For all disjoint subsets A;B � f1; 2; : : : ;mg and any x 2 RA;y 2 RB , we have
@.x˝y/D Œx;y� 2 Œ

T
i2A Ri ;

T
j2B Rj �. By the arbitrariness of A and B , we claim

that Im.@/ D
Q

I[JDf1;2;:::;mg;I\JD∅Œ
T

i2I Ri ;
T

j2J Rj �. Further, we notice that
there is an exact sequence

ker.@/D �mC1.X.Ln/
m/� T .R1;R2; : : : ;Rm/

� Im.@/D
Y

I[JDf1;2;:::;mg;I\JD∅

�\
i2I

Ri ;
\

j2J

Rj

�
�

m\
iD1

Ri! Coker.@/D �m.X.Ln/
m/D 0:

This concludes the proof.
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