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Equivariant diagrams of spaces

EMANUELE DOTTO

We generalize two classical homotopy theory results, the Blakers–Massey theorem
and Quillen’s Theorem B, to G –equivariant cubical diagrams of spaces, for a discrete
group G . We show that the equivariant Freudenthal suspension theorem for per-
mutation representations is a direct consequence of the equivariant Blakers–Massey
theorem. We also apply this theorem to generalize to G –manifolds a result about
cubes of configuration spaces from embedding calculus. Our proof of the equivariant
Theorem B involves a generalization of the classical Theorem B to higher-dimensional
cubes, as well as a categorical model for finite homotopy limits of classifying spaces
of categories.

55P91; 55Q91

Introduction

Equivariant diagrams of spaces and their homotopy colimits have broad applications
throughout topology. They are used in [12] for decomposing classifying spaces of finite
groups, to study posets of p–groups in [19], for splitting Thom spectra in [18], and
even in the definition of the cyclic structure on THH of [3]. In previous joint work
with K Moi [7], the authors develop an extensive theory of equivariant diagrams in a
general model category, and they study the fundamental properties of their homotopy
limits and colimits. In the present paper we restrict our attention to G –diagrams in the
category of spaces. The special feature of G–diagrams of spaces is the existence of
generalized fixed-point functors that preserve and reflect equivalences. We study these
functors and we use them to generalize the Blakers–Massey theorem and Quillen’s
Theorem B to equivariant cubical diagrams.

Throughout the paper, G is going to be a discrete group. Let I be a small category
with a G–action. A G–structure on a diagram X W I ! Top is a sort of generalized
G–action on X that depends on the way G acts on I ; see Definition 1.1. The key
feature of a G –structure is that it induces a G –action on the homotopy limit and on the
homotopy colimit of X , as we discuss in Section 1.1. These equivariant constructions
can be described as derived functors in a suitable model categorical context; see [7].
In the present paper, we will focus mostly on G–diagrams of cubical shape. If J is
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a finite G–set, the poset category I D P.J / of subsets of J ordered by inclusion
inherits a G –action. A J–cube of spaces is a diagram X W P.J /! Top equipped with
a G –structure. The canonical maps

�W X∅ �! holim
P0.J /

X;  W hocolim
P1.J /

X �!XJ

are G –equivariant, where P0.J / and P1.J / are the category P.J / respectively with
the initial and the final object removed. Given a function �W fH �Gg !N which is
invariant on conjugacy classes, we say that X is �–cartesian if the restriction of �
on H –fixed points is �.H /–connected. Dually, X is �–cocartesian if  is �.H /–
connected on H –fixed points. In Section 2.1, we prove a formula that describes how
cartesian a J–cube X is, depending on how cocartesian its subcubes are. The precise
formula is technical, but it is roughly of the following form.

Theorem (Equivariant Blakers–Massey) A J–cube of spaces X W P.J /! Top is
�–cartesian, where �W fH �Gg !N is a function of the form

�.H /Dminf�0.H /; �1.H /g:

Here �0 comes from the standard connectivity range in the nonequivariant Blakers–
Massey theorem [9, Theorem 2.5] and it depends on the cocartesianity of the subcubes
of X . The second term �1 is purely equivariant and it depends on the connectivity of
the maps of X . It is infinite if J has the trivial G –action.

In particular, this Blakers–Massey theorem expresses the fact that the identity functor
on pointed G –spaces is G –1–analytic in the sense of equivariant calculus of functors
as defined in [6]; see Example 2.5. The Blakers–Massey theorem has a dual form,
which we prove in Theorem 2.6. In the same way that the Freudenthal suspension
theorem is an immediate consequence of the Blakers–Massey theorem for the square

X //

��

CX

��

CX // †X

the equivariant Freudenthal suspension theorem follows from the equivariant Blakers–
Massey theorem applied to a certain equivariant cube, where all but the initial and
the final vertices are contractible. Given a finite G –set J and a pointed G –space X ,
let †J X and �J X be the suspension and the loop space of X by the permutation
representation of J , respectively. We prove the following corollary in Section 2.2.
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Corollary (Equivariant suspension theorem [16]) Let X be a well-pointed G –space.
Then the unit of the .†J ; �J /–adjunction restricted to G–fixed points �W X G !

.�J†J X /G is m–connected, where

mDmin
˚
2 Conn X G

C 1; min
H<G;J =H¤J =G

Conn XH
	
:

As a second application of the equivariant Blakers–Massey theorem, we prove an equi-
variant version of the multiple disjunction theorem of [10] for equivariant configuration
spaces. Let M be a manifold with a proper G–action. The space of configurations
of J–points in M is the space Conf.J;M / of injective maps J �M . This space
inherits a G –action by conjugation, and it is functorial in the J–variable with respect
to injective G –maps. The following is proved in Section 2.3.

Corollary Let J be a finite G–set and let JC be the G–set J with an added
fixed basepoint. The diagram Conf.JCn.�/;M /W P.JC/ ! Top has a canonical
G –structure, and it is �–cartesian for the function

�.H /Dmin
˚
jJ jmH � 2jJ=H jC 1; min

L<H ;J =L¤J =H
.mL� jJ=Lj/

	
;

where mH is the dimension of the fixed-points manifold MH .

In fact, we prove a stronger statement involving suitably transverse families of sub-
manifolds of M (Theorem 2.8), and we deduce this corollary from the case where all
these submanifolds are points. In Example 2.10, we show that, for G D J DZ=2, this
range is sharp, and it is determined by the second term of the minimum.

We turn to another classical result in homotopy theory, the celebrated Theorem B of
Quillen, from [17]. This theorem shows that, under certain conditions, the homotopy
fiber of the geometric realization of a functor is itself the geometric realization of a
category. It is not immediately clear how to generalize this result equivariantly. The
analogous statement for an equivariant functor between categories with G –actions can
easily be reduced to Theorem B by taking fixed points. In order to achieve an interesting
equivariant Theorem B, we need to extend it first to higher-dimensional cubes. Let
J be a finite G–set and let P0.�/W P0.J /! Cat be the diagram of categories that
sends a subset U � J to P0.U /. Given a cube of categories X W P.J /! Cat , the
natural transformations of diagrams from P0.�/ to the restriction of X to P0.J / form
a category Hom.P0.�/;X /. A G –structure on X induces a G –action on the category
Hom.P0.�/;X / by conjugation. There is an inclusion

m∅W X∅ �! Hom.P0.�/;X /
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that sends an object x of X∅ to the natural transformation P0.U /!XU that sends
every object of P0.U / to ��x , where ��W X∅!XU is induced by the inclusion ∅�U .
Given a natural transformation ˆ 2 Hom.P0.�/;X /, the over category m∅=ˆ has an
action of the stabilizer group Gˆ . We prove the following result in Corollary 3.10.

Theorem Let X W P.J /!Cat be a J–cube of categories that satisfies a certain “weak
Reedy fibrancy condition” as in Definition 3.9. For every natural transformation ˆ the
classifying space of the category m∅=ˆ is Gˆ–equivalent to the total homotopy fiber
over Bˆ of the J–cube of spaces BX . In particular, if all the categories m∅=ˆ are
Gˆ–contractible, BX W P.J /! Top is a homotopy cartesian J–cube of spaces.

When G is the trivial group and J D 1 is the set with one element, this is precisely
Quillen’s Theorem B. If J D 2 is the set with two elements, this is essentially Barwick
and Kan’s Quillen Theorem B2 for homotopy pullbacks from [2]. To the best of the
author’s knowledge, this is a new result for larger J, even for the trivial group. The
most prominent application of Quillen’s Theorem B is probably Waldhausen’s additivity
theorem (see [22, Theorem 1.4.2]), which leads to the deloopings of algebraic K–
theory by the S�–construction. We expect the equivariant Theorem B to have similar
applications in the equivariant algebraic K–theory of G–Waldhausen categories (as
defined in [15]) and to ultimately lead to an S�–description of the deloopings of
equivariant algebraic K–theory by the permutation representations of G .

The key for proving the equivariant Theorem B is to define a good model for the homo-
topy limit of a diagram of categories. Let I be a small category with finite-dimensional
nerve. Taking the over categories of I defines a diagram of categories I=.�/W I!Cat .
Given a functor X W I ! Cat , the natural transformations Hom.I=.�/;X / form a
category whose nerve is the Bousfield–Kan formula for the homotopy limit of the nerve
of X . The following is proved in Section 3.2, and its equivariant version in Section 3.3.

Theorem BI Let I be a category with finite-dimensional nerve, and let X W I !

Cat be a “Reedy quasifibrant diagram” as in Definition 3.3. The classifying space
B Hom.I=.�/;X / is the homotopy limit of the diagram of spaces BX W I ! Top.

Outline The first section of the paper contains some preliminaries on equivariant
diagrams. In Section 1.1 we introduce the notion of fixed-points diagrams, and in
Sections 1.2 and 1.3 we study their interaction with homotopy colimits and limits,
respectively. In Section 2.1 we prove the equivariant Blakers–Massey theorem. We
apply it to the equivariant suspension Theorem in Section 2.2 and to equivariant
configuration spaces in Section 2.3. Section 3.1 introduces a quasi-fibrancy condition
on diagrams of categories, which we use in Section 3.2 to prove a higher dimensional
Quillen’s Theorem B. Section 3.3 contains its equivariant analogue.
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1 Preliminaries on equivariant diagrams

1.1 Equivariant diagrams of spaces and their fixed points

Let G be a discrete group. A category with G –action is a functor aW G! Cat , where
the group G is seen as a category with a unique object �. By abuse of notation we
will refer to the underlying category I D a.�/ as a category with G –action.

Definition 1.1 [21] Let I be a small category with G –action, and let C be a possibly
large category. A G–structure on a diagram X W I ! C is a collection of natural
transformations �gW X !X ıg for every g in G , subject to the following axioms.

i) Let 1 be the unit of G . Then �1 is the identity natural transformation on X .
ii) For every h and g in G , the diagram

X

�hg $$

�g
// X ıg

.�h/jg
��

X ı h ıg

commutes. Here .�h/jg denotes the restriction of the natural transformation �h

along the functor gW I ! I .

A diagram X W I!C equipped with a G –structure is called a G –diagram. A morphism
of G–diagrams is a natural transformation of underlying diagrams f W X ! Y such
that the square

X
f

//

�g
��

Y

�g
��

X ıg
f jg

// Y ıg

commutes for every g in G . Here f jg is the restriction of f along the functor
gW I ! I . The resulting category of G –diagrams is denoted C I

a . We will often abuse
the notation and write g for the natural transformation �g .

Example 1.2 Let I and J be two categories with G–action, and let F W I ! J be
an equivariant functor. The functor F=.�/W J ! Cat which sends an object j to
the over category F=j has a natural G–structure. The natural transformation �g is
defined by the functors F=j ! F=gj that send an object .i 2 I; ˛W F.i/! j / to
.gi; g˛W F.gi/D gF.i/! gj /. By applying the classifying space functor, we obtain
a G–diagram B.F=�/W J ! Top in the category of compactly generated Hausdorff
spaces Top.
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The category of G –diagrams of spaces TopI
a is enriched in the category of G –spaces

TopG. Given two G–diagrams X and Y , the space of all natural transformations of
underlying diagrams HomI .X;Y / inherits a G –action by conjugation:

g �f D
�
X

�
g�1

����!X ıg�1
f j

g�1

�����! Y ıg�1
�g

��! Y
�
:

The underlying set of the fixed-points space HomI .X;Y /
G is the set of morphisms of

G –diagrams TopI
a.X;Y /.

The G –space HomI .X;Y / can be defined as a certain equalizer of G –spaces, and its
construction can be dualized as follows. The G–action on I induces a G–action on
I op . Given a G–diagram X W I ! Top and a G–diagram Y W I op! Top, we define
the coequalizer of G –spaces

X ˝I Y D colim
� a
˛W i!j
2hom I

Yi �Xj �
a

i2Ob I

Yi �Xi

�
:

The maps are the standard maps of the Bousfield–Kan formula; see eg [11, Defini-
tion 18.3.2]. The G–action on the target of the maps sends .y;x/ in Yi � Xi to
.�g.y/; �g.x// in Ygi �Xgi . The action on the source space is defined by a similar
indexed coproduct.

Definition 1.3 Let I be a category with G–action and X 2 TopI
a a G–diagram of

spaces. The G –homotopy limit and the G –homotopy colimit of X are the G –spaces
respectively defined by

holim
I

X D HomI .B.I=�/;X / and hocolim
I

X DX ˝I .B.�=I/
op/:

The underlying space of the G–homotopy limit is the homotopy limit of the un-
derlying diagram, defined via the Bousfield–Kan formula, and dually for the G–
homotopy colimit.

We recall that an equivariant map of G–spaces f W X ! Y is an equivalence (in the
fixed-points model structure) if its restriction to the H –fixed points f W X H ! Y H is
a weak homotopy equivalence of spaces for every subgroup H of G . The vertex Xi

of a G–diagram X inherits an action of the stabilizer group Gi of the object i 2 I ,
defined by the maps �gW Xi!Xgi DXi .

Definition 1.4 [21] A morphism of G –diagrams f W X ! Y is a weak equivalence
if for every object i of I the map fi W Xi! Yi is an equivalence of Gi –spaces.
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Equivariant diagrams of spaces 1163

The homotopical properties of the G –homotopy limit and of the G –homotopy colimit
were studied extensively in [7]. In particular both constructions send equivalences of
G –diagrams to equivalences of G –spaces.

Remark 1.5 Let GËa I be the Grothendieck construction of the functor aW G!Cat
which defines the G–action on I . A G–structure on a diagram X W I ! Top is
equivalent to an extension of X to GËa I along the projection map GËa I! I . This
results into an isomorphism of categories TopI

a Š TopGËaI; see [7, Lemma 1.9]. There
is a relationship between the G –homotopy limit of a G –diagram X 2 TopI

a , and the
homotopy limit of the corresponding diagram X W G Ëa I ! Top. The latter computes
the homotopy fixed points of the former:

holim
GËaI

X ' .holim
I

X /hG:

Dually, the homotopy colimit of X is equivalent to the homotopy orbits

hocolim
GËaI

X ' .hocolim
I

X /hG :

These equivalences are an immediate consequence of the Fubini Theorems [5, Propo-
sition 26.5]. Homotopy orbits and homotopy fixed points are homotopy invariant
with respect to naïve equivalences of G–spaces (G–maps whose underlying map is
an equivalence of spaces). We see from the formula above that holimGËaI X and
hocolimGËaI X are invariant for the pointwise naïve equivalences of G–diagrams.
Thus the G–homotopy limit and the G–homotopy colimit retain more equivariant
information than the homotopy limit and homotopy colimit of X . The categorical (in
opposition to homotopy) fixed points of the G–homotopy limits and colimits are the
focus of the next two sections.

There is a notion of fixed points of a G–diagram. Let H be a subgroup of G , and
let IH be the subcategory of I of objects and morphisms that are fixed (strictly) by
the H –action. Equivalently, IH is the limit of the functor H !G

a
�!Cat . Since the

i –vertex of a G –diagram X 2 TopI
a has an action of Gi , if i belongs to IH the space

Xi has an H –action.

Definition 1.6 Let H be a subgroup of G . The H –fixed-points diagram of a G–
diagram X 2 TopI

a is the diagram of spaces X H W IH ! Top of pointwise fixed points
.X H /i D .Xi/

H . Given a map ˛W i ! j in IH , the corresponding map X H
i !X H

j

is the restriction of ˛�W Xi!Xj on H –fixed points.
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1164 Emanuele Dotto

The diagram X H W IH ! Top is well defined on morphisms because for every h in H

the diagram

Xi
˛�
//

�h
��

Xj

�h
��

Xhi
.h˛/�

// Xhj

commutes by naturality of �h . Hence if ˛ is a morphism of IH , the map ˛�W Xi!Xj

is H –equivariant and it can be restricted on H –fixed points.

Remark 1.7 If f W X ! Y is a morphism of G–diagrams, the map fi W Xi ! Yi is
Gi –equivariant for every object i of I . Therefore f restricts to a natural transformation
f H W X H ! Y H for every subgroup H of G . It is immediate from Definition 1.4 that
f is an equivalence of G –diagrams if and only if f H W X H ! Y H is an equivalence
of IH –shaped diagrams of spaces, for every subgroup H of G . In this sense, the
fixed-points diagrams of a G –diagram X retain all the homotopical information of X .

1.2 Equivariant homotopy colimits and fixed points

Let G be a discrete group, and let aW G! Cat be a G –action on a category I D a.�/.
We study the interaction between the G–homotopy colimit of a G–diagram and its
fixed-points diagrams, as in Definition 1.6.

Proposition 1.8 Suppose we have a G –diagram of spaces X 2 TopI
a . Then there is a

natural homeomorphism �
hocolim

I
X
�G
Š hocolim

I G
X G:

Proof The coend hocolimI X DX˝I .B.�=I/
op/ is homeomorphic to the geometric

realization of the simplicial space with n–simplicesa
i0 i1 ��� in

Xin

and the simplicial structure of [4, Chapter XII, § 5.1]. The string of composable arrows
under the coproduct is an element of NnI op . The G–action on X ˝I .B.�=I/

op/

defined from the G –structure f�ggg2G of X corresponds under this homeomorphism
to the simplicial G –action

g � .i0 i1 � � �  in; x 2Xin
/D .gi0 gi1 � � �  gin; �g.x/ 2Xgin

/:
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Fixed points commute with geometric realizations; therefore, there exists a canoni-
cal homeomorphism�

hocolim
I

X
�G
Š

ˇ̌̌
n 7!

� a
i0 i1 ��� in

2NnI op

Xin

�G ˇ̌̌
;

where the bars denote the geometric realization. Fixed points commute with G–
coproducts, in the sense that the above is homeomorphic to�

hocolim
I

X
�G
Š

ˇ̌̌
n 7!

� a
i0 i1 ��� in

2.NnI op/G

X G
in

�ˇ̌̌
:

Observe that .NnI op/G D Nn.I
op/G D Nn.I

G/op , and that for a G–fixed object in
the space Xin

has indeed a G –action. This geometric realization is homeomorphic to
the homotopy colimit of the fixed-points diagram.�

hocolim
I

X
�G
Š

ˇ̌̌
n 7!

� a
i0 i1 ��� in

2Nn.I
op/G

X G
in

�ˇ̌̌
Š hocolim

I G
X G

Remark 1.9 The description of the fixed points of the G –homotopy colimit in terms
of fixed-points diagrams given in Proposition 1.8 makes it possible to deduce virtually
all the equivariant homotopical properties of the G–homotopy colimit functor from
the classical homotopical properties of the homotopy colimit. For example, it follows
immediately from Proposition 1.8 that the G–homotopy colimits of equivalent G–
diagrams are equivalent as G –spaces, recovering [21, Theorem 6.1]. Another example
is the equivariant Thomason’s Theorem, proved as Corollary 1.10 below. We will see
in Section 1.3 that the relationship between G–homotopy limits and fixed points is
more involved.

An immediate application of Proposition 1.8 is the equivariant version of Thoma-
son’s Theorem. Let X W I ! Cat be a G–diagram of categories. The Grothendieck
construction I oX has an induced G –action, defined on objects by

g � .i 2 I; x 2 Ob Xi/D .gi; gx 2Xgi/

and on morphisms by

g � .i
˛
�! j ; ˛�x



�! y/D .gi

g˛
��! gj ; .g˛/�.gx/D g.˛�x/

g

��! gy/:

The equality .g˛/�.gx/D g.˛�x/ expresses the naturality of gW X ! X ıg . Thus
the classifying space B.I oX / inherits a G –action. The following result was proved in
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[7, Corollary 2.26] (see also [7, Remark 2.27]) as a special case of a general equivariant
Fubini theorem. The proof presented here is more direct, reducing it to Thomason’s
Theorem [20] by a fixed-points argument.

Corollary 1.10 [7] Let X W I ! Cat be a G–diagram of small categories, and let
BX be the G–diagram of spaces obtained by composing with the classifying space
functor. There is a natural equivalence of G –spaces

B.I oX / '�! hocolim
I

BX:

Proof The map �X W B.I oX /! hocolimI BX defined in [20] is equivariant. For a
subgroup H of G , there is a natural isomorphism of categories .I oX /H Š IH oX H .
Under this isomorphism and the homeomorphism of Proposition 1.8, the map �H

X

corresponds to the map

�X H W IH
oX H

�! hocolim
IH

B.X H /;

which is an equivalence by Thomason’s Theorem [20].

1.3 Equivariant homotopy limits and fixed points

The relationship between the fixed points of the G –homotopy limit and the homotopy
limit of the fixed-points diagrams is more involved than it is for G –homotopy colimits.
Given a pair of G –diagrams of spaces K;X 2 TopI

a there is a restriction map

HomI .K;X /
G
�! HomI G .KG ;X G/

that sends a morphism of G–diagrams to its restriction on the fixed-points diagrams.
This is generally far from being an equivalence. When K D B.I=�/ and I is of
cubical shape we describe the homotopy fibers of the corresponding restriction map in
Proposition 1.13 below. It turns out that in order to describe the whole fixed points space
HomI .K;X /

G one needs to consider the natural transformations between the H –fixed-
points diagrams of K and X , for every subgroup H of G . These mapping spaces for
the various subgroups of G are related by means of the twisted arrow category.

Let us recall from [8] that the twisted arrow category Tw.C / of a category C has
as objects the morphisms f W c ! d in C . A morphism f ! f 0 in Tw.C / is a
commutative diagram

c
f
//

��

d

c0
f 0
// d 0:

OO

Algebraic & Geometric Topology, Volume 16 (2016)
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Let OG be the orbit category of G . We use the twisted arrow category Tw.Oop
G
/

to glue together the mapping spaces between the fixed-point diagrams of K and X .
An object of Tw.Oop

G
/ is an equivariant map G=H

f
 � G=L. This induces a functor

f �W IH ! IL , defined on objects by

f �i D f .L/ � i:

A similar formula defines f � on morphisms. Precomposing a diagram with f � leads
to a functor f!W TopIL

! TopIH

. Given two G –diagrams of spaces K;X 2 TopI
a , we

define a functor
Tw.Oop

G
/op
�! Top

by sending an object G=H
f
 �G=L of Tw.Oop

G
/ to the space of natural transformations

of IH –diagrams HomIH .KH ; f!X
L/. On morphisms this functor is defined as:

G=H G=L
f
oo

b��

G=H 0
a
OO

G=L0
f 0
oo

7�!

HomIH.KH; f!X
L/ HomIH.a!K

H 0; a!f
0

!
b�X

L0/
.�/ıa.H 0/
oo

HomIH 0.KH 0; f 0
!
X L0/

OO

resa�

// HomIH.a!K
H 0; a!f

0
!
X L0/

b.L/ı.�/

OO

In the right-hand square, the lower horizontal map restricts a natural transformation
along the functor a�W IH ! IH 0 . The top horizontal map is precomposition with
pointwise multiplication by a.H 0/ in the G –structure on K , in symbols a.H 0/W KH

i !

KH
a.H /�i

D .a�K
H /i . Similarly, the right vertical map composes a natural transforma-

tion with the action of a representative of b.L/ for the G –structure of X . Explicitly,
a natural transformation ˆW KH 0 ! f 0�X

L0 is sent to

KH
i

a.H 0/
�����!KH 0

a.H 0/�i

ˆa.H 0/i

������!X L0

f 0.L0/a.H 0/i

b.L/
����!X L

b.L/f 0.L0/a.H 0/i DX L
f .L/i :

Proposition 1.11 Suppose we have a pair of G –diagrams K;X in TopI
a . Then there

is a natural homeomorphism

HomI .K;X /
G
Š lim
f WG=L!G=H

2Tw.Oop
G
/op

HomIH .KH ; f!X
L/:

In particular, when K D B.I=�/ this is a homeomorphism�
holim

I
X
�G
Š lim
f WG=L!G=H

2Tw.Oop
G
/op

holim
IH

f!X
L:

Proof In trying to dualize the argument of the proof of Proposition 1.8, one encounters
the problem that G–indexed products do not commute with fixed points. Instead,
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we express the fixed points of the mapping space as a mapping space on a more
complicated category. The functor aW G ! Cat which defines the G–action on I

induces a functor xaW Oop
G
! Cat that sends G=H to the fixed-points category IH ,

and a G–map G=H
f
 � G=L to the functor f �W IH ! IL described above. Recall

the isomorphism of categories TopI
a Š TopGËaI of Remark 1.5, where G Ëa I is the

Grothendieck construction G o a. The canonical inclusion G!Oop
G

induces a functor
TopOop

G
oxa
! TopGoa

Š TopI
a . By [7, Theorem 2.28], this functor is the left adjoint of a

Quillen equivalence
LW TopOop

G
oxa� TopGoa

Š TopI
a W R;

where the left-hand category has the projective model structure, and the right-hand
category has a model structure where the equivalences are the equivalences of G–
diagrams of Definition 1.4. This is a sort of Elmendorf Theorem for the category of
G –diagrams. The functor R sends a G –diagram X to the diagram with vertices

R.X /.G=H ;i2IH / DX H
i :

The counit of this adjunction is an isomorphism; therefore, by [7, Theorem 2.28], we
have a homeomorphism

Hom.K;X /G Š HomOop
G
oxa.R.K/;R.X //:

We finish the proof by defining a homeomorphism between the right-hand side and
the limit of Proposition 1.11. An element of HomOop

G
oxa.R.K/;R.X // is the data of

a map ˆ.H ;i/W KH
i ! X H

i for every subgroup H of G and fixed object i 2 IH,
subject to compatibility conditions corresponding to the morphisms of Oop

G
o xa. For

every equivariant map G=H
f
 �G=L define a map

HomOop
G
oxa.R.K/;R.X // �! HomIH .KH; f!X

L/

by sending a collection of maps ˆ as above to

KH
i

ˆ.H;i/
������!X H

i

f .L/
����!X L

f .L/�i D .f!X
L/i :

Naturality of ˆ insures that these maps are compatible with the morphisms of the
twisted arrow category, and this defines a map

HomOop
G
oxa.R.K/;R.X // �! lim

f 2Tw.Oop
G
/op

HomIH .KH ; f!X
L/:

The inverse of this map sends a collection of natural transformations ‰f W KH !f!X
L

in the limit to the collection of maps

‰idG=H
W KH

i �!X H
i :
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Remark 1.12 The limit over the twisted arrow category of Proposition 1.11 is in gen-
eral not a homotopy limit, and hence it is not homotopy invariant. This prevents us from
easily deduce homotopical properties of the equivariant mapping space HomI .K;X /

from the homotopical properties of the fixed-points diagrams. For example, proving
that the G–homotopy limit functor preserves equivalences requires a considerable
amount of work. The equivariant mapping space HomI .K;X / does however enjoy
many equivariant homotopical properties, which are studied extensively in [7] using a
model-categorical approach.

We turn our attention to the connectivity of the restriction map .holimI X /G !

holimI G X G when I has the shape of a punctured cube. This will play a key role in
the proof of the equivariant Blakers–Massey Theorem 2.3. Let J be a finite G–set,
and let P0.J / be the poset of nonempty subsets of J ordered by inclusion. A group
element g acts on this poset by sending a subset U to the image g.U / by the map
gW J ! J . A G–diagram X 2 TopP0.J /

a is called a punctured J–cube. Observe
that there is an isomorphism of posets P0.J /

G Š P0.J=G/, and that the inclusion
P0.J /

G ! P0.J / corresponds to the preimage functor p�1W P0.J=G/ ! P0.J /

associated to the quotient map pW J ! J=G . This induces a commutative square
of spaces �

holim
P0.J /

X
�G

res

��

.p�1/�

//
�

holim
P0.J =G/

Xp�1.�/

�G
Š

��

holim
P0.J /G

X G

Š

// holim
P0.J =G/

X G
p�1.�/

for every punctured J–cube X 2 TopP0.J /
a . The right vertical map is an isomorphism

because G acts trivially on P0.J=G/ and because homotopy limits commute with fixed
points. It is then sufficient to understand the restriction along the preimage functor.

Let pW J ! S be a surjective equivariant map of finite G–sets with corresponding
preimage functor p�1W P0.S/! P0.J /. We denote the fiber of an element s 2 S by
Js D p�1.s/.

Proposition 1.13 Let pW J!S be a surjective equivariant map, and let X 2TopP0.J /
a

be a punctured J–cube of spaces. For every natural transformation � ! Xp�1.�/ in
TopP0.S/

a the homotopy fiber of the restriction map

.p�1/�W holim
P0.J /

X �! holim
P0.S/

Xp�1.�/
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over the constant natural transformation B.P0.S/=�/!�!Xp�1.�/ is G –equivalent
to the G –space

holim
W 2P0.S/

holim
U2

Q
s2W

P0.Js/
hof.Xqs2W Us

!Xp�1.W //:

Proof The homotopy fiber hof.Xqs2W Us
! Xp�1.W // is taken over the basepoint

of Xp�1.W / defined by natural transformation � ! Xp�1.�/ . Observe that since
�!Xp�1.�/ is a map of G –diagrams the homotopy fibers form indeed a G –diagram.
Let us define a G –equivariant functor

ıW P0.S/�
Y
s2S

P0.Js/ �! P0.J /

by ı.W;U / D qs2W Us . It is proved in [7, Proposition A.5] that this functor is
equivariantly left-cofinal. Thus the horizontal map in the triangle

holim
P0.J /

X

.p�1/�

&&

'

ı�
// holim
W 2P0.S/

holimQ
s2S

P0.Js/
Xı.�/

��

��

holim
P0.S/

Xp�1.�/

is a G –equivalence. Here �W P0.S/!P0.S/�
Q

s2S P0.Js/ is the inclusion that sends
W to the pair .W; fJsgs2S /. The homotopy fibers of .p�1/� and �� are therefore
equivalent. Since homotopy limits and homotopy fibers commute, the homotopy fiber
of �� is equivalent to

holim
W 2P0.S/

holim
U2

Q
s2S

P0.Js/
hof.Xı.W ;U /!Xp�1.W //:

Finally observe that for every fixed W the functor ı.W;�/ does not depend on the
components of U indexed over the orbits in J=G �W .

Let us calculate the connectivity of this homotopy fiber for the quotient map pW J !

J=G . For any subset U of J we let hU iG D p�1p.U / be the smallest G –invariant
subset of J which contains U .

Corollary 1.14 Let J be a finite G –set and let X W P0.J /! Top be a G –diagram of
spaces. Suppose that the composition of the canonical maps�

lim
P0.J /

X
�G
!
�
holim
P0.J /

X
�G
! holim

P0.J /G
X G
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is surjective in �0 . Then the restriction map .holimP0.J /X /G ! holimP0.J /G
X G is

at least m–connected, where

mD min
H<G

J =H¤J =G

min
U2P0.J /H

.Conn.X H
U !X H

hU iG
/� jU=H j/C 1:

Remark 1.15 The �0 hypothesis of Corollary 1.14 is satisfied if for every fixed object
V in P0.J /

G the connectivity of X G
V

is greater or equal to jV =Gj � 1, since in this
case holimP0.J /G

X G is connected; see Proposition A.1.

Proof of Corollary 1.14 The �0 assumption insures that all the homotopy fibers
of the restriction are homotopy equivalent to the homotopy fiber over some point of
holimP0.J /G

X G which is induced by a map of G–diagrams � ! Xp�1.�/ , as in
Proposition 1.13. The formula for the connectivity of equivariant homotopy limits of
Proposition A.1 shows that the homotopy fibers are at least

min
.W ;U /

H�G.W ;U /

�
Conn hof.X H

qo2W Uo
!X H

p�1.W /
/

� dim.P0.J=G/=W /�
X
o2W

dim.P0.Jo/
H =Uo/

�
connected, where Jo D p�1.fog/ is the orbit o considered as a subset of J . The sum
of the dimensions of the over categories is

jW j � 1C
X
o2W

.jUo=H j � 1/D�1C
X
o2W

jUo=H j:

Observe that the expression
`

o2W Uo defines an equivariant bijection between the
pairs of subsets .W 2 P0.J=G/;U 2

Q
o2W P0.Jo// and the nonempty subsets of J ,

with inverse sending U to .p.U /; fU \Jogo2p.U //. Thus the homotopy fiber of the
restriction is as connected as

min
U2P0.J /

min
H�GU

.Conn hof.X H
U !X H

p�1p.U /
/C 1� jU=H j/:

By definition p�1p.U /D hU iG , and the connectivity of a map is the connectivity of
its homotopy fiber plus one. By switching the minimums in the formula above we see
that the restriction map is

min
H�G

min
U2P0.J /H

.Conn.X H
U !X H

hU iG
/� jU=H j/C 1

connected. Finally observe that if the projection J=H ! J=G is an isomorphism
U D hU iG , and the homotopy fiber of

X H
U !X H

hU iG
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is contractible. Thus the groups H with J=H DJ=G do not contribute to the minimum.

2 The equivariant Blakers–Massey theorem and applications

2.1 The equivariant Blakers–Massey theorem

Let G be a discrete group and let J be a finite G–set. We write P.J / for the poset
category of subsets of J ordered by inclusion. The G –action on J induces a G –action
on the category P.J /, by sending a subset U of J to its image g.U / under the map
gW J ! J . This action restricts to the subposets

P0.J /D P.J /n∅; P1.J /D P.J /nJ:

A J–cube of spaces is a G–diagram X W P.J /! Top. The initial and final vertices
X∅ and XJ have G–actions induced by the G–structure of X , since ∅ and J are
fixed objects of P.J /. Moreover the canonical maps

X∅ �! holim
P0.J /

X; hocolim
P1.J /

X �!XJ

are G–equivariant with respect to the G–actions on the homotopy limit and on the
homotopy colimit of Section 1.1.

Definition 2.1 Let J be a finite G–set and let X 2 TopP.J /
a be a J–cube. Given a

function �W fH �Gg !N which is invariant on conjugacy classes, we say that X is
�–cartesian if for every subgroup H of G the map of spaces

X H
∅ �!

�
holim
P0.J /

X
�H

is �.H /–connected. We say that X is homotopy cartesian if it is �–cartesian for every
function � . Dually, we say that X is �–cocartesian if�

hocolim
P1.J /

X
�H
�!X H

J

is �.H /–connected for every subgroup H of G , and that X is homotopy cocartesian
if it is �–cocartesian for every � .

Remark 2.2 There is a natural isomorphism of categories P.J /H Š P.J=H /. Un-
der this isomorphism the fixed-points diagram X H W P.J /H ! Top of a J–cube
X is a J=H –cube. By the fixed-points description of the G–homotopy colimit of
Proposition 1.8, a J–cube X is �–cocartesian precisely when the J=H –cube X H is
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�.H /–cocartesian for every subgroup H of G . Because of the failure of G –homotopy
limits to commute with fixed points, the analogous statement does not hold for cartesian
J–cubes; compare Proposition 1.13.

Given a finite G–set J and a subgroup H of G we denote by PartH .J / the set
of partitions of J by H –subsets. This is the set of coverings fT˛ � J g˛ of J by
nonempty H –invariant subsets such that T˛ and T˛0 are disjoint when ˛ ¤ ˛0 . For
every subset U of J we let hU iH be the smallest H –invariant subset of J that
contains U .

Theorem 2.3 Let X 2 TopP.J /
a be a J–cube, and suppose that for every subgroup H

of G and every nonempty H –subset U � J the restriction X jP.U / is �U –cocartesian
for some function �U W fK �H g !N . Suppose moreover that these functions satisfy
�U � �V whenever U � V are nonempty H –subsets of J . Then X is �–cartesian,
where � is the minimum � Dminf�0; �1g of the functions

�0.H /D min
fT˛g2PartH .J /

�X
˛

�T˛ .H /
�
� jJ=H jC 1

and
�1.H /D min

L<H
J =L¤J =H

min
U2P0.J /L

.Conn.X L
U !X L

hU iH
/� jU=Lj/:

Remark 2.4 The first term of the minimum is analogous to the formula of Goodwillie’s
Blakers–Massey theorem [9, Theorem 2.5] for n–cubes. The second term is purely
equivariant: if the G–action on J is trivial the set of subgroups L < H such that
J=L¤ J=H is empty and �1 is infinite. If J is the set with n elements and the trivial
G –action, this is the standard Blakers–Massey theorem for n–cubes of G –spaces.

Example 2.5 Given a well-pointed G–space X and a finite G–set J , consider the
J–cube of spaces wJ.X / with vertices

wJ.X /U D

8<:
W

J X if U D∅;
X if U D fj g;

� otherwise.

The map wJ.X /∅! wJ.X /fjg is the pinch map that collapses the wedge summands
not indexed by j . The G–structure on wJ.X / is defined by the G–action on the
indexed wedge at the initial object, and by the G –action maps gW X !X between the
fj g and the fgj g–vertex. For every H –subset U of J there is a natural H –equivalence

hocolim
P1.U /

wJ.X / '�!†J nU X;
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where the target is the suspension by the reduced permutation representation of the
complement JnU (with the convention that this suspension is the point when U D J ).
Hence the restricted cube wJ.X /jP.U / is

�U .H /D Conn X H
CjJ=H j � jU=H j

cocartesian if U is a proper subset of J, and cocartesian for U D J. The first term
�0 of the minimum of Theorem 2.3 is realized when the partition of J has two sets,
with value

�0.H /D 2.Conn X H
CjJ=H j/�.jT1=H jCjT2=H j/�jJ=H jC1D 2 Conn X H

C1:

Since all the vertices corresponding to subsets of cardinality greater than one are
contractible, the second term of the minimum of Theorem 2.3 is

�1.H /D min
L<H

J =L¤J =H

min
j2J L

Conn.X L
!�/� 1� min

L<H
Conn X L:

Thus the cube wJ.X / is �–cartesian, where � is the function

�.H /Dmin
˚
2 Conn X H

C 1; min
L<H

Conn X L
	
:

The limit of wJ.X / over P0.J / is the indexed product of J–copies of X , and the
Blakers–Massey theorem for wJ.X / tells us that the inclusion

wJ.X /∅ D
_
J

X �!
Y
J

X D holim
P0.J /

wJ.X /

is �–connected. This range together with the Blakers–Massey Theorem for the trivial
G –sets J D n express the fact that the identity functor on pointed G –spaces is G –1–
analytic in the sense of equivariant calculus of functors; see [6, Definition 2.3.1].

The Blakers–Massey Theorem 2.3 has the following dual statement.

Theorem 2.6 Let X 2 TopP.J /
a be a J–cube, and suppose that for every subgroup

H of G and for every nonempty H–subset U � J , the cube X jP.U / is �U–cartesian.
Moreover, suppose that the functions �U W fK � H g ! N satisfy �U � �V when-
ever U � V are nonempty H–subsets of J . Then X is �–cocartesian, for

�.H /D min
fT˛g2PartH .J /

�
jJ=H j � 1C

X
˛

minf�T˛ .H /; �1.H /g
�
;

where �1 is the function of Theorem 2.3.

Algebraic & Geometric Topology, Volume 16 (2016)



Equivariant diagrams of spaces 1175

Proof of Theorem 2.3 For each subgroup H of G , we need to calculate the connectiv-
ity of the canonical map �W X H

∅ ! .holimP0.J /X /H at any basepoint in X H
∅ . Since

the empty set is initial in P.J /H , a basepoint of X H
∅ defines a basepoint �!X H

for the whole fixed-points diagram. There is a commutative diagram

X H
∅

�
//

 
''

�
holim
P0.J /

X
�H

r
��

holim
P0.J /H

X H

where r is the restriction map of Proposition 1.13, and  is the canonical map for the
fixed-points diagram X H . Our map is as connected as

Conn� DminfConn ;Conn r � 1g:

The connectivity of  expresses how cartesian the J=H –cube X H is, and it is
determined by the standard Blakers–Massey theorem, [9, Theorem 2.5]. In order to
apply this theorem we need to compare the cocartesianity of the subcubes of X H .
Under the canonical isomorphism P.J=H /D P.J /H a nonempty subset U � J=H

corresponds to a nonempty H –subsets of J . By assumption the cube X H is �U .H /–
cocartesian, and for subsets U � V � J=H the inequality �U .H / � �V .H / holds.
By [9, Theorem 2.5], the cube X H is

min
fT˛g

�X
˛

�T˛ .H /

�
� jJ=H jC 1

cartesian, where fT˛g runs over the partitions of J=H , which correspond to the
partitions of J by H –subsets. This shows that  is as connected as the function �0

of the statement.

Now we calculate the connectivity of the restriction map r . We can assume that  
is at least 0–connected, otherwise the connectivity range of Theorem 2.3 gives us
no information about the cartesianity of X . The �0 –hypothesis of Corollary 1.14 is
satisfied, since there is a commutative diagram

�0X H
∅

��

�0 

,,

�0

�
lim

P0.J /
X
�H

// �0

�
holim
P0.J /

X
�H

r
// �0

�
holim
P0.J /H

X H
�
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and the surjectivity of �0 implies the surjectivity of the lower composite. By
Corollary 1.14, the connectivity of r is precisely �1 .

Proof of Theorem 2.6 For every subgroup H of G there is a commutative diagram�
hocolim
P1.J /

X
�H

))

Š
// hocolim
P1.J /H

X H

��

X H
J

where the homeomorphism is from Proposition 1.8. Since P1.J /
H is isomorphic to

P1.J=H /, we need to determine how cocartesian the J=H –cube X H is. By the dual
Blakers–Massey theorem [9, Theorem 2.6], it is

min
fT˛g2PartH .J /

�
jJ=H j � 1C

X
˛

!T˛ .H /
�

cocartesian, if each restriction X H jP.T˛=H / is !T˛ .H /–cartesian. To determine
!T˛ .H /, consider the commutative diagram

X H
∅

&&

//
�
holim
P0.T˛/

X
�H

r
��

holim
P.T˛=H /

X H

where the vertical map is the restriction. By hypothesis the horizontal map is �T˛ .H /–
connected. The connectivity of r is again given by Corollary 1.14.

2.2 The equivariant Freudenthal suspension theorem

Let G be a discrete group and let J be a finite G –set. We let SJ be the permutation
representation sphere of J , defined as the one-point compactification RŒJ �C of the
G–vector space generated by J . Given a pointed G–space X , we define its J–loop
and J–suspension respectively as the space of pointed maps and the smash product

�J X DMap�.S
J;X /; †J X DX ^SJ

with G –action by conjugation on �J X and diagonal on †J X . The pair of functors
†J W TopG

� � TopG
� W �

J is an adjunction. The equivariant Freudenthal suspension
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theorem of [16] (see also [13] and [1]) calculates the connectivity of the unit of this
adjunction

X G
�! .�J†J X /G

restricted to the G–fixed-points spaces. We show that this theorem is a direct conse-
quence of the equivariant Blakers–Massey Theorem 2.3. The relationship between the
Blakers–Massey theorem and the Freudenthal suspension theorem is well-established
when J has the trivial G –action.

Corollary 2.7 [16] Let X be a well-pointed G–space. The unit of the .†J ; �J /–
adjunction �W X G! .�J†J X /G is m–connected, where

mDmin
�

2 Conn X G
C 1; min

H<G
J =H¤J =G

Conn X H

�
:

Proof The idea of the proof is to construct the loop space �J†J X as the G–
homotopy limit of an equivariant cube. Let JC be the G–set J with an added fixed
basepoint. Define a JC–cube �J X W P.JC/! Top� with vertices

.�J X /U D

8<:
X if U D∅;
C U X if ∅¤ U ¤ JC;

†J X if U D JC;

where C U X is the U –fold cone of X , defined as

C U X D hocolim
P.U /

�
V 7�!

�
X if V D∅;
� otherwise.

�
The functor �J X has a natural G–structure. It is defined at the initial and final
vertices by the G–actions on X and †J X respectively, and at the other vertices by
the canonical isomorphism

C U X �! C gU X

induced by the functor gW P.U /! P.gU /. For the group G D Z=2 and the G–set
J D Z=2, this is the cube

X //

��

$$

CX
99

yy &&

CX

��

//

��

C 2X

��

CX

##

// C 2X
::

zz &&

C 2X // †Z=2X:
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The dashed maps denote the G–structure between the nonfixed vertices. The space
C U X is GU –contractible, since for every subgroup H of GU , Proposition 1.8 provides
a homeomorphism

.C U X /H Š C U=H .X H /' �:

This shows that the restriction of �J X to P0.JC/ is equivalent to the G–diagram
!J X W P0.JC/! Top defined by

.!J X /U D

�
� if U ¤ JC;

†J X if U D JC;

via the obvious pointed map !J X ! �J X jP0.JC/ . The homotopy limit of !J X is
G –homeomorphic to �J†J X , by inspection on the definition of the Bousfield–Kan
formula. This gives a commutative diagram of pointed G –spaces

X D .�J X /∅ //

�
((

holim
P0.JC/

�J X

�J .†J X / Š holim
P0.JC/

!J X

'

OO

where the vertical map is a G –equivalence by the homotopy invariance of G –homotopy
limits. The unit map � is then as connected as �J X is cartesian.

We show that �J X satisfies the condition of the Blakers–Massey Theorem 2.3, and
we show that its cartesianity estimate is the same as the range claimed in Corollary 2.7.
For each subset U of JC , we need to find an estimate �U for the cocartesianity of the
restriction �J X jP.U / . For every subgroup H of GU , there are isomorphisms�

hocolim
P1.U /

�J X
�H
Š hocolim

P1.U=H /
.�J X /H Š hocolim

P1.U=H /
�J =H X H

by the fixed-points description of Proposition 1.8. All the vertices of �J =H X H jP1.U=H /

are contractible except for the initial one; thus there is a natural equivalence�
hocolim
P1.U /

�J X
�H
Š hocolim

P1.U=H /
�J =H X H '

�!†jU=H j�1X H:

Therefore, the canonical map .hocolimP1.U / �
J X /H ! .�J X /H

U
factors through

the equivalence�
hocolim
P1.U /

�J X
�H '
�!†jU=H j�1X H

! .�J X /HU D

�
C U=H X H if U ¤ JC;

†jJ =H jX H if U D JC:
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This map is .Conn X H CjU=H j/–connected for U ¤ JC and it is an equivalence for
U D JC . It follows that �J X jP.U / is �U –cocartesian for the function

�U .H /D

�
Conn X H CjU=H j if U ¤ JC;

1 if U D JC:

These functions satisfy �U � �V for H –subsets U � V of JC , and the equivariant
Blakers–Massey Theorem 2.3 applies. The term �0.G/ in the range of Theorem 2.3 is

min
fT˛g2PartG.JC/

nX
˛

�T˛ .G/
o
� jJC=GjC 1

D min
fJCg¤fT˛g˛2A

nX
˛

.jT˛=Gj/CjAjConn X G
o
� jJC=GjC 1:

The trivial partition fJCg is removed from the minimum because �JC D1. For any
partition fT˛g of JC by G –sets, the quotient JC=G decomposes as the disjoint union
of the quotients T˛=G . Therefore the sum in the formula above is equal to jJC=Gj.
The minimum is thus realized when the size of the partition jAj is minimal. This is the
partition with two elements fJ;Cg, and the quantity above is

min
fJCg¤fT˛g˛2A

fjJC=GjC jAjConn X G
g� jJC=GjC 1D 2 Conn X G

C 1:

Since all but the initial and final vertices of �J X are contractible the second term
�1.G/ of the minimum of Theorem 2.3 is

min
H<G

J =H¤J =G

min
U2P0.JC/

H

U¤JC

.Conn.�!†J =H X H /� jU=H j/

� min
H<G

J =H¤J =G

.Conn X H
CjJ=H j � jJC=H jC 1/:

2.3 Equivariant intersections of submanifolds and configuration spaces

Let M be a manifold and let P1; : : : ;Pn be a collection of submanifolds of M .
For every integer 2 � k � n, we define inductively what it means for the collection
P1; : : : ;Pn to be k –transverse in M .

(i) P1; : : : ;Pn is 2–transverse if Pi intersects Pj transversely for every i ¤ j .

(ii) P1; : : : ;Pn is k –transverse if it is .k � 1/–transverse and if for every set
S � f1; : : : ; ng with k elements and every s 2 S the submanifold

T
t2Sns Pt

intersects Ps transversely.
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Let m be the dimension of M , and let di be the dimension of Pi . If the collection
of submanifolds P1; : : : ;Pn is n–transverse, the intersection

T
s2S Ps is either a

submanifold of M of codimension
P

s2S .m� ds/, or it is the empty submanifold.

Now suppose that G is a discrete group, let J be a finite G–set, and suppose that
G acts properly on a manifold M . Let fPj gj2J be a set of submanifolds indexed
on J , and suppose that for every group element g the corresponding automorphism
of M restricts to a map gW Pj ! Pgj . The G–action on M defines a G–structure
on the cube M nP�W P.J /! Top which sends a subset U � J to the complement
M n

S
j…U Pj . The G –structure is defined by the maps

gW M n
[

j…U

Pj !M n
[

j…U

g.Pj /DM n
[

j…U

Pgj DM n
[

j…gU

Pj :

Theorem 2.8 Let M be a manifold with a proper G–action, and let fPj gj2J be a
set of closed submanifolds as above. Suppose moreover that for every j 2 J and
every subgroup H of G the intersection Pj \MH is a submanifold of M , and that
the collection of submanifolds fPj \MH gj2J is jJ j–transverse in MH . Then the
J–cube M nP�W P.J /! Top is �–cartesian, where � is the function

min
�
jJ jmH � 2jJ=H jC 1�

X
j2J

dj .H / ; min
L<H

J =L¤J =H

.mL�max
j2J

dj .L/� jJ=Lj/

�
:

Here dj .H / is the dimension of Pj \MH , and mH is the dimension of MH .

Proof In order to understand how cartesian M nP� is it is sufficient, by the Blakers–
Massey theorem, to understand how cocartesian the subcubes of M nP� are. Let H

be a subgroup of G and let U be an H –invariant subset of J . The homotopy colimit
of the restriction of M nP� to P1.U / is H –equivalent to

hocolim
P1.U /

M nP�
'
�! colim

P1.U /
M nP� D

�
M n

[
j…U

Pj

�
n

\
u2U

Pu:

Hence the cube .M nP�/jHP.U / is �U .H /–cocartesian, where �U .H / is the connectivity
of the inclusion

�U .H /D Conn
��

M n
[

j…U

Pj

�
n

\
u2U

Pu �!M n
[

j…U

Pj

�H

of H –fixed points. This map is the inclusion of submanifolds�
MH
n

�[
j…U

Pj

�H �
n

�\
u2U

Pu

�H
�!MH

n

�[
j…U

Pj

�H
;
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which is as connected as the codimension of .
T

u2U Pu/
H in MH minus one. By our

transversality assumption .
T

u2U Pu/
H D

T
u2U Pu\MH is a submanifold of MH

of codimension
P

u2U .mH � du.H //. The functions

�U .H /D
X
u2U

.mH � du.H //� 1

satisfy �U � �V when U � V are both H –invariant, and Theorem 2.3 applies. The
first term of the minimum of Theorem 2.3 is

�0.H /D min
fT˛g˛2A2PartH .J /

�X
˛2A

X
u2T˛

.mH � du.H //� jAj

�
� jJ=H jC 1:

The double sum is independent of the partition, and this minimum is realized for the
finest partition of J by H –invariant sets. This is the partition of J in H –orbits, and
the term above is X

j2J

.mH � dj .H //� 2jJ=H jC 1:

The second term of the minimum of the Blakers–Massey formula is

�1.H /D min
L<H

J =L¤J =H

min
U2P0.J /

L

U¤J

�
Conn

�
M n

[
j…U

Pj

�L

!

�
M n

[
j…hU iH

Pj

�L

� jU=Lj

�
:

The connectivity of the inclusion above is mL�maxj2hU iHnU dj .L/� 1, and �1.H /

is bounded by

�1.H /� min
L<H

J =L¤J =H

�
mL�max

j2J
dj .L/� 1� jJ=LjC 1

�
:

This theorem has interesting consequences for equivariant cubes of configuration spaces.
What follows is an equivariant version of the multiple disjunction theorem [10] in
the easy situation where the submanifolds Pj are points. The techniques of [10] can
supposedly be extended to equivariant collections of higher-dimensional submanifolds.
Given a finite G –set J and a proper G –manifold M , we let Conf.J;M / be the space
of ordered configurations of jJ j–points in M , with G acting by conjugation. Explicitly,
a configuration is an injective map xW J �M , which is sent by the homeomorphism
associated to g2G to the composite gxg�1 . The cube Conf.Jn.�/;M /W P.J /!Top
that sends a subset U of J to the configurations of JnU –points in M has a G–
structure defined by the maps gW Conf.JnU;M / ! Conf.JngU;M / which send
xW JnU �M to

gxW Jng.U /
g�1

���! JnU
x
��!M

g
��!M:
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Corollary 2.9 Let J be a finite G –set and let JC be the G –set J with an added fixed
basepoint. The JC–cube Conf.JCn.�/;M /W P.JC/! Top is �–cartesian, where �
is the function

�.H /Dmin
�
jJ jmH � 2jJ=H jC 1; min

L<H
J =L¤J =H

.mL� jJ=Lj/

�
;

and mH is the dimension of the fixed-points manifold MH .

Because of the second term of the minimum, one cannot expect to make � diverge by
increasing the number of orbits of J , which is possible in the nonequivariant situation.
If the action on J is trivial, the second term is infinite and the range of Corollary 2.9
is the classical cartesianity range from embedding calculus; see [10]. Before proving
Corollary 2.9, we see an example where the range is sharp and it is determined by the
second term of the minimum.

Example 2.10 Let us consider the group GDZ=2 and the finite G –set J DZ=2 with
action by left multiplication. The space Conf.Z=2C;M / of configurations in a mani-
fold with involution M is the space of triples of pairwise distinct elements .xC;x0;x1/

in M . Such a triple is sent by the nontrivial element of Z=2 to .�xC; �x1; �x0/, where
� denotes the involution of M . The Z=2–fixed points of this space is described by a
natural homeomorphism

Conf.Z=2C;M /Z=2 ŠM Z=2
� .M nM Z=2/:

The equivariant cube Conf.Z=2Cn.�/;M / is the Z=2C–cube

Conf.Z=2C;M / //

��

**

Conf.0C;M /
44�

tt
''_Conf.1C;M /

��

//

��

M

��

Conf.Z=2;M /

**

// M44
�

tt ((
M // �

where 0 and 1 are the elements of J DZ=2. The dashed maps denote the G –structure
on the nonfixed objects of P.Z=2C/. By Corollary 2.9, the cartesianity of this cube
on Z=2–fixed points is

�.Z=2/Dminf2mZ=2� 1;m1� 2g:

Observe that since mZ=2 � m1=2 this quantity is always determined by the second
term of the minimum �.Z=2/Dm1� 2.
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Let us show that the estimate �.Z=2/ is in this case sharp. Let x D fx0;x1;xCg be a
configuration which is fixed by the action, that is xC belongs to M Z=2 and x1D �.x0/.
By taking homotopy fibers over x in the C–direction, we see that the cube above is as
cartesian as the Z=2–cube

M nfx0;x1g

��

// M nx0

��

88
�

xx

M nx1
// M:

By inspection, a fixed point of holim.M nx0!M  M nx1/ is the data of a path

 W I ! M such that 
 .0/ ¤ x0 , 
 .1/ ¤ x1 and �
 .t/ D 
 .1 � t/. Such a path
is determined by its restriction to the interval Œ0; 1=2�, with the condition that the
value 
 .1=2/ belongs to M Z=2 . Thus the fixed points of this homotopy limit are
homeomorphic to holim.M Z=2!M  M nx0/, and on Z=2–fixed points the square
above is as cartesian as

.M nfx0;x1g/
Z=2 //// M nx0

��

M Z=2 // M:

The vertical map is the identity because x0 ¤ x1 D �.x0/ is not fixed. This square is
as cartesian as the connectivity of M nx0!M minus one, which is precisely

.codim.x0/� 1/� 1Dm1� 2D �1.Z=2/:

Proof of Corollary 2.9 Let xW JC�M be a configuration. Then the collection
of its restrictions xJCnU 2 Conf.JCnU;M / defines a basepoint of the diagram
Conf.JCn.�/;M /. Let Fx.M /W P.J /!Top be the J–cube defined by the homotopy
fibers of the maps that forget the basepoint,

Fx.M /U D hof
�
Conf.JCnU;M / �! Conf.JnU;M /

�
;

over the points xJ nU , with the induced canonical maps. The cube Fx.M / has a
Gx –structure, where Gx is the stabilizer group of the configuration x , defined by the
canonical maps

Fx.M /U

��

// Conf.JCnU;M / //

g

��

Conf.JnU;M / 3 xJ nU

g

��

_

��

Fx.M /gU
// Conf.JCngU;M / // Conf.JngU;M / 3 xJ ngU :
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The homotopy fiber of the map Conf.JC;M /! holimP0.JC/ Conf.JCn.�/;M / over
a configuration x is Gx –equivalent to the homotopy fiber of the map Fx.M /∅ !

holimP0.J / Fx.M / over the canonical basepoint defined by x . Hence �.H / is the
minimum of the cartesianities of Fx.M /, for x running through the configurations
in Conf.JCnU;M / which are fixed by H . The restriction map Conf.JCnU;M /!

Conf.JnU;M / is a fibration of GU –spaces, whose fiber over xJ nU W JnU � M

is the manifold M with the image of xJ nU removed. Hence the cube Fx.M / is
equivalent as a Gx –diagram to the J–cube

Fx.M /U DM n
[

j2J nU

xj :

The collection of 0–dimensional submanifolds fxj gj2J satisfies the transversality
conditions of Theorem 2.8, and the cube Fx.M /DM nx� is then �.H /–cartesian.

3 The equivariant Quillen Theorem B

Quillen’s Theorem B of [17] shows that under certain conditions the homotopy fiber
of the geometric realization of a functor F W C !D over an object d in D is weakly
equivalent to the geometric realization of the over category F=d . It is not immediately
clear how this result can be generalized to an equivariant context. The analogous
statement for an equivariant functor between categories with G –actions can easily be
reduced to Theorem B by taking fixed points. The generalization presented in this paper
gives a categorical model for the total homotopy fiber of the geometric realization of
a J–cube of categories. When J is the set with one element, one recovers Quillen’s
Theorem B.

The key to our equivariant Theorem B is a categorical model for the G–homotopy
limit of the nerve of a suitable G –diagram of categories. This result is not limited to
diagrams of cubical shape, but it applies more generally to categories which satisfy a
suitable finiteness condition; see Section 3.2. Even when G is the trivial group our
categorical model for the homotopy limit generalizes Theorem B considerably, from
homotopy fibers to all finite homotopy limits. Since this result might be of interest to
nonequivariant homotopy theorists we prove it as a separate statement.

The section is organized as follows. In Section 3.1, we define a categorical model for
the homotopy limit of the nerve of a diagram X W I ! Cat , as well as a quasifibrancy
condition analogous to the hypothesis of Quillen’s Theorem B. In Section 3.2, we prove
that the classifying space of the category constructed in Section 3.1 indeed models the
homotopy limit of BX if X is quasifibrant. We call this result “Theorem BI ”. In
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Corollary 3.7, we use this result to give a categorical model for the total homotopy fiber
of a cube of categories. We think of this corollary as a Theorem B for cubes. Section 3.3
contains the generalization of Theorem BI to G –diagrams, and the equivariant Quillen
Theorem B.

3.1 Reedy quasifibrant diagrams of categories

Let I be a small category and let K;X W I ! Cat be diagrams of small categories.
The natural transformations from K to X form a category Hom.K;X /. An object of
this category is a natural transformation ˆW K!X , and a morphism ƒW ˆ!ˆ0 is a
pair of natural transformations ƒ1W K!K and ƒ2W X !X such that the following
square commutes:

K
ƒ1
//

ˆ
��

K

ˆ0
��

X
ƒ2

// X:

Remark 3.1 The category Hom.K;X / was introduced in [14] where the author shows,
among other homotopical properties of this construction, that its nerve is isomorphic to
the simplicial mapping space of natural transformations Hom.NK;NX /. In particular,
when K is the functor KDI=.�/W I!Cat , the nerve of Hom.I=.�/;X / is isomorphic
to the Bousfield–Kan formula [4] for the homotopy limit of NX . This construction
computes the homotopy limit of NX in the standard model structure of simplicial
sets only when NX is pointwise fibrant; that is, only in the rare situation when
the vertices Xi are groupoids. The goal of Theorem BI is to find a condition on
X W I!Cat , weaker than assuming that X is valued in groupoids, for which the nerve
of Hom.I=.�/;X / is equivalent to the homotopy limit of NX .

Example 3.2 Let I be the poset �! � �. A diagram indexed over this poset is a
pullback diagram of categories C

f

�!D
g

 �E . There is an isomorphism of categories

Hom
�
.�! � �/=.�/; C

f
!D

g
 E

�
Š f#g;

where f#g is the model for the homotopy pullback of Barwick and Kan [2]. The
objects of f#g are triples .c; 
; e/ consisting of objects c 2 C and e 2 E , and a
zig-zag of morphisms 
 D .f .c/! d  g.e// in the category D . This can also be
described as the Grothendieck construction of the functor f=.�/ �g=.�/W D �! Cat .

Let i<I be the full subcategory of the under category i=I of nonidentity maps with
source i . Given a diagram X W I ! Cat , we define Xi<W .i <I/! Cat to be the
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restriction of X along the projection functor i<I ! I that sends i ! j to j . For
every object i of I , there is a functor

mi W Xi �! Hom..i<I/=.�/;Xi</

that sends an object x of Xi to the natural transformation mi.x/W .i<I/=.�/!Xi<

consisting of the constant functors mi.x/˛W .i<I/=˛!Xj that send every object to
˛�x . For the purpose of this paper, we say that a functor of small categories is a weak
equivalence if its nerve is a weak equivalence of simplicial sets.

Definition 3.3 A diagram X W I ! Cat is Reedy quasifibrant if, for every object i of
I , the functor

mi=.�/W Hom..i<I/=.�/;Xi</ �! Cat

sends every morphism in the category of natural transformations to a weak equivalence
of categories.

This condition is reminiscent of the Reedy fibrancy conditions of diagrams indexed
over a Reedy category. We explain the relationship between the two conditions more
closely. The functor mi factors through the categorical limit

mi W Xi �! lim
i
¤id
�!j

Xj D Hom.�;Xi</ �! Hom..i<I/=.�/;Xi</;

where the second map is induced by the projection .i<I/=.�/!�. The first functor
is the i –matching functor of X . The nerves of the mi are thickenings of the matching
maps of NX . The diagram NX would be Reedy fibrant if the matching maps were
Kan fibrations. If X is Reedy quasifibrant then, by Quillen’s Lemma [17, page 98] and
Thomason’s Theorem [20], the replacement of mi by the Grothendieck construction

NXi 'N.Hom omi=.�// �!N Hom..i<I/=.�/;Xi</

is a quasifibration. In this sense, the condition of Theorem BI is a Reedy quasifibrancy
condition; hence the terminology.

Example 3.4 If we return to the diagram of categories C
f

�!D
g

 �E of Example 3.2, we
see that this is Reedy quasifibrant precisely when the functors f=.�/;g=.�/W D! Cat
send every morphism to a weak equivalence.
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3.2 Finite homotopy limits of classifying spaces and the higher Quillen
Theorem B

Let I be a small category, and suppose that the nerves of the under categories N.i=I/

are finite-dimensional simplicial sets for every object i of I . We call a category I with
this property left-finite. Such a category has a canonical degree function Ob I !N
that sends i to the dimension of N.i=I/. This is the length of the longest sequence of
nonidentity morphisms starting at i . The degree function induces a filtration

I�0 � I�1 � � � � � I;

where I�n is the full subcategory of I of objects of degree less than or equal to n.
This filtration is finite precisely when NI is itself finite-dimensional.

Let X W I ! Cat be a diagram of categories. We choose the space

holim
I

NX WD Hom.N.I=.�//;FNX /

as a model for the homotopy limit of NX , where NX '
�!FNX is a pointwise fibrant

replacement of the diagram NX . The fibrant replacement induces a comparison map
N Hom.I=.�/;X /! holimI NX .

Theorem BI Let I be a left-finite category, and let X W I ! Cat be a Reedy quasifi-
brant diagram of categories as in Definition 3.3. There is a weak equivalence

holim
n2Nop

N Hom..I�n/=.�/;X�n/
'
�! holim

I
NX;

where X�n is the restriction of X to I�n . In particular, if the nerve of I is finite-
dimensional, the map

N Hom.I=.�/;X /
'
�! holim

I
NX

is a weak equivalence of simplicial sets.

Remark 3.5 Let us see how Theorem BI relates to Quillen’s Theorem B. Let us
consider a diagram of categories C

f
�!D

g
 �E on the poset I D .�!� �/. Theorem

BI tells us that the nerve of the category,

Hom
�
.�! � �/=.�/; C

f
!D

g
 E

�
Š f#g;

is equivalent to the homotopy pullback of Nf and Ng , provided that both functors
f=.�/;g=.�/WD ! Cat send morphisms to equivalences (see Example 3.2 for the
definition of f #g ). Barwick and Kan arrive at the same conclusion by assuming
that just one among the functors f=.�/ and g=.�/ satisfies this property; see [2]. In
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particular, when E D � is the trivial category, their result is equivalent to the original
formulation of Quillen’s Theorem B from [17]. The fact that one is able to weaken
the quasifibrancy condition in the pullback case to only one of the functors f=.�/ and
g=.�/ is a special feature of squares. It is completely analogous to the fact that the
pullback along a fibration is homotopy invariant, even though the pullback diagram itself
is injectively fibrant only when both maps are fibrations; see eg [11, Proposition 13.3.9].

The proof of Theorem BI is by induction on the filtration I�0 � I�1 � � � � � I ,
by exploiting the fact that the complements In D I�nnI�n�1 are discrete categories.
The inductive step is based on a lemma that describes the interaction between natural
transformations and Grothendieck constructions, which requires us to set up some
notation. For any set of degree n objects U � In , let U�I be the union of the under
categories u=I for u 2 U . Explicitly, its set of objects is

Ob.U�I/D f.u 2 U; ˛W u! i/g:

The set of morphisms .u; ˛/ ! .v; ˇ/ is empty if u and v are different, and it is
the set of morphisms .u; ˛/ ! .u; ˇ/ in u=I otherwise. Define U < I to be the
full subcategory of U �I whose objects are nonidentity maps. Given a diagram of
categories X W I ! Cat , we denote the corresponding restrictions by

XU�W U�I ! I
X
! Cat; XU<W U<I ! I

X
! Cat;

where U�I ! I and U<I ! I project onto the target. We recall from [20] that the
Grothendieck construction of a functor F W C !Cat is the category C oF with objects
pairs .c 2 C;x 2 Ob F.c//, and where a morphism .c;x/! .d;y/ is a morphism
˛W c! d in C together with a morphism ıW ˛�x! y in the category F.d/.

Lemma 3.6 Let X W I ! Cat be a diagram of categories, and suppose that I is
left-finite. For every subset U � In , there is a natural isomorphism of categories

Hom..U�I/=.�/;XU�/Š
�
Hom

�
.U<I/=.�/;XU<

�
oFU

�
;

where FU W Hom..U<I/=.�/;XU</! Cat is the functor that sends a natural transfor-
mation ˆ to the category

FU .ˆ/D
Y
u2U

.mu/=.ˆju<I /:

Proof An object of the Grothendieck construction of Lemma 3.6 is a collection of
functors fˆ˛W .U < I/=˛ ! Xig˛ natural in the maps ˛W u ! i ranging over the
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objects of U < i , together with objects xu 2 Xu for every u 2 U , and compatible
natural transformations for every ˛W u! i :


˛W ˛�xu �!ˆ˛:

Here ˛�xuW .U<I/=˛!Xi is the constant functor with value ˛�xu . Given such an
object .ˆ;x; 
 /, define a natural transformation ‰W .U�I/=.�/!XU� as follows.

An object of .U�I/=˛ is a factorization

u
��

˛
// i

k

AA

and an object of .U<I/=˛ is a similar factorization where the map u! k is not the
identity. The functor ‰˛W .U�I/=˛!Xi is defined on objects by

‰˛

�
u
��

˛
// i

k

AA

�
D

8̂<̂
:
˛�xu if .u! k/D idu;

ˆ˛

�
u
��

˛
// i

k

AA

�
if .u! k/¤ idu :

The point here is that

ˆ˛

�
u
��

˛
// i

k

AA

�
is defined precisely when u! k is not an identity. A morphism

u
��

˛
// i

k

AA �!
u
��

˛
// i

l

BB

in .U �I/=˛ is a map k ! l such that the two relevant triangles commute. Such a
morphism is sent to

‰˛

0BBB@
u

��

��

˛
// i

k

��

DD

l

II

1CCCAD
8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

id˛�xu
if .u!l/D idu;


˛W ˛�xu!ˆ˛

�
u
��

˛
// i

l

BB

�
if .u!l/¤ idu

and .u!k/D idu;

ˆ˛

�
k
��

l

�
W ˆ˛

�
u
��

˛
// i

k

AA

�
!ˆ˛

�
u
��

˛
// i

l

AA

�
if .u!l/¤ idu

and .u!k/¤ idu :

Notice that if u! l is the identity map on u, both u! k and k! l must be identities
by degree considerations. This procedure defines a functor�

Hom
�
.U<I/=.�/;XU<

�
oFU

�
�! Hom..U�I/=.�/;XU�/
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on objects. We extend this on morphisms as follows. Unraveling the definitions of
the Grothendieck construction and of the natural transformations category, we see
that a morphism .ˆ;x; 
 /! .ˆ0;x0; 
 0/ in the left-hand category is a collection of
compatible natural transformations �˛W ˆ˛!ˆ0˛ for every nonidentity map ˛W u! i

with u 2 U , together with morphisms fuW xu! x0u in Xu for every u 2 U , which
make the following squares commutative:

˛�xu
˛�fu

//


˛
��

˛�x
0
u


 0˛
��

ˆ˛
�˛

// ˆ0˛:

Such a pair .�; f / induces a morphism ‰!‰0 between the associated natural transfor-
mations in Hom..U�I/=.�/;XU�/, defined at a nonidentity morphism ˛W u! i , by

‰˛ Dˆ˛
�˛
�!ˆ0˛ D‰

0
˛;

and at an identity map idu by fuW ‰idu
D ˛�xu ! ˛�x

0
u D ‰0idu

. The resulting
functor is an isomorphism of categories. Its inverse sends a natural transformation
f‰˛W .U � I/=˛ ! Xig˛Wu!i to the triple .ˆ;x; 
 / consisting of the restrictions
ˆ˛W .U < I/=˛ ! .U � I/=˛

‰˛
��! Xi for each .˛W u ! i/ 2 U < I , the objects

xuD .‰uW �D .U�I/=idu
!Xu/, and natural transformations 
˛ defined at an object

u
��

˛
// i

k

AA

of .U�I/=˛ by the morphism in Xi :

˛�xuD˛�‰idu

�
u u

u

�
D‰˛

�
u

˛
// i

u ˛

@@

�
�!‰˛

�
u
��

˛
// i

k

AA

�
Dˆ˛

�
u
��

˛
// i

k

AA

�
:

Here the second equality holds by naturality of ‰ , and the arrow is ‰˛ applied to
the morphism

u

��

˛
// i

u
��

>>

k

FF
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of .U�I/=˛ induced by the following factorization:

u
��

˛
// i

k

AA

The inverse can be extended similarly to morphisms.

Proof of Theorem BI Let NX ! FNX be a pointwise fibrant replacement of the
diagram NX . We prove just below, by induction on n, that for every subset U � In ,
the map

(1) N Hom..U�I/=.�/;XU�/Š Hom.N.U�I/=.�/;NXU�/
'
�! holim

U�I
NXU�

is a weak equivalence. In particular, by choosing U D In , the category In � I is I�n ,
and we have an equivalence:

N Hom..I�n/=.�/;X�n/
'
�! holim

I�n

NX�n:

If NI is finite-dimensional, we have that I D I�d for some integer d , and the map
N Hom.I=.�/;X /! holimI NX is an equivalence. When I is infinite, taking the
homotopy limit over the maps induced by the filtration gives an equivalence:

holim
n2Nop

N Hom..I�n/=.�/;X�n/
'
�! holim

n2Nop
holim

I�n

NX�n:

The structure maps holimI�n
NX�n! holimI�n�1

NX�n�1 in the right-hand tower
are Kan fibrations. Indeed, they are induced by mapping the cofibrations of diagrams of
simplicial sets �n=.�/! I�n , where �nW I�n�1! I�n is the inclusion, into the fibrant
diagram FNX�n . Hence the right-hand homotopy limit is equivalent to the categorical
limit. Now each Hom.N.I�n/=.�/;FNX�n/ is isomorphic to Hom.Njn=.�/;FNX /,
where jnW I�n! I is the inclusion. The right-hand limit is then

lim
n2Nop

Hom.N.I�n/=.�/;FNX�n/Š Hom
�
colim

n
Njn=.�/;FNX

�
Š holim

I
NX:

The last isomorphism holds as the category jn=i includes in jnC1=i for every object i

of I , with union
S

n2N jn=i D I=i . This will finish the proof of Theorem BI .

We are left with proving the inductive statement (1) above. The base induction step,
nD 0, relies on the fact that, for a subset U � I0 , the category .U�I/ is discrete with
objects the identity maps idu for u2U . Therefore, the category .U�I/=idu

Dfidug is
the one point category. It follows that Hom..U�I/=.�/;XU�/ is the product category

Hom..U�I/=.�/;XU�/D
Y
u2U

Xu;
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and the homotopy limit of NXU� is the product

holim NXU� D

Y
u2U

FNXu:

Since the product of simplicial sets preserves all equivalences (not only those between
fibrant objects), the map

N
Y
u2U

Xu!

Y
u2U

FNXu

is an equivalence.

Now suppose that N Hom..U�I/=.�/;XU�/! holim NXU� is an equivalence for
every subset U � In , and let V be a subset of InC1 . Let ˆW .V <I/=.�/!XV< be
a natural transformation, and consider the commutative diagram:

NFV .ˆ/

��

//
Q
v2V

hofˆjv<I
.NXv! holim NXv</

��

N.Hom oFV /
Š
//

**

N Hom..V �I/=.�/;XV�/

��

// holim NXV�

��

N Hom..V <I/=.�/;XV</
'

// holim NXV<

The bottom map is an equivalence by the inductive hypothesis, since V <I DU�I for
the subset of objects U WD .V <I/\ In of In . The isomorphism is from Lemma 3.6.
By our assumption on the diagram X, the functor FV sends every morphism to a weak
equivalence. Thus, by Quillen’s Lemma [17, page 98] and Thomason’s Theorem [20],
the left-hand vertical sequence is a fiber sequence. Let us turn to the right-hand vertical
sequence. Let �W V <I ! V �I be the inclusion. The map induced by � on homotopy
limits is the restriction

holim
V�I

NXV� �! Hom.N �=.�/;FNXV�/Š holim
V<I

NXV<

along the inclusion �=.�/! .V �I/=.�/ . Since this is a cofibration of diagrams of
simplicial sets and FNXV� is fibrant, the restriction map is a Kan fibration. Its point
fiber over ˆ is the product of total homotopy fibersY

v2V

hofˆjv<I
.NXv! holim NXv</;

and therefore the right-hand vertical sequence in the diagram above is also a fiber
sequence. Thus, in order to finish our inductive proof, it is enough to show that the
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map on homotopy fibers

NFV .ˆ/D
Q
v2V N.Xv

mv
��! Hom..v<I/=.�/;Xv<//=ˆjv<I

��Q
v2V hofˆjv<I

.NXv! holim NXv</

is an equivalence. The product components of this map factor as:

N.Xv
mv
��! Hom..v<I/=.�/;Xv<//=ˆjv<I

//

��

hofˆjv<I
.NXv! holim NXv</

hofˆjv<I
.NXv!N Hom..v<I/=.�/;Xv<//

22

Our assumption on X says that the functor mv=.�/ sends every map to a weak
equivalence. Hence, by Quillen’s Theorem B, the vertical map is an equivalence.
The horizontal map is also an equivalence since, by the inductive hypothesis for the set
U WD .v<I/\ In , we have that the map N Hom..v<I/=.�/;Xv</! holim NXv<
is an equivalence.

The following result can be thought of as a generalization of Quillen’s Theorem B to
higher-dimensional cubes, with a higher Quillen Theorem A as a consequence.

Corollary 3.7 Let n � 1 be an integer, let X W P.n/! Cat be a Reedy quasifibrant
cube of categories, and let ˆW P0.�/! X∅< be a natural transformation. The total
homotopy fiber of NX over Nˆ is equivalent to the nerve of the over category m∅=̂ .
In particular, if the categories m∅=̂ are contractible, NX is homotopy cartesian.

Proof Recall that the total homotopy fiber of NX over Nˆ is the homotopy fiber

hofˆ.NX∅ �! holim
P0.n/

NX∅</

over the element in the homotopy limit defined by Nˆ. Clearly the restriction X∅< of
X to P0.n/ is also Reedy quasifibrant, and by Theorem BI, the total homotopy fiber
is equivalent to the homotopy fiber of

hofˆ.NX∅
N m∅
���!N Hom.P0.�/;X∅<//:

Since m∅=.�/ also sends all maps to equivalences, this is equivalent to N m∅=̂ by
Quillen’s Theorem B.
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3.3 The equivariant Quillen Theorem B

Let G be a discrete group acting on a category I . We generalize the results of the
previous section to G –homotopy limits of G –diagrams of categories X W I ! Cat . As
in Section 3.2, it is going to be convenient to work with diagrams of simplicial sets
instead of diagrams of topological spaces. The only difference is that one needs to
perform the suitable fibrant replacements. We say that a morphism of G –diagrams of
simplicial sets f W Z! Y is an equivalence if it is an equivalence of G –diagrams of
topological spaces (as in Definition 1.4) after taking geometric realizations.

Definition 3.8 The G –homotopy limit of a G –diagram of simplicial sets Y W I!sSet

is the G –simplicial set of natural transformations

holim
I

Y D Hom.N.I=.�//;FY /;

where FY is a G –diagram of simplicial sets with an equivalence Y '
�! FY , with the

property that .FY /i is a fibrant Gi –simplicial set for every object i in I .

It is proved in [7, Theorem 2.6] that such a replacement Y '
�!FY always exists, and that

the G –homotopy limit functor preserves equivalences of G –diagrams of simplicial sets.
As simplicial mapping spaces with fibrant target commute with geometric realizations,
there is a G –equivalence j holimI Y j ' holimI jY j relating this construction with the
G –homotopy limit of Section 1.1.

If K;X W I ! Cat are two G –diagrams of categories, the category of natural transfor-
mations Hom.K;X / has an induced G –action by conjugation, and the isomorphism
of simplicial sets N Hom.K;X / Š Hom.NK;NX / is G–equivariant. Composing
this isomorphism with a fibrant replacement of X leads to a G –equivariant map

N Hom.I=.�/;X / �! holim
I

NX:

We extend the quasifibrancy condition of Definition 3.3 to the equivariant setting, and
we show that this map is an equivalence. Suppose that I is left-finite. The fixed-point
categories IH are automatically left-finite for every subgroup H of G . For every object
i of IH , the under category i=I has an action of H that restricts to the subcategory
i<I . The restriction of a G –diagram X W I ! Cat to i<I has a canonical structure
of an H –diagram, and the functor mi W Xi!Hom..i<I/=.�/;Xi</ of Definition 3.3
is H –equivariant. Let

mH
i W X

H
i �! Hom..i<I/=.�/;Xi</

H

be its restriction to the categories of fixed points.
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Definition 3.9 A G –diagram of categories X W I ! Cat is G –Reedy quasifibrant if,
for every subgroup H of G and every object i of IH , the functor mH

i =.�/ sends every
morphism to a weak equivalence of categories.

Theorem BI
G

Let I be a left-finite category with G –action, and let X W I ! Cat be
a G –diagram of categories. Suppose that X is G –Reedy quasifibrant. Then there is a
weak G –equivalence

holim
n2Nop

N Hom..I�n/=.�/;X�n/
'
�! holim

I
NX:

In particular, if the nerve of I is finite-dimensional, the map N Hom.I=.�/;X /
'
�!

holimI NX is a weak G –equivalence of simplicial G –sets.

Let J be a finite G–set. The following result is our equivariant generalization of
Quillen’s Theorems A and B.

Corollary 3.10 Let X W P.J /!Cat be a G –Reedy quasifibrant J–cube of categories.
For every natural transformation ˆW P0.�/!X∅< , the nerve of the category m∅=ˆ
is Gˆ–equivalent to the total homotopy fiber of the cube NX over Nˆ. In particular,
if all the categories m∅=̂ are Gˆ–contractible, BX is a homotopy cartesian J–cube
of spaces.

Proof It is immediate from Theorem BI
G

, using the argument of Corollary 3.7.

The proof of Theorem BI
G

is based on the same inductive argument in the proof of
Theorem BI . The key ingredient for the induction step is an equivariant analogue of
Lemma 3.6. If Y W I ! Cat is a G –diagram of categories, recall from Corollary 1.10
that its Grothendieck construction I o Y has an induced G–action. Given a subset
U � In , the G–action on I induces a GU –action on the categories U � I and
U < I , where GU is the subgroup of G of elements that send U to itself. The functor
FU W Hom..U<I/=.�/;XU</!Cat from Lemma 3.6, which sends ˆW .U<I/=.�/!

XU< to
FU .ˆ/D

Y
u2U

.mu/=.ˆju<I /;

has a canonical GU –structure. It is defined by conjugating the GU –action on U that
indexes the product with the functors

.mu/=.ˆju<I /
//

��

Xu
//

g

��

Hom..u<I/=.�/;Xu</

g

��

.mu/=.gˆju<I /
// Xu

// Hom..u<I/=.�/;Xu</:
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Hence the Grothendieck construction of FU inherits a GU –action. The following
lemma is an immediate consequence.

Lemma 3.11 For every subset U � In , the isomorphism of categories

Hom..U�I/=.�/;XU�/Š
�
Hom

�
.U<I/=.�/;XU<

�
oFU

�
of Lemma 3.6 is GU –equivariant.

Proof of Theorem BI
G

For every group element g of G , the automorphism g of I

induces an isomorphism of categories gW i=I!gi=I . It follows that the nerves N.i=I/

and N.gi=I/ have the same dimension, and that the degree function degW Ob I !N
is G –invariant. Hence the G –action restricts to the filtration

I�0 � I�1 � � � � � I�n � � � � � I;

and the G–structure on X W I ! Cat restricts to a G–structure on X�nW I�n! Cat .
Let NX '

�! FNX be a pointwise fibrant replacement of NX , like in Definition 3.8.
We prove by induction on n that, for every subset U � In , the map

N Hom..U�I/=.�/;XU�/Š Hom.N.U�I/=.�/;NXU�/ �! holim
U�I

.FNX /U�

is a weak GU –equivalence. Once this is established, the same argument in the proof
of Theorem BI finishes the proof of Theorem BI

G
.

For n D 0, the category U � I is discrete, and the map above is the map of in-
dexed products Y

u2U

NXu �!

Y
u2U

FNXu:

The fixed points of this map by a subgroup H �GU are isomorphic to the mapY
Œu�2U=H

NX Hu
u �!

Y
Œu�2U=H

FNX Hu
u

for a choice of representatives in each H –orbit of U , where Hu is the stabilizer group
of u in H . Each map NX

Hu
u ! FNX

Hu
u is an equivalence of simplicial sets by

assumption, and the map above is an equivalence.

Now suppose that the claim is true for n, and let V be a subset of InC1 . The sequence

NFV .ˆ/!N.Hom oFV /ŠN Hom..V�I/=.�/;XV�/!N Hom..V<I/=.�/;XV</

induced by the restriction map is a fiber sequence of simplicial GV –sets. This is
because its restriction on fixed points of a subgroup H �GV is the sequence

NFV .ˆ/
H
!N.Hom oFV /

H
ŠN.HomH oFH

V /!N Hom..V <I/=.�/;XV</
H ;
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where the functor FH
V
W N Hom..V <I/=.�/;XV</

H ! Cat sends an H –equivariant
natural transformation ˆ to

FH
V .ˆ/D

�Y
v2V

.mv/=.ˆjv<I /

�H
Š

Y
Œv�2V =H

mHv
v =.ˆjv<I /:

By assumption, m
Hv
v =.�/ sends every morphism to a weak equivalence, and thus so

does FH
V

. It follows by the Lemma of [17, page 98] and [20] that NFH
V

is indeed the
homotopy fiber of the restriction map. The restriction map

holim NXV� �! holim NXV<

is a fibration of simplicial G–sets by an argument analogous to the one in the proof
of Theorem BI. Its fiber is the product

Q
v2V hofˆjv<I

.NXv ! holim NXv</ of
homotopy fibers. Therefore, it is sufficient to show that the map on homotopy fibers

NFV .ˆ/ �!
Y
v2V

hofˆjv<I
.NXv! holim NXv</

is a GV –equivalence. By taking fixed points, this is the case if, for all v 2 V , the map

N mv=.ˆjv<I / �! hofˆjv<I
.NXv! holim NXv</

is a Gv–equivalence. This map factors as

N mv=.ˆjv<I /

++

// hofˆjv<I

�
NXv!N Hom..v<I/=.�/;Xv</

�
��

hofˆjv<I
.NXv! holim NXv</:

The top horizontal map is a Gv–equivalence since mH
v =.�/ sends every morphism

to a weak equivalence of categories for every subgroup H of Gv . The vertical map
is also a Gv equivalence, as the map N Hom..v < I/=.�/;Xv</! holim NXv< is a
Gv–equivalence by the inductive hypothesis.

Appendix: Connectivity of homotopy limits

We prove a result about the connectivity of the space of natural transformations between
two diagrams of spaces. This result was used in Corollary 1.14 to calculate the
connectivity of the restriction map on G –homotopy limits. Let G be a discrete group
acting on a small category I .
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Proposition A.1 Let KW I ! Top be a G –diagram of spaces, cofibrant in the model
structure of [7, Theorem 2.6]. Suppose that, for every object i of I , the simplicial
set NI= i is finite-dimensional, and that Ki is a Gi –C W–complex. Then for ev-
ery G–diagram of spaces X W I ! Top, the G–fixed points of the space of natural
transformations Hom.K;X /G is either empty or m–connected, where

mD min
i2Ob I

min
H�Gi

.Conn X H
i � dim KH

i /;

and where Gi is the stabilizer group of the object i .

Corollary A.2 Let X W I ! Top be a G–diagram of spaces and suppose that NI= i

is finite-dimensional for every object i in I . Then .holimI X /G is either empty or
m–connected, where

mD min
i2Ob I

min
H�Gi

.Conn X H
i � dim NIH = i/:

Remark A.3 For the trivial group G D 1, this corollary shows that the homotopy
limit of a diagram of spaces X W I ! Top is

min
i2Ob I

.Conn Xi � dim NI= i/

connected (when nonempty). This result seems to be well known by the experts, but
the author was not able to find a proof in the literature.

Proof of Corollary A.2 The G –diagram N.I=�/ is cofibrant in TopI
a by [7, Exam-

ple 2.19], and Proposition A.1 gives the formula of the statement.

Proof of Proposition A.1 For any pointed map gW Sk ! Hom.K;X /G with k

smaller than the range of the statement, we need to build an extension of g to the
.k C 1/–disc. By the adjunction between mapping spaces and products, this is the
same as solving the extension problem

K �DkC1
zf
// X

K �Sk

OO

zg

77

in the category of G–diagrams TopI
a . We define the extension zf by induction on a

filtration of the objects of I induced by the degree function degW Ob I !N defined
by the dimensions of the over categories

deg i D dim NI= i:
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This degree function is dual to the one used in Theorem BI . It is easy to verify that,
for any nonidentity map i ! j , the inequality deg.i/ < deg.j / holds, and that the
degree function is constant on G–orbits. This is an equivariant version of a directed
Reedy category. For every positive integer d, define I�d to be the full subcategory of
I on objects of degree less than or equal to d, and Id the full subcategory of objects
of degree d . Notice that the G–action restricts to these categories, and that Id is a
discrete category.

For i of degree �1, the category I��1 is empty, and zf is the empty map. Now
suppose that zf is defined as a natural transformation from the category I�d�1 . We
start by defining zfi on representatives of the orbits of the G –action on Id . Let

sW Id=G! Id

be a section for the quotient map, and let z be an orbit in Id=G . By degree reasons,
the only morphisms of I�d involving s.z/ are maps j ! s.z/ with j in I�d�1 .
In order to be compatible with I�d�1 and to extend g , the map zfs.z/ needs to satisfy
the following extension problem in Top:

Ks.z/ �Sk //

zgs.z/ ((

Ks.z/ �DkC1

zfs.z/

��

Ls.z/.K/�DkC1oo

zf jI�d�1

��

Xs.z/ Ls.z/.X /:oo

Here Li.Z/ is the i –latching space of a G –diagram Z 2 TopI
a with vertices

Li.Z/D colim
j
¤id
! i

Zj :

The right-hand square expresses the compatibility of zfs.z/ with the extension already
defined on I�d�1 . The stabilizer group Gs.z/ acts on all the spaces of the diagram, and
both horizontal maps are cofibrations of Gi –spaces by cofibrancy of K . The extension
problem above is equivalent to the extension problem of Gs.z/–spaces

Ls.z/.K/�DkC1qLs.z/.K /�Sk Ks.z/ �Sk

��

// Xs.z/

Ks.z/ �DkC1

zfs.z/

44

and the vertical map is also a cofibration of Gi –spaces. The extension zfs.z/ can
be defined inductively on the relative cells of the cofibration, provided that for any
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Gi=H �DnC1–cell, the composition of zgs.z/ with the attaching map

Gi=H �Sn
!Xi

is Gi –equivariantly null-homotopic. If Ki �DkC1 has a Gi=H �DnC1–cell, its
fixed-points space KH

i �DkC1 has an .nC 1/–cell, and by dimension reasons, we
must have

nC 1� dim KH
i �DkC1

D dim KH
i C kC 1� Conn X H

i C 1:

The last inequality holds because k is smaller than the range of the statement. Thus
�nX H

i is trivial, and any map Gi=H �Sn!Xi is null-homotopic.

Now that zfs.z/ is defined on the representatives of the G –orbits of Id , we extend it to
the rest of Id by defining

zfi W Ki �DkC1 g�1

���!KsŒi� �DkC1
zfsŒi�

���!XsŒi�

g
��!Xi

for a choice of g in G such that gsŒi �D i . The map zfi does not depend on the choice
of g since zfsŒi� is Gi –equivariant. Moreover, the compatibility of zfsŒi� with the maps
j ! s.z/ insures that zf is natural on I�d . That zf extends zg , and that it is compatible
with the G –structure, are easily verified.
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