Volume 16, issue 2 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Spin structures on almost-flat manifolds

Anna Gąsior, Nansen Petrosyan and Andrzej Szczepański

Algebraic & Geometric Topology 16 (2016) 783–796
Bibliography
1 L Auslander, Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. 71 (1960) 579 MR0121423
2 P Buser, H Karcher, Gromov’s almost flat manifolds, 81, Soc. Math. France (1981) 148 MR619537
3 J Cheeger, K Fukaya, M Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992) 327 MR1126118
4 C W Curtis, I Reiner, Representation theory of finite groups and associative algebras, Wiley (1988) MR1013113
5 K Dekimpe, Almost-Bieberbach groups : affine and polynomial structures, 1639, Springer (1996) MR1482520
6 K Dekimpe, M Sadowski, A Szczepański, Spin structures on flat manifolds, Monatsh. Math. 148 (2006) 283 MR2234081
7 S M Gagola Jr., S C Garrison III, Real characters, double covers, and the multiplier, J. Algebra 74 (1982) 20 MR644216
8 A Gąsior, A Szczepański, Tangent bundles of Hantzsche–Wendt manifolds, J. Geom. Phys. 70 (2013) 123 MR3054289
9 J Griess R. L., A sufficient condition for a finite group to have a nontrivial Schur multiplier, Not. Amer. Math. Soc. 17 (1970) 644
10 M Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978) 231 MR540942
11 G Hiss, A Szczepański, Spin structures on flat manifolds with cyclic holonomy, Comm. Algebra 36 (2008) 11 MR2378362
12 R C Kirby, The topology of 4–manifolds, 1374, Springer (1989) MR1001966
13 R J Miatello, R A Podestá, Spin structures and spectra of Z2k–manifolds, Math. Z. 247 (2004) 319 MR2064055
14 R J Miatello, R A Podestá, The spectrum of twisted Dirac operators on compact flat manifolds, Trans. Amer. Math. Soc. 358 (2006) 4569 MR2231389
15 J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974) MR0440554
16 B Putrycz, A Szczepański, Existence of spin structures on flat four-manifolds, Adv. Geom. 10 (2010) 323 MR2629818
17 E A Ruh, Almost flat manifolds, J. Differential Geom. 17 (1982) 1 MR658470
18 C H Sah, Homology of classical Lie groups made discrete, I : Stability theorems and Schur multipliers, Comment. Math. Helv. 61 (1986) 308 MR856093
19 A Szczepański, Geometry of crystallographic groups, 4, World Scientific (2012)