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Non-meridional epimorphisms of knot groups

JAE CHOON CHA
MASAAKI SUZUKI

In the study of knot group epimorphisms, the existence of an epimorphism between
two given knot groups is mostly (if not always) shown by giving an epimorphism
which preserves meridians. A natural question arises: is there an epimorphism
preserving meridians whenever a knot group is a homomorphic image of another?
We answer in the negative by presenting infinitely many pairs of prime knot groups
(G, G’) such that G’ is a homomorphic image of G but no epimorphism of G
onto G’ preserves meridians.

20F34, 20J05, 57TM05, 57TM25

1 Introduction

For a knot K in S3, its knot group G(K) is defined by G(K) = m;(S® — K). The
study of knot groups has a long history, from the beginning of modern knot theory. In
particular, recently, epimorphisms of knot groups have been receiving much attention.
A key problem is to determine when there is an epimorphism between two knot groups.
For prime knots, which are of the most interest, it is well known that a partial order >
is obtained by defining K > K’ if there is an epimorphism G(K) — G(K') (see, for
instance, Ohtsuki, Riley and Sakuma [18, page 422]).

There is a fair amount of recent work on this in the literature. In their remarkable
work [1], Agol and Liu proved a long-standing conjecture of Simon that a knot group
surjects onto only finitely many knot groups. It follows that for any prime knot K,
there are only finitely many prime knots less than or equal to K. Together with Kitano,
Horie, Matsumoto and Wada, the second author investigated pairs of prime knots
with 11 crossings or less whose knot groups admit epimorphisms [14; 9; 16]. In
particular, they constructed many explicit examples of epimorphisms between knot
groups. Gonzaléz-Acufia and Ramirez studied which knot groups (particularly those of
2-bridge knots) admit epimorphisms onto torus knot groups [7; 8]. In work of Ohtsuki,
Riley and Sakuma [18], Hoste and Shanahan [11], and Lee and Sakuma [17], systematic
constructions of epimorphisms between 2-bridge knot (and link) groups were presented
and studied. Silver and Whitten [20; 21] studied knot group epimorphisms preserving
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peripheral structure; in particular, they showed that such epimorphisms give rise to a
partial order on the set of all knots.

Meridional epimorphisms

Interestingly, most (if not all) results in the literature stating that a knot is less than or
equal to another are shown by presenting an epimorphism which preserves meridians.
To be more precise, we use the following terms: we call an element [¢] € G(K) a
meridian if o is freely homotopic to a meridian curve lying on the boundary of a
tubular neighborhood of K, and we say that a homomorphism G(K) — G(K’) is
meridional if a meridian in G(K) is sent to a meridian in G(K'). In this paper knots
are unoriented, so that a meridian may be endowed with any orientation.

The following natural question arises:

Question Is there a meridional epimorphism G(K) — G(K’) whenever there is an
epimorphism G(K) — G(K’)?

We remark that it does not ask whether all knot group epimorphisms are meridional; it is
known that there exist non-meridional epimorphisms of knot groups. For instance, see
work of Johnson and Livingston [13]. We also remark that meridional epimorphisms
can be related to geometric properties, for example, periods of knots and degree-one
maps between knot exteriors. See Kitano and Suzuki [15] for details.

There are several results supporting an affirmative answer to the above question. For
any previously known example of a knot group G(K) which admits an epimorphism
onto G(K’), there exists a meridional epimorphism of G(K) onto G(K’). In particular,
all the epimorphisms found in [9; 14; 16] for groups of prime knots with 11 or less
crossings are meridional. For torus knot groups, there is a meridional epimorphism
whenever there is an epimorphism [21]. Also, the knot group epimorphisms in [7; 8;
17; 18] are all meridional. An epimorphism between nontrivial knot groups preserving
peripheral structure in the sense of [20; 21] is known to be meridional [20, proof
of Theorem 4.1; 11, Theorem 2.1]. We also remark that epimorphisms preserving
peripheral structure, particularly meridional epimorphisms of prime knot groups, can
be studied via maps of 3—manifolds with well-defined degree.

Our main result is, nevertheless, that the answer is in the negative.
Theorem 1.1 There are infinitely many distinct pairs of prime knots (K, K') for which

there is an epimorphism of G(K) onto G(K') but there is no meridional epimorphism
of G(K) onto G(K').
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The proof of Theorem 1.1 proceeds as follows. In Section 2, we give constructions
of pairs of knot groups which admit non-meridional epimorphisms. In Section 3,
we detect the non-existence of meridional epimorphisms using twisted Alexander
polynomials. This method allows us to obtain finitely many (in fact two) “seed”
examples. We remark that it depends on heavy computation infeasible by hand, and
hence it seems unable to detect infinitely many cases in this way. In Section 4, we
present a geometric method to produce, from the seed examples, infinitely many pairs
of knot groups which admit non-meridional epimorphisms but do not admit meridional
epimorphisms. In the appendix we present computational results of certain twisted
Alexander polynomials which are used to prove the non-existence of a meridional
epimorphism.

Acknowledgements Cha was partially supported by NRF grants 2013067043 and
2013053914. Suzuki was partially supported by KAKENHI (number 24740035), Japan
Society for the Promotion of Science, Japan.

2 Construction of non-meridional knot group epimorphisms

In this section we give certain explicit examples non-meridional epimorphisms of knot
groups, for some of which we will show the non-existence of meridional epimorphisms
in the next section.

2.1 First example on the trefoil knot

In this subsection we describe the first successful example of a pair of knots satisfying
Theorem 1.1, which we found by ad-hoc trial and error attempts aided by a computer.

Figure 1: A knot Kr.
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Consider the knot K7 shown in Figure 1. The Wirtinger presentation of the knot

group G (K1) obtained from Figure 1 has 24 generators x1, X3, . .

X6X2X6X1, X10X2X10X3,
X1X6X1Xs, X17X7X17X6,
X3X9X3X10, X1X10X1X11,
X23X14X23X13, X17X14X17X15,
X1X17X1X18,  X16X19X16X18,
X4X21X4X22,  X1X23X1X22,

., X24, and 24 relators

X6X3X6X4, X22X4X22X5,
X23X7X23Xg,  X13X9X13Xg,
X22X12X22X11, X6X13X6X12,
X18X16X18X15, X6X17X6X16>
X24X19X24X20, X12X21X12X20,
X6X23X6X24,  X18X24X18X1-

Here the generators are ordered along the orientation, starting from the generator x;
shown in Figure 1. In the relators X denotes the inverse of x.

Recall that the trefoil knot 7" has the following Wirtinger presentation:

G(T)=(y1.y2 | y1yay1 = y2y1y2)-

We define amap f: G(Kr) — G(T) as follows:

Sx1) = vy 132y,
S(x¥2) = M a1 2315
“V1Y2Y1)V2 01,
S(x3) = yiy2y1327y,
S(xa) = iy y1y2yiyay1yayi vay1y2 b,
S(xs) = yay1y271 025192017251 )2,
S (x6) = yiyayiy2 V1 Y2 V1Y27,,
Sx7) = i1 T V13 310231
J(x8) = yiyay1y2ay1y2y11201
f(x0) = YTy P y1y2 71 ¥2 71
V3V1y2d
S (X10) = V21201201271
S(x11) = 31320277,
f(x12) = M ya L yi .

S (x13) = yiyayiyari,
F(X12) = M1 Va2 1 2 V1 V3 Vi v v,
S(xX15) = y1y2y1 0201,
f(xX16) = VT3 V1 V271027193 1
S(x17) = a2 y172y1 72510201
V2 V1Y201Y2Y1V2V102 )15
f(xig) = y3 71,
F(X19) = MiTa V1 T2 2 P1 V3 V1 V2 1 V3 V1,
f(x20) = y3 7.
f(x21) = My 21 72y1 92019201020,
V212 Y12 V1 V2 V12 Y1 V2 )1
f(x22) = ¥371,
f(x23) = P2y 1 V2 T1 03 V121
f(X24) = Y1201 2 P1 71 Y3 1 V2 1 V2 71

Theorem 2.1 The map f: G(Kt) — G(T) is a non-meridional epimorphism.

Algebraic & Geometric Topology, Volume 16 (2016)
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Proof Tt is shown that f is a group homomorphism by directly verifying that the
relators of G(K7) vanish under f . For instance, we have

[ (X6x2X6X1) = Y1 21 Vi1V T1V1 T1 - V12 V1 P2 V1 2 V1 Vi P11 Vvt i
V2122101V ViYayiy2yr =e

and

S (x10%2X10X3) = Y1 721 Y2 V17271 V2 71 - VT2 Y1 V201 V2 V193 V1 V2 V1 V2 i
“V1V2V1 V201 2D1 0201 V121 y2y1 = e,

and so forth.

To show that f is an epimorphism, we explicitly describe elements of G(K7) which
are sent to generators of G(7T'):

S (x18x6X1X1X18X6X1) = Y31 Y172V1V2F1 V271271 - V172 Y1 V2Pt - V1721 V2 71
V3T P12 V1 Y2 1T 1 ey e P
= V21210201 0201Y2Y1V2)1 )1
= V102)1Y1Y201V2Y1012Y1Y1)1 = V1.

Similarly we have
—_ — _2 —
J(X1X6X18X1X18X6X]X18X6X1) = V2.

Although we will show that there is no meridional epimorphism of G(K7) onto G(7')
in the next section, we present here a simple direct proof that our f is not meridional.
Define a representation p: G(T) — SL(2,Z) by

pov=g 1] roa=[ 1]

It is straightforward to verify that p is well-defined. The image of f(x;) under p is
given by

p(f(x1)) = p(y1y2Y1¥2¥2) = [:; i] :

It has trace 4, while the trace of p(y;) is 2. It follows that the image f(x;) of the
meridian x; of K is not conjugate to the meridian y; of 7'. a

We remark that K7 is a hyperbolic knot, according to SnapPy [4], and consequently K7
is prime.
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2.2 Construction using normal generators and Johnson’s method

To describe the second successful example satisfying Theorem 1.1, we employ a more
systematic construction which combines algebraic computations in knot groups and
geometric realization arguments. In the first step we construct a non-meridional normal
generator, and in the second step we construct knot group homomorphisms realizing
the normal generator as the image of a meridian.

Finding pseudo-meridians: twist knots It is well known that a meridian is a normal
generator of a knot group. We call a normal generator of a knot group a pseudo-
meridian, that is, w € G(K) is called a pseudo-meridian if G(K)/(w) is trivial, where
(w) is the normal closure of w.

We will present useful pseudo-meridians of twist knots. Let J(2, 2¢) be the twist knot
shown in Figure 2 (¢ € Z). For example, J(2,0) is the trivial knot, J(2,2) is the
trefoil knot, and J(2,—2) is the figure-eight knot. The presentation of G(J(2,2¢q)) is
given by

G(J(2,29)) = (a.b | wla=bw?), w=[b,a ']

2

24 crossings

Figure 2: The twist knot J(2,2g).

Proposition 2.2 Let
_Jwia ifg >0,
S5 \w9p ifg <o.

Then g, is a pseudo-meridian, but not a meridian for ¢ # 0.

Proof First we show that g; is a pseudo-meridian by verifying that G(J(2,2¢))/{g1)
is trivial. In the quotient, g; = e, that is, w? = a if ¢ > 0. Then the relation of the
twist knot group gives aa = ba. This implies that b = a and w = [b, a] = e. Therefore
a =b =w? =e. Hence g1 is a pseudo-meridian. Similarly, we can show that
g1 = w?b is a pseudo-meridian for g < 0.

Algebraic & Geometric Topology, Volume 16 (2016)
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Next we show that g; is not conjugate to a, that is, g; is not a meridian of the twist
knot. Let p: G(J(2,2¢q)) — SL(2, C) be defined by

,o(a)=|:(1) i], p(b)=|:_1u (l)i|, u e C—{0}.

We set ¢4 (u) to be the (1, 1)—entry of p(w?). It is easy to see that if u = 0, then
p is not a representation. More precisely, Riley [19] showed that p is a non-abelian
parabolic representation if and only if ¢4 (1) = 0. Moreover, Hoste and Shanahan [10]
proved that ¢4 (u) is irreducible and that deg ¢y (1) is 2g — 1 if ¢ > 0 and 2|g| if
q <0.

We define a polynomial pg,(u) by

tr(p(wla)) —tr(p(a)) = r(p(wla)) =2 if ¢ > 0,
tr(p(w?b)) —tr(p(a)) = tr(p(w?b)) —2 if g <O.

First, consider the case ¢ > 0. The Cayley—Hamilton theorem gives us

pq(u) = {

p(w)? = (tr p(w)) p(w) + 1 = 0.
The trace of p(w) is u? + 2. Multiplying both sides by p(w?~2a), we obtain
p(wia) = W +2)p(w?™"a) — p(w?~a).

Taking the trace of the both sides and using the definition of p,(u), we obtain a
recursion formula for pg,(u):

Pq (u) = (uz + 2)pq—1 (u) — Pq—z(u) + 2u?

(compare [10]). Since p;(u) = 2u? and p,(u) = 2u* + 6u?, we conclude that Pq(u)
has a factor #? and deg p, (1) is 2¢q. Then p,(u) can be written as

pa(u) = u? py(u),

and the degree of p,(u) is 2¢g — 2, which is less than deg ¢y (u). Since ¢g(u) is
irreducible, ¢4 (1) does not have a multiple root, that is, ¢4 (1) has 2¢g — 1 distinct
roots, which are not zero. Hence there exists at least one root u € C of ¢4(u) =0
such that pg(u) # 0, namely,

tr(p(w?a)) # tr(p(a)).

This implies that w?a is not conjugate to a. Similarly, we prove the statement for the
case g < 0. The recursion formula of p,(u) is given by

Pa() = U* +2) pgi1(u) — pgia () + 2u?.
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By straightforward computation, p_;(#) = 0 and p_,(u) = 2u?. Then the same
argument as the case ¢ > 0 holds. Therefore w?b is not conjugate to a. This completes
the proof. a

We can produce a generating set of the twist knot group by conjugating g1 . In the case
g > 0, the relation can be written as (g;a)a = b(gia). Then b = giag; and

=[b,a]l = giagi-a-giag,-a =|[gi,d][g1,al.

Therefore we obtain

a=(a gilla, gi])g
=agia-gi-ag1a-gy---agia-g-agid
= (228123817 ' 228193,

where g, = agia and g3 = agia. It follows that G(J(2,2q)) is generated by the
three conjugate elements g;, g5, and g3.

Similarly, in the case ¢ < 0, we can show that G(J(2,2q)) is generated by the
three conjugate elements g;,g> = bg1b, g3 = bg b. Here b can be expressed as

(g3818281)741.

Johnson’s method for knot group epimorphs Gonzalez-Acuiia and Johnson showed
independently the following.

Theorem 2.3 [6; 12] Let G be a group finitely generated by the conjugatesof g € G .
Then there is a knot with group G(K) and meridian . € G(K), and a homomorphism ¢
of G(K) onto G carrying | onto g.

Johnson proved this result by presenting a process to construct such a knot K. Here
we review this process.

By hypothesis, G is finitely generated and normally generated by g. Thus we can
choose finitely many generators of the form g; = g, go = wgWs, ..., gn = Wy gWy.
Take a trivial link with n components, and label the components by g1, g2,...,gn-
For each i > 2, we connect the component g; to g; along a band which represents
the word w; ; for example, if w, = g;g3, we connect the first circle and the second
circle as in Figure 3. Let K be the resulting knot. Then it is not too difficult to see that
G(K) satisfies the conclusion of Theorem 2.3.

For the twist knot group G(J(2,2q)), we use the pseudo-meridian g; defined in
Proposition 2.2. By the process of Theorem 2.3, we can construct a knot J4 for which
there exists an epimorphism ¢: G(J4) — G(J(2,2g)) that sends a meridian of J; to
the pseudo-meridian g, of J(2,2¢). In particular, ¢ is non-meridional.

Algebraic & Geometric Topology, Volume 16 (2016)
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81 82 g3

\V

Figure 3: The connecting band for wy; = g1g3.

3 Twisted Alexander polynomial and nonexistence of merid-
ional epimorphisms

In this section we show that two of the examples described in Section 2 do not admit
any meridional epimorphisms. For this purpose we use twisted Alexander polynomials,
as discussed below.

3.1 Obstructions to admitting a meridional epimorphism

We recall the definition of the twisted Alexander polynomial, following Wada [22]. For
this purpose, temporarily, we assume that a knot is oriented. For brevity, although any
presentation of a knot group can be used in general, we will consider only the special
case of a deficiency-one presentation

G={(X1,....X | "1, . FR—1)

of a knot group G = G(K) in which each generator x; represents a positively oriented
meridian. For instance, a Wirtinger presentation can be used. Suppose p: G — SL(n, [F)
is a representation over a field . Let o: G — Z = (¢) be the surjection defined by
a(x;) =t. The tensor representation p ® o defined by (p ® @)(g) = a(g)- p(g) gives
rise to a ring homomorphism Z[G] — M, (F[t,t™!]). Let F(x;) be the free group
generated by the symbols x1, ..., x;, and let ® be the composition

o: Z[F (x:)] 22 7161 22% M, ([, 1Y),

Viewing r; as an element of F'(x;), the Fox derivative dr; /dx; € Z[F(x;)] is defined
as in [5]. The matrix consisting of (k — 1) x k blocks of size n x n

or; 3 . .
q)(a;;)EMn(]F[t’t 1])’ lflfk—l,lfjfk

is called a twisted Alexander matrix. It can be verified that det ®(1 — x;) # 0 for
some j (see [22, Lemma 2]). For such an index j, let M; be the matrix obtained from

Algebraic & Geometric Topology, Volume 16 (2016)
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Figure 5: The knot J,; (g <0).
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the twisted Alexander matrix by deleting the blocks on the j™ column. Viewing M;
as an n(k — 1) x n(k — 1) matrix over F[¢,77!], we define the twisted Alexander
polynomial for (K, p) by Ag , = A]I\(’ p/AIlg . where

AR, =det(M;). AR =det®(x;—1).

We call AN and AD K, the numerator and denominator of the twisted Alexander
polynomlal Note that A and Ag p are Laurent polynomials in F[z,771].

Under our assumption that the generators of the presentation for G are positive merid-
ians, both polynomials A and AD K.p are well-defined invariants of (K, p), up to
multiplication by units in IF[Z t~1]. This is a consequence of the following two facts:
(i) the fraction Ag , is well-defined up to units for any choice of a presentation of G
(see eg [22]), and (ii) A?a o= det @ (x; —1) is determined, up to units, by the conjugacy
class of the generator x; .

Remark 3.1 By the same argument, the following more general statement is true: for
a finitely presentable group G and a conjugacy class ¢, the numerator and denominator
of the twisted Alexander polynomial of G are invariants of (G, ¢), provided that we
use a presentation whose generators are in the conjugacy class c.

Remark 3.2 For an unoriented knot K, AN and AD are well-defined up to the
substitution ¢ — ¢~! (and up to multlphcatlon by a unlt) For our purpose, this does
not cause any problem.

The following theorem of Kitano, Suzuki and Wada is the key ingredient we use to
detect the non-existence of a meridional epimorphism.

Theorem 3.3 [16] Suppose there is a meridional epimorphism G(K) — G(K').
Then for any representation p’: G(K') — SL(n,F) over a field F, there is a representa-
tion p: G(K) — SL(n,F) such that for some € € {1,—1}, A¥, (1) divides AR NG
in F[¢,t~'] and AD,,p, (¢) is equal to AI[g’p(le) up to units.

Remark 3.4 (1) The representation p in Theorem 3.3 is the composition of the
given meridional epimorphism and p’. Since our aim is to detect the non-
existence of a meridional epimorphism, we do not know what p would be.
Consequently, to use Theorem 3.3. we need to investigate all representations
p: G(K) — SL(n, ) such that Im p =Im p’ and p(meridian of K) is conjugate
to p(meridian of K’) in Im p’.

(2) Under the weaker assumption that there is an epimorphism G(K) — G(K’),
which might be non-meridional, we have the weaker conclusion that Ag- ,/(¢)
divides Ag ,(1€). See [16].
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3.2 Computation for the first example on the trefoil

In this subsection we show that there is no meridional epimorphism of the knot group
G(KT) onto the trefoil group G(T'), where K7 is the knot presented in Figure 1.

We will use representations over SL(2, IF5). In particular, consider the representation

P G(T)=(y1,y2 | y1y2y1 = y2y1y2) —> SL(2,F5s)

()= [(1) j] P (y2) = B ﬂ

It is straightforward to verify that the relator is sent to the identity.

defined by

A computer-aided computation shows that
N 4 3 2 D 2

Apy=0"+20+2t"+2t +1, A, =1t"+21+1
Note that both A% o and Aﬁ o are symmetric.
In order to invoke Theorem 3.3, we compute the twisted Alexander polynomials of K.
We are again aided by computer programs written by the authors, which enumerates all
the representations p: G(K7) — SL(2,F5) (up to conjugation) and then computes the
associated twisted Alexander polynomials. By this we obtain that there are exactly eight
distinct twisted Alexander polynomials of G(K7) over SL(2,Fs). These polynomials
are listed in the appendix in Table 1.

From Table 1, it is straightforward to verify that for any representation p: G(K1) —
SL(2,Fs),
A?T’p # ATQ’p/ or A]I}’T,p does not divide AJYY’p,.

By symmetry of the polynomials, the conclusion holds for (A]}[ o (t=1), A? o 1)
as well. By Theorem 3.3, it follows that there is no meridional epimorphism of G(Kr)
onto G(T).

3.3 Computation for J_; and the figure-eight knot

In this subsection we show that there is no meridional epimorphism of the knot
group G(J_1) onto the figure-eight group G(E), where J_; is the knot described in
Section 2.2.

For this case, we use representations over SL(2,[F7). Let

P G(E) = (y1,y2 | \1Vay1y2P1 Y201 72¥102) —> SL(2,F7)

Algebraic & Geometric Topology, Volume 16 (2016)
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be the representation defined by

()= [(5) j] P (y2) = [1 0}

The relator of G(E) is sent to the identity, and we have
AR ="+ 437 4141, AR =r"+5+1.

By computation aided by a computer, we obtain that there are exactly 139 representations
up to conjugacy, and 58 distinct twisted Alexander polynomials of G(J_;) over
SL(2, ;). We discuss this in the appendix, and a table of the polynomials can be found
in the online supplement [3]. From this table it is verified that for any representation
0:G(J—-1) — SL(2,F7), either

N < N
J : p;éA or Ay , doesnotdivide Ag .

Since both polynomlals AD o (t) and AN ,(t) are symmetric, the conclusion holds
also for (A E.pf J(th, AR o (t71). By Theorem 3.3, it follows that there is no merid-
ional epimorphism of G(J_;) onto G(E).

Remark 3.5 The most time-consuming step of the computation is to find all the
representations of the given knot group. Our implementation performs a brute-force
search; since its running time is exponential in the number of the generators, it would be
interesting if a more clever algorithm were available. For G(K7), there is a presentation
with 3 generators, and all the 37 SL(2, F5) representations (up to conjugacy) are found
within a few seconds. For G(J_1), we use a simplified presentation with 5 generators,
and all the 139 SL(2, [F;) representations (up to conjugacy) are found within 2 minutes.
For G(Jy) for ¢ > 1 or ¢ < —1, we could not derive any conclusion within reasonable
running time; computation for two weeks on a computer with a 3GHz Intel i7 processor
was not enough.

4 Satellite construction and knot group epimorphisms

In this section we present a method to obtain infinitely many pairs of knots (K, K')
for which G(K’) is a non-meridional homomorph of G (K) but there is no meridional
epimorphism G(K) — G(K’). We will start with a given “seed” pair (K, K’) of knots
with the desired property, and then apply certain satellite constructions to produce
infinitely many such examples.

Algebraic & Geometric Topology, Volume 16 (2016)
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4.1 Satellite construction and knot group epimorphisms

We begin by recalling the standard satellite construction. Let K be a knot in S3 and «
an unknotted oriented embedded circle in S disjoint from K. Glue the exterior Ey
of @ C §3 and the exterior E; of another knot J in S3 along an orientation-reversing
diffeomorphism between the boundary tori, which identifies a zero-linking longitude and
positively oriented meridian of o with a positively oriented meridian and zero-linking
longitude of J, respectively. There is a diffeomorphism of the resulting 3—manifold
onto S*, and the image of K under the diffeomorphism is a new knot, which we
denote by K(w, J). In traditional terminology, J is the companion and K viewed as
a knot in the solid torus Ey is the pattern. As illustrated in Figure 6, K(«, J) is the
knot obtained by “tying” J into K along a 2—disk bounded by «.

|
&j%

Figure 6: A satellite construction.

Note that Ek,, is a subspace of Eg(,s) and a subspace of Ex. Let ix and j
be the inclusion-induced homomorphisms of G(K U «) into G(K(«, J)) and G(K),
respectively. Then we have the following folklore:

Lemma 4.1 There exists a meridional epimorphism q: G(K(«, J)) — G(K) satisty-
ing ix = q o jx, ie so that the following diagram commutes:

G(K(a, J))

e

G(K Ua) q

G(K)
For the reader’s convenience, we give a proof.

Proof There is a degree-one map Ej to the trivial knot exterior S! x D? which
extends a diffeomorphism on the boundary sending the meridian and zero-linking
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longitude of J to those of the unknot. Gluing it with the identity map on Eg g, One
obtains a degree-one map Ek(y,j) — Ex which induces the desired g. a

We recall some standard definitions. The derived subgroups of a group G are defined
inductively by G©@ =G and G@*D =[G™ G for n >0, where [A, B] denotes the
subgroup generated by commutators {aba~'hb~! |a € A, b € B}. For the first infinite
ordinal , the transfinite derived subgroup G(®) is defined by G®) = Mn<oo Gm.
A group G is residually solvable if G®) = {e}.

Remark 4.2 (1) The following well-known examples will be useful for our pur-
poses: if K is a fibered knot (or link), then G(K) is residually solvable, for the
commutator subgroup G(K)() = [G(K), G(K)] is the fundamental group of a
surface with nonempty boundary, and thus a free group. It is known that a free
group is residually solvable.

(2) Not all knot groups are residually solvable. For example, the group of a nontrivial
knot K with Alexander polynomial 1 is not residually solvable.

The key technical ingredient we use is the following.

Theorem 4.3 Suppose T is a knot with residually solvable group G(T). Suppose J
has Alexander polynomial 1. Then for any homomorphism f:G(K(x, J)) = G(T),
there is an induced homomorphism f’: G(K) — G(T) that makes the following
diagram commute:

G(K(e, J))
| N
G(K Ua) q G(T)

G(K)
In addition, the following hold:
(1) If f is an epimorphism, then ' is an epimorphism.

(2) If f is meridional, then f’ is meridional.
The following corollary is an immediate consequence.

Corollary 44 If T and J are as in Theorem 4.3 and there is no meridional epimor-
phism of G(K) onto G(T'), then there is no meridional epimorphism of G(K («, J))
onto G(T).
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Proof of Theorem 4.3 Consider the composition
g:.G(J)— G(K(a, J)) — G(T).

Since J has Alexander polynomial 1, the commutator subgroup [G(J), G(J)] is perfect,
ie G(JH)D =GP =... = G @. Since g(G(J)) c G(T)® and G(T)
is residually solvable, it follows that G(J)(") C Ker g. Therefore g factors through
G(N/IG().G(N)]=Z.

From the construction of K(«, J), one sees that G(K(«, J)) is the amalgamated
product of G(K Ua) and G(J) over m(S! x S!) = Z2. The homomorphism

G(K(a,J)) = G(K Ua) L ;» G(J) — G(K Ua) L2 Z = G(K)

induced by the abelianization G(J) — Z is our ¢ in Lemma 4.1. From the obser-
vation in the previous paragraph, it follows that f: G(K(«, J)) — G(T') induces a
homomorphism from G(K) to G(T). This proves the first conclusion.

From the commutative diagram the remaining conclusions follow immediately. a

4.2 Infinitely many examples

Theorem 4.5 Let T be the trefoil knot or the figure-eight knot. Then there are
infinitely many prime knots K1, K, ... satistying the following:

(1) For each n there is an epimorphism G(K,) — G(T) but there is no meridional
epimorphism G(K,) — G(T).

(2) K, and K, are not equivalent for any n # m.

Remark 4.6 Due to Silver and Whitten [20], for prime knots there exists a meridional
epimorphism if and only if there exists an epimorphism preserving peripheral subgroups.
Therefore, for our K, in Theorem 4.5, there is no epimorphism G(K,) — G(T)
sending peripheral subgroups into peripheral subgroups.

Proof Recall that we have constructed a prime knot K which admits an epimorphism
G(K) — G(T) but does not admit any meridional epimorphism G(K) — G(T);
when T is the trefoil, K = K7 in Figure 1, and when T is the figure-eight, K = J_;
in Figure 5.

Choose an embedded circle o in S3— K satisfying the following: « is unknotted in S3,
o does not bound a 2—-disk in Ex, and K U« is a prime link. For example, we may use
o as shown in Figures 7 and 8. Choose a hyperbolic nontrivial knot P with Alexander
polynomial 1; for example, the Conway knot 11n_34 or the Kinoshita—Terasaka knot
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Figure 7: A curve « for a satellite construction on K7 . The link K7 U« is
hyperbolic with volume 23.2123, according to SnapPy [4].

Figure 8: A curve « for a satellite construction on J_;. The link J_; U« is
hyperbolic with volume 26.2914, according to SnapPy [4].

11n_42 in Knotlnfo [2] can be used as P. Let P, be the connected sum of n copies
of P. Let K, = K(a, Py).

Note that G(T') is residually solvable since 7T is fibered. Since the seed knot K
satisfies the conclusion (1), our K, satisfies (1) by Lemma 4.1 and Theorem 4.3.

To show that the K, have distinct knot types, we consider the JSJ decomposition of
the exterior. Indeed, in most cases satellite constructions with distinct companion give
distinct JSJ decompositions. In our case this can be seen as follows. The exterior
of Ek, is the union of Egyq and Ep,. Since P, is a nontrivial knot and « does
not bound a 2—disk in Ek , the boundary of Ep, is an incompressible torus in Ek,, .
Since P is hyperbolic, the JSJ tori of Ek, are exactly the union of 0Ep, and the JSJ
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tori of Egye and Ep, . In addition, since P, is the connected sum of 7 copies of the
hyperbolic knot P, the number of the JSJ tori of Ek, is monotonically increasing. It
follows that K, and K, have non-homeomorphic exteriors if n # m.

For the primality of the Kj,, one may again look at the JSJ decomposition: since K U«
is prime, the root piece in the JSJ decomposition of Ek, is not a composition space
and therefore K is not a composite knot. O

Appendix: Tables of twisted Alexander polynomials

A.1 Twisted Alexander polynomials of K7 over SL(2,Fs)

In this subsection we present all the twisted Alexander polynomials, associated to
representations over SL(2,Fs), of the knot K7 shown in Figure 1.

We use a simpler presentation of G(K7) to find all the representations. A straight-
forward simplification of the presentation of G(K7) used in Section 2.1 shows that
X1,Xg, and xy7 generate G(K7). In fact, these three generators and the following
relators form a presentation of G(Kr):

X1X17X1X6(X17X6X1X17X1)? X17%1 X6 (X1 X171 X17X1x6)°
- (¥17X1X17X1X6) > ¥17(X6x1X17X1) > X6,
x1(X17X1X17X1X6)> X17(X6X1X17X1x17)*
- X1X6x1(X17X1X17X1X6)* (X17X6X1 X17X1) X 17.

We use computer programs to find all the representations over SL(2, [F5) and to compute
the associated twisted Alexander polynomials. It turns out that there are exactly 19
representations modulo conjugacy, which give 8 distinct twisted Alexander polynomials.
We list the 8 polynomials in Table 1. For each twisted Alexander polynomial in Table 1,
we describe a representation p: G(K7) — SL(2, Fs) (which is not unique in general)
which gives the polynomial by presenting the matrices p(x1), p(x¢), and p(x17).

A.2 Twisted Alexander polynomials of J_; over SL(2,[F5)

In this subsection we discuss the twisted Alexander polynomials, over SL(2, F7), of
the knot J_; given in Figure 5. A full table of these polynomials is given in an
online supplement [3]. We start with the standard Wirtinger representation of J_ ; the
generators are labeled by xp, x5, ..., X3, starting from the arc with an arrow in Figure 5.
By simplifying the Wirtinger presentation, we obtain a deficiency-one presentation
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p(x1)  plxs) p(x17) A%T,p AI?T,p
[697 891 [49] B+tT+A4 44t + 485 + 1+ 1 1 +3t+1
(311 [31] [i1] B a7 5 A P A+ 1 2420 +1
[92] [923] [92%] rf*+2r+e+200 +ar* 4203+ +20+1 2 +1+1
(91 [94] [i3] BT 405 +34 3 4+20+1 24l
[00] [A8] [L3] 3437 +e5 4365 +ar* 4303 + 2 +3r+1 2 +4r+1
[io] [13] [34] 13437 A £ 34 483 43+ 1 2441 +1
[321 [33] [583] 134306 4+ 3r% 4+ 302 + 1 241
(331 [35] [33] 15+ 415 414 + 42 + 1 241

Table 1: The twisted Alexander polynomials of the knot K7 in Figure 1 over SL(2,Fs).

of G(J_1) whose generators are the Wirtinger generators x,, X1¢, X19, X22, X3¢, and
whose relators are the following four words:

X19X30X10X30X19X10X2X30X2X30X2X10X19X30X10X30X19X10X2X30X2X10,
- = - = \2/= 2
X30X19X30X10X30X19X22(X30X19)"(X30X19)
- X30X22X19X30X10X30X19X30X2X10X22X10X2,
X30X2X10X19X30X10X30X19X30X2X10X22X10X2X10X22
— — — —_ 2 —_ —
- (X10X2X30X19X30X10X30X19) X10X2X30X10,
— — — — — — — — — 2 — — —
X19X30X22X19X30X10X2X10X22X10X2X30X19X30X10(X30X19X22) X19X30X22X19X30
— — — P p— — 2_
X10X30X19X30X2X10X22X10X2X10X30X19X22(X30X19) X30.
Again, we use computer programs which enumerate all the representations of this
presentation over SL(2,F7) and compute the associated twisted Alexander polynomi-
als. There are in total 139 representations up to conjugation, from which 58 distinct
twisted Alexander polynomials are obtained. The polynomials are listed in the online

supplement [3], along with a description for each polynomial of a representation p
(which is not unique in general) which gives it.
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